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ABSTRACT
Building an Internet Router is a popular, hands-on project
used to teach computer networks. However, there is cur-
rently no hardware target that allows students to develop
the project in P4 without incurring significant cost or en-
countering FPGA knowledge barriers. This paper presents
P4Pi as a target for the Building an Internet Router project.
P4Pi is a platform for developing, testing, and evaluating P4
programs on a Raspberry Pi device. We describe the architec-
ture of the router project on P4Pi, and discuss the practical
aspects of running it as a class project. The P4Pi-based router
project is low-cost and easy to adopt, enabling students to
focus on their P4 programming skills and to evaluate their
designs on a physical target through interoperability tests
with their colleagues.
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1 INTRODUCTION
Twenty years ago, computer networking courses were very
popular. As the Internet gained widespread adoption by
household users, students became increasingly curious to
understand how it functioned. However, for a generation of
students weaned on omnipresent network connectivity, the
novelty of networking topics has worn off. Today, without
the visual effects that make topics such as graphics or ro-
botics popular, many students view networking courses as a
blasé alphabet soup of protocol acronyms.
To make things worse, while the contents of computer

networks courses have significantly evolved over the years,
the practical experiences of students have not appreciably
changed. Many computer networking courses focus on users
of networks, with hands-on exercises based on socket pro-
gramming. This is, of course, important—even necessary—for
students to learn. But, we argue that such exercises fail to
foster a level of excitement in students for understanding
how networks work.

∗Adam Wolnikowski worked on the project while at Yale University.

To address this problem, Nick McKeown at Stanford Uni-
versity began offering a course almost 15 years ago, called
CS344 Build an Internet Router [3], in which students used
the open hardware NetFPGA platform [9] to develop a com-
plete IPv4 router over the duration of a semester. This project
allowed students to gain hands-on experience with develop-
ment on a real hardware target, and to evaluate their design
by testing the interoperability between different students’
design. Since the initial offering, variations of this course
have been taught at several universities.

While this course and its project were successful at achiev-
ing the pedagogical goal of teaching students about network-
ing hardware architecture and design, it is a difficult course
to replicate. With a current cost of around $1500 USD per
board, the NetFPGA hardware can be expensive. Moreover,
early iterations of the course required more than computer
networking knowledge from students (e.g., familiarity with
Verilog or VHDL, the general process of designing RTL-based
logic and the associated verification process). It can also be
very time consuming for teaching assistants and faculty to
support students using FPGA devices when those students
have no prior FPGA experience.

The recently released P4Pi platform [7], developed by the
P4 Education Working group, offers an attractive target for
network education. With P4Pi, users can implement a net-
work data plane in the P4 language, and deploy the data
plane in a software switch running on a Raspberry Pi. Be-
cause Raspberry Pi boards are relatively inexpensive, with
a price tag of less than many textbooks (under $100), it is
feasible for every student in the class to have their own de-
vice. Moreover, because P4 is a small, high-level language,
students can gain basic proficiency in P4 programming after
only one or two lectures.

A prior publication [7] described the technical aspects of
P4Pi, focusing on using P4 with T4P4S [16, 17] on the device.
This paper extends the previous work with a detailed de-
scription of an implementation of the Build an Internet Router
project [3] on P4Pi. We feel that sharing this description is
valuable to the P4/networking community for several rea-
sons. First, we aim to provide sufficient details of the project
and implementation that networking instructors would feel
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comfortable adopting the project for use in their courses. To
further support this goal, we have made a skeleton of the
project publicly available on GitHub [15]. Second, in porting
the project to P4Pi, we implemented a number of control
plane utilities that are worth describing, as they are useful
for general users of the P4Pi platform, beyond the specifics of
this particular project. Third, this paper describes a reason-
ably complex use case for P4Pi involving multiple hardware
devices. This use-case is far more complicated than any of the
projects described in the prior publication [7], demonstrating
the feasibility of P4Pi as a platform for realistic networking
projects. We hope that such an exemplar will help grow the
open-source community around the platform.

The rest of this paper is organized as follows: §2 provides
the background to the Build an Internet Router project, ex-
plains its components, and limitations to current implemen-
tations. §3 provides background on P4Pi and its architecture.
§4 provides high level details of the P4Pi-based project, while
sections §5 and §6 cover the data and control plane imple-
mentation. §7 explains how the project is run on P4Pi. §8
focuses on the evaluation by students. We discuss some in-
sights and limitations in §9 and conclude in §10.

2 BUILDING AN INTERNET ROUTER
Build an Internet Router is intended for a project based course.
Students are assigned a set of deliverables, functioning as
milestones toward the final goal of the course: building an
Internet router. Typically, students don’t start from scratch,
but are provided with some infrastructure code, e.g., the code
of the NetFPGA interfaces in the original project. In addition,
students are required to write a design document containing
diagrams, pseudocode, flow charts, or whatever else might
be helpful to explain their key design decisions.
The project requires developing both the data plane and

the control plane components of the switch. The original
versions of the project used Verilog for the data plane im-
plementation [3, 10], while more recent incarnations used
P4-NetFPGA [4] or bmv2 [5, 6, 13]. The control plane was
originally written in C, and later versions used Python on
top of the Scapy packet processing library [1, 2].

As part of the project, four protocols need to be supported:
IP (typically IPv4), ARP, ICMP and PW-OSPF. PW-OSPF (Pee-
Wee OSPF) [14] is a simplified link state routing protocol
based onOSPFv2 (RFC 1247). The students need to familiarize
themselves with the specifications as part of the project.

While the original project had great pedagogical benefits,
it was a difficult course to manage. The early incarnations
of the project (e.g., CS344 at Stanford, P33 at Cambridge)
required that students work in teams of two, one with an
expertise in Verilog and FPGA design for the data plane im-
plementation, and the other with knowledge in C (or later

Python) for the control plane. More recent versions of the
project (e.g., CS344 at Stanford) substituted Verilog for P4
using P4-NetFPGA [5], but still required as a knowledge
component of FPGA design. Having FPGA design as a pre-
requisite raised the bar for course entry. Consequently, and
for the lack of other alternatives, some versions of the project
moved to a software-switch model (e.g., Yale CPSC 435/535),
losing the realistic component of the hands-on experience.

While NetFPGA has been a key target for the prototyping
of network devices in research for over a decade, running
a lab for only 20 students, working in pairs, requires ten
servers, each equipped with the platform and high perfor-
mance NIC. The cost of such a setup is over $10K, does not
scale to larger classes, and requires maintenance of the plat-
forms.

3 P4PI
P4Pi [7] is a low-cost, open-source platform for teaching
and research, running on top of Raspberry Pi devices1. The
cost of Raspberry Pi boards (under $100) means that every
student, or pair of students, in class can use their own device.
It was developed by the P4 Education Working Group in
order to make P4 knowledge more widely accessible. The
release includes the tools required to use P4Pi in class and at
home, such as tutorials, sample code, tools and community
forums.
Because P4Pi is based on Raspberry Pi, it lends itself to

different compilers and P4 architectures. Laki et al. [7] de-
scribe an architecture using the T4P4S [16, 17] compiler and
a DPDK-based software switch, with a separation of data
plane and control plane. In this paper, we describe a some-
what different implementation (§4 to §6), that uses the bmv2
simple_switch_grpc target.

4 P4PI-BASED ROUTER ARCHITECTURE
Like previous versions of the Build an Internet Router project,
the P4Pi-based version is designed as a semester-long project.
Students are required to design the data plane in P4, and the
control plane in Python, including support for PW-OSPF [14].
Students’ projects must pass interoperability tests, where
routers designed by different teams are connected together.
The students receive starter code, similar to previous incar-
nations of this project [3, 5, 10, 13], including a minimal P4
program for the data plane, and a minimal Python program
for the control plane.

The architecture of the P4Pi-based router is illustrated in
Figure 1. The data plane, implemented as a software switch
over bmv2, is marked in green. It connects to the gRPC
control plane (orange), which connects to the P4Runtime
gRPC socket and sends/receives packets through the CPU
1Currently tested on Raspberry Pi 4 model B.
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Figure 1: P4Pi Router Architecture
port of the switch. The P4Runtime Shell can be used to access,
monitor, and query the data plane.
The data plane has multiple ports: the physical gigabit

Ethernet port of the Raspberry Pi, and one or more USB ports
converted into Ethernet ports with USB-to-Ethernet adapters.
In order to test a network of 4 P4Pi platforms connected in
a mesh topology, 3 physical ports (1×Ethernet+2×USB-to-
Ethernet) are required.

Students can connect to P4Pi using the wireless network,
and remotely log into the platform using ssh. The wireless
port is not used by the P4 program, and works with the
operating system, as in a standard Raspberry Pi deployment.
Once logged in, students can access the P4Runtime Shell.
Students can write their code on P4Pi, but it is typically
more convenient to first develop on one’s laptop or server,
and then upload the code to P4Pi.

5 DATA PLANE IMPLEMENTATION
The P4Pi-based router is implemented using simple_switch_grpc,
and can run over bmv2. Therefore, students can first de-
velop and test in an emulation environment (e.g., Mininet [8])
before testing on a harder-to-debug hardware target. The
project’s logic is implemented in the ingress pipeline of the
data plane, where the output port needs to be chosen.
The implementation of the parser must support multi-

ple protocols: Ethernet (provided in the starter code), ARP,
and IP. Our reference design supports both IPv4 and IPv6.
While ICMP must be implemented as part of the project,
ICMP processing is done in the control plane and only the
IP header is processed in the data plane. We note that other
implementations are possible.
The match-action pipeline consists of six match-action

tables:
(1) A routing table using longest prefix match on destination

IP address to associate an output port and next-hop IP
address (a table for IPv4 and a table for IPv6).

(2) A local IP table using exact match on destination IP ad-
dress to identify if the packet should be sent to the control

plane, or associate an output port and next-hop IP ad-
dress if it is already available in the table (a table for IPv4
and a table for IPv6).

(3) An ARP table that performs an exact match on the next-
hop IP address and, if found, associates a corresponding
MAC address.

(4) Layer 2 forwarding table that performs an exact match
on destination MAC address and sends the packet to a
specific port, a number of ports in a multicast group, or
drops the packet.

All incoming ARP packets are sent to the CPU port, and all
packets arriving from the CPU with a valid destination port
(i.e., routed in the control plane) are sent to the designated
destination port. The TTL of IP packets is decremented and
packets are dropped if TTL=0. The next table is used to look
up Local IP addresses. It is used to identify IP addresses that
should be forwarded to the CPU, and if there is no match, the
destination is looked up in the routing table. For outgoing
packets, the next hop MAC address will be looked up in the
ARP table, and updated in the Ethernet header.

If a packet is sent to the CPU, a header is added with
metadata such as the source port. Incoming packets from
the CPU need to be decapsulated, and information from
the header (e.g., EtherType, destination port) is saved to
the metadata bus. It is then used to set the destination port
without matching on the tables.

The design holds several counters that can be queried,
such as the number of ARP packets, IP packets and packets
sent to the CPU.

The deparser implementation is straight forward, emitting
all valid headers. On top of the Ethernet, IP and ARP headers,
a bespoke header is added to packets sent to the CPU, as
described above.

6 CONTROL PLANE IMPLEMENTATION
All the routing functionality is implemented in the con-
trol plane, following the classic separation of roles between
the data and the control plane. The control plane is imple-
mented in Python using the P4Runtime API [11] and Scapy
[2]. Using P4Runtime, the controller can send/receive mes-
sages to/from the software switch over a gRPC connection.
P4Runtime allows the controller to access the entities defined
in a P4 program, such as tables and counters. Scapy is used
to send/receive packets over the interface used as a CPU
port. The control plane could be extended by sending and
receiving packets over P4Runtime StreamChannel, which is
a bidirectional stream that can be used for packet I/O, among
other things.

Students are required to implement PW-OSPF [14], a sim-
plified version of OSPFv2. The routing table is populatedwith
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information received in HELLO packets, which are broad-
casted periodically by the routers to all neighbors. In addi-
tion to HELLO packets, a router generates and processes
link state update messages (LSU). These updates contain a
router’s view of the network and are triggered by changes to
link status (e.g., addition or deletion of a router) or a timeout
of HELLO packets from a neighbor router. Each router inde-
pendently calculates the shortest path to every other router,
using Djikstra’s algorithm, and updates the data plane’s for-
warding table with the next hop accordingly.

The control plane handles more than just PW-OSPF pack-
ets. First, it handles ARPmessages, and updates the ARP table
in the data plane. The control plane can send ARP requests,
and remove entries in the ARP table that have timed out.
In addition, it queues packets that are pending ARP replies.
Second, the control plane handles ICMP messages, which
appear on the data plane as IP packets with a local IP address,
and are therefore sent for processing to the control plane. It
responds to ICMP echo requests, and generates ICMP host
unreachable packets. Finally, the control plane handles all
corrupted or otherwise incorrect IP packets, as well as any
other packets addressed directly to the router.

7 RUNNING THE ROUTER ON P4PI
For a P4Pi-based router project, each student (or a pair of
students) is assigned a P4Pi platform. Unlike the NetFPGA-
based project, there is no need to install any toolchains; one
can simply download the most recent P4Pi image.

The P4 and control plane code can be developed directly on
the platform. However, we expect that most students would
prefer to develop on their own laptop, with their favorite
text editor, and transfer the files to P4Pi using, e.g., scp. Once
the code is ready, students connect to P4Pi using ssh. Next,
the network interfaces need to be set up. This means both
physically connecting the Ethernet ports (USB-to-Ethernet)
and Ethernet cables, as well as setting static IP addresses
(using ifconfig). Note that no special setup is required for
USB-to-Ethernet adaptors. Once connected, the operating
system should automatically identify the Ethernet interfaces.

With the code deployed to the platform, and the hardware
connected, it is time to run the router. While we expect
future versions of the project to support different targets, we
describe here the process with bmv2 simple_switch_grpc and
P4Runtime on P4Pi2.
To start the data plane, simple_switch_grpc is called with

the compiled P4 program and the interface to port attach-
ments as parameters. The control plane is started by calling
the Python program written by the student, which also popu-
lates the tables. To view and monitor changes in the contents

2Note that we use bmv2 with a physical network, not an emulation
environment.
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Figure 2: An example topology used to test the opera-
tion of multiple P4Pi Routers.

of tables and counters, a P4Runtime client such as P4Runtime
Shell [12] can be used.

8 EVALUATION AND
INTEROPERABILITY

Students can test their router in two modes: standalone or
connected to a group of routers. Note that in standalone
mode, the router is still part of a network, as the P4Pi plat-
form is connected to one or more student laptops. In this
mode, it is possible to test that a range of functions are act-
ing correctly, including ARP, ICMP (e.g., using ping), and
IPv4/IPv6. Additionally, one can use the following approach
to test a router. First, create virtual Ethernet (veth) inter-
face pairs, moving one end of each pair to another network
namespace. Then, attach the interface that is visible in the
root namespace to the switch and send traffic to it. More-
over, one can test that entries are added and deleted from
the routing table using the P4Runtime Shell. Finally, a basic
performance test can be done by running iperf between two
laptops with P4Pi in the middle. By comparing the through-
put using a direct connection or with P4Pi in the middle, it
is possible to assess the limitations of the implementation.

To perform tests with multiple P4Pi devices, one can con-
struct a network topology such as the one illustrated in
Figure 2 using the 1GbE RJ-45 (Ethernet) port and USB-to-
Ethernet adaptors. Each Ethernet interface is configured with
a static IP address. Note that the same setup can be first devel-
oped and tested on Mininet, using the same compiler, target,
P4 code, and control plane. This setup allows students to
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Figure 3: P4Pi Interoperability Setup.

Figure 4: P4Pi-A control plane adjacency list.

check interoperability between different designs and test the
operation of PW-OSPF. Figure 3 shows an example, similar
to Figure 2, using actual hardware.

One can confirm that PW-OSPF is implemented correctly
by printing the adjacency list (computed using Djikstra’s
algorithm) for each router to the screen. The adjacency list
contains all routers in the network as well as the subnets
associated with each link. When a failure happens or a new
switch is added, it is not sufficient for the router to find any
possible route; it must be the shortest path. Figure 4 shows a
screenshot of the adjacency list on P4Pi-A router, using the
topology in Figure 2.
By using a hardware setup, students can test for unex-

pected behaviors which can lead to incorrect router oper-
ation. For example:What happens when a link goes up and
down within short time periods (i.e., within the duration of the
periodic messages)? or What happens when a link that was
connected to port 1 is moved to port 2? These, as well as other
“real world” problems are much easier to create and explore
using P4Pi than in any software-based environment.
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Figure 5: An example routing loop problem in opera-
tion of multiple P4Pi Routers connected in ring topol-
ogy.

A common implementation pitfall that can be tested is
the handling of “routing loops”. An example of this problem
is illustrated in Figure 5. Initially, P4Pi-A routes to P4Pi-C
through P4Pi-B. When the link between P4Pi-B and P4Pi-C
fails, P4Pi-B finds that the shortest path to P4Pi-C is through
P4Pi-A. However, P4Pi-A still routes through P4Pi-B. Thus,
the traffic for P4Pi-C arrives at either P4Pi-A or P4Pi-B and
then loops between these two routers, at least for the periodic
updates’ duration, unless the implementation prevents the
behavior. A routing loop can also be created as a destination
becomes unreachable, and a good implementation would
attend to that as well.

9 DISCUSSION
Engagement. We believe that using a P4Pi-based router

will increase student engagement. Adding a hardware com-
ponent makes the project feel “real” and enhances the ex-
perience. Furthermore, when a student takes the Raspberry
Pi with them, the student feels a stronger connection to the
platform, and they can experiment with using their switches
at home.

Target. Future versions of this project may support differ-
ent targets. These may be hardware targets (different ver-
sions of Raspberry Pi that run the same operating system), or
data plane targets (different P4 compilers or architectures).

Realism. While we refer in this paper to P4Pi as a hardware
target, the data plane is in fact implemented as a software
switch. However, the goal of the router project is function-
ality rather than performance. Importantly, the hardware
experience of students, connecting and disconnecting cables,
resembles a switch ASIC.

5



, , Radostin Stoyanov, Adam Wolnikowski, Robert Soulé, Sándor Laki, and Noa Zilberman

Flexibility. Different academic programs run courses of
varying length, from one condensed week to a 4 months
long semester. It is possible to adapt the project to the length
of the course by varying the project’s scope. For example,
implementing just the data plane or only the control plane.
Educators may also choose to decrease or increase the com-
plexity of the project, for example, by including more con-
tents in the starter code, or by requiring more functionality
in the data plane (e.g., ARP response).

10 CONCLUSION
Build an Internet Router is a powerful exercise for students
learning computer networks. By implementing Build an Inter-
net Router on P4Pi, students gain hands-on experience with a
hardware target at low cost. P4Pi allows students to develop
the project without knowledge of FPGA design, and without
the overhead of complex hardware maintenance. Moreover,
P4Pi allows students to create different interoperability sce-
narios easily and flexibly. P4Pi is an open source project,
and all the materials described in the paper are available on
GitHub [15].
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