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The term “mechanicalmetamaterials” encompasses awide range of systemswhose anomalousmechanical prop-
erties arise primarily from their structure rather than composition. This unique characteristic gives them an edge
over many conventional natural or readily available materials and makes themwell-suited for a variety of appli-
cations where tailor-made mechanical properties are required. In this study, we present a new class of mechan-
icalmetamaterials featuring various star-shaped perforations, which have the potential to exhibit auxetic or zero
Poisson's ratio (ν) properties. Using finite element modelling in conjunction with experimental measurements
on 3D printed prototypes, we demonstrate that these star-shaped porous systems possess the potential to retain
their unusualmechanical properties up to tensile strains exceeding 15%. By virtue of these exceptional properties,
the proposed concept could be applied for engineering numerous potential applications in a wide range of fields.
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1. Introduction

Mechanical metamaterials are systems that derive their anomalous
mechanical response to external stimuli primarily from their geometric
structure rather than from their intrinsicmaterial composition [1]. In re-
cent years, there has been a great deal of interest in these systems
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amongst scientists and engineers since they offer an unconventional
route to the production of materials with tailor-mademechanical prop-
erties, whichmight otherwise be difficult to achieve simply by adopting
natural or readily available isotropic materials. One of the most well-
known classes of mechanical metamaterials is that of auxetic systems.
Auxetics [2] are systemswhich possess the counter intuitivemechanical
property of exhibiting a negative Poisson's ratio, i.e. they expand in a
transverse direction upon the application of a uniaxial tensile strain.
This property, which stems from the geometry and deformation mech-
anism of the system, has been reported in several naturally occurring
and synthetic systems, ranging from the nano- to the macro-scale,
such as zeolites [3], metal-organic frameworks [4], graphene [5], carbon
nanotubes [6], foams [7,8], fibres [9], polymers [10], biological [11] and
perforated systems [12]. Auxetic materials have also been shown to ex-
hibit numerous advantageous characteristicswhich are not typically ob-
served in conventional materials, such as the ability to undergo
synclastic curvature [13], increased indentation resistance [14] and
sound dampening properties [15,16]. These features make them espe-
cially suited for a number of niche applications in a wide variety of
fields, encompassing biomedicine to electronic devices [16–21].
Fig. 1.Diagrams depicting the star-shaped poremetamaterials studied here [i) 3-star, ii) 4-star a
a close-up of the repeating unit and unit cell chosen for simulation indicating all parameters use
of these geometries which were used in the experiments.
Despite the vast potential of auxetic mechanical metamaterials,
which are superior to naturally occurring auxetics due to their increased
versatility, one of the main challenges faced by researchers in
implementing these systems for real world applications and devices is
optimization of the production method. The procedure of making an
auxetic metamaterial typically involves a multi-step manufacturing
process, which includes the attainment of a specific geometrical config-
uration to achieve the auxetic effect, ideally with a high degree of preci-
sion via production techniques such as 3D printing [22–25], laser
lithography [26], molding [27] and perforation methods [12,20,21,28–
31]. The suitability of a manufacturing process relies heavily on the
type of geometric features that need to be introduced,which could pres-
ent a challenge, especially if the auxetic properties are required at the
micro- or nano-level. For example, standard low resolution 3D printers
might not be ideal to produce auxetic metamaterials based on rotating
rigid unit and re-entrant geometries through slits [30] due to theminute
thickness of the pores. On the other hand, such printers may be consid-
ered to be more suited for the fabrication of highly porous metamateri-
als. Therefore, in their quest to manufacture new and improved
mechanical metamaterials, scientists and engineers often must either
nd iii) 6-star]; a) as infinite tessellationswith the repeating unit for each systemmarked, b)
d to define the geometry of these systems and c) photographs of the 3D printed prototypes
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improve themanufacturing technique, or, come up with alternative de-
signs that are less problematic to implement but still able to produce the
required mechanical response. Thus it is envisaged that by having a
large pool of geometrieswith awide spectrum ofmechanical properties
from which to ‘pick and choose’, the increased geometric versatility
could allow one to bypass any complications which may arise during
the manufacturing process, and thus, in the future any mechanical
metamaterials with a specific tailored set of mechanical properties
could be produced using a standard fabrication technique.

Considering the aforementioned challenges, in thisworkwe are pro-
posing a new class of perforated auxeticmechanicalmetamaterials with
the potential to exhibit Poisson's ratios within −1 to 0. These systems,
possess n-pointed symmetric star-shaped pores, where n may be
equal to 3, 4 or 6, are arranged as shown in Fig. 1. The on-axis mechan-
ical properties of these systemswere investigated using a finite element
(FE) modelling approach, which was supported by experimental mea-
surements performed on 3D printed prototypes manufactured using a
Formlabs Form2 3D stereolithography laser printer (with a print resolu-
tion of ~50 μm).
2. Methodology

The finite element (FE) analyses were conducted using the ANSYS13
software (ANSYS Inc). As shown in Fig. 1b, each of these systems are de-
fined by a distinct set of parameters; namely h and b, the height and
base length of the triangles that make up the star-shaped perforation
and s, which is the separation distance between the two adjacent star
perforations. To obtain a clear picture of the potential mechanical prop-
erties of these systems, FE simulations were conducted on a wide range
of structures by systematically varying the values of these parameters.
More precisely, for n = 3, 4 and 6, the parameter h was set to values
from 1 to 6 in steps of 1, while s was set to values ranging from 0.1 to
0.6 in steps of 0.05. The parameter b was kept constant at 1 for all the
structures.

The systems were modelled using the PLANE183 element, a plane
stress, higher order 2D 8-node or 6-node element with quadratic dis-
placement behaviour. Following the numerical convergence testing of
the FE models, a minimum mesh size of 0.02 was used for all systems,
which is equivalent to 1/5 of the minimum s dimension of the systems
being investigated here. The linear material properties of the cured
Tough Resin (a commercial-grade hyperelastic polymer developed by
Formlabs Inc.) were used to simulate these systems, i.e. a Poisson's
ratio of 0.49 and a Young's modulus of 1.68 GPa (see S1 in Supplemen-
tary Information (SI) for details), and to maximize computational effi-
ciency, each system was modelled as a representative unit cell (see
Fig. 1b) with periodic boundary conditions and solved linearly. These
periodic boundary conditions were enacted through the use of con-
straint equations on the nodes at the edges of the system. These con-
straint equations operate under the assumption that in order for a
system to be periodic the nodes on opposing boundaries of the repre-
sentative unit cell must deform in an identical manner. In addition, in
order to eliminate any artificial constraints on the systems which
could influence their deformation behaviour, the systems were
constrained from two nodes on opposing edges of the representative
unit cell only and loadingwas simulated via the application of a uniaxial
tensile force on the nodes at the edges of the unit cell in the x- and y-di-
rections separately. This results in a system whose deformation is not
governed by artificial edge effects and thus represents the deformation
of a system with a very large number of repeating units. The on-axis
Poisson's ratios and Young's moduli of the systems were calculated
from the strains on the nodes at the edges of the unit cells, which in
turn, were calculated from the displacements of the nodes induced by
loading. The effective Young's modulus was calculated as a percentage
of the Young's modulus of the system in comparison to the material
Young's modulus.
These linear simulationswere conductedmainly in order to obtain a
clear insight of the small strain mechanical properties of these systems.
In order to obtain a more complete picture of the deformation mecha-
nism/s governing the mechanical behaviour of these systems, as well
as to investigate their high strain properties, further studies were also
conducted on one example of each of the three systems investigated
here using non-linear Finite Element simulations and experimental
testing. The experimental prototypes of the three models, one of each
for n=3, 4 and 6 were produced using the Tough Resin [32] using the
Formlabs 3D Printer (see Fig. 1c). The three systems possessed the fol-
lowing parameters:

a. Three-Star Perforated System (Fig. 1c(i))
Gauge Length= 106mm, Number of Horizontal Repeating Units =
6, Number of Vertical Repeating Units = 6, h=8mm, b=3mm, s
=1mm, Depth= 10mm

b. Four-Star Perforated System (Fig. 1c(ii))
Gauge Length= 107mm, Number of Horizontal Repeating Units =
7, Number of Vertical Repeating Units = 8, h=10mm, b=3mm,
s=1mm, Depth= 10mm

c. Six-Star Perforated System (Fig. 1c(iii))
Gauge Length= 104mm, Number of Horizontal Repeating Units =
6, Number of Vertical Repeating Units = 6, h=10mm, b=3mm,
s=1mm, Depth= 10mm.

These star perforation parameters were chosen on the basis of the
results of the linear simulations, while the final sample size and num-
ber of repeating units were chosen with the explicit aim of producing
a model with the maximum permissible number of repeating units (to
minimize the influence of edge effects on the repeating units in the
center of the sample from which the extension measurements were
taken). At the same time, we have ensured that the dimensions of
the repeating units are not too small that defects arising from the 3D
printer resolution will play a significant role in the deformation of
the final sample.

These 3D printed models were stretched using a Testometric tensile
loading machine at a rate of 1.5 mm/min. Markers were drawn on the
repeating unit cells at the centermost region of each model and a
video extensometer (Messphysik) was used to measure the displace-
ment of these markers during loading. These displacements were then
averaged and used to calculate the instantaneous and engineering
strains, from which the Poisson's ratio was then derived.

In order to allow for a proper comparison with the FE results, two
additional sets of non-linear simulations were conducted for each of
these systems. For both these sets of simulations, the non-linear mate-
rial properties of Tough Resin were used. These material properties
were found by testing multiple dog-bone shaped samples in a tensile
loadingmachine and fitting the resultant stress-strain graph with 5-Pa-
rameter Mooney-Rivlin Hyper-elastic model (see S1 in the Supplemen-
tary Information for further details). The first set of non-linear
simulations was run using the same periodic boundary conditions as
those employed for the linear simulations while for the second set,
identical models corresponding to each of the three 3D printed proto-
types were designed and simulated for the same loading conditions in
the tensile loading machine. This entailed fixing the nodes in the
lower part of the system in the x- and y-directions and applying a strain
in the y-direction and fixing the displacement in the x-direction of the
nodes in the upper part of the system. The Poisson's ratio of each system
was also calculated from the centermost region of the model; identical
to the method employed for the experimental prototypes. The final
plots for the Poisson's ratio of all the non-linear simulations and exper-
imental tests were plotted as the instantaneous Poisson's ratio [33]
against engineering strain (see S1 in Supplementary Information for
more details).



Fig. 2. Plots showing the simulated on-axis a) Poisson's ratios, νyx, and b) effective Young's moduli, Ey eff (as a percentage of thematerial Young's modulus, Emat) for the i) 3-star, ii) 4-star
and iii) 6-star pore shaped systems for the application of a uniaxial load in the y-direction. The results for stretching in the x-direction are nearly identical to these and can be found in Fig.
S5 of the Supplementary Information.
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3. Results and discussion

As shown in Fig. 2 the three-pointed star and six-pointed star sys-
tems are predicted by the linear simulations to potentially exhibit vary-
ing extents of auxetic behaviour, while themajority of the four-pointed
star systems show a Poisson's ratio of approximately zero. It can be seen
that almost all systems are predicted to exhibit a relatively low effective
Young's modulus (less than 1% of the Young's modulus of the tough
resinmaterial (~1.7 GPa) formost systems being studied). This, coupled
with the fact that the material Poisson's ratio was 0.49 (nearly incom-
pressible), confirms that the macroscopic mechanical properties of the
system is expected to be governed primarily by the geometrical struc-
ture of the system rather than by uniform deformation of the polymeric
resinmaterial. In fact, an inspection of the systems suggest that uniaxial
loading resulted in changes in the geometric features of the systems,
whose changes are concordant with the Poisson's ratio of the respective
systems as explained below. Moreover, all systems exhibit nearly iden-
tical on-axis mechanical properties for tensile loading in both the x- and
y-directions (see Fig. 2 vs. Fig. S5), as expected from the symmetry of the
respective systems.

As presented in Figs. 4, 5 and 8 and the videos in the Supplementary
Information (ANIM01–09), the star-shaped systems are deforming via a
Fig. 3. Diagrams showing the partially closed, tangential orientation and theoretically fully
mechanismwhichmay be roughly described in terms of bending of the
flexible ligament-like connectors and/or rotation of the polygonal
blocks ofmaterial. Given their structural symmetry and deformation be-
haviour, these systems may be likened to chiral honeycombs [34–42];
namely the hexachiral, tetrachiral and trichiral honeycombs for the
three-pointed star, the four-pointed star and the six-pointed star
pored systems, respectively. Typical chiral honeycombs [34] reported
in literature are usually made up of circular nodes that are connected
to each other through tangentially attached ligaments. However, de-
spite the similarities, the systems proposed here differ from these ge-
ometries in several key aspects, with the most obvious differences
being the polygonal shape of the ‘chiral block’, as opposed to a circular
node, and the fact that the ‘ligaments’ need not necessarily be tangen-
tially oriented with respect to the center of the chiral units. The latter
point means that the angle between the ligaments and the center of
the chiral node could potentially be designed to be lower than 90°.
These structural differences are expected to increase the strain range
over which auxetic behaviour is observed for tensile loading compared
with typical chiral geometries, since these systems are in an initial geo-
metric state that is more distant from the theoretical tensile strain limit
of the chiral honeycombmechanism (see Fig. 3). Similarly, the systems
may also be designed to exhibit a superior capacity for compressive
opened state of one of the three-pointed star-shaped perforation system studied here.
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strains by producing systems with angles greater than 90°. The size of
this angle is governed by the relationship between the perforation pa-
rameters h and b and may be defined as 2atan(b / 2h) + ((N− 2)π) /
(2N) where N denotes the number of sides of the polygonal units. This
means that as the h/b ratio increases, the size of the angle will approach
((N− 2)π) / (2N) and the star-shaped perforationwill start to resemble
a slit.

Here it must be noted that the tangentially attached ligament equiv-
alents of these systems corresponding to typical circular node chiral
honeycombs are analogous to geometries where the star-shaped perfo-
rations almost lose their convex angle and become polygonally shaped,
i.e. a triangle, a square and a hexagon in the case of the three, four and
six-pointed star pores, respectively. This corresponds to systems
where the b/h ratio is equivalent to 2(tan(π / 6)), 2(tan(π / 4)) and 2
(tan(π / 3)) respectively.

As onemay observe from the FE predictions of the linear simulations
in Fig. 2, the three-pointed star perforation systems appear to show the
greatest potential for exhibiting auxetic behaviour, with the Poisson's
ratio of these systems reaching its most negative point, a value of −1,
when the separation value, s, is at its lowest value. This Poisson's ratio
corresponds to that predicted by analytical models for hexachiral hon-
eycombs. In fact, as one can observe from ANIM01, ANIM04 and
ANIM07, at low s values, these systems deform in a manner which is
analogous to the chiral mechanism, i.e. rotation of central blocks and
flexural deformation of ligaments in a manner where the rotational
symmetry of the building-block is preserved to a certain extent
[34,36]. This was to be expected since at small values of s, the three-
star perforated systems studied here would be equivalent to hexachiral
systems with slender ligaments. This assertion is also supported by the
fact that the systems possessing the most negative Poisson's ratios are
those with the lowest stiffness values and lowest s values, i.e. the sys-
tems that most effectively mimic the hexachiral mechanism and show
the greatest conformation to analytical predictions for this model. On
Fig. 4. Figure showing a) photographs of the undeformed and deformed three-pointed star-
systems with identical boundary conditions to the experimental models (Exp BC), c) diagram
d) the corresponding plots showing the instantaneous Poisson's ratio in the yx-plane (νyx) aga
the representative unit cell (marked by dashed lines) was simulated; the adjacent repeating u
this system.
the other hand, systemswith larger separationswill possess thicker lig-
aments and, should the ligaments be sufficiently thick, other deforma-
tion mechanisms such as shear deformation of the ligaments could be
relevant [43], resulting in deviations from the “pure” hexachiral mecha-
nism. It should be pointed out that besides s, the magnitude of the pa-
rameters h and b is also a determinant of ligament slenderness since,
while s defines the thickness of the ligament, these parameters define
the length of the ligament. In fact, as shown in Fig. 2, as the h/b ratio de-
creases, the systems become increasingly less negative because of the
increase in ligament thickness. The relationship between these parame-
ters with the length to thickness ratio of the formed ligament may be
quantified as follows: length/thickness = (h2 + b2 / 4)½ / s, and the
greater the value of this ratio, the greater the conformity of the system's
deformation behaviour to that of the hexachiral mechanism.

The potential of the three-pointed star perforated systems to exhibit
auxetic behaviour is also clearly confirmed by the results obtained from
the experimental tensile loading of the 3D printed prototypes and non-
linear FE simulations. As shown in Fig. 4, the experimental prototype of
the three pointed star-shaped pore system possesses an initial negative
Poisson's ratio of approximately −0.5, with the system becoming
slightly more auxetic on increasing elongation, up to a strain of ca.
17%. This trend is mirrored in the non-linear FE simulation of the equiv-
alent model using the same boundary conditions, albeit at a slightly
more negative Poisson's ratio. A similar trend, with an evenmore nega-
tive Poisson's ratio, is also observed for the non-linear simulation con-
ducted using periodic boundary conditions, i.e. similar to the linear
simulations. These small differences in the magnitude of the Poisson's
ratio may be attributed mainly to edge/boundary effects and imperfec-
tions. In the system with periodic boundary conditions, there are no
boundary effects such as clamping or free edges (which are present in
the finite system simulation and experimentalmodel) and thus the sys-
tem is able to deform freely. However, in the corresponding finite sys-
tems, the polygonal nodes near the top and bottom regions of the
shaped pore system 3D printed prototype, b) diagrams of the non-linearly simulated FE
s of the non-linearly simulated FE systems with periodic boundary conditions (PBC) and
inst the engineering strain in the y-direction for all of these systems. Note that in c), only
nits are only presented to allow for a better observation of the deformation behaviour of
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sample are significantly more constrained than those at the central re-
gion of the system, which creates a deformation gradient throughout
the sample, i.e. the topmost and bottommost nodes deform significantly
less than the centermost nodes, hence the bulging out at the central re-
gions which may be observed in Fig. 3b, c. In theory, if the sample con-
tains a sufficient number of repeating unit cells, the central nodes
should be almost completely unaffected by these edge effects and thus
the deformation of the finite systems, and hence the Poisson's ratio,
would be equal to that of the systemmodelled using periodic boundary
conditions. However, in practice, this is extremely difficult to achieve
and thus some discrepancies are always expected.

There is also a slight difference between the Poisson's ratio of the ex-
perimental prototype and the finite non-linear FE simulation. This dif-
ference is probably due to slight imperfections in the 3D printing
process which resulted in some ligaments having unequal stiffnesses,
which in turn results in uneven deformation throughout the system
which affects the overall Poisson's ratio. However, despite these differ-
ences, as one can observe from Fig. 4 and ANIM01, ANIM04 and
ANIM07, all three systems still deform predominantly by roughly the
same deformation mechanism, i.e. rotation of the polygonal chiral
nodes and flexure of ligaments.

In the case of the four- and six-pointed perforated star systems, the
deformations are more complex. For example, as one can observe from
Fig. 5, in the case of the four-pointed star systems, small values of s re-
sults in geometries where the system may be likened to a tetrachiral
system with square-shaped nodes interconnected by four slender liga-
ments. However, in this case the horizontally inclined ligaments un-
dergo a higher degree of flexural deformation than their vertically
inclined counterparts, meaning the rotational symmetry of order four
is not being preserved. This effect has been previously observed in
tetrachiral honeycombs [36,39], and was to be expected since the sys-
tem lacks the required symmetry and/or structural constraints to
Fig. 5. Figure showing a) photographs of the undeformed and deformed four-pointed star-shape
with identical boundary conditions to the experimental models (Exp BC), c) diagrams of the
corresponding plots showing the instantaneous Poisson's ratio in the yx-plane (νyx) against t
representative unit cell (marked by dashed lines) was simulated; the adjacent repeating units
system.
preserve the four-fold rotational symmetry of the sub-units. Unequal
flexure arises since one set of ligaments has a higher component of
force in the loading direction than the other. This leads to the system
experiencing significant shear deformation (see Figs. 5c, 6 and
ANIM08), which if not restricted, would result in a Poisson's ratio of
zero, as predicted by the FE simulations reported in Fig. 2.

The results obtained from the experimental loading experiment and
non-linear FE simulations at high strains of the four-pointed star-
shaped pore system confirm this hypothesis. In fact, in the non-linear
FE simulationwhere the systemwas loadedunder conditionswhich im-
pose no artificial constraints besides those governing its periodicity, the
system showed significant shear deformation upon uniaxial loading
resulting in an initial Poisson's ratio of zero which very slowly becomes
positive over significantly large strains (see Fig. 5), in accordance with
earlier theoretical predictions [36,39]. On the other hand, during exper-
imental testing of the 3D printed model and the equivalent non-linear
FE model, the system was clamped from the top and bottom parts
while being stretched, resulting in an initially experimentally measured
Poisson's ratio of −0.1, since this type of loading discourages shearing
deformations as the extremities of the model have to remain normal
to the clamps throughout testing. However, a degree of shear deforma-
tion is still evident at higher tensile strains, which suggests that the
clamping method does not fully inhibit this mode of deformation (see
Fig. 6b(i)). Since shear deformation is inhibited, this system deforms
through a mixture of unequal flexural deformation (which results in
shearing) and rotation of the chiral nodes (see Fig. 6a), with the latter
mechanism being responsible for the overall negative Poisson's ratio.
As tensile strain increases, the Poisson's ratio gradually becomes even
more negative as the rotation of nodes becomes the more predominant
form of deformation. This change in deformation mechanism, which
may be easily observed from the stress contour plots presented in Fig.
6b, highlights the significant role of boundary conditions on the
dpore system3D printed prototype, b) diagrams of the non-linearly simulated FE systems
non-linearly simulated FE systems with periodic boundary conditions (PBC) and d) the
he engineering strain in the y-direction for all of these systems. Note that in c), only the
are only presented to allow for a better observation of the deformation behaviour of this



Fig. 6. a) Diagrams depicting a simplified, ideal representation the two main deformation mechanisms through which the four-pointed star pore systems may deform. The uniform-
rotation deformation method, where both ligaments and central unit rotate by the same amount, results in a Poisson's ratio of −1, while the shear-directed deformation mechanism
results in a non-zero shear coefficient and a Poisson's ratio of zero (analytical expressions quantifying this behaviour in tetrachiral honeycombs have been developed by [36]). Note
that in the PBCs FE simulations, the latter deformation mechanism is predominant resulting in a Poisson's ratio of zero, while in the experimental test and the corresponding non-
linear FE simulation, the rotating mechanism becomes more active due to the restriction of shear deformation imposed by the boundary conditions of the loading method used and
thus the system has an overall negative Poisson's ratio. The dominance of the uniform rotation mechanism also increases over strain, resulting in the Poisson's ratio of the system
gradually becoming more negative over time (see Fig. 5d). This effect is particularly evident from b), where contour plots (units: Pa) showing the stress intensity of the respective
non-linear FE simulations are shown. As one can observe, while in the PBCs simulation (i), the stress is concentrated at the vertically inclined ligaments only (highlighting shear-
directed deformation only), in the experimental equivalent FE simulation (ii), the stress is concentrated at all joint and ligament regions, indicating the change in deformation
mechanism observed between these two systems.
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mechanical properties and deformation behaviour of four-star systems,
where unlike the three-pointed star systems, the deformation may be
completely controlled by the method through which the system is
loaded.

In the case of the six-pointed star system, both non-linear simula-
tions and tests on the experimental prototype showed that this system
exhibits a negative Poisson's ratio. Similarly to the four-pointed star per-
forated system, ligament deformation is not uniformwith the three sets
of ligaments surrounding each chiral node deforming to different ex-
tents. In this case, the resulting deformation is one that can be described
primarily in terms of rotations and flexure of the ligament-like units,
with influences of elements of re-entrancy, which cooperatively result
in a significantly negative Poisson's ratio which is retained over a con-
siderable tensile strain range. These two mechanisms (shown in Fig.
7) are both occurring concurrently, however unlike in the four-pointed
star system where the two competing mechanisms possess zero and
negative Poisson's ratios, in this case both mechanisms result in auxetic
behaviour, hence the system's overall negative Poisson's ratio.

As shown in Fig. 8 both non-linear FE simulations and the experi-
mental results show almost identical behaviour, with the Poisson's
ratio starting from a negative value, which decreases gradually over a
strain range of ~24%. As expected, the non-linear FE simulationwith pe-
riodic boundary conditions predicts the lowest Poisson's ratio (initial
νyx = −0.28). This is followed by the non-linear FE simulation with
clamped upper and lower boundaries (initial νyx=−0.21) and the ex-
perimental prototype (initial νyx = −0.16). These discrepancies are
probably due to the same reasons explained previously for the three-
star system, since as one may observe from Fig. 8 and ANIM03,
ANIM06 and ANIM09, all three systems appear to be deforming basi-
cally in almost the same manner.

Another interesting finding to highlight for all three systems studied
here is that in extreme cases where the separation between perfora-
tions, s, and the h/b ratio are very high and very low respectively, one
would expect the Poisson's ratio and Young's modulus of the system
to tend towards that of the bulk material since the effectiveness of the
respective mechanisms responsible for auxeticity/zero Poisson's ratio
to function would be significantly reduced. This appears to be the case
for the three- and four-pointed star systems; however, in the case of
the six-pointed star perforated systems, the Poisson's ratio becomes
even more positive than that of the original material (+0.49) as



Fig. 7. Figure showing the two deformation mechanisms through which the six-pointed star pore systems may deform. Note, that for the re-entrant-like mechanism, the system must
undergo shear deformations (see Fig. 8c), which are inhibited when the system is loaded using the boundary conditions of the tensile loading device.
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shown in Fig. 2a(iii). This result indicates that another deformation ap-
pears to come into play at this stage, with this mechanism being similar
to that observed for conventional hexagonal honeycombs, hence the
Fig. 8. Figure showing a) photographs of the undeformed and deformed six-pointed star-shape
with identical boundary conditions to the experimental models (Exp BC), c) diagrams of the
corresponding plots showing the instantaneous Poisson's ratio in the yx-plane (νyx) against t
representative unit cell (marked by dashed lines) was simulated; the adjacent repeating units
system.
large positive Poisson's ratio. Here it is also worth noting that for all
these star-perforated systems, the structures with the lowest pore-to-
overall-surface-area ratio possess the lowest Young's moduli and
d pore system 3D printed prototype, b) diagrams of the non-linearly simulated FE systems
non-linearly simulated FE systems with periodic boundary conditions (PBC) and d) the
he engineering strain in the y-direction for all of these systems. Note that in c), only the
are only presented to allow for a better observation of the deformation behaviour of this
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Poisson's ratio (see Fig. 2). This is because these systems typically pos-
sess a large h/b ratio, which means that they have very small aperture
angles for the pores. Therefore these systems are the farthest away
from their fully-opened state, and are thus expected to have the greatest
potential for expansion upon stretching.

The significance of the work presented in this paper goes beyond
the results obtained here. For instance, these systems, despite the
similarity in shape and deformation mechanism to typical circular
node chiral honeycombs, are expected to exhibit superior perfor-
mance upon tensile loading compared to these systems. This predic-
tion is primarily based on the fact that the geometry of these systems
is at a state that is farther away from the fully opened conformation
of the chiral honeycombmechanism than the respective typical circular
node honeycombs, where the ligaments are tangentially oriented with
respect to the center of the chiral node. This characteristic is envisaged
to provide them with the added advantage of further scope for expan-
sion upon the application of tensile loading while retaining their
auxeticity/zero Poisson's ratio. In addition, although one may note
that all the metamaterial geometries presented here exhibit a Poisson's
ratio which stands within the rather limited confines of the range be-
tween 0 and −1 (i.e. the full range for isotropic auxeticity), this
property only arises due to the highly regular and symmetric nature
of the perforation shapes and arrangement being used. However, by
reducing the symmetry of the star-shaped perforation, one may ob-
tain chiral honeycomb-like systems with irregular polygonal shapes
such as rectangles instead of squares, which would be expected to
significantly affect the Poisson's ratio of the system. Indeed, previous
studies on chiral honeycombs have shown that by changing the sym-
metry of the unit cell (which invariably happens if one changes the
symmetry of the chiral node or uses more than one ligament length),
one may obtain a vast range of negative Poisson's ratios [30,36,44];
thus it is not far-fetched to predict that a similar effect would proba-
bly also be observed in these systems. This concept could also poten-
tially be extended to include 3D variants of these systems where 3D
equivalents of the star-shaped perforations presented here could be
used to create metamaterials capable of exhibiting 3D auxetic
behaviour.

The versatility of these metamaterials is well suited for a variety of
potential applications. In skin grafts, for example, star-perforations sim-
ilar to those proposed here could be introduced into the graft in order to
significantly extend its expandability in multiple dimensions. This
would allow for a smaller skin graft to be used to cover up amuch larger
surface area. The negative Poisson's ratio properties of these systems
also make them ideally suited for other niche applications in the bio-
medical field such as stenting, where geometries which show large ex-
pandability and synclastic curvature are required. In addition, in view of
their characteristic geometries, these metamaterials could also poten-
tially be suitable for a number of applications for which circular chiral
honeycombs have been proposed such as morphing wing [45] and sat-
ellite antenna components [46].

4. Conclusions

In conclusion, we present a novel class of mechanical metamate-
rials with star-shaped pores which have the potential to exhibit zero
and negative Poisson's ratios. This effect has been confirmed using
both finite element simulations and substantiated by experimental
evidence gathered from the testing of 3D printed prototypes. It
was shown that the mechanical properties of these systems may
be tailored simply by changing the star-perforation geometric pa-
rameters (i.e. size, openness and number of points of the star perfo-
ration) as well as the distance between perforations. A detailed
analysis of the deformation behaviour and influence of boundary/
edge effects on the mechanical properties of these systems was
also presented, as well as a study on the high strain properties of
these systems and the range over which their negative Poisson's
ratios may be retained. In addition, we have also shown how the sys-
tems proposed here may be used as a blueprint for the development
of other related star-shaped pore systems with the potential to ex-
hibit an even wider range of negative Poisson's ratios. Given the ver-
satility and general applicability of the proposed structural systems,
it is hoped that the work conducted here will open up new avenues
to instigate design and 3D manufacture of auxetic mechanical
metamaterials.

The raw data required to reproduce these findings are available to
download from https://zenodo.org/record/1164866#.WnSErKinGUk.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.matdes.2018.02.051.
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