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Experimental Section:

Materials: All the reagents and solvents were commercially available and used without further
purification.

Synthesis of precursor L'

3,5-bis(trifluoromethyl)aniline (5 g, 22 mmol), 4- fluorobenzonitrile (6.1 g, 50 mmol)
and cesium fluoride (~ 10 g, 66 mmol) were refluxed at 170 °C in N,N-
dimethylformamide (DMF) (250 mL) over 48 h. After cooling the reaction mixture to
r.t., it was poured into ~ 500 mL ice-cold water, which yielded light brown coloured
precipitation. This was filtered under vacuum, washed well with water, and this crude
product was recrystallized from methanol to obtain the brown coloured crystalline
precursor L' (Fig. S1). Yield: 7.6 g, ~ 80%. *H NMR (400 MHz, DMSO-d®) (Fig. S3):
57.6 (m, 5H), 7.5 (s, 2H), 7.1 (m, 4H); 3C NMR (100 MHz, CDCls) (Fig. S4): 149.4,
147.2, 134.4, 134.2, 133.9, 125.2, 124.4, 119.0, 118.5, 108.4; HRMS (Fig. S2): Calc.
for C22H11FsN3 [M+H]*: 432.0930; Found: 432.0930. Elemental Analysis: Anal. Calcd
for C22H11FsN3: C, 61.26; H, 2.57; N, 9.74. Found: C, 61.19; H, 2.60; N, 9.69.
Synthesis of precursor L™

2,5-bis(trifluoromethylaniline (5 g, 22 mmol), 4- fluorobenzonitrile (6.1 g, 50 mmol)
and cesium fluoride (~ 10 g, 66 mmol) were refluxed at 165 °C in N, N-
dimethylformamide (DMF) (250 mL) for 72 h. After cooling the reaction mixture tor.t.,
it was poured into ~ 500 mL ice-cold water, which yielded yellow coloured
precipitation. This was filtered under vacuum, washed well with water, and this crude
product was recrystallized from methanol to obtain the yellow coloured crystalline
precursor compound L" (Fig. S5). Yield: 6.9 g, ~ 73%. *H NMR (400 MHz, DMSO-d®)

(Fig. S7): 6 8.0 (d, J = 8.4 Hz, 1H), 7.8 (d, J = 8.4 Hz, 1H), 7.5 (m, 5H), 7.0 (m, 4H);
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13C NMR (100 MHz, CDCls) (Fig. S8): § 149.3, 143.1, 133.6, 129.9, 129.5, 125.1,
122.3, 118.5, 106.8; HRMS (Fig. S6): Calc. for C2oH11FsN3s [M+H]*: 432.0930; Found:
432.0997. Elemental Analysis: Anal. Calcd for C22H11FeNs: C, 61.26; H, 2.57; N, 9.74.
Found: C, 61.30; H, 2.69; N, 9.80.

Synthesis of FPOP-100

Trifluoromethanesulfonic acid (0.47 g, 3.12 mmol) in 10 mL of CHCI3 was charged into
a pre-dried 2-neck round bottom flask under N2 atmosphere. The mixture was cooled to
273K and 4,4'-(3,5-bis(trifluoromethyl)phenylazanediyl)dibenzonitrile (L' , 500 mg,
1.16 mmol) in 55 mL of CHCIs was added into the solution dropwise over ~ 20 min.
The mixture was stirred at 273K for another 2h before left overnight at room
temperature. The solution turned dark brown, in which a red precipitate could be
noticed. Then, the mixture was poured into ~ 250 mL of water containing 12 mL of
ammonia solution and was stirred for 4h. The dark red precipitate was filtered and
washed with water, ethanol, acetone and chloroform successively to yield bright red
solid FPOP-100 (372 mg; Inset of Fig. 1a). FT-IR (KBr, cm™): 1921, 1713, 1520, 1358,
1103, 849 (Fig. S24). Elemental analysis (%) of FPOP-100: found: C, 62.52; H, 3.00;
N, 11.36.

Synthesis of FPOP-101

Similar procedure (with the same scale and equivalent ratios of reactants and solvents;
difference being the use of L" [4,4'-(2,5-bis(trifluoromethyl)phenylazanediyl)dibenzo
-nitrile] instead of its positional isomer L") as the aforementioned one (for FPOP-100)
yielded FPOP-101 as a dark brown solid (380 mg; Inset of Fig. 1b). FT-IR (KBr, cm"
1): 1936, 1728, 1512, 1110, 826 (Fig. S24). Elemental analysis (%) of FPOP-100:

found: C, 63.48; H, 3.8; N, 11.28.
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Synthesis of L1, L2 and Lzand corresponding POPs (MPOP-100, MPOP-101, POP-
100)

Procedures and the respective structural characterization data-sets for the non-
fluorinated congeners (L1: 4,4'-(3,5-dimethylphenylazanediyl)dibenzonitrile; L>: 4,4'-
(2,5-dimethylphenylazanediyl)dibenzonitrile; Ls: 4,4'-(phenylazanediyl)dibenzonitrile)
and their corresponding POPs (MPOP-100, MPOP-101 and POP-100 respectively)

have been elaborated in the supporting information file (Figures S9-S17).

Synthesis of L1, L2 and Lz and corresponding POPs (MPOP-100, MPOP-101, POP-100)
Synthetic procedures and the respective structural characterization data-sets for the non-
fluorinated congeners (Li: 4,4'-(3,5-dimethylphenylazanediyl)dibenzonitrile; L: 4,4'-(2,5-
dimethylphenylazanediyl)dibenzonitrile; Ls: 4,4'-(phenylazanediyl)dibenzonitrile) and their
corresponding POPs (MPOP-100, MPOP-101 and POP-100 respectively) have been

elaborated as following (additional data: Figures S9-S17 and S30-S31).

Synthesis of precursor L1

3,5-dimethylaniline (2.5 g, 20.6 mmol), 4- fluorobenzonitrile (5.7 g, 47 mmol) and cesium
fluoride (9.4 g, 62 mmol) were refluxed at 165 °C in N,N-dimethylformamide (DMF) (130 mL)
for 72 h (Figure S9). After cooling the reaction mixture to r.t., it was poured into ~350 mL ice-
cold water, which yielded dark yellow coloured precipitation. This was filtered under vacuum
suction, washed well with water, and this crude product was recrystallized from methanol to
obtain the bright yellow coloured crystalline precursor compound L1 (Figure S9). Yield: 4.3 g,
~64%. 'H NMR (270 MHz, CDCls) (Figure S10): 6 7.7 (t, J = 2.4 Hz, 4H), 7.5 (m, 4H), 6.9
(m, 1H), 6.7 (M, 2H), 2.2 (s, 6H); 3C NMR (67.5 MHz, CDCls) (Figure S11): § 150.2, 144.8,
140.2, 133.4, 128.4, 124.8, 122.8, 119.7, 108.0, 21.2. Elemental Analysis: Anal. Calcd for

C22H17Ns: C, 81.71; H, 5.30; N, 12.99. Found: C, 82.01; H, 5.51; N, 13.24.
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Synthesis of precursor L2

2,5-dimethylaniline (2.5 g, 20.6 mmol), 4- fluorobenzonitrile (5.7 g, 47 mmol) and cesium
fluoride (9.4 g, 62 mmol) were refluxed at 165 °C in N,N-dimethylformamide (DMF) (130 mL)
for 48 h (Figure S12). After cooling the reaction mixture to r.t., it was poured into ~350 mL
ice-cold water, which yielded black coloured precipitation. This was filtered under vacuum
suction, washed well with water, and this crude product was recrystallized from methanol to
obtain the dark brown coloured amorphous precursor compound L, (Figure S12). Yield: 3.9 g,
~58.5%. 'H NMR (270 MHz, CDCl3) (Figure S13): § 7.7 (t, J = 2.4 Hz, 4H), 7.5 (m, 4H), 6.9
(m, 1H), 6.7 (M, 2H), 2.3 (s, 6H); 3C NMR (67.5 MHz, CDCls) (Figure S14): § 150.4, 140.3,
134.6, 133.5, 128.5, 124.9, 122.8, 119.8, 108.1, 21.3, 10.9. Elemental Analysis: Anal. Calcd

for C22H17N3: C, 81.71; H, 5.30; N, 12.99. Found: C, 82.04; H, 5.78; N, 12.86.

Synthesis of precursor L3

Aniline (2.5 g, 27 mmol), 4- fluorobenzonitrile (7.44 g, 61.4 mmol) and cesium fluoride (12.3
g, 81 mmol) were refluxed at 165 °C in N,N-dimethylformamide (DMF) (130 mL) for 72 h
(Figure S15). After cooling the reaction mixture to r.t., it was poured into ~350 mL ice-cold
water, which yielded pale yellow coloured precipitation. This was filtered under vacuum
suction, washed well with water, and this crude product was recrystallized from methanol to
obtain the bright yellow coloured amorphous precursor compound Lz (Figure S15). Yield: 5.1
g, ~64.4%. *H NMR (270 MHz, CDCls) (Figure S16): § 7.7 (m, 4H), 7.5 (m, 2H), 7.1 (m, 5H),
7.0 (m, 1H), 6.7 (m, 1H); 3C NMR (67.5 MHz, CDCls) (Figure S17): ¢ 150.2, 140.2, 134.4,
133.4, 128.4, 124.8, 122.6, 119.7, 105.4. Elemental Analysis: Anal. Calcd for C20H13N3: C,

81.34; H, 4.44; N, 14.23. Found: C, 81.79; H, 4.95; N, 13.97.
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Synthesis of MPOP-100

Trifluoromethanesulfonic acid (0.46 g, 3.1 mmol) in 10 mL of CHCI3 was charged into a pre-
dried 2-neck round bottom flask under N> atmosphere. The mixture was cooled to 273K and
4,4'-(3,5-dimethylphenylazanediyl)dibenzonitrile (L1, 500 mg, 1.55 mmol) in 60 mL of CHCIs
was added into the solution dropwise over ~20 min. The mixture was stirred at 273K for
another 2h before left overnight at room temperature. The solution turned dark brown, in which
a red precipitate could be noticed. Then, the mixture was poured into ~250 mL of water
containing 12 mL of ammonia solution and was stirred for 4h. The dark red precipitate was
filtered and washed with water, ethanol, acetone and chloroform successively to yield black
powdered solid MPOP-100 (315 mg; Figure S29). FT-IR (KBr, cm™) (Figure S30): 1695,
1574, 1499, 1418, 1358, 1222, 1172, 1126, 1082, 1023, 842. Elemental analysis (%) of

MPOP-100: found: C, 65.74; H, 3.48; N, 10.98.

Synthesis of MPOP-101

Similar procedure (with the same scale and equivalent ratios of reactants and solvents;
difference being the use of L» [4,4'-(2,5-dimethylphenylazanediyl)dibenzonitrile] instead of its
positional isomer L1) as the aforementioned one (for MPOP-100) yielded MPOP-101 as a
black powdered solid (295 mg; Figure S29). FT-IR (KBr, cm™) (Figure S30): 1692, 1572, 1500,
1420, 1360, 1223, 1170, 1125, 1084, 1024, 844. Elemental analysis (%) of MPOP-101: found:

C, 66.34; H, 3.87; N, 11.05.

Synthesis of POP-100

Trifluoromethanesulfonic acid (0.51 g, 3.4 mmol) in 10 mL of CHCIs was charged into a pre-
dried 2-neck round bottom flask under N2 atmosphere. The mixture was cooled to 273K and
4,4'-(3,5-bis(trifluoromethyl)phenylazanediyl)dibenzonitrile (L', 500 mg, 1.7 mmol) in 55 mL

of CHCI3 was added into the solution dropwise over ~20 min. The mixture was stirred at 273K
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for another 2h before left overnight at room temperature. The solution turned dark brown, in
which a red precipitate could be noticed. Then, the mixture was poured into ~250 mL of water
containing 12 mL of ammonia solution and was stirred for 4h. The dark red precipitate was
filtered and washed with water, ethanol, acetone and chloroform successively to yield dark
brown powdered solid POP-100 (380 mg; Figure S29). FT-IR (KBr, cm™) (Figure S30): 1685,
1570, 1540, 1502, 1466, 1419, 1354, 1275, 1166, 1026, 886. Elemental analysis (%) of POP-

100: found: C, 61.89; H, 3.97; N, 11.19.

Synthesis of Building Block L':

FaC CFs | Fas CFs
O © CsF/ DMF

+ B

N
NH, CN Reflux, 2d /@ \©\
NC CN

(1eqv.) (2 eqv.) .

Figure S1: Synthesis protocol for the building block L'.
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Figure S2: HRMS of building block L.
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Figure S3: 'H NMR of building block L.
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Figure S4: 13C NMR of building block L.

Synthesis of Building Block L™:

FC j Fﬁ@
CsF/ DMF
\QCFs + o

—_—

N
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Figure S5: Synthesis protocol for the building block L".
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Figure S6: HRMS of building block L".
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Figure S7: *H NMR of building block L".
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Figure S8: 3C NMR of building block L".
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Figure S9: Synthesis protocol for the building block L.
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Figure S10: *H NMR of building block L.
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Figure S11: 13C NMR of building block L.
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Synthesis of Building Block L2:
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Figure S12: Synthesis protocol for the building block L.
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Figure S13: *H NMR of building block L.

Chemistry - A European Journal

Page S12



o) TONONO©D ©

i) ONT—OWd < NONMN 0 —
e MWL O~ e 5229 =4 Q
o g38gg o oo n Mmoo [} ©
D OOAANN— =} NN © - =
- erecee - N~ o~ -~
| [N VA2 N

Figure S14: 13C NMR of building block L.

Synthesis of Building Block La:

CsF/ DMF
[ j + '
N
NH, ON Reflux, 2d /@/ \@\
NC CN

(1 eqv.) (2 eqv.)
L3

Figure S15: Synthesis protocol for the building block La.
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Figure S16: *H NMR of building block L.
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Figure S17: 13C NMR of building block Ls.
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Figure S18: Thermogravimetric analysis (TGA) profile for FPOP-100 (as-synthesized and

desolvated phases), plotted along with the precursor crystals of dinitrile L".
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Figure S19: Thermogravimetric analysis (TGA) profile for FPOP-101 (as-synthesized and

desolvated phases), plotted along with the precursor crystals of dinitrile L".
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Figure S20: FE-SEM image for the DMF/CHCl3-dispersed phase of FPOP-100.
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Figure S21: FE-SEM image for the DMF/CHClIs-dispersed phase of FPOP-101.
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Figure S22: AFM images for FPOP-100.
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Figure S23: AFM images for FPOP-101.
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Figure S24: FT-IR spectral data recorded for a) L', b) FPOP-100, ¢) L" and FPOP-101

(stacked together).

Figure S25: Manifold modes of intermolecular H-bonding and van der Waals interactions
observed in the single crystal structures for the precursors L' and L" (considering one unit cell

for each of the precursors).
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Figure S26: Single mode of intermolecular H-bonding and van der Waals interactions

observed in the single crystal structure of the precursor L (considering one unit cell).
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Figure S27: Comparison of Raman spectra for the dinitrile precursors (L', L"), and the

corresponding POPs viz. FPOP-100 and FPOP-101, respectively.
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Figure S31. Low temperature CO> and N2 adsorption isotherms for a) MPOP-100, b) MPOP-
101, and ¢) POP-100, filled and empty symbols represent adsorption and desorption; d)
Horvath-Kawazoe (H-K) pore size distribution profiles for the MPOP pair with POP-100,

calculated from CO- isotherms at 195 K.

Chemistry - A European Journal Page S23



QO
N

WCA ~ 84°

Figure S32: Water contact angles measured on a) MPOP-100, b) MPOP-101, c) POP-100
compound pellets.
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Figure S33. Loading scheme of the cyclic impact tests on FPOP-100 and -101. Load vs
indentation depth for a) FPOP-100, b) FPOP-101. Time evolution of Indentation depth and
load for ¢) FPOP-100, d) FPOP-101. FPOP-101 seems to be less harder than FPOP-100
according to a) & b). A plausible explanation is that fracture of FPOP-101 is serverer than
FPOP-100 (see Fig. 7) given the load in impact test is about 8 times as high as the one in

individual MTS indentations (as shown in Fig. 4a).
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Figure S34. Differential scanning calorimetry of FPOPs and matrimid (polymer acts as a
reference). FPOP-100 at 80.58 °C and FPOP-101 at 82.91 °C might undergo secondary
relaxation (B) that is deduced by the similar behavior of Matrimid.[™ Transition temperature
300.09 °C for FPOP-101 might originate from a recrystallization process, while the
temperatures 337.35 °C for FPOP-100 and 325.88 °C of FPOP-101 could be the

corresponding glass transition temperatures.

[1] E. M. Mahdi, J.-C. Tan, J Memb. Sci. 2016, 498, 276-290.
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