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Abstract

To train robust deep neural networks (DNNs), we system-

atically study several target modification approaches, which

include output regularisation, self and non-self label cor-

rection (LC). Two key issues are discovered: (1) Self LC

is the most appealing as it exploits its own knowledge and

requires no extra models. However, how to automatically

decide the trust degree of a learner as training goes is not

well answered in the literature? (2) Some methods penalise

while the others reward low-entropy predictions, prompting

us to ask which one is better?

To resolve the first issue, taking two well-accepted

propositions–deep neural networks learn meaningful pat-

terns before fitting noise [3] and minimum entropy regu-

larisation principle [10]–we propose a novel end-to-end

method named ProSelfLC, which is designed according to

learning time and entropy. Specifically, given a data point,

we progressively increase trust in its predicted label distri-

bution versus its annotated one if a model has been trained

for enough time and the prediction is of low entropy (high

confidence). For the second issue, according to ProSelfLC,

we empirically prove that it is better to redefine a meaning-

ful low-entropy status and optimise the learner toward it.

This serves as a defence of entropy minimisation.

We demonstrate the effectiveness of ProSelfLC through

extensive experiments in both clean and noisy settings. The

source code is available at https://github.com/

XinshaoAmosWang/ProSelfLC-CVPR2021.

1. Introduction

There exist many target (label) modification approaches.

They can be roughly divided into two groups: (1) Output

regularisation (OR), which is proposed to penalise over-

confident predictions for regularising deep neural networks.

It includes label smoothing (LS) [42, 29] and confidence

penalty (CP) [33]; (2) Label correction (LC). On the one

*Prof. David A. Clifton was supported by the National Institute for

Health Research (NIHR) Oxford Biomedical Research Centre (BRC).

hand, LC regularises neural networks by adding the simi-

larity structure information over training classes into one-

hot label distributions so that the learning targets become

structured and soft. On the other hand, it can correct the

semantic classes of noisy label distributions. LC can be

further divided into two subgroups: Non-self LC and Self

LC. The former requires extra learners, while the latter re-

lies on the model itself. A typical approach of Non-self

LC is knowledge distillation (KD), which exploits the pre-

dictions of other model(s), usually termed teacher(s) [17].

Self LC methods include Pseudo-Label [23], bootstrapping

(Boot-soft and Boot-hard) [35], Joint Optimisation (Joint-

soft and Joint-hard) [43], and Tf-KDself [55]. According to

an overview in Figure 1 (detailed derivation is in Section 3

and Table 1), in label modification, the output target of a

data point is defined by combining a one-hot label distribu-

tion and its corresponding prediction or a predefined label

distribution.

Firstly, we present the drawbacks of existing approaches:

(1) OR methods naively penalise confident outputs without

leveraging easily accessible knowledge from other learners

or itself (Figure 1a); (2) Non-self LC relies on accurate aux-

iliary models to generate predictions (Figure 1b). (3) Self

LC is the most appealing because it exploits its own knowl-

edge and requires no extra learners. However, there is a core

question that is not well answered:

In Self LC, how much should we trust a learner to leverage

its knowledge?

As shown in Figure 1b, in Self LC, for a data point, we

have two labels: a predefined one-hot q and a predicted

structured p. Its learning target is (1 − ǫ)q + ǫp, i.e., a

trade-off between q and p, where ǫ defines the trust score

of a learner. In existing methods, ǫ is fixed without consid-

ering that a model’s knowledge grows as the training pro-

gresses. For example, in bootstrapping, ǫ is fixed through-

out the training process. Joint Optimisation stage-wisely

trains a model. It fully trusts predicted labels and uses them

to replace old ones when a stage ends, i.e., ǫ = 1. Tf-

KDself trains a model by two stages: ǫ = 0 in the first one

while ǫ is tuned for the second stage. Note that p is gen-
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(a) OR includes LS [42] and CP [33]. LS softens a target by adding a uniform label distribution. CP changes the probability 1 to a smaller

value 1 − ǫ in the one-hot target. The double-ended arrow means factual equivalence, because an output is definitely non-negative after a

softmax layer.
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(b) LC contains Self LC [23, 35, 43, 55] and Non-self LC [17]. The parameter ǫ defines how much a predicted label distribution is trusted.

Figure 1: Target modification includes OR (LS and CP), and LC (Self LC and Non-self LC). Assume there are three training

classes. q is the one-hot target. u is a uniform label distribution. p denotes a predicted label distribution. The target

combination parameter is ǫ ∈ [0, 1].

erated by a preceding-stage model in stage-wise training,

which requires significant human intervention and is time-

consuming in practice.

To improve Self LC, we propose a novel method named

Progressive Self Label Correction (ProSelfLC), which is

end-to-end trainable and needs negligible extra cost. Most

importantly, ProSelfLC modifies the target progressively

and adaptively as training goes. Two design principles of

ProSelfLC are: (1) When a model learns from scratch, hu-

man annotations are more reliable than its own predictions

in the early phase, during which the model is learning sim-

ple meaningful patterns before fitting noise, even when se-

vere label noise exists in human annotations [3]. (2) As a

learner attains confident knowledge as time progresses, we

leverage it to revise annotated labels. This is surrounded by

minimum entropy regularisation, which is widely evaluated

in unsupervised and semi-supervised scenarios [9, 10].

Secondly, note that OR methods penalise low entropy

while LC rewards it, intuitively leading to a second vital

question:

Should we penalise a low-entropy status or reward it?

Entropy minimisation is the most widely used principle in

machine learning [14, 38, 9, 10, 22]. In standard classifica-

tion, minimising categorical cross entropy (CCE) optimises

a model towards a low-entropy status defined by human an-

notations, which contain noise in very large-scale machine

learning. As a result, confidence penalty becomes popular

for reducing noisy fitting. In contrast, we prove that it is

better to reward a meaningful low-entropy status redefined

by our ProSelfLC. Therefore, our work offers a defence of

entropy minimisation against the recent confidence penalty

practice [42, 29, 33, 6].

Finally, we summarise our main contributions:

• We provide a theoretical study on popular target mod-

ification methods through entropy and KL divergence

[21]. Accordingly, we reveal their drawbacks and pro-

pose ProSelfLC as a solution. ProSelfLC can: (1) en-

hance the similarity structure information over training

classes; (2) correct the semantic classes of noisy label

distributions. ProSelfLC is the first method to trust self

knowledge progressively and adaptively.

• Our extensive experiments: (1) defend the entropy

minimisation principle; (2) demonstrate the effective-

ness of ProSelfLC in both clean and noisy settings.

2. Related Work

Label noise and semi-supervised learning. We test tar-

get modification approaches in the setting of label noise

because it is generic and connected with semi-supervised

learning, where only a subset of training examples are an-

notated, leading to missing labels. Then the key to semi-

supervised training is to reliably fill them. When these

missing labels are incorrectly filled, the challenge of semi-

supervised learning changes to noisy labels. For a further

comparison, in semi-supervised learning, the annotated set

is clean and reliable, because the label noise only exists in

the unannotated set. While in our experimental setting, we

are not given information on whether an example is trusted

or not, thus being even more challenging. We summarise
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existing approaches for solving label noise: (1) Loss correc-

tion, in which we are given or we need to estimate a noise-

transition matrix, which defines the distribution of noise

labels [26, 8, 41, 44, 52, 12, 32, 48]. A noise-transition

matrix is difficult and complex to estimate in practice; (2)

Exploiting an auxiliary trusted training set to differentiate

examples [45, 24, 16]. This requires extra annotation cost;

(3) Co-training strategies, which train two or more learners

[28, 19, 13, 54, 47, 34, 25] and exploit their ‘disagreement’

information to differentiate data points; (4) Label engineer-

ing methods [40, 23, 35, 43, 52, 25], which relate to our

focus in this work. Their strategy is to annotate unlabelled

samples or correct noisy labels.

LC and knowledge distillation (KD) [5, 17]. Mathemat-

ically, we derive that some KD methods also modify labels.

We use the term label correction instead of KD for two rea-

sons: (1) label correction is more descriptive; (2) the scope

of KD is not limited to label modification. For example,

multiple networks are trained for KD [7]. When two mod-

els are trained, the consistency between their predictions

of a data point is promoted in [4, 58], while the distance

between their feature maps is reduced in [37]. Regarding

self KD, two examples of the same class are constrained

to have consistent output distributions [51, 56]. In another

self KD [57], the deepest classifier provides knowledge for

shallower classifiers. In a recent self KD method [55], Tf-

KDself applies two-stage training. In the second stage, a

model is trained by exploiting its knowledge learned in the

first stage. Our focus is to improve the end-to-end self LC.

First, self KD methods [51, 56, 57] maximise the consis-

tency of intraclass images’ predictions or the consistency

of different classifiers. In our view, they do not modify la-

bels, thus being less relevant for comparison. Second, the

two-stage self KD method [55] can be an add-on (i.e., an

enhancement plugin) other than a competitor. E.g., in real-

world practice, the first stage can be ProSelfLC instead of

CCE with early stopping. Finally, we acknowledge that ex-

ploiting ProSelfLC to improve non-self KD and stage-wise

approaches is an important area for future work, e.g., a bet-

ter teacher model can be trained using ProSelfLC.

3. Mathematical Analysis and Theory

Let X = {(xi, yi)}
N
i=1 represent N training examples,

where (xi, yi) denotes i−th sample with input xi ∈ R
D

and label yi ∈ {1, 2, ..., C}. C is the number of classes.

A deep neural network z consists of an embedding network

f(·) : RD → R
K and a linear classifier g(·) : RK → R

C ,

i.e., zi = z(xi) = g(f(xi)) : R
D → R

C . For the brevity of

analysis, we take a data point and omit its subscript so that

it is denoted by (x, y). The linear classifier is usually the

last fully-connected layer. Its output is named logit vector

z ∈ R
C . We produce its classification probabilities p by

normalising the logits using a softmax function:

p(j|x) = exp(zj)/
∑C

m=1
exp(zm), (1)

where p(j|x) is the probability of x belonging to class j.

Its corresponding ground-truth is usually denoted by a one-

hot representation q: q(j|x) = 1 if j = y, q(j|x) = 0
otherwise.

3.1. Semantic class and similarity structure in a
label distribution

A probability vector p ∈ R
C can also be interpreted

as an instance-to-classes similarity vector, i.e., p(j|x) mea-

sures how much a data point x is similar with (analogously,

likely to be) j-th class. Consequently, p should not be ex-

actly one-hot, and is proposed to be corrected at training, so

that it can define a more informative and structured learning

target. For better clarity, we first present two definitions:

Definition 1 (Semantic Class). Given a target label dis-

tribution q̃(x) ∈ R
C , the semantic class is defined by

argmaxj q̃(j|x), i.e., the class whose probability is the

largest.

Definition 2 (Similarity Structure). In q̃(x), x has C
probabilities of being predicted to C classes. The similarity

structure of x versus C classes is defined by these probabil-

ities and their differences.

3.2. Revisit of CCE, LS, CP and LC

Standard CCE. For any input (x, y), the minimisation

objective of standard CCE is:

LCCE(q,p) = H(q,p) = Eq(− log p), (2)

where H(·, ·) represents the cross entropy. Eq(− log p)
denotes the expectation of negative log-likelihood, and q

serves as the probability mass function.

Label smoothing. In LS [42, 17], we soften one-hot

targets by adding a uniform distribution: q̃LS = (1− ǫ)q+
ǫu, u ∈ R

C , and ∀j,uj =
1
C

. Consequently:

LCCE+LS(q,p; ǫ) = H(q̃LS,p) = Eq̃LS
(− log p)

= (1− ǫ)H(q,p)+ǫH(u,p).
(3)

Confidence penalty. CP [33] penalises highly confident

predictions:

LCCE+CP(q,p; ǫ) = (1− ǫ)H(q,p)−ǫH(p,p). (4)

Label correction. As illustrated in Figure 1, LC is a

family of algorithms, where a one-hot label distribution is

modified to a convex combination of itself and a predicted

distribution:

q̃LC = (1− ǫ)q+ ǫp ⇒ LCCE+LC(q,p; ǫ) = H(q̃LC,p)

= (1− ǫ)H(q,p)+ǫH(p,p).
(5)

We remark: (1) p provides meaningful information about an

example’s relative probabilities of being different training

classes; (2) If ǫ is large, and p is confident in predicting a

different class, i.e., argmaxj p(j|x) 6= argmaxj q(j|x),
q̃LC defines a different semantic class from q.
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Table 1: Summary of CCE, LS, CP and LC.

CCE LS CP LC

Learning Target q q̃LS = (1− ǫ)q +ǫu q̃CP = (1− ǫ)q −ǫp q̃LC = (1− ǫ)q +ǫp

Cross Entropy Eq(− log p) Eq̃LS
(− log p) Eq̃CP

(− log p) Eq̃LC
(− log p)

KL Divergence KL(q||p)
(1− ǫ)KL(q||p)

+ǫKL(u||p)

(1− ǫ)KL(q||p)

+ǫKL(p||u)

(1− ǫ)KL(q||p)

−ǫKL(p||u)

Entropy minimisation – Penalise over CCE Penalise over CCE Reward over CCE
Semantic class Annotated Annotated Annotated Annotated and Learned
Similarity structure No No No Yes

3.3. Theory

Proposition 1. LS, CP and LC modify the learning tar-

gets of standard CCE.

Proof. LCCE+CP(q,p; ǫ) = (1 − ǫ)H(q,p)−ǫH(p,p) =
E(1−ǫ)q−ǫp(− log p). Therefore, q̃CP = (1 − ǫ)q−ǫp.

Additionally, q̃LS = (1− ǫ)q+ǫu, q̃LC = (1− ǫ)q+ǫp. �

Proposition 2. Some KD methods, which aim to min-

imise the KL divergence between predictions of a teacher

and a student, belong to the family of label correction.

Proof. In general, a loss function of such methods can be de-

fined to be LKD(q,pt,p) = (1− ǫ)H(q,p) + ǫKL(pt||p)
[55]. KL(·||·) denotes the KL divergence. As KL(pt||p) =
H(pt,p) − H(pt,pt), pt is from a teacher and fixed when

training a student. We can omit H(pt,pt):

LKD(q,pt,p) = (1− ǫ)H(q,p) + ǫH(pt,p)

= E(1−ǫ)q+ǫpt
(− log p)

⇒ q̃KD = (1− ǫ)q+ ǫpt.

(6)

Consistent with LC in Eq (5), LKD(q,pt,p) revises a label

using pt. �

Proposition 3. Compared with CCE, LS and CP pe-

nalise entropy minimisation while LC reward it.

Proposition 4. In CCE, LS and CP, a data point x has

the same semantic class. In addition, x has an identical

probability of belonging to other classes except for its se-

mantic class.

The proof of propositions 3 and 4 is presented in the Ap-

pendix A. Only LC exploits informative information and

has the ability to correct labels, while LS and CP only relax

the hard targets. We summarise CCE, LS, CP and LC in

Table 1. Constant terms are ignored for concision.

4. ProSelfLC: Progressive and Adaptive Label

Correction

In standard CCE, a semantic class is considered while

the similarity structure is ignored. It is mainly due to the

difficulty of annotating the similarity structure for every

data point, especially when C is large [50]. Fortunately,

recent progress demonstrates that there are some effective

approaches to define the similarity structure of data points

without annotation: (1) In KD, an auxiliary teacher model

can provide a student model the similarity structure infor-

mation [17, 29]; (2) In Self LC, e.g., Boot-soft, a model

helps itself by exploiting the knowledge it has learned so

far. We focus on studying the end-to-end Self LC.

In Self LC, ǫ indicates how much a predicted label dis-

tribution is trusted. In ProSelfLC, we propose to set it au-

tomatically according to learning time t and prediction en-

tropy H(p), i.e., ProSelfLC trusts self knowledge according

to training time and confidence. For any x, we summarise:











































Loss: L(q̃ProSelfLC,p; ǫProSelfLC) = H(q̃ProSelfLC,p)
= Eq̃ProSelfLC

(− log p).

Label: q̃ProSelfLC = (1− ǫProSelfLC)q+ ǫProSelfLCp.

ǫProSelfLC = g(t)× l(p)







g(t) = h(t/Γ− 0.5, B) ∈ (0, 1),

l(p) = 1−H(p)/H(u) ∈ (0, 1).
(7)

t and Γ are the iteration counter and the number of total

iterations, respectively. h(η,B) = 1/(1 + exp(−η ×B)).
Here, η = t/Γ− 0.5. B,Γ are task-dependent and searched

on a validation set.

4.1. Self trust scores

Global trust score g(t) denotes how much we trust a

learner. It is independent of data points, thus being global.

g(t) grows as t rises. B adjusts the exponentiation’s base

and growth speed of g(t).

Local trust score l(p) indicates how much we trust an

output distribution p, which is data-dependent. l(p) rises as

H(p) becomes lower, rewarding a confident distribution.

4.2. Design reasons

Regarding g(t), in the earlier learning phase, i.e., t <
Γ/2, g(t) < 0.5 ⇒ ǫProSelfLC < 0.5, ∀p, so that the

human annotations dominate and ProSelfLC only modifies

the similarity structure. When a learner has not seen the

training data for enough time at the earlier stage, its knowl-

edge is less reliable and a wrong confident prediction may

occur. Our design assuages the bad impact of such unex-

pected cases. When it comes to the later training phase, i.e.,

t > Γ/2, we have g(t) > 0.5 as it has been trained for more

than half of entire iterations.
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Table 2: The values of g(t), l(p) and ǫProSelfLC = g(t) × l(p) under different cases. We use concrete values for concise

interpretation. We bold the special case when the semantic class is changed.

l(p): Consistency is defined by whether p and q share the semantic class or not.

0.1(non-confident) 0.9(confidently consistent) 0.9(confidently inconsistent)

Earlier phase g(t) = 0.1 0.01 0.09 0.09
Later phase g(t) = 0.9 0.09 0.81 0.81
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(c) Generalisation.

Figure 2: Study of setting ǫ using three schemes: global trust and local trust, merely global trust, and fixed ǫ. Experiments are

done on CIFAR-100 with 40% asymmetric label noise. Vertical axes denote evaluation metrics. Mean results are displayed.

Regarding l(p), it affects the later learning phase. If p

is less confident, l(p) will be smaller, then ǫProSelfLC will

be smaller, hence we trust p less when it is of higher uncer-

tainty. If p is highly confident, we trust its confident knowl-

edge. Ablation study of our design is in Figure 2, where

three variants of ǫ are presented. In our experiments, note

that when ǫ is fixed, we try three values (0.125, 0.25, 0.50)

and display the best instantiation, i.e., ǫ = 0.50.

4.3. Case analysis

Due to the potential memorisation in the earlier phase

(which is more rare), we may get unexpected confident

wrong predictions for noisy labels, but their trust scores are

small as g(t) is small. We conduct the case analysis of Pro-

SelfLC in Table 2 and summarise its core tactics as follows:

(1) Correct the similarity structure for every data point

in all cases, thanks to exploiting the self knowledge of a

learner, i.e., p.

(2) Revise the semantic class when t is large enough and

p is confidently inconsistent. As highlighted in Table 2,

when two conditions are met, we have ǫProSelfLC > 0.5 and

argmaxj p(j|x) 6= argmaxj q(j|x), then p redefines the

semantic class. For example, if p = [0.95, 0.01, 0.04],q =
[0, 0, 1], ǫProSelfLC = 0.8 ⇒ q̃ProSelfLC = (1 −
ǫProSelfLC)q + ǫProSelfLCp = [0.76, 0.008, 0.232]. Note

that ProSelfLC also becomes robust against lengthy expo-

sure to the training data, as demonstrated in Figures 2, 3.

5. Experiments

In deep learning, small differences (e.g., random accel-

erators like cudnn and different frameworks like Caffe [18],

Tensorflow [1] and PyTorch [31]) may lead to a large gap

of final performance. Therefore, to compare more prop-

erly, we re-implement CCE, LS and CP. Regarding Self

LC methods, we re-implement Boot-soft [35], where ǫ is

fixed throughout training. We do not re-implement stage-

wise Self LC and KD methods, e.g., Joint Optimisation

and Tf-KDself respectively, because time-consuming tun-

ing is required. We fix the random seed and do not use

any random accelerator. In standard and synthetic cases, we

train on 80% training data (corrupted in synthetic cases) and

use 20% trusted training data as a validation set to search

all hyperparameters, e.g., ǫ,Γ, B and settings of an opti-

miser. Note that Γ and an optimiser’s settings are searched

first and then fixed for all methods. Finally, we retrain a

model on the entire training data (corrupted in synthetic

cases) and report its accuracy on the test data to fairly

compare with prior results. In real-world label noise, the

used dataset has a separate clean validation set. Here, a

clean dataset is used only for validation, which is gener-

ally necessary for any method and differs from the methods

[44, 45, 19, 36, 26, 16, 53, 60] which use a clean dataset to

train a network’s learning parameters.

5.1. Standard image classification

Datasets and training details. (1) CIFAR-100 [20] has

20 coarse classes, each containing 5 fine classes. There are

500 and 100 images per class in the training and testing

sets, respectively. The image size is 32 × 32. We apply

simple data augmentation [15], i.e., we pad 4 pixels on ev-

ery side of the image, and then randomly crop it with a size

of 32 × 32. Finally, this crop is horizontally flipped with a
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Table 3: Test accuracy (%) in the standard setting. We report three settings of hyperparameters.

Dataset CCE
LS (ǫ) CP (ǫ) Boot-soft (ǫ) ProSelfLC (B)

0.125 0.25 0.50 0.125 0.25 0.50 0.125 0.25 0.50 8 10 12

CIFAR-100 69.0 69.9 69.6 68.4 69.5 69.3 68.7 68.9 69.1 69.1 70.1 70.3 69.8
ImageNet 2012 75.5 75.3 75.2 74.9 75.2 74.8 74.6 75.7 75.8 75.8 76.0 76.0 75.9
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Figure 3: Comprehensive learning dynamics on CIFAR-100 with 40% asymmetric label noise. Vertical axes denote evalua-

tion metrics. Their mean results are displayed. At training, a learner is NOT GIVEN whether a label is trusted or not. We

store intermediate models and analyse them when the training ends.

probability of 0.5. We choose SGD with its settings as: (a)

a learning rate of 0.1; (b) a momentum of 0.9; (c) a weight

decay of 5e− 4; (d) the batch size is 256 and the number of

training iterations is 30k. We divide the learning rate by 10

at 15k and 22k iterations, respectively. (2) We train ResNet-

50 [15] on ImageNet 2012 classification dataset, which has

1k classes and 50k images in the test set [39]. We use SGD

with a start learning rate of 2e − 3. A polynomial learning

rate decay with a power of 2 is used. We set the momentum

to 0.95 and the weight decay to 1e− 4. We train on a single

V100 GPU and the batch size is 64. We report the final test

accuracy when the training ends at 500k iterations. We use

the standard data augmentation: an original image is warped

to 256×256, followed by a random crop of 224×224. This

crop is randomly flipped. We fix common settings to fairly

compare CCE, LS, CP, Boot-soft and ProSelfLC.

Result analysis. In Table 3, we observe the superiority

of ProSelfLC in standard setting without considering label

noise. Being probably surprising, LS and CP reduce the

performance consistently as ǫ increases on ImageNet. In-

stead, Boot-soft and ProSelfLC improve versus CCE. We

remark that both test sets are large so that their differences

are noticeable.

5.2. Synthetic label noise

Noise generation. (1) Symmetric label noise: the orig-

inal label of an image is uniformly changed to one of the

other classes with a probability of r; (2) Asymmetric label

noise: we follow [46] to generate asymmetric label noise

to fairly compare with their reported results. Within each

coarse class, we randomly select two fine classes A and B.

Then we flip r × 100% labels of A to B, and r × 100%
labels of B to A. We remark that the overall label noise rate

is smaller than r.
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Table 4: Accuracy (%) on the CIFAR-100 clean test set. All compared methods use ResNet-44.

Asymmetric Noisy Labels Symmetric Noisy Labels

Method r=0.2 r=0.3 r=0.4 r=0.2 r=0.4 r=0.6

Results From
SL [46]

Boot-hard 63.4 63.2 62.1 57.9 48.2 12.3
Forward 64.1 64.0 60.9 59.8 53.1 24.7

D2L 62.4 63.2 61.4 59.2 52.0 35.3
GCE 63.0 63.2 61.7 59.1 53.3 36.2
SL 65.6 65.1 63.1 60.0 53.7 41.5

Our Trained
Results

CCE 66.6 63.4 59.5 58.0 50.1 37.9
LS 67.9 66.4 65.0 63.8 57.2 46.5
CP 67.7 66.0 64.4 64.0 56.8 44.1

Boot-soft 66.9 65.3 61.0 63.2 59.0 44.8
ProSelfLC 68.7 68.5 67.9 64.8 59.3 47.7

Table 5: The results of different hyperparameters on CIFAR-100 using ResNet-44. Under different noise rates, the best

instantiation of each approach is bolded except for CCE.

Method
(hyperparameter)

Value of
hyperparameter

Asymmetric label noise Symmetric label noise
Clean

20% 30% 40% 20% 40% 60%

CCE None or ǫ = 0 66.6 63.4 59.5 58.0 50.1 37.9 69.0

LS (ǫ)
0.125 66.4 65.6 63.1 61.7 52.5 39.1 69.9
0.25 67.9 66.4 65.0 62.8 55.9 40.9 69.6
0.50 66.8 65.8 64.6 63.8 57.2 46.5 68.4

CP (ǫ)
0.125 65.7 64.2 60.3 59.8 52.3 39.6 69.5
0.25 66.8 65.1 61.6 61.0 53.3 40.9 69.3
0.50 67.7 66.0 64.4 64.0 56.8 44.1 68.7

Boot-soft (ǫ)
0.125 65.8 64.1 60.7 59.7 51.2 40.6 68.9
0.25 66.2 64.1 60.3 61.1 54.4 43.3 69.1
0.50 66.9 65.3 61.0 63.2 59.0 44.8 69.1

ProSelfLC (B)

8 67.8 67.4 67.9 64.7 57.7 47.7 70.1
10 68.5 68.5 66.8 63.9 59.0 47.5 70.3
12 68.6 67.9 67.4 64.0 59.3 47.5 69.8
14 68.7 68.0 67.8 64.8 59.0 47.4 69.6
16 68.4 67.2 67.3 63.7 59.0 32.3 69.9

Baselines.1 We compare with the results reported re-

cently in SL [46]. Forward is a loss correction approach that

uses a noise-transition matrix [32]. D2L monitors the sub-

space dimensionality change at training [27]. GCE denotes

generalised cross entropy [59] and SL is symmetric cross

entropy [46]. They are robust losses designed for solving

label noise. Training details are the same as Section 5.1.

Result analysis. For all methods, we directly report their

final results when training terminates. Therefore, we test

the robustness of a model against not only label noise, but

also a long time being exposed to the data. In Table 4,

we observe that: (1) ProSelfLC outperforms all baselines,

which is significant in most cases; (2) In both implementa-

tion, Boot-hard and Boot-soft perform worse than the oth-

ers. However, our ProSelfLC makes Self LC the best solu-

tion. Furthermore, learning dynamics are visualised in Fig-

ure 3, which helps to understand why ProSelfLC works bet-

1We do not consider DisturbLabel [49], which flips labels randomly

and is counter-intuitive. It weakens the generalisation because generally

the accuracy drops as the uniform label noise increases.

ter. Figure 4 shows the learning dynamics when r changes.

Results of different B, ǫ are in Table 5. We note that when

the noise rate is higher, a smaller B performs better.
We further discuss their differences on model calibration

[11] in Appendix B, the changes of entropy and ǫProSelfLC

during training in Appendix C.

Revising the semantic class and similarity structure.

In Figures 3b and 3c, we show dynamic statistics of differ-

ent approaches on fitting wrong labels and correcting them.

ProSelfLC is much better than its counterparts. Semantic

class correction reflects the change of similarity structure.

To redefine and reward a low-entropy status. On the

one hand, we observe that LS and CP work well, being con-

sistent with prior claims. In Figures 3d and 3e, the en-

tropies of both clean and noisy subsets are much higher

in LS and CP, correspondingly their generalisation is the

best except for ProSelfLC in Figure 3f. On the other hand,

ProSelfLC has the lowest entropy while performs the best,

which proves that a learner’s confidence does not necessar-

ily weaken its generalisation performance. Instead, a model

needs to be careful with what to be confident in. As shown
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Table 6: Test accuracy (%) on the real-world noisy dataset Clothing 1M.

Boot-
hard

Forward D2L GCE SL
S-

adaptation
Masking

MD-
DYR-SH

Joint-
soft

Our Trained Results

CCE LS CP Boot-soft ProSelfLC

68.9 69.8 69.5 69.8 71.0 70.3 71.1 71.0 72.2 71.8 72.6 72.4 72.3 73.4

(a) r = 20%. (b) r = 30%. (c) r = 40%.

(d) r = 20%. (e) r = 30%. (f) r = 40%.

Figure 4: Learning dynamics on CIFAR-100 under asymmetric noisy labels. We show all iterations only in (a) and (d). In

the others, we show the second half iterations, which are of higher interest. As the noise rate increases, the superiority of

ProSelfLC becomes more significant, i.e., avoiding fitting noise in the 2nd row and better generalisation in the 1st row.

by Figures 3b and 3c, ProSelfLC has the least wrong fitting

and most semantic class correction, which indicates that a

meaningful low-entropy status is redefined.

5.3. Real­world label noise

Clothing 1M [48] has around 38.46% label noise in the

training data and about 1 million images of 14 classes from

shopping websites. Its internal noise structure is agnostic.

Baselines. For loss correction and estimating the noise-

transition matrix, S-adaption [8] uses an extra softmax

layer, while Masking [12] exploits human cognition. MD-

DYR-SH [2] is a combination of three techniques: dynamic

mixup (MD), dynamic bootstrapping together with label

regularisation (DYR) and soft to hard (SH). The other base-

lines have been introduced heretofore.

Training details. We follow [43] to train ResNet-50 and

initialise it by a trained model on ImageNet. We follow

Section 5.1 with small changes: the initial learning rate is

0.01 and we train 10k iterations. They are searched on the

separate clean validation set.

Result analysis. In Table 6, analogously to CIFAR-100,

we report our trained results of CCE, LS, CP, Boot-soft and

ProSelfLC for an entirely fair comparison. ProSelfLC has

the highest accuracy, which demonstrates its effectiveness

again.

6. Conclusion

We present a thorough mathematical study on several tar-

get modification techniques. Through analysis of entropy

and KL divergence, we reveal their relationships and lim-

itations. To improve and endorse self label correction, we

propose ProSelfLC. Extensive experiments prove its supe-

riority over existing methods under standard and noisy set-

tings. ProSelfLC enhances the similarity structure informa-

tion over classes, and rectifies the semantic classes of noisy

label distributions. ProSelfLC is the first approach to trust

self knowledge progressively and adaptively.

ProSelfLC redirects and promotes entropy minimisation,

which is in marked contrast to recent practices of confidence

penalty [42, 33, 6].
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