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Interpretable machine learning-based decision support for
prediction of antibiotic resistance for complicated urinary tract
infections
Jenny Yang 1✉, David W. Eyre2, Lei Lu1 and David A. Clifton1,3

Urinary tract infections are one of the most common bacterial infections worldwide; however, increasing antimicrobial resistance in
bacterial pathogens is making it challenging for clinicians to correctly prescribe patients appropriate antibiotics. In this study, we
present four interpretable machine learning-based decision support algorithms for predicting antimicrobial resistance. Using
electronic health record data from a large cohort of patients diagnosed with potentially complicated UTIs, we demonstrate high
predictability of antibiotic resistance across four antibiotics – nitrofurantoin, co-trimoxazole, ciprofloxacin, and levofloxacin. We
additionally demonstrate the generalizability of our methods on a separate cohort of patients with uncomplicated UTIs,
demonstrating that machine learning-driven approaches can help alleviate the potential of administering non-susceptible
treatments, facilitate rapid effective clinical interventions, and enable personalized treatment suggestions. Additionally, these
techniques present the benefit of providing model interpretability, explaining the basis for generated predictions.
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INTRODUCTION
Recent years have seen rapid increases in the prevalence of
antimicrobial resistance in bacterial pathogens, which is threaten-
ing the efficacy of many antibiotic therapies, and ultimately
leading to treatment failure1–3. Although new drugs are urgently
needed, new antibiotic development is restricted by costs, limited
government support, and regulatory requirements1,2. For instance,
as of 2019, major pharmaceutical corporations, commonly known
as “big pharma,” were progressively divesting themselves of
antibiotic research and development (R&D) assets4. This shift
restricts the opportunities available to smaller companies and
their investors, leading to heightened financial constraints and a
lack of infrastructure for antibiotic R&D.
Furthermore, antibiotic resistance leads to increased reliance on

broad-spectrum therapies, which select for further resistance,
exacerbating the issue at hand3,5. To avoid these risks, it is critical
for clinicians to accurately align available antibiotic therapies with
the precise susceptibilities of bacterial pathogens. Ideally, this
alignment should occur when initiating empirical treatment, even
before culture results are obtained (which might take several days
to be available). In this study, we present interpretable machine
learning (ML)-based methods for predicting antimicrobial resis-
tance (AMR), which decreases the risk of non-susceptible and
therefore, ineffective treatment, and facilitates rapid effective
clinical intervention. We demonstrate the utility of these systems
for urinary tract infections (UTIs), where the problem of antibiotic
resistance is of particular importance.
UTIs are one of the most common bacterial infections world-

wide, affecting more than 150 million people each year3,6. The
pathogens that cause UTIs, including Escherichia coli, Klebsiella
pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylo-
coccus saprophyticus3,6,7 can be carried asymptomatically and thus,
are frequently exposed to antibiotics, including those intended for
other infections2. This exposure, combined with high recurrence

rates, often results in multidrug-resistant strains, with resistance
rates of over 20% for commonly used drugs3. As treatment-
outcome is associated with the infecting pathogen’s susceptibil-
ities, clinicians are faced with the challenging task of correctly
prescribing patients with the most appropriate antibiotics.
However, to offer rapid intervention, treatment is commonly
administered empirically, lacking insight into the specific anti-
biotics that the infecting pathogen may be susceptible to2,3. This
scenario adds to the potential of choosing an inadequate
treatment regimen.
Recent studies have shown that ML-based algorithms, using

electronic health record (EHR) data, including demographic
information, prior antibiotic exposures, prior microbiology anti-
biotic susceptibility data, basic laboratory values, and comorbid-
ities, can be used to predict antibiotic resistance in UTI infections.
Analyzing six different antibiotics, Yelin et al.3 demonstrated that
logistic regression and gradient-boosting decision trees could
effectively improve the predictability of resistance (AUROC range
0.70–0.83), using demographics, microbiology sample history and
antibiotic purchase history. Subsequently, they also found that the
algorithm-suggested drug recommendations reduced the rate of
mismatched treatments, both when using an unconstrained
method (where the antibiotic with the lowest resistance
probability was chosen) and a constrained method (where
antibiotics were selected at the same frequency used by
clinicians). Although past purchase history was shown to have
high predictive power, past antibiotic purchases and treatment
can be associated with different clinical conditions including
comorbities and hospitalizations, which were not considered in
the study. Similarly, Kanjilal et al.5 used EHR data to predict the
probability of antibiotic resistance for uncomplicated UTIs. They
performed retrospective analyses on a subset of patients with
uncomplicated UTI, consisting of 15,806 specimens. This uncom-
plicated cohort was defined as specimens where the infection site

1Institute of Biomedical Engineering, Department Engineering Science, University of Oxford, Oxford, UK. 2Big Data Institute, Nuffield Department of Population Health, University
of Oxford, Oxford, UK. 3Oxford-Suzhou Centre for Advanced Research (OSCAR), Suzhou, China. ✉email: jenny.yang@eng.ox.ac.uk

www.nature.com/npjamar

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44259-023-00015-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44259-023-00015-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44259-023-00015-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44259-023-00015-2&domain=pdf
http://orcid.org/0000-0003-0352-8452
http://orcid.org/0000-0003-0352-8452
http://orcid.org/0000-0003-0352-8452
http://orcid.org/0000-0003-0352-8452
http://orcid.org/0000-0003-0352-8452
https://doi.org/10.1038/s44259-023-00015-2
mailto:jenny.yang@eng.ox.ac.uk
www.nature.com/npjamar


was specified as urinary, and the following patient criteria were
met: female between the ages of 18 to 55, no diagnosis indicating
pregnancy in the past 90 days, no selected procedure (placement
of a central venous catheter, mechanical ventilation, parenteral
nutrition, hemodialysis, and any surgical procedure) in the past
90 days, no indication of pyelonephritis, and exactly one antibiotic
of nitrofurantoin, co-trimoxazole, levofloxacin, or ciprofloxacin
prescribed). The trained models achieved AUROCs between
0.56–0.64 across four different antibiotics. Despite relatively
modest predictive performance, this still out-performed clinicians.
In addition to predicting resistance, they also aimed to reduce the
recommendation of broad-spectrum second-line therapies (e.g.,
fluoroquinolone antibiotics such as ciprofloxacin and levofloxacin,
which have also been associated with serious adverse events in
some patients). Using logistic regression and post-processing
analysis, they found that their pipeline both reduced inappropri-
ate antibiotic recommendations and achieved a 67% reduction in
the recommendation of second-line agents, relative to clinicians.
Although these studies found that logistic regression and
gradient-boosting trees achieved the best results, neither
investigated the effectiveness of neural network-based
architectures.
Deep neural networks have notably been used for tasks

involving image- and text-based data. However, it remains
underexplored for tabular data, as ensemble-based decision trees
(DTs) have typically achieved state-of-the-art success for such
applications. One reason for this is that deep neural networks are
overparametrized; and thus, the lack of inductive bias results in
them failing to converge to optimal solutions on tabular decision
manifolds8. Furthermore, a DT is highly interpretable, whereas a
deep neural network is less straightforward to interpret, even
commonly being referred to as a “black box”9. This makes it
difficult to implement neural networks for many real-world tasks,
as model-interpretability is particularly important, especially for
applications concerning clinical decision-making. However, there
are many benefits to using neural networks, including improved
performance on large datasets, and the ability to use transfer
learning and self-/semi-supervised learning8,10. Moreover, with the
advancements and increasing popularity of attention-based
models (a type of sequence-to-sequence model), researchers
have developed deep architectures capable of reasoning from
features at each decision step, enabling model interpretability.
One such model is the TabNet architecture8, which is uniquely
tailored for interpretable learning from tabular data. During
training, the model uses “sequential attention” to dynamically
select relevant features at each step of the prediction, focusing on
the most informative aspects of the input data for each specific
task. This feature selection mechanism helps to reduce noise and
unnecessary information, and has been shown to improve model
performance and interpretability8.
With a focus on predicting antibiotic susceptibility, we aimed to

expand on previous studies by (1) evaluating the utility of using
ML-based prediction of antibiotic resistance for patients with
potentially complicated UTIs (namely, UTIs which are more severe
in nature, and/or occur in patients with anatomically abnormal
urinary tracts or significant medical or surgical comorbidities11)
and (2) demonstrating, comparing, and discussing the advantages
of three types of interpretable machine learning architectures,
including a neural network-based model (specifically, a TabNet
architecture).
We chose to focus on potentially complicated UTIs, as these

infections typically carry a higher risk of treatment failure due to
prior antibiotic therapy, and are associated with more adverse
outcomes with ineffective treatment. These infections may also
require longer courses of treatment, different antibiotics, and
varying degrees of intervention12,13, emphasizing the necessity for
novel intervention methods. We specifically opted for interpre-
table machine learning algorithms, based on the unique

importance of interpreting and elucidating model predictions in
clinical settings. Such interpretability supports clinical utility and
the integration of machine learning models into regular care
practices by healthcare professionals.
Given our focus on a diverse and heterogeneous patient cohort

with potentially complicated UTIs, our primary objective revolves
around discerning antibiotic resistance to support clinicians in
their decision-making process. The aim is to swiftly predict
antibiotic resistance, rather than determining the necessity or type
of antibiotic therapy. Hence, it remains imperative for clinicians (or
another dedicated pipeline) to evaluate and ascertain the
suitability of antibiotic therapy for each patient independently.
While antibiotic resistance for complicated UTIs was the motivat-
ing problem, the techniques introduced can be applied to many
other applications.

RESULTS
Cohort summary
Patients in the training set cohort had a median age of 64 years
(IQR 44–76), with 72.9% of patients self-identifying as white; the
validation cohort also had a median age of 64 (44–76), with 73.6%
self-identifying as white; and the test cohort had a median age of
64 (45–76), with 72.7% self-identifying as white. This differs from
the uncomplicated UTI patient cohort presented in Kanjilal et al.5,
who by definition were all female, and where the median age was
32 years (24–43), and 64.2% of patients self-identified as white
(recall that the uncomplicated cohort specified an age range
between 18–55). It should be noted that demographic information
on the sex of patients in the complicated UTI cohort was not
available. Patients in the complicated UTI test set cohort
presented more frequently in the emergency room (27.8%
compared to 19.6% for the test set and training set cohort,
respectively). The prevalence of resistance to fluoroquinolones in
the training and test set cohorts (with patient presentations
between 2007–2013) was similar to national estimates reported in
a cross-sectional survey in the United States in 201214, which
found that resistance was high among adults (11.8%) and elderly
outpatients (29.1%) (compared to 21.6–24.7% for training,
validation, and test cohorts used in our study). For first-line
therapies, the prevalence of resistance to SXT was similar to those
reported in the study (22.3% and 26.8% for adults and older
adults, respectively; compared to 22.3–23.6% in our cohorts);
however, the prevalence of resistance to NIT in our cohorts was
higher (0.9% and 2.6% for adults and older adults, respectively;
compared to 22.3–22.5% in our cohorts). The majority of patients
in our training, validation, and test cohorts had no prior drug
resistant infections, recorded within the previous 90 days of the
specimen sample (6.8–6.9%, 6.5–6.7%, 7.8–9.0%, and 9.1–9.7% for
prior NIT, SXT, CIP, and LVX resistances, respectively, across
training, validation, and test cohorts). A full summary of baseline
characteristics for the training, validation, and test sets are
presented in Supplementary Table 2.

Model performance
We individually trained LR, XGBoost, TabNet, and TabNetself

models for each antibiotic; thus, training and test data slightly
differed depending on whether a patient had susceptibility results
for the antibiotic being tested. A summary of all training,
validation, and test cohorts can be found in Table 1.
After training models on cohorts of patients diagnosed with

complicated UTI between 2007 and 2013, we temporally validated
our models on patients diagnosed with complicated UTI between
2014 and 2016. Separate sets of models were trained to predict
resistance for each of four antibiotics – NIT, SXT, CIP, and LVX
(Table 2). Overall, higher predictive performance was achieved by
models developed for the second line antibiotics – CIP and LVX
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(mean AUROCs across all models of 0.800 [95% CIs ranged from
0.784–0.916] and 0.804 [0.786–0.810], respectively), than the first
line antibiotics – NIT and SXT (0.674 [0.656–0.681] and 0.686
[0.660–0.707], respectively). For all antibiotics, XGBoost models
achieved the best performances with respect to both AUROC and
AUPRC. LR and TabNet (without pre-training) models achieved the
lowest AUROC and AUPRC scores, with non-overlapping CIs
(except for the AUPRC CIs for the NIT model) when compared to
XGBoost comparators, across all antibiotics, suggesting mean-
ingful improvements were obtained through using the XGBoost
architecture (p < 0.001 across all antibiotics; p-value calculated by
evaluating how many times XGBoost performs better than other
models across 1000 pairs of iterations). However, when the TabNet
models were pre-trained using a self-supervised method (TabNet-
self), AUROC and AUPRC scores improved across all antibiotics.
Although overall predictive performance between TabNetself and
XGBoost models were similar, TabNetself did not outperform the
XGBoost comparators (p < 0.001 for all antibiotics).
To evaluate the generalizability of our models, we additionally

performed validation on an independent cohort of patients with
uncomplicated UTI specimens. We used the trained XGBoost and
TabNetself models, as these achieved the best and second-best
scores during temporal validation on the complicated UTI
specimens. We present results for all specimens (n= 15,608), as

well as results for a smaller subset (n= 3941) which is equivalent
to the test set evaluated in Kanjilal et al.5, allowing for direct
comparison. For all antibiotics, AUROC and AUPRC are lower for
the uncomplicated cohort than the complicated cohort; however,
they are comparable to those reported in the previous study,
despite the previous study being specifically trained on uncom-
plicated UTI, and this study being trained on potentially
complicated UTI (Table 3).
Due to the ambiguity in how ethnicity/race was documented,

we proceeded to conduct an extra experiment. Specifically, we ran
the best performing model, XGBoost, excluding the ethnicity/race
feature. The outcomes obtained on the test sets fell within the
95% confidence intervals (CIs) of the original models (which
encompassed ethnicity/race as a feature). The corresponding p-
values were 0.468, 0.148, 0.023, and <0.001 for NIT, SXT, CIP, and
LVX, respectively, across 1000 bootstrapped iterations. Full
numerical results can be found in Supplementary Table 9.
Overall, the results show promise that model-assigned prob-

abilities of antibiotic resistance can differentiate potentially
complicated UTI specimens resistant to one antibiotic and
susceptible to another at the single-patient level. Additionally,
we found that the trained models can be generalized to
uncomplicated UTI specimens, thus motivating further develop-
ment of algorithmic decision-support for antibiotic
recommendations.

Feature importance
Beyond solely classifying samples, all models can provide
information on which features were most important for
determining resistance (in the form of coefficients for logistic
regression, and importance scores for TabNet and XGBoost
models). For all models, prior antibiotic resistance and prior
antibiotic exposure, across different time frames, were generally
found to be the most important features in predicting resistance
to each antibiotic. This included previous use of common
antibiotics (both the outcome antibiotics considered in our study,
as well as other antibiotics) for UTI treatment such as
fluoroquolines (e.g. CIP and LVX), cephalosporins (e.g. cefepime,
ceftriaxone, cefpodoxime), and penicillins (e.g. amoxicillin).
Similarly, previous UTI history (i.e. if any – susceptible or non-
susceptible – isolates of infecting pathogens, such as E.coli, were

Table 1. Summary of the total number of specimens and non-
susceptible cases in training, validation, and test set cohorts, for each
antibiotic susceptibility prediction task.

NIT SXT CIP LVX

Training n, specimens 58,972 53,865 57,631 61,586

n, non-
susceptible (%)

13,925
(23.6%)

13,851
(25.7%)

13,495
(23.4%)

15,123
(24.6%)

Validation n, specimens 6553 5986 6404 6843

n, non-
susceptible (%)

1514
(23.1%)

1561
(26.1%)

1492
(23.3%)

1711
(25.0%)

Test n, specimens 30,528 27,997 30,920 31,690

n, non-
susceptible (%)

7138
(23.4%)

7536
(26.9%)

7637
(24.7%)

7907
(25.0%)

Table 2. Performance metrics, alongside 95% confidence intervals, for antibiotic resistance prediction for patients with complicated UTI (bolded
values denote best [a] and second-best [b] scores for AUROC and AUPRC).

Antibiotic Model AUROC AUPRC Sensitivity Specificity PPV F1

NIT LR 0.662(0.656–0.668) 0.381 (0.371–0.390) 0.623 (0.614–0.633) 0.619 (0.614–0.624) 0.333 (0.329–0.338) 0.434 (0.429–0.440)

XGBoost 0.686 (0.681–0.693)a 0.411 (0.401–0.421)a 0.673 (0.664–0.682) 0.590 (0.585–0.595) 0.334 (0.330–0.338) 0.446 (0.441–0.452)

TabNet 0.670 (0.664–0.677) 0.393 (0.383–0.403) 0.674 (0.664–0.683) 0.565 (0.559–0.570) 0.321 (0.317–0.325) 0.435 (0.429–0.440)

TabNetself 0.676 (0.670–0.682)b 0.396 (0.386–0.405)b 0.626 (0.615–0.636) 0.628 (0.623–0.634) 0.339 (0.334–0.344) 0.440 (0.434–0.446)

SXT LR 0.666 (0.660–0.673) 0.467 (0.458–0.478) 0.568 (0.559–0.577) 0.674 (0.669–0.680) 0.391 (0.386–0.397) 0.463 (0.457–0.470)

XGBoost 0.701 (0.695–0.707)a 0.524 (0.514–0.534)a 0.660 (0.651–0.669) 0.618 (0.612–0.623) 0.389 (0.384–0.393) 0.489 (0.483–0.495)

TabNet 0.685 (0.678–0.691) 0.497 (0.487–0.508) 0.629 (0.620–0.639) 0.635 (0.630–0.641) 0.389 (0.384–0.394) 0.480 (0.475–0.487)

TabNetself 0.693 (0.687–0.699)b 0.503 (0.492–0.513)b 0.637 (0.628–0.646) 0.641 (0.635–0.646) 0.395 (0.388–0.402) 0.488 (0.480–0.496)

CIP LR 0.789 (0.784–0.794) 0.590 (0.580–0.599) 0.601 (0.592–0.611) 0.832 (0.827–0.836) 0.539 (0.532–0.546) 0.569 (0.561–0.575)

XGBoost 0.811 (0.806–0.816)a 0.617 (0.608–0.627)a 0.727 (0.718–0.736) 0.749 (0.744–0.753) 0.487 (0.481–0.492) 0.583 (0.577–0.589)

TabNet 0.798 (0.793–0.802) 0.576 (0.566–0.586) 0.729 (0.721–0.738 0.730 (0.725–0.734) 0.469 (0.464–0.475) 0.571 (0.566–0.577)

TabNetself 0.800 (0.796–0.805)b 0.584 (0.575–0.595)b 0.726 (0.718–0.734) 0.737 (0.733–0.742) 0.504 (0.498–0.512) 0.595 (0.588–0.603)

LVX LR 0.791 (0.786–0.796) 0.592 (0.582–0.602) 0.632 (0.623–0.641) 0.809 (0.805–0.813) 0.524 (0.518–0.530) 0.573 (0.566–0.579)

XGBoost 0.814 (0.810–0.819)a 0.624 (0.614–0.634)a 0.710 (0.702–0.719) 0.769 (0.765–0.773) 0.506 (0.500–0.511) 0.591 (0.585–0.597)

TabNet 0.803 (0.798–0.808) 0.597 (0.587–0.608) 0.725 (0.718–0.734) 0.737 (0.732–0.741) 0.478 (0.473–0.483) 0.576 (0.571–0.582)

TabNetself 0.808 (0.803–0.813)b 0.606 (0.597–0.617)b 0.713 (0.705–0.721) 0.764 (0.760–0.769) 0.527 (0.520–0.535) 0.606 (0.598–0.614)
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found within previous patient specimens), was found to be
predictive of resistance. For the second-line antibiotics (such as
CIP and LVX), resistance to one was predictive of resistance to the
other, which is expected, as both antibiotics belong to the same
family of antibacterial agents. Additionally, comorbidities, includ-
ing those categorized as paralysis and renal, were ranked highly
across all antibiotics and models. Previous stays in a long-term
care facility (skilled nursing facility) and whether a patient had
undergone a surgical procedure were also considered as highly
predictive factors. A full summary of the top 30 features used in
prediction for each model, alongside their importance scores, can
be found Supplementary Tables 5, 6, 7, 8.
Finally, we grouped features into sets that corresponded to

general risk factor domains that were found to be associated with
resistance. Using the XGBoost model architecture, we evaluated
the decrease in predictive performance when a particular feature
set was left out of training (Figs. 1 and 2 for AUROC and AUPRC
scores, respectively). In general, prior antibiotic resistance was
found to be the most important feature set in predicting antibiotic
resistance. When left out, AUPRC decreased by 0.0199 (0.0142-
0.0265), 0.0877 (0.0800–0.0947), 0.0695 (0.0623–0.0759), and

0.0631 (0.0566–0.0692), for NIT, SXT, CIP, and LVX, respectively
(for all antibiotics, decrease in AUPRC was found to be significant
when compared to XGBoost models trained with all feature sets;
p < 0.001, determined using 1000 bootstrap samples). Prior
antibiotic exposure was also found to be an important feature
set, as AUPRC decreased by 0.0089 (0.0035–0.0142), 0.0401
(0.0035–0.0142), 0.0383 (0.0327–0.0441), and 0.0414
(0.0352–0.0472), for NIT, SXT, CIP, and LVX, respectively
(p= 0.001 for NIT, and p < 0.001 for SXT, CIP, and LVX models).
This aligns with the feature rankings obtained through the
importance scores/coefficients quantified by each trained model.
Although the absence of prior infecting organism features (i.e.
prior UTI history) in training decreased predictive performance
(AUPRC scores decreased by 0.0049 [0.0019–0.0072], 0.0015
[−0.0019–0.0052], 0.0038 [0.0000–0.0079], and 0.0034
[−0.0003–0.0068] for NIT, SXT, CIP, and LVX, respectively), changes
in AUPRC scores were not generally found to be statistically
significant (p= 0.001, 0.403, 0.059, 0.062 for NIT, SXT, CIP, and LVX
models, respectively). Similar patterns were found for AUROC
scores. Full numerical results can be found in Supplementary
Tables 10, 11, and 12.

Table 3. Performance metrics, alongside 95% confidence intervals, for antibiotic resistance prediction for patients with uncomplicated UTI (bolded
values denote best scores for AUROC and AUPRC comparing XGBoost and TabNetself models).

TabNetself XGBoost Kanjilal et al.5

AUROC AUPRC AUROC AUPRC AUROC

NIT All 0.575 (0.563–0.587) 0.172 (0.159–0.185) 0.593 (0.580–0.605) 0.186 (0.173–0.200)

Test 0.543 (0.517–0.566) 0.145 (0.128–0.169) 0.559 (0.534–0.584) 0.162 (0.142–0.187) 0.56 (0.53–0.59)

SXT All 0.603 (0.594–0.613) 0.301 (0.289–0.315) 0.612 (0.603–0.621) 0.318 (0.305–0.331)

Test 0.591 (0.571–0.610) 0.292 (0.268–0.320) 0.589 (0.570–0.608) 0.294 (0.268–0.322) 0.59 (0.57–0.62)

CIP All 0.670 (0.651–0.688) 0.249 (0.225–0.276) 0.676 (0.659–0.694) 0.254 (0.230–0.281)

Test 0.646 (0.611–0.679) 0.244 (0.199–0.294) 0.639 (0.606–0.673) 0.245 (0.202–0.294) 0.64 (0.60–0.68)

LVX All 0.662 (0.644–0.678) 0.228 (0.204–0.255) 0.667 (0.649–0.685) 0.244 (0.220–0.273)

Test 0.639 (0.604–0.671) 0.256 (0.215–0.304) 0.623 (0.586–0.657) 0.266 (0.221–0.314) 0.64 (0.60–0.68)

Fig. 1 AUROC of XGBoost models trained without the feature set labeled on the x-axis, with error bars representing 95% CIs. The red line
depicts the AUROC for the model trained on all features, with the red shaded region representing 95% CIs. Results shown for (a)
Nitrofurantoin (NIT), (b) Co-trimoxazole (SXT), (c) Ciprofloxacin (CIP), and (d) Levofloxacin (LVX).
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DISCUSSION
Our analysis of EHRs from a substantial patient cohort has
showcased the predictive potential of interpretable ML methods
in identifying antibiotic resistance within potentially complicated
UTIs. It is crucial to emphasize that, while our findings offer
valuable insights, our proof of concept underscores the need for
further validation studies before machine learning algorithms can
be widely embraced for reducing treatment mismatches and
enabling personalized treatment recommendations.
We found that both XGBoost and TabNet models surpassed

logistic regression, implying the presence of non-linear trends and
interactions that cannot be adequately captured through linear
combinations of input features. The best performances were
achieved using XGBoost, however, TabNet, when combined with
self-supervised learning (TabNetself), also achieved comparably
high performance. The potential superiority of XGBoost over
TabNet may be a result of its ensemble architecture, whereby the
predictions of multiple models are combined15, improving
generalization error. Additionally, decision tree-based techniques,
like XGBoost, have historically exhibited superior performance
(over neural network-based architectures) when dealing with
tabular data containing a mix of continuous and categorical
attributes16,17. However, there are advantages to using a neural
network-based architecture (such as TabNet) including (1) it can
be used in combination with transfer learning and self-supervised
learning, whereas tree-based algorithms typically depend on the
availability of the entire dataset, making transfer learning
infeasible; and (2) it can be used for image recognition tasks, as
well as natural language problems, which XGBoost is typically not
appropriate for.
The ability of a TabNet model to use transfer learning may be of

particular importance in a clinical context, as it enables predictions
to be updated over time. As our findings are specific to a specific
patient cohort (data from MGH and BWH during 2007–2016),
results may differ for other patient cohorts and hospital locations
due to variations in the prevalence of antimicrobial resistance,
clinical practice, and patient characteristics. Furthermore, as
antimicrobial resistance is an evolving phenomenon, new
resistance mechanisms can emerge over time, rendering existing

models outdated or less accurate. Through the acquisition of
more/new data, the weights of a neural network-based model can
be finetuned, rather than fully retrained, in order to keep models
up-to-date10.
We found that we achieved better overall performance on the

complicated UTI cohort than the uncomplicated UTI cohort. This
may be because of greater hospital exposure (and related factors)
in the complicated UTI cohort, making it easier to predict
antibiotic susceptibility, compared to the uncomplicated cohort.
Although we trained our models on the complicated UTI cohort,
we still achieved comparable AUROC scores (when validating on
the uncomplicated cohort), as a previous study5 which trained and
tested models using exclusively data from an uncomplicated UTI
cohort. This may be due to the greater amount of data available
for training, as ML models (and particularly, neural networks)
typically need a large amount of training data to achieve
generalizability.
Since the training data was imbalanced, we used threshold

adjustment to determine the final susceptibility label and optimize
the balance between sensitivity and specificity. However, a
model’s output can be biased on its training dataset, which
subsequently affects the derived optimal threshold10. Conse-
quently, thresholds appropriate for one dataset might not be
applicable to another with differing distributions. Hence, exploring
the ideal decision threshold is crucial, as consistent sensitivity/
specificity scores across testing groups is necessary for model
reliability10. To ensure real-world effectiveness, future experiments
could gradually adjust thresholds during deployment to align with
real-time distributions, for standardized predictive performance.
Alternatively, developers might balance data during preprocessing
to mitigate imbalance issues and circumvent threshold adjust-
ment. We didn’t choose this latter approach, as we wanted to
retain true prevalence rates during model development.
On a similar note, we also appreciate that the probability of

antibiotic susceptibility is a useful measurement, as opposed to
thresholding to a binary label. We used a binary classification to
align with the CLSI clinical breakpoints used in the AMR-UTI
dataset; however, probability can also be used as a final output for
tasks where appropriate. For instance, in scenarios where changes

Fig. 2 AUPRC of XGBoost models trained without the feature set labeled on the x-axis, with error bars representing 95% CIs. The red line
depicts the AUPRC for the model trained on all features, with the red shaded region representing 95% CIs. Results shown for (a) Nitrofurantoin
(NIT), (b) Co-trimoxazole (SXT), (c) Ciprofloxacin (CIP), and (d) Levofloxacin (LVX).
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in susceptibility within a population can arise, the use of minimum
inhibitory concentration (MIC) can be suitable18. MIC has
previously demonstrated success in various resistance prediction
tasks using methodologies like logistic regression, Random Forest,
and XGBoost18–21, making it a suitable outcome to explore in
relevant contexts.
In terms of feature importance, prior antibiotic resistance and

antibiotic exposure was found to be highly predictive of resistance
across all antibiotics. This is expected as antibiotic resistance has
been found to be associated with previous UTI occurrences and
their resistances3,22,23. These features were ranked highly across
multiple time frames preceding specimen collection, suggesting
both short- and long-term associations with resistance. In our
investigations, times were binned; however, future studies may
benefit from keeping a higher degree of granularity, as well as
using models more suitable for time-series analysis/forecasting
(e.g. convolutional neural network, long short-term memory
network), to better capture temporal associations. Other antibiotic
exposures (other than the antibiotic being tested) were also
ranked highly amongst the models. This is consistent with
previous studies24–27, where a specific antibiotic exposure was
found to both directly select for strains resistant to it, as well as
indirectly select for resistance to other antibiotics (e.g. through
common co-occurrence). For example, previous studies have
found that low ciprofloxacin levels open up the mutant selection
window, leading to rapid selection of resistant subpopulations27.
Additionally, metabolic mutations have been observed to arise in
response to antibiotic treatment, including ciprofloxacin28. These
mutations subsequently confer resistance and are widespread
among clinical pathogens. Notably, in our assessments, the history
of ciprofloxacin use or previous resistance to ciprofloxacin
emerged as important features across all models. This highlights
the critical importance of administering antibiotics at proper
dosages and underscores the possible consequences of adminis-
tering insufficient dosages, which might facilitate the survival and
propagation of antibiotic-resistant mutants. While this falls outside
of our current investigation, it presents an intriguing prospect for
follow-up studies to delve into using machine learning.
In addition to antibiotic-related features, comorbidities, includ-

ing those categorized as paralysis and renal, were also commonly
ranked as being important for determining resistance. These have
previously been found to be associated with UTIs – patients with
prior kidney diseases are at higher risk of developing UTIs;29 and
patients with paralysis may have had a catheter-associated UTI
(CAUTI), as catheters have been found to be a common cause of
healthcare-associated UTIs22,26,30. Both of these factors can lead to
recurrent UTIs; and thus, lead to antibiotic resistance due to prior
exposure/use. This may also reflect why stays in a long-term care
facility or undergoing a surgical procedure were also ranked as
highly predictive, as patients may require the use of a
catheter26,31. Additionally, patients undergoing long surgical
procedures may have postoperative urinary retention, which can
also lead to a UTI32.
Given the extensive scope of patients and clinical factors

associated with CAUTIs and healthcare-associated UTIs, forth-
coming research could concentrate specifically on investigating
CAUTIs or distinguishing between community-acquired UTIs and
hospital-acquired UTIs. Similarly, the training dataset may include
individuals with conditions such as asymptomatic bacteriuria
(ASB), which could potentially hinder model performance. To
enhance the precision of future models, it’s advisable to either
exclude ASB patients from the training data, integrate an extra
marker addressing this aspect during training, or create a separate
model focused solely on ASB patients. These more refined cohorts
can address specialized tasks and provide more targeted insights.
With respect to ethnicity/race, the AMR-UTI dataset classified

each patient as either “white” or “non-white”. However, the use of
a binary label for ethnicity/race can pose challenges, as models

can inherit biases from the data they are trained on33,34. It’s
critically important that the features used in the models neither
introduce bias in favor of or against individuals or groups based
on the terminology or categories employed35,36. Additionally,
ethnicity can play a significant role in predicting specific
diagnoses, prognoses, and treatment recommendations. There-
fore, achieving higher prediction accuracy in clinical tasks might
necessitate a more nuanced approach to capture the diverse
facets of ethnicity34. When we conducted a comparison between
models trained with and without the inclusion of ethnicity/race as
a feature, we observed that the outcomes achieved on the test
sets were consistent with each other and fell within their
respective 95% confidence intervals (CIs). Consequently, in our
specific scenario, where ethnicity/race was presented in a binary
manner and did not significantly contribute to the predictive task,
it appears unnecessary to incorporate it into the final models.
Moreover, as machine learning gains prominence within clinical
realms, there is a greater need for meticulous consideration of
how ethnicity/race is captured in data and integrated into
machine learning algorithms. This attention is essential to prevent
inadvertent reinforcement of existing biases and to achieve a
nuanced representation that can facilitate enhanced prediction
accuracy.
We also recognize that the AMR-UTI dataset offers a constrained

view of the comprehensive information found in electronic health
record (EHR) systems. Notably, substantial segments of EHR data,
such as patient symptoms (like dysuria, urinary frequency,
costovertebral tenderness), treatment-related details (including
antimicrobial dosage, duration, Intravenous [IV] vs oral adminis-
tration), and lifestyle/environmental factors (like travel history,
diet, physical activity), are not fully encompassed by the AMR-UTI
dataset. Furthermore, details like antibiotic purchase history and
the status of antimicrobial dispensation (ordered vs consumed)
were absent. However, these details are crucial for precise
treatment evaluation, informed clinical decisions, antimicrobial
stewardship, and overall patient safety. A previous study utilizing
ML to predict antibiotic susceptibility highlighted the significant
predictive power of antibiotic purchase history3. Also, because the
AMR-UTI dataset lacked empirical clinician prescriptions for
patients with potentially complex UTIs, our algorithm wasn’t
designed to propose specific treatments (this presents a logical
progression for future studies). Hence, forthcoming investigations
should consider integrating other crucial features into these
models while collaborating closely with domain experts and
clinicians.
Future studies can also consider training one multilabel

classifier/learning combinations of resistances, rather than training
multiple binary classifiers. This may be beneficial, as resistances to
one antibiotic can affect the resistance to others; and thus, a single
model that considers all antibiotics can account for the fact that
patients can have multiple resistances. Additionally, for tasks
where very large models need to be used, training multiple binary
models can overwhelm computing power. However, it should be
noted that multilabel tasks often require more data to confidently
differentiate between all classes, especially for challenging
clinical tasks.
Finally, prompt initiation of appropriate antimicrobial treatment

is crucial for effective infection management. However, in stable
patient cases, the option of delaying treatment while awaiting
susceptibility results arises37. These results typically require an
extra 24 h, which raises questions about the relevance of ML-
based algorithms in such scenarios. While these algorithms
provide fast predictions, their usefulness might be challenged in
these specific situations, as the delay from waiting could make
their predictions seem redundant. In such cases, the traditional
approach of waiting for results might suffice if the patient’s
condition is stable. However, there are instances where rapid
predictions from ML models remain valuable, particularly in cases
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of patient instability, clinical urgency, or potential rapid disease
progression (which can be the case for potentially complicated UTI
infections). These models can offer quick insights and could be
used in tandem with clinical judgment for interim decisions while
awaiting susceptibility results. Ultimately, the decision to use ML
algorithms should account for the clinical context, patient
condition, and urgency. Despite potential treatment delays due
to testing, these algorithms could still prove beneficial, especially
when swift decisions are essential.

METHODS
Dataset, features, and preprocessing
We trained and tested our models using the AMR-UTI dataset38,39,
which is a freely accessible dataset of over 80,000 patients with
UTIs presenting between 2007 and 2016 at Massachusetts General
Hospital (MGH) and Brigham & Women’s Hospital (BWH)
(approved by the Institutional Review Board of Massachusetts
General Hospital with a waived requirement for informed
consent). Our analysis centered on individuals with potentially
complicated UTIs, encompassing a total of 101,096 samples. This
group represented a broader cohort that did not fulfill the criteria
outlined in the study by Kanjilal et al.5, which focused on
uncomplicated UTIs. Our cohort included numerous patients with
complex infections that might necessitate treatment involving a
variety of antibiotics. We included all specimens that were tested
for any one or combination of the local first-line agents –
nitrofurantoin (NIT) or co-trimoxazole (SXT) – or second-line
agents – ciprofloxacin (CIP) or levofloxacin (LVX).
To allow for direct comparison with findings in Kanjilal et al.5,

we used a similar feature set and data filtering protocol as those
used for the uncomplicated UTI cohort. Thus, each observation
includes corresponding urine specimens which were sent to the
clinical microbiology laboratory for assessment of AMR. Full de-
identified feature sets include (1) the antimicrobial susceptibility
profile, (2) previous specimen features useful for AMR prediction,
and (3) basic patient characteristics.
With respect to the antimicrobial susceptibility profile, the raw

data received from the clinical microbiology laboratory included
the identity of the infecting pathogen, alongside the results of
susceptibility testing to various antibiotics. These were deter-
mined by minimum inhibitory concentration (MIC) and disk
diffusion (DD) based methods, and the numerical results of these
tests were transformed into categorical phenotypes using the
published 2017 Clinical and Laboratory Standards Institute (CLSI)
clinical breakpoints. This conversion resulted in three phenotypes:
susceptible (S), intermediate (I), and resistant (R). The AMR-UTI
dataset treated both intermediate and resistant phenotypes as
resistant, which is typically in-line with what is done in clinical
practice38. We adopt the same simplifying approach.
EHR data included patient demographic features such as age

and ethnicity, prior antibiotic resistance, prior antibiotic exposures,
prior infecting organisms, comorbidity diagnoses, where the
specimen was collected (inpatient, outpatient, emergency room
[ER], intensive care unit [ICU]), colonization pressure (rate of
resistance to that agent within a specified location and time
period), prior visits to skilled nursing facilities, infections at other
sites (other than urinary), and prior procedures. Colonization
pressure was computed as the proportion of all urinary specimens
resistant to an antibiotic in the period ranging from 7 to 90 days
before the date of specimen collection (for a given specimen),
across 25 antibiotics. Resistance rates were recorded for three
location hierarchies – specimens collected at the same floor/ward/
clinic, specimens collected at the same hospital (MGH or BWH)
and department type (inpatient, outpatient, ICU, ER), and all
specimens collectively. Infections at other sites were included for
those patients who had other specimens collected (on the same

day as the urinary specimen) from other infection sites. Antibiotic
exposures, prior resistance, prior organism, laboratory data,
comorbidities, and prior hospitalizations were recorded for 14,
30, 90, and 180 days preceding specimen collection. These data
do not include information on the dose or duration of antibiotic
therapy, urinalysis results, drug allergies, or data for patient
encounters outside of MGH and BWH. Empiric clinician prescrip-
tions for patients diagnosed with complicated UTIs were not
available in the dataset.
All categorical variables were one-hot encoded, totalling 787

features used for model development. A full list of features used
can be found in Supplementary Table 1. Missing values were
already addressed within the dataset (as most features are binary,
1 indicates the presence of an observed element and 0 indicates
that an element was not observed, including those cases where
data is missing). Detailed documentation on data inclusion,
exclusion, features, feature descriptions, and analytic protocols
used for the AMR-UTI dataset can be found in the PhysioNet
repository (https://physionet.org/content/antimicrobial-resistance-
uti/1.0.0/).
To train and test our models, we used temporal evaluation,

where models were trained on data from patients who submitted
urine specimens between 2007 and 2013; and then tested on
specimens submitted between 2014 and 2016. By temporally
separating the data between training and test sets, we can
emulate the real-world implementation of such a forecasting
method for AMR. From the initial training data, we used 90% for
model development, hyperparameter selection, and model
training, and the remaining 10% for continuous validation and
threshold adjustment of results. After successful model develop-
ment and training, the held-out test set was used to evaluate the
performance of the final models. Using the same features and
preprocessing protocol, we additionally evaluated our method on
the held-out uncomplicated UTI patient cohort (15,806 specimens).
This is the same dataset used in Kanjilal et al.5, allowing us to
evaluate the generalizability of our models, as well as directly
compare results to those from a previous benchmark.
Regarding ethnicity/race, the AMR-UTI dataset adopted a binary

approach, classifying each patient as either “white” or “non-white”.
In instances where race isn’t recorded, which accounts for 3% of
cases, the feature defaults to “non-white”. However, the use of a
binary label for ethnicity/race can pose challenges, as it may not
be all-encompassing and could inadvertently perpetuate existing
biases33–36. This is further elaborated on in the Discussion. To
ensure direct comparability with Kanjilal’s study5, we will train
models that include the ethnicity/race feature. Nevertheless, we
will also explore models that exclude this feature in our
evaluation.
It is also essential to emphasize that the AMR-UTI dataset lacks

information to ascertain whether patients had other conditions,
such as asymptomatic bacteriuria (ASB), which often leads to
positive urine cultures. However, ASB is typically not an
appropriate indication for antibiotic therapy13,40. Consequently,
there is a possibility that these patients might inadvertently be
included in the training and validation cohorts without explicit
identification.

Machine learning architecture
We trained logistic regression, XGBoost, and TabNet models to
predict the probability that a specimen would be resistant/non-
susceptible to NIT, SXT, CIP, or LVX. All models can handle tabular
data consisting of both continuous and categorical features, and
additionally, enable interpretability by quantifying the contribu-
tions of each feature to the trained model.
Logistic Regression (LR) is widely accepted in clinical decision-

making, and additionally, has previously been shown to perform
the best when evaluating uncomplicated UTI specimens, which
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were obtained using the same protocol as the complicated UTI
cohort used in our study5. This makes it an appropriate benchmark
for comparison to more complex models.
XGBoost is an optimized distributed gradient boosting library,

based on decision trees (DTs), which has been found to achieve
state-of-the-art results on many machine learning problems,
especially those using structured or tabular datasets (as we use
in our study). DT-based algorithms have also been shown to be
effective at predicting AMR from clinical data3.
TabNet is a machine learning model designed for tabular data,

which utilizes “sequential attention” to improve model perfor-
mance and interpretability. We train it using both a traditional
supervised learning approach, as well as a pre-trained approach.
Specifically, we present results for a separate set of TabNet models
which have been pre-trained using self-supervised learning (via
unsupervised representation learning). Here, we train a decoder
network to reconstruct the original tabular features from the
encoded representations, through the task of predicting missing
feature columns from the others. This ultimately results in an
improved encoder model to be used during the main supervised
learning task. Details about the TabNet architecture and the self-
supervised method used can be found in the original TabNet
publication8.
Details on model implementations and software packages used

can be found in the Supplementary Methods section of the
Supplementary Material.

Evaluation metrics
For the evaluation of the trained models, performance metrics
including sensitivity, specificity, area under the receiver operator
characteristic curve (AUROC), area under the precision-recall curve
(AUPRC), positive predictive value (PPV), and F1-score are
presented. These metrics are accompanied by their respective
95% confidence intervals (CIs), which are calculated from 1000
bootstrapped samples drawn from the test set. The reported
scores fall within the range of [0, 1], where values closer to 1
indicate better performance. Tests of significance (p-values)
comparing model performances are calculated by evaluating
how many times one model performs better than other models
across 1000 pairs of bootstrapped iterations.

Hyperparameter optimization and threshold adjustment
For each model developed, hyperparameter values were deter-
mined through standard five-fold cross-validation and grid search
using respective training sets. This ensured that different
combinations of hyperparameter values were evaluated on as
much data as possible to provide the best estimate of model
performance on unseen data. This allowed us to choose the
optimal settings for model training. We chose the hyperparameter
set based on the best AUPRC scores to account for the relative
imbalance in the dataset. Details on the hyperparameter values
used in the final models can be found in Supplementary Table 3.
As the raw output of each classifier is a probability of class

membership, a threshold is needed to map each specimen to a
particular class label. For binary classification, the default threshold
is typically 0.5 (values equal to or greater than 0.5 are mapped to
one class and all other values are mapped to the other); however,
this threshold can lead to poor performance, especially when the
dataset used to train a model has a large class imbalance10. This is
seen in our training sets, as there are far fewer non-susceptible
cases than susceptible ones, across all antibiotics. Thus, we used a
grid search to adjust the decision boundary used for identifying
non-susceptible specimens, to improve detection rates at the time
of testing. We chose to optimize for balanced sensitivity and
specificity to ensure that we can identify resistant samples (to
avoid unsuccessful treatment), as well as ensure that samples
which are susceptible get treated with the appropriate local first-

line antibiotic (and avoid having to potentially use more
antibiotics), respectively. The optimal thresholds were determined
through a grid search using the validation dataset, and were then
applied to the results obtained on the held-out test set. Final
threshold values used can be found in Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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