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Abstract

Background

Delays in patient flow and a shortage of hospital beds are commonplace in hospitals during

periods of increased infection incidence, such as seasonal influenza and the COVID-19

pandemic. The objective of this study was to develop and evaluate the efficacy of machine

learning methods at identifying and ranking the real-time readiness of individual patients for

discharge, with the goal of improving patient flow within hospitals during periods of crisis.

Methods and performance

Electronic Health Record data from Oxford University Hospitals was used to train indepen-

dent models to classify and rank patients’ real-time readiness for discharge within 24 hours,

for patient subsets according to the nature of their admission (planned or emergency) and

the number of days elapsed since their admission. A strategy for the use of the models’ infer-

ence is proposed, by which the model makes predictions for all patients in hospital and

ranks them in order of likelihood of discharge within the following 24 hours. The 20% of

patients with the highest ranking are considered as candidates for discharge and would

therefore expect to have a further screening by a clinician to confirm whether they are ready

for discharge or not. Performance was evaluated in terms of positive predictive value (PPV),

i.e., the proportion of these patients who would have been correctly deemed as ‘ready for

discharge’ after having the second screening by a clinician. Performance was high for

patients on their first day of admission (PPV = 0.96/0.94 for planned/emergency patients

respectively) but dropped for patients further into a longer admission (PPV = 0.66/0.71 for

planned/emergency patients still in hospital after 7 days).
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Conclusion

We demonstrate the efficacy of machine learning methods at making operationally focused,

next-day discharge readiness predictions for all individual patients in hospital at any given

moment and propose a strategy for their use within a decision-support tool during crisis

periods.

Introduction

‘Patient flow’ describes the flow or movement of patients through the different stages of

required hospital care and considers whether they are subject to unnecessary delay [1]. Poor

patient flow is especially apparent when incoming emergency department (ED) patients can-

not immediately be admitted into the main hospital due to the lack of beds available [2]. How-

ever, hospital bed management [3] is frequently reactive and so delays in discharge, and by

extension the release of hospital beds, are commonplace [4]. The effects of poor patient flow

are amplified during periods of viral infection outbreaks, such as seasonal influenza [5], and

the Coronavirus disease 2019 (COVID-19) pandemic [6]. Delays in the release of hospital beds

from all patient types lead to hospitals being unable to accept surges of patients arriving with

infection. Anticipating the recovery of patients from infections, as well as other illnesses, is

therefore a key step in facilitating safer and more efficient releasing of hospital beds, thereby

improving overall patient flow in hospitals at times of critically high occupancy.

The recent proliferation of electronic health record (EHR) systems by hospitals provides an

opportunity to employ promising data-driven approaches, such as deep learning, to challeng-

ing medical problems such as patient discharge prediction [7]. Research in this field to-date

has typically focused on classifying, at a single point in time, a patient’s length of stay (LOS)

into short, medium, or long stays, a task that is usually performed on admission or pre-opera-

tively [8–20]. Most studies to date have restricted themselves to making predictions for

patients of a specific diagnostic category [9–11, 13–16, 19, 21–23]. By contrast, only a small

number of studies make more operationally-focused discharge predictions [24–28], out of

which four use machine learning (ML) methods [24, 25, 27, 28] and two use deep learning

methods [27, 28]. However, these papers restrict themselves in their predictions, to LOS within

the intensive care unit (ICU) [27], or to patients who have had a surgical procedure [28], or

those that are in certain wards [24].

Our main contributions are as follows:

• Proposal of a strategy for using machine learning models to make operationally focused,

real-time discharge predictions for almost all individual patients in hospital at any given

time, to improve patient flow in hospital during periods associated with spikes in hospital

admissions due to, for example, infection outbreaks such as the seasonal influenza.

• The use of separate models for patients discharge prediction, where independent models are

trained independently based on patient admission type and number of elapsed days since

admission.

• Feature analysis of variables used within the models; variables learned as being of predictive

value can be incorporated in future related studies.
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Methods

Data

We analysed patient data collected in the EHR of the John Radcliffe Hospital, within the

Oxford University Hospitals NHS Foundation Trust, between January 2013 and April 2017, a

period that was studied due to the annual resurgence of influenza. This is a teaching hospital

group serving a population of 600,000 and providing tertiary services to the surrounding

region. De-identified patient data was obtained from the Infections in Oxfordshire Research

Database (IORD). One of the largest datasets of its kind, the extracted data contains 431,458

records of unique admissions to hospital from 225,009 de-identified, adult patients.

This study considers a subset of 49,832 admissions, recorded across the four years of the

study period, who met the criteria of normal discharge and had full vital-signs observation

sets. To select the cohort of patients for which a discharge prediction would be most clinically

useful, we considered only patients who are likely to have required a hospital bed. We identi-

fied these patients by selecting only patients admitted to general hospital for longer than 6

hours. These 6 hours do not include any time spent in the ED and therefore we do not con-

sider patients who only visited ED. In the UK healthcare system, patients remain under the

care of ED for up to 4 hours and only those requiring longer hospital observation or treatment

are admitted to main hospital. We also excluded patients attending only as outpatients, for

example those attending regular haemodialysis sessions.

Patient admissions were categorised as either planned or emergency admissions, where

planned admissions were those scheduled in advance whilst emergency admissions describe

patients whose entry into the main hospital was through the ED. While planned admissions

are often for surgery, followed by a relatively predictable trajectory of recovery, emergency

admissions, which are frequently precipitated by infection, generally present a more challeng-

ing patient type for hospital bed managers to predict discharge. The cohort of emergency

patients with infection broadly reflects the patient admission type which would spike during a

seasonal influenza outbreak, with this cohort having the longest average LOS and with the

highest variability in their LOS.

Within our dataset the median (IQR) length of stay was 2.9 (0.85–6.3) days, with Table 1

detailing the LOS variability for the patient cohorts considered. The top ten most presented

primary diagnostic codes in the international classification of disease (ICD-10) format, were:

J181, I251, N390, I639, S7200, I214, I500, S0650, N179, A419 (lobar pneumonia, atheroscle-

rotic heart disease, urinary tract infection, cerebral infarction, femur fracture, myocardial

infarction, heart failure, subdural haemorrhage, acute kidney failure, sepsis). Our predictions

Table 1. Statistical analysis of data set.

Patient admission cohort LOS statistics Planned admissions Emergency admissions (all) Emergency admissions (with infection)

Total no. admissions in dataset 11,574 38,258 4,438

Mean LOS (days) 2.3 4.7 5.6

Median LOS (days) 1.9 3.2 4.9

Min LOS (days) 0.25 0.25 0.25

Max LOS (days) 132 195 195

Standard deviation in LOS (days) 5.5 8.3 9.3

IQR in LOS (days) 5.2 6.7 8.4

Total number of admissions and the corresponding statistical summary of LOS for each patient admission.

https://doi.org/10.1371/journal.pone.0260476.t001
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were therefore made in a cohort typical of those admitted to hospital, who frequently have

complex multifactorial care needs and whose recovery trajectories can be difficult to forecast.

Ethics

De-identified patient data was obtained from the Infections in Oxfordshire Research Database

(IORD) which has generic Research Ethics Committee, Health Research Authority and Confi-

dentiality Advisory Group approvals (19/SC/0403,19/CAG/0144) as a de-identified electronic

research database.

We describe an approach for utilising data from the electronic health records of patients

admitted to hospital, to develop models to predict readiness for discharge for patient cohorts

within hospital, including those with infection.

Study design

The system proposed in this work aims to provide operationally focused clinical decision sup-

port for periods of crises in hospital. We propose a strategy in which hospital bed managers

run these models from within a decision-support tool during a period of high influx of patients

with infectious disease. The models would identify the patients who are most likely to be ready

for discharge within the next 24 hours. A medical professional would then be assigned to

screen the highest ranked patients to confirm the models’ predictions. Once confirmed, hospi-

tal bed managers would be able to proactively make discharge arrangements for that patient,

to release them from the hospital as quickly as possible and to save valuable time during a criti-

cal situation in hospital. Predictions can be made for all patients currently in hospital at any

time and thus can incorporate new data as it becomes available. In this study, we simulated

predictions being made every 24 hours, with the initial prediction being made on the day of a

patient’s admission to main hospital.

We constructed individual models for each patient admission group (planned and emer-

gency admissions) and for each day elapsed since a patient’s admission to hospital. Elapsed

times since admission t 2 {0,1,. . .,7} were considered, with t = 0 representing the day a patient

was admitted to the general hospital. For this study, patient stays were truncated at 7 days.

Consequently, 16 different independent models, per model architecture, were developed. The

sub-datasets used to train and evaluate the models are denoted Dpt and Det, respectively, with

the first subscript indicating the patient admission type, and the second indicating the time

elapsed in days since admission (Fig 1). For example, as shown in Fig 1, if Patient 1 is a

planned patient, who arrives in hospital on 02/02/2016 and stays in hospital for 2 days, they

will be included in datasets Dp0 and Dp1. If Patient 3, a different planned admission, arrives in

hospital on 03/02/2016 and stays in hospital 6 days, they will also be included in datasets Dp0

and Dp1 along with Patient 1, and will additionally be included in datasets Dp2, Dp3, Dp4 and

Dp5.

Each of the sub-datasets were balanced by down-sampling to improve the training and to

allow for unbiased testing of the models, details of the down-sampling strategy can be found in

Appendix A in (S1 File). The resulting size of each sub-dataset is summarised in Table 2.

Diminishing quantities of data were available for increasing t, as the sub-datasets only include

patients who have not been discharged after t days.

In this work, a prediction by a model that a patient will be discharged within the next 24

hours is denoted a positive prediction, whilst a prediction that a patient will not be discharged

in the next 24 hours is denoted a negative prediction. Based on the probability score predicted

for each patient, each proposed model ranks patients based on their likelihood of discharge.
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Model development

Model architecture. In this study, four supervised ML classifiers were considered. Ran-

dom forest (RF) and support vector machine (SVM) models, which have previously been

shown to give good performance [12, 13, 15, 23, 24] were compared with deep neural networks

(DNN) in the form of multilayer perceptron (MLP) models. Logistic regressor (LR) models

were also included to serve as a baseline, being a strong comparator from medical statistics.

The different classifiers were assessed on their ability to predict whether an inpatient would be

discharged within the next 24 hours and the probability scores given by the classifier were used

to rank patients in order of their likelihood of discharge.

Model hyperparameters were selected through a nested K-fold cross-validation scheme on

the De0 dataset, where the outer- and inner-loops consisted of 5 and 3 folds respectively. The

5-fold scheme partitioned the data into training and evaluation folds, whilst the additional

3-fold partition was applied in an inner-loop on the training set folds, to create a training-vali-

dation set to assess performance of different hyperparameter choices. A grid-search approach

was used to test different hyperparameter combinations, with the combination giving highest

average AUROC across all validation folds eventually selected for all models. The hyperpara-

meter values determined and used are detailed in Table 3.

Fig 1. Patient sub-dataset diagram. An illustration of how the sub-datasets were stratified. The figure contains three patients with emergency admissions who

had stays that lasted at least 1 day (IDs = 1, 3, 4); at day t = 3 only two of the example patients remained (IDs = 3, 4); and on day t = 7, only one of these patients

remained in hospital (ID = 4), therefore we would only be able to make an 8th day discharge prediction for this remaining patient. A comparable example is

also displayed for planned admissions.

https://doi.org/10.1371/journal.pone.0260476.g001

Table 2. Patient sub-dataset sizes.

t 0 1 2 3 4 5 6 7

Dpt 11206 5524 1184 972 718 572 478 424

Det 21636 14010 8464 5400 3998 2970 2590 2038

Total amount of unique patient admissions to hospital within each subset of data Dpt or Det, in which t denotes the time passed in days since the patient’s admission.

https://doi.org/10.1371/journal.pone.0260476.t002
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Feature engineering. Domain knowledge and prior literature were used to determine

which information within the dataset would be most useful for predicting patient discharge.

Handcrafted features used to train the models included: age, day of the week, procedures infor-

mation, ICU information and statistical representations of the National Early Warning Score

(NEWS) metric [29], which encodes vital signs information, binned into 24-hour periods.

Temporal features such as ‘time elapsed since procedure’, ‘time elapsed since ICU discharge’

and features relating to NEWS were populated in ‘real-time’, only being included into the

models for which the information would be available. A maximum of 79 features were engi-

neered, the full list of which is summarised in Table 4.

For operational purposes in hospital, it is preferable for a decision support tool to be able to

make predictions for all patient groups in the hospital at any given time. Patient diagnosis is

typically classified using international classification of disease (ICD) or “Clinical Classifica-

tions Software” (CCS) groupings [30], both of which contain too many diagnostic groups to be

easily included as ML features directly. As stated earlier, most prior studies restrict themselves

to a handful of patient diagnostic categories or a specific patient type. In this study, to directly

capture the effects of a patient’s diagnostic category on LOS, features containing the historic

mean and variance of the LOS of patients within the same diagnostic category as the patient-

under-test were developed. The historic mean and variance of LOS for a particular CCS cate-

gory were calculated using the training dataset. These mean and variance values were then

assigned to patients of the same CCS category in both the training and the test datasets. For

patients in the test set with an unseen CCS category, the average of all diagnostic categories

was assigned for each feature. Under the present hospital processes, diagnostic categories are

assigned and recorded on a patient’s discharge. As such, the information used in this study can

be thought of as a proxy for the working diagnosis assigned by clinicians during a patient’s

stay. If implemented as a decision support tool, suspected CCS category could be recorded by

clinicians and used within the models in real-time.

Table 3. Model hyperparameters. Table detailing the LR, RF, SVM and DNN models’ hyperparameters.

Model Type Hyper-parameter Selection

LR Norm penalization l1

LR Inverse regularisation strength, C 103

RF Number of trees 75

RF Minimum samples for node split 2

RF Minimum samples for leaf node 1

SVM Kernel function Non-linear—radial basis function (RBF)

SVM Soft-margin regularizer, C 105

SVM Inverse of the variance of the RBF kernel, γ 10−4

DNN Hidden layers activation function ReLu

DNN Final layer activation function Sigmoid

DNN Hidden layers 2

DNN Nodes per hidden layer 100

DNN Dropout rates 0.3

DNN Weight-initialization Random, normally distributed weights.

DNN Optimization algorithm RMSprop, learning rate of 10−3

DNN Epoch number 150

DNN Batch-size 20

DNN Batch normalization Implemented

DNN Weight matrix norm constraint 4

https://doi.org/10.1371/journal.pone.0260476.t003
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Table 4. Table of features.

Category Features Total #

Demographic I. Age II. Charlson Comorbidity Index (CCI) 2

Seasonal III. Monday IV. Tuesday 7

V. Wednesday VI. Thursday

VII. Friday VIII. Saturday

IX. Sunday

ICU X. ICU Ward: CTTC XI. ICU Ward: AICU 14

XII. ICU Ward: CICU XIII. Non-surgical ICU admission

XIV. Surgical ICU admission XV. Planned ICU admission

XVI. Unplanned ICU admission XVII. Reparation ICU admission

XVIII. Local ICU admission IXX. Time elapse since ICU admission

XX. Time elapsed since ICU discharge XXI. Number of ICU admissions

XXII. ICU LOS XXIII. Patient is currently in ICU

Procedures XXIV. Time elapsed since last theatre visit XXV. Number of theatre visits 8

XXVII. Time elapsed since last procedure

XXVI. Patient has been to theatre XXIX. Patient had a procedure

XXVIII. No. of procedures since admission

XXX. Patient had radiology-based procedure XXXI. Time since last radiology procedure

Bloods XXXII. Any blood tests since admission XXXIII. Time elapsed since last blood test 20

XXXIV. Albumin BT taken in <48 hrs XXXV. BT taken in <48 hrs

XXXVII. Creatinine BT taken in<48 hrs

XXXVI. Any BT in <48 hrs abnormal XXXIX. Potassium BT taken in <48 hrs

XLI. White blood cell count BT taken in <48 hrs

XLIII. Albumin BT taken in <24 hrsXXXVIII. Sodium BT taken in <48 hrs

XL. Urea BT taken in <48 hrs XLV. Any BT in <24 hrs abnormal

XLII. Haemoglobin BT taken in <48 hrs XLVII. Sodium BT taken in <24 hrs

XLIX. Urea BT taken in <24 hrs

XLVI. Creatinine BT taken in <24 hrs LI. Haemoglobin BT taken in <24 hrs

XLIV. Any BT taken in <24 hrs

XLVIII. Potassium BT taken in <24 hrs

L. White blood cell count BT taken in <24 hrs

NEWS LII. Mean NEWS since admission LIII. Max NEWS since admission 26

LIV. Min NEWS since admission LV. Variability in NEWS since admission

LVI. Most recent NEWS LVII. First NEWS on admission

LVIII. 72–96 hr mean NEWS LIX. 72–96 hr max NEWS

LX. 72–96 hr min NEWS LXI. 72–96 hr variability in NEWS

LXII. 72–96 hr # of observation sets LXIII. 48–72 hr mean NEWS

LXIV. 48–72 hr max NEWS LXV. 48–72 hr min NEWS

LXVI. 48–72 hr variability NEWS LXVII. 48–72 hr # of observation sets

LXVIII. 24–48 hr mean NEWS LXIX. 24–48 hr max NEWS

LXX. 24–48 hr min NEWS LXXI. 24–48 hr variability in NEWS

LXXII. 24–48 hr # of observation sets LXXIII. 0–24 hr mean NEWS

LXXIV. 0–24 hr max NEWS LXXV. 0–24 hr min NEWS

LXXVI. 0–24 hr variability in NEWS LXXVII. 0–24 hr # of observation sets

Diagnosis LXXVIII. Mean LOS of patients in the same CCS category LXXIX. Variance in LOS of people in the same CCS category 2

A table of all features engineered from the data within the EHR. All features were included in the LR, RF and DNN models. Feature selection was carried out to

determine the features to be included in the SVM models from this set. Additional detail about each feature’s data type can be found in Appendix B in (S1 File).

https://doi.org/10.1371/journal.pone.0260476.t004
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Feature selection. For the SVM models, which are particularly sensitive to the inclusion

of features with low predictive value, feature selection techniques were applied. Spatially Uni-

form RelieF (SURF) [31] feature selection algorithm was used to select features, as we found it

to be the most robust against white noise features and to be one of the most consistent at pick-

ing similar sets of features across 3-fold cross-validation in a comparison between feature

selection algorithms. This algorithm uses the proximity of samples in feature space to describe

how feature interactions relate to the sample’s class. The normalised scores from running the

SURF feature selection algorithm over the engineered features were generated (Fig 2). The

detailed methodology of running this algorithm can be found in Appendix C in (S1 File). For

the other non-SVM ML models, all features as described in Table 4 were used.

Results

Feature importance

Feature selection can provide medical practitioners with valuable insight into the importance

of each feature in the predictions made. The results of the feature selection method (Fig 2)

show that for both planned and emergency admission types, the feature deemed most impor-

tant by the SURF algorithm was feature no. 78, the historic mean LOS of patients in the same

diagnostic category. This feature, described earlier, aims to capture the effect of a patient’s

diagnosis. Age (feature no. 1), Charlson Comorbidity Index CCI (no. 2) and NEWS features

(nos. 52–77) were shown to influence discharge predictions significantly, with age and CCI

being of particular importance for emergency admissions. For both planned and emergency

admissions, abnormal blood test results (nos. 36, 45) were informative. Whether blood tests

were taken within the last 48 hour period (nos. 34–42) were seen to be informative features for

planned admissions; with albumin blood tests (no. 34) found to be particularly important.

This was the only blood test included as a feature which would not be carried out in the hospi-

tal by default, but rather would have been requested as an additional test for a patient by a cli-

nician. Information about procedures and operating theatres were shown to be of high

Fig 2. Normalised SURF feature selection scores. The normalised scores resulting from our feature selection methodology, using the SURF feature selection

algorithm, for each feature in the datasets. The features on the x-axis of this plot are summarised in Table 4.

https://doi.org/10.1371/journal.pone.0260476.g002
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predictive value for patients with planned admissions (nos. 24–31), while ICU features (nos.

10–23) were shown not to be of importance for patients in either dataset.

Predictive performance

In this study, the models developed were evaluated to indicate the efficacy of the models’ use

in an operational hospital setting during crises. We propose that, in this setting, 20% of all

patients in hospital at a given moment with a positive prediction by the model would be a rea-

sonable proportion of patients to be considered as candidates for discharge. However, this

threshold could be adjusted to match the needs of the hospital at any point. Hospital bed man-

agers would oversee the use of these models. We would expect these patients to then have a

further screening by a clinician to confirm whether they are ready for discharge or not.

The models were evaluated in terms of their mean and variance in positive predictive value

(PPV) over a 5-fold cross-validation. A positive classification was given to any sample with a

probability score of 0.5. Each dataset was randomly split into five-folds, with 80% of the data

used to train the model, and the remaining unseen 20% used to evaluate the model’s perfor-

mance on each iteration. PPV represents the proportion of these patients who would have

been correctly deemed as ‘ready for discharge’ after having the second screening by a clinician.

When computed for the top x% of ranked predictions, this metric can be regarded as an evalu-

ation metric particularly well suited to assessing the efficacy of a decision-support tool in clini-

cal practice [32]. For example, if a model achieves a PPV of 0.8, this is equivalent to saying

that, for every 10 patients that are prioritised to have a secondary screening by a clinician, 8

patients can subsequently have discharge arrangements proactively made for them, for their

release within 24 hours.

The performance of each model, developed for each of the datasets Dpt and Det, t 2
{0,. . .,7}, was evaluated. Moreover, additional analysis on the results of the models trained

using emergency admissions Det was carried out on the subcategory of these admissions where

patients had been diagnosed with infection. This subcategory corresponds to 37 CCS catego-

ries. The results for this subcategory are hereafter denoted by D�et.

The mean PPV performance of the different models, calculated for the 20% of patients with

the highest positive classification scores within each patient category considered (Dpt, Det and

D�et) are presented across three separate subplots (Fig 3). The mean and standard deviation

PPV results, as well as the corresponding NPVs, are presented in Tables 5 and 6.

Discussion

During outbreaks of disease such as seasonal influenza or the global COVID-19 pandemic,

healthcare systems across the world have struggled to cope with an increased demand for hos-

pital beds. This has resulted in situations where patients who required beds in hospital were

unable to be admitted, forcing clinicians to make difficult decisions regarding which patients

should receive care. Previous work has shown that introducing an ML prediction system can

have statistically significant impact on improving overall patient flow [23]. We therefore

hypothesize that, with improved patient flow, hospitals would have a greater chance of coping

with sudden surges in admissions during crisis periods. However, use of ML techniques to

make operationally focused discharge prediction for a broad patient base is an under-

researched area, particularly through the use of more advanced ML techniques.

This retrospective study attempts to address these issues through the development of mod-

els which are able to reliably classify whether patients will be ready for discharge within the fol-

lowing 24 hours and rank them according to their probability of discharge readiness. The

expectation is that these rankings would be used by hospital-bed managers to identify patients
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to prioritise for a secondary screening. Four different model architectures, LR, RF, SVM and

DNN, were compared in their abilities to make this classification. Planned and emergency

admissions within the dataset were studied separately, with custom models developed for each.

The predictions were made for each day of a patient’s admission, from the first day of their

arrival up to 7 days into their stay. It was found that the DNN models often outperformed the

other models considered.

Fig 3. PPV results. Scatter plots giving the PPV, calculated for the 20% of patients with the highest positive classification scores, for LR, RF, SVM and DNN models,

trained and tested on the different sub-datasets which reflect the patient cohorts at different points in their hospital stays. Planned admissions are represented by Dpt,

emergency admissions Det and emergency admissions with an infectious disease D�et.

https://doi.org/10.1371/journal.pone.0260476.g003

Table 5. PPV results.

t (days)

Dataset—Models 0 1 2 3 4 5 6 7
Dpt LR Mean SD 0.83 0.0077 0.84 0.0091 0.81 0.012 0.77 0.018 0.75 0.025 0.71 0.021 0.69 0.055 0.63 0.079

RF Mean SD 0.91 0.012 0.92 0.014 0.89 0.019 0.85 0.032 0.82 0.046 0.76 0.032 0.71 0.06 0.68 0.094

SVM Mean SD 0.92 0.0088 0.89 0.0098 0.86 0.0084 0.81 0.017 0.82 0.024 0.75 0.023 0.74 0.091 0.65 0.14

DNN Mean SD 0.96 0.0098 0.93 0.014 0.89 0.013 0.87 0.015 0.83 0.021 0.77 0.024 0.73 0.049 0.66 0.10

Det LR Mean SD 0.82 0.095 0.78 0.016 0.77 0.013 0.74 0.024 0.73 0.034 0.71 0.031 0.72 0.047 0.67 0.045

RF Mean SD 0.87 0.012 0.86 0.014 0.83 0.018 0.81 0.023 0.76 0.019 0.77 0.028 0.74 0.034 0.70 0.038

SVM Mean SD 0.90 0.0059 0.85 0.0094 0.83 0.012 0.85 0.015 0.80 0.019 0.78 0.022 0.75 0.016 0.73 0.025

DNN Mean SD 0.94 0.0081 0.90 0.0083 0.86 0.0098 0.85 0.0092 0.81 0.011 0.79 0.018 0.76 0.023 0.71 0.029

D�et LR Mean SD 0.76 0.018 0.72 0.022 0.73 0.036 0.70 0.051 0.68 0.047 0.65 0.045 0.66 0.061 0.61 0.067

RF Mean SD 0.83 0.013 0.80 0.010 0.78 0.029 0.75 0.036 0.73 0.051 0.70 0.057 0.68 0.052 0.67 0.067

SVM Mean SD 0.84 0.014 0.85 0.019 0.81 0.024 0.77 0.023 0.74 0.029 0.71 0.031 0.69 0.034 0.65 0.032

DNN Mean SD 0.86 0.0098 0.82 0.012 0.79 0.021 0.77 0.025 0.76 0.029 0.73 0.033 0.70 0.032 0.66 0.037

Table detailing the mean PPV and 1-standard deviation for the LR, RF, SVM and DNN models trained and tested on the different sub-datasets containing planned

admissions, Dpt, emergency admissions, Det and emergency admissions with an infection, D�et.

https://doi.org/10.1371/journal.pone.0260476.t005
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Furthermore, we observed that models generally performed best in predicting the discharge

of planned admissions, Dpt, rather than emergency admissions, Det, and were better for pre-

dicting the discharge for emergency admissions as a whole, compared to the sub-cohort of

emergency admissions with infection, D�et. This is likely due to the higher variance in LOS

which was present in emergency admissions, and even more so in emergency admissions with

infection. A higher variance suggests that by the nature of their admission, these patient groups

were less predictable and thus more difficult to classify correctly. Although there were differ-

ences in PPV between models developed for the different patient admission types, overall, the

results were comparable. This indicates that, if implemented in a hospital setting, we could

robustly predict 24 hour discharge readiness for all admission types, and could confidently

predict discharge for patients recovering from infection using the models trained on general

emergency admission data. This has clear implications during a pandemic. It is also worth reit-

erating that during periods of crises, the discharge of all patients across hospital is important,

as prioritizing one planned-admission type patient for discharge would release a hospital bed

for an incoming emergency-admission type patient with infection.

It was seen that PPV is higher and more consistent in models trained and evaluated on

datasets where t is lower, i.e., datasets for patients with shorter LOS, or earlier into the admis-

sion of patients with a longer LOS. This trend could be a combination of two factors. Firstly, a

lack of training data (see Table 2) for models with higher t is likely to impact performance, par-

ticularly for DNN models which generally require more training data than traditional ML

models. Secondly, it is possible that it is simply harder to predict next day discharge for a

patient who has already been in hospital a considerable length of time, who therefore repre-

sents a more complex case. It is also a possibility that the model hyperparameters, which were

based on analysis of dataset De0 could be overfit to this dataset and not generalize as well to

datasets with higher t. Nevertheless, if implemented in a hospital setting, it is likely that the

performance of the DNN models would improve for datasets containing patients with longer

stays as more data is collected.

Lastly, it is worth noting that in general, higher mean NPV results were obtained, which

could be interpreted as it being easier to predict when a patient was not ready to be discharged.

Table 6. NPV results.

t (days)

Dataset—Models NPV 0 1 2 3 4 5 6 7
Dpt LR Mean SD 0.86 0.0093 0.87 0.017 0.84 0.079 0.79 0.048 0.72 0.055 0.73 0.042 0.70 0.065 0.63 0.071

RF Mean SD 0.94 0.022 0.95 0.027 0.88 0.019 0.83 0.031 0.81 0.052 0.75 0.077 0.72 0.089 0.73 0.084

SVM Mean SD 0.94 0.0093 0.90 0.011 0.87 0.021 0.84 0.017 0.80 0.025 0.81 0.039 0.76 0.082 0.69 0.095

DNN Mean SD 0.98 0.012 0.97 0.018 0.92 0.021 0.88 0.019 0.85 0.025 0.81 0.023 0.78 0.061 0.73 0.094

Det LR Mean SD 0.81 0.0021 0.80 0.032 0.78 0.027 0.77 0.032 0.75 0.044 0.72 0.039 0.74 0.041 0.65 0.048

RF Mean SD 0.90 0.0072 0.85 0.013 0.86 0.011 0.84 0.018 0.79 0.023 0.76 0.031 0.75 0.032 0.69 0.035

SVM Mean SD 0.92 0.013 0.84 .0011 0.86 0.015 0.81 0.012 0.81 0.017 0.77 0.023 0.74 0.028 0.75 0.031

DNN Mean SD 0.93 0.0091 0.96 0.014 0.87 0.011 0.83 0.017 0.82 0.015 0.77 0.023 0.79 0.018 0.75 0.037

D�et LR Mean SD 0.78 0.026 0.73 0.018 0.72 0.033 0.70 0.045 0.69 0.055 0.64 0.057 0.65 0.042 0.62 0.063

RF Mean SD 0.84 0.021 0.78 0.023 0.81 0.028 0.77 0.032 0.74 0.029 0.70 0.038 0.69 0.045 0.69 0.071

SVM Mean SD 0.86 0.018 0.83 0.013 0.82 0.022 0.79 0.028 0.76 0.024 0.70 0.033 0.67 0.039 0.68 0.041

DNN Mean SD 0.88 0.013 0.84 0.011 0.78 0.019 0.80 0.021 0.76 0.032 0.73 0.031 0.72 0.038 0.65 0.044

Table detailing the mean NPV and 1-standard deviation for the LR, RF, SVM and DNN models trained and tested on the different sub-datasets containing planned

admissions, Dpt, emergency admissions, Det and emergency admissions with an infection, D�et.

https://doi.org/10.1371/journal.pone.0260476.t006
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This can also give us confidence that the models were not making suggestions for patients to

be discharged too early, which would be unsafe.

Limitations

Within the dataset used, there was no information indicating when a patient was medically

ready for discharge, therefore the timestamp of the true discharge was used as proxy for this

status. Patients who need to be relocated to a subsequent care facility at the end of their stay

often have their discharge delayed due to factors out of the hospital’s control [33]. Conse-

quently, the time that they left the hospital is more likely to differ from the time that they were

medically fit for discharge. Therefore, as stated earlier, we excluded these patients and

restricted our study to only patients who were discharged under normal conditions, to their

usual place of residence. A further limitation is that, although this research considered all

patients from across a hospital, from different departments and wards, this research was lim-

ited to a single hospital. However, prior studies have shown electronic tools to be effective in

improving patient flow in other hospital centres, suggesting that the research is generalizable

[23, 34]. If implemented in a hospital setting, it would be advised that the hospital records

when a patient is medically ready for discharge and that the models should be retrained with

this information, and either with data from across multiple centres or with data from the spe-

cific hospital where it is intended to be deployed. Furthermore, if not implemented carefully,

there is a potential risk that the use of these ML models in hospital could harden any bias in

the discharge process. A suggested mitigation of this risk is for hospital bed managers to use

the tool, rather than the clinicians directly, thus decoupling the discharge process from clinical

prognoses and preventing clinicians from altering their behaviour in response to the models’

output. Finally, this study did not include data from any period associated with a pandemic.

Due to the substantial changes within the healthcare system due to COVID-19, this period

should be studied separately; research in this area is on-going.

Conclusion

We have proposed an operationally focused ML classifier which is able to make predictions as

to whether a patient will be ready to be discharged within the next 24 hours, for all patients in

hospital at any given moment. This classifier is intended to be used during periods that result

in a large influx of admissions to hospital, such as peaks in seasonal influenza cases. The inten-

tion is for the classifier to be implemented within a well-engineered decision-support tool and

for it to be used by hospital bed managers to identify and prioritize patients for discharge. This

would improve the efficiency of the safe release of hospital beds and therefore overall patient

flow in the hospital. Generally high PPVs were achieved for the top 20% of patients ranked by

the models, showing promise that ML systems could prove to be a valuable tool for improving

patient flow in clinical settings. Furthermore, variables learned as being of predictive value can

be incorporated in future studies which aim to predict real-time discharge or LOS, for individ-

ual patients.
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