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Abstract

Rationale: Late recognition of patient deterioration in hospital is
associated with worse outcomes, including higher mortality.
Despite the widespread introduction of early warning score (EWS)
systems and electronic health records, deterioration still goes
unrecognized.

Objectives: To develop and externally validate a Hospital-
wide Alerting via Electronic Noticeboard (HAVEN) system
to identify hospitalized patients at risk of reversible deterioration.

Methods: This was a retrospective cohort study of patients 16 years
of age or above admitted to four UK hospitals. The primary
outcome was cardiac arrest or unplanned admission to the ICU.We
used patient data (vital signs, laboratory tests, comorbidities, and
frailty) from one hospital to train a machine-learning model
(gradient boosting trees). We internally and externally validated the
model and compared its performance with existing scoring systems

(including the National EWS, laboratory-based acute physiology
score, and electronic cardiac arrest risk triage score).

Measurements and Main Results: We developed the HAVEN
model using 230,415 patient admissions to a single hospital. We
validated HAVEN on 266,295 admissions to four hospitals. HAVEN
showed substantially higher discrimination (c-statistic, 0.901 [95%
confidence interval, 0.898–0.903]) for the primary outcome within 24
hours of each measurement than other published scoring systems
(which range from0.700 [0.696–0.704] to 0.863 [0.860–0.865]).With a
precision of 10%, HAVEN was able to identify 42% of cardiac arrests
or unplanned ICU admissions with a lead time of up to 48 hours in
advance, compared with 22% by the next best system.

Conclusions: The HAVEN machine-learning algorithm for early
identification of in-hospital deterioration significantly outperforms
other published scores such as the National EWS.
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Over 60,000 patients annually deteriorate on
UK hospital wards to the extent that they
require ICU admission (1). Late or missed
recognition of deterioration is associated
with worse patient outcomes, including
higher mortality (2–4). Over the past 20
years, healthcare systems worldwide have
implemented alerting systems to improve
the detection of patients at risk of
deterioration (5–7). Most are based on
abnormalities in patients’ vital signs, usually
by combining them into an early warning
score (EWS). Clinicians are alerted when the
EWS rises above a given threshold. Many
hospitals also employ rapid response teams
to respond to the most critically unwell
patients (8). However, there is conflicting
evidence that implemented EWS systems or
rapid response teams improve patient
outcomes (8–11).

Current EWSs were designed to be
calculated easily at the bedside when most
hospitals recorded observations on paper
charts. This simplicity means EWSs
cannot account for trends over time,
patients with chronically abnormal
physiology, or other indicators of
deterioration (e.g., acute kidney injury).
Consequently, EWSs commonly generate

At a Glance Commentary

Scientific Knowledge on the
Subject: Late recognition of
patient deterioration in hospital is
associated with worse patient
outcomes. Current early warning
score systems based purely on vital
sign measurements still do not
identify the majority of
deteriorations without also
generating many false alerts.

What This Study Adds to the
Field: We used a machine-learning
algorithm to combine patients’ vital
signs with additional physiological
measurements, comorbidities, and
frailty to create the Hospital-wide
Alerting via Electronic Noticeboard
scoring system. This model
substantially increased the precision
with which deteriorating patients could
be identified when compared with
previously published scores.

false alerts, risking alarm fatigue and
increasing the likelihood that deteriorating
patients are missed (12).

Increased uptake of electronic health
records (EHRs) facilitates the development
of sophisticated EWSs incorporating
additional routinely collected patient data.
For example, our group and others have
shown that combining laboratory results
with vital sign measurements increases the
precision with which deteriorating patients
can be detected (13–19). Many newer risk
scores exploit machine-learning algorithms
(13, 15, 17, 20–24). However, few are
externally validated (25–27) and fewer still
are implemented in the EHR (23). Those
that have are often subject to proprietary
licenses, which can limit the research
community’s ability to validate them (22,
23, 28, 29). Some algorithms also use data,
such as detailed nursing assessments, that
are not routinely recorded in the EHR
(28). A key reason predictive machine-
learning models are not clinically
implemented is the failure to consider
whether they add value in clinical practice
(15, 30, 31). Indeed, we previously argued
that even current EWS systems are not
optimized to identify patients with
reversible deterioration; namely, where
intervention is likely to change patient
outcomes (32).

In this study, we describe the
development and external validation of the
Hospital-wide Alerting via Electronic
Noticeboard (HAVEN) system to identify
patients with potentially reversible
deterioration. HAVEN provides a real-time
risk assessment, which is continuously
updated using patients’ vital signs,
laboratory test results, and medical
histories.

Methods

Study Design
Amulticenter retrospective development and
external validation of a prognosticmodel. It is
reported following theTransparentReporting
of a Multivariable PredictionModel for
Individual Prognosis or Diagnosis (TRIPOD)
guidelines (33).

Ethical Approval
This work received Health Research
Authority, Research Ethics Committee (REC)
(referencenumber16/SC/0264fromtheSouth
Central Oxford C REC, and 08/02/1394 from

the Isle ofWight, Portsmouth, and South East
Hampshire REC), and Confidentiality
Advisory Group (16/CAG/0066) approval.

Setting
Patient data were collected retrospectively
from two separate UK hospital groups:
PortsmouthHospitalsNationalHealthService
(NHS)Trust andOxfordUniversityHospitals
NHS Trust. Data were extracted, linked, and
deidentifiedbeforebeingmadeavailable to the
research team.

Portsmouth Hospitals NHS Trust is a
large, acute, district general hospital (hospital
A) with approximately 1,250 beds, which
provides a full rangeof electiveandemergency
medical and surgical services to a local
population of around 675,000 (34). Oxford
University Hospitals NHS Trust is a hospital
group with approximately 1,465 beds, which
serves a local population of around 655,000.
We included the tertiary referral center for
trauma, cardiology, and neurosurgery, which
also provides general acute medical and
surgical services (hospital B); the specialist
renal transplant and cancer referral center
(hospital C); and the district general hospital
(hospital D). We excluded a hospital
performing predominantly elective
orthopedic procedures.

Data Sources
The routinely collected data stored across
different clinical information systems in all
four hospitals were extracted. Data included
admissions’ administrative information
(including dates and timings for admission,
discharge, and any transfers within the
hospital site), diagnoses as 10th-revision
International statistical Classification of
Diseases and related health problems (ICD-10)
codes, laboratory results (including
hematology, biochemistry, and
microbiology results), vital signs, and
patient demographics.

Participants
We included all patients (aged 16 or above)
admitted to hospital A from January 2012 to
December 2017 or admitted to hospitals B–D
from January 2016, to December 2017.

Admissions with no recorded vital signs
were excluded to ensure aminimum required
data set for score computation.

The training cohort comprised
admissions tohospitalA fromJanuary 2012 to
December 2015. The primary test cohort
combined admissions from hospitals A–D
between January 2016, and December 2017.
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Outcomes
Our primary outcome was a composite of
in-hospital cardiac arrest and unplanned
admission to the ICUnot preceded by surgery
in the prior 24 hours. ICU admissions shortly
after surgery were excluded, as deterioration
may happen during the procedure rather than
on the ward. Secondary outcomes were
unplannedadmission to the ICUnotpreceded
by surgery in the initial 24 hours and
in-hospital cardiac arrest separately. We
included a third secondary outcome of all
unplanned admissions to the ICU to
determine the effect of including unplanned
ICUadmissionsprecededbysurgerywithin24
hours.

Predictors
We identified potential variables for inclusion
in the model by a systematic literature search
(35) and expert suggestions, followed by an
expert panel review. The expert panel
comprised critical care nurses and doctors,
alongside a statistician and senior general
physician. The panel undertook a modified
Delphiprocess toconsideradditionalvariables
useful in determining patients’ risk of
deterioration. A consensus was reached after
two discussion rounds, resulting in a final
76-candidate variable list.

Each patient admission was represented
by static (time-invariant) and dynamic (time-
varying) variables.

As static variables, we included the
patient’s age and sex at admission to the
hospital. We also encoded the presence or
absence of comorbidities using ICD-10
diagnosis codes. Because diagnostic coding in
the United Kingdom typically occurs after
dischargefromthehospital, this informationis
not available electronically unless the patient
has previously been admitted to the same
hospital. We extracted unique diagnostic
codes from previous admissions over the 2
years before hospital admission under study.
Diagnostic codes were grouped into 30
categories according to Elixhauser (36),
comprising 30 binary features encoding
whether patients had common chronic
diseases, such as congestive heart failure or
chronic lung disease. We further calculated:
smoking status (using the ICD-10 codes F17,
Z716, and Z720), the Hospital Frailty Risk
Score (37), and the total length of all
hospitalizations in the 2 prior years.

As dynamic variables, we included
commonly measured laboratory values and
vital signs and the estimated inspired oxygen

fraction. A variable list is provided in the
online supplement (SECTION D).

We designed HAVEN to recalculate a
patient’s deterioration risk each time a new
variable is recorded.When one time-varying
variable is measured, other variables often are
not. We therefore included the most recent
measured value for each physiological and
laboratory result variable at each time point
(equivalent to a last value carried forward
imputation). To capture howvariables change
over time, we also calculated two derived
features before imputation: a 24-hour
variability index for physiological variables
(38) (defined as the difference between the
maximum andminimum values over the
preceding 24 h) and the maximum and
minimum values of laboratory results
recordedduringthepatient’sadmissionbefore
the time point (both including the current
measurement).

Missing Data
Distributions of variables were inspected
manually. A clinical expert panel identified
“biologically implausible” ranges, with values
outside these ranges defined as missing.

The remaining missing values were
imputed with the median (or mode for
dichotomous variables) of each variable from
the training set. Althoughothermethodswere
considered, such asmultiple imputations (39),
we used themedian andmode to simulate the
HAVEN implementationwithin a live clinical
system.

Statistical Analysis

Model development. We trained theHAVEN
system by generating the set of features for
each time point in which a newmeasurement
(vital sign or laboratory test) occurred.We
labeled each time point as “positive” if the
primary outcome occurred within 24 hours.
We used a gradient boosting machine with
decision trees, as implemented in theXGBoost
library (40). XGBoost has a number of
hyperparameters (e.g., the depth of the
component decision trees) that aremodifiable
to produce the best model. One of these
hyperparameters changes the relative
weighting between the positive and negative
classes, which can improve model
performance in unbalanced data sets. To
discover the optimal hyperparameters, we
used a randomsearch (500permutations) and
selected the model with the highest c-statistic

(using a fivefold cross-validation procedure),
using thefirst 3 yearsof data in the training set.

Optimal model predictions were
recalibrated on the training set’s final year of
data to reflect the frequency of observed
outcomes using isotonic regression (41).
Uncalibrated and calibrated predictions were
compared using reliability plots (41).

In addition to the gradient boosting
machine,we trained, optimized, and validated
four alternative machine-learning models: a
Random Forest, a Generalized Additive
Model, and both L1-regularized (Lasso
regression) and L2-regularized logistic
regressionmodels (seeTableEA6 in theonline
supplement).

Model evaluation. We evaluated risk
prediction model performance using the test
set containing data from all four hospitals. In
line with Transparent Reporting of a
Multivariable PredictionModel for Individual
Prognosis or Diagnosis guidance, we report
results for individual hospitals and for the
three hospitals not used to develop HAVEN
(33). We report model performance using
discrimination and calibration metrics
computed at both the “observation” and
“patient admission” levels. We designed
HAVEN to identify patients at risk of
deterioration on hospital wards rather than
identifying direct admissions from the
emergency department—for this reason,
scores generated from emergency department
measurements were excluded.

At theobservation level,wecalculated the
area under the curve (AUC) for the receiver
operating curve (ROC) for our outcome
measuresoccurringwithinthesubsequent12-,
24-,and48-hourperiodsofeachmeasurement
(i.e., each time a measurement is recorded).
The ROC AUC (c-statistic) measures
discrimination, corresponding to the
probability that patients who experience the
outcome will be ranked above those who do
not. As the outcomes are relatively rare (there
aremanymore patientswho gohomewithout
an event than there are patients who have an
unplanned ICUadmissionor a cardiac arrest),
we also computed the AUC for the precision-
recall curve (PR), which can be informative in
class-imbalanced data sets (42, 43). The PR
AUC shows the trade-off between precision
(positive predictive value) and recall
(sensitivity) at each threshold. The closer the
PR AUC is to 1, the greater the ability of the
scoreormodel todetect truecases (recall)with
high precision over the range of thresholds.
Calibration curves for selected models were
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determined for outcomeoccurrencewithin 24
hours of each measurement.

The sequential nature of predictions
means the total number of positive time steps
(in which the outcome occurs within n hours)
does not directly correspond to the number of
patients experiencing the outcome. Multiple
positive time steps may be associated with a
single adverse event. To assess the clinical
applicability of the proposed model, we
calculated the “patient admission sensitivity”
at different degrees of precision (5%, 10%,
20%). These precisions correspond to
evaluating 20, 10, and 5 patients, respectively,
for each true-positive result—also known as
the number needed to evaluate (NNE) (44).
For each degree of precision, a patient
admission was considered a false-positive
result if they had at least one score above the
threshold and no adverse event occurred.
True-positive results were patient admissions
with at least one score above the threshold in
the n hours before an adverse event. We

examined the sensitivity of the model over
different time prediction windows preceding
the event (up to 48 h). To further evaluate
clinical utility, we performed a decision curve
analysis (45–48).

All 95% confidence intervals (CIs) were
calculated using bootstrapping (200 samples)
(49).WeusedtheShapleyadditiveexplanation
algorithm (50) to calculate the relative
“importance” of each predictor in the final
model (see SECTION F of the online
supplement).

Comparison with Published Risk
Scoring Systems
We compared HAVEN score performance
with established EWS systems: the centile-
based EWS (51), the modified EWS (52), the
standardized EWS (53), the National EWS
(NEWS) (54), and the cardiac arrest risk triage
(CART) score (55).We also compared it with
three physiological scoring systems: the
NEWS:LDTEWS (13), the electronic CART

(eCART) score (56), and the laboratory-based
acute physiology score (LAPS-2) (57). We
excluded scoring systems in which the
coefficients were unpublished or where data
(e.g., nursing assessments) were not routinely
recorded in our study sites (22, 58). Further
details of EWSs and other scoring systems are
shown in in the online supplement (SECTION
C).

Results

After exclusions, we included 496,710 unique
admissions to four hospitals. The training set
included 230,415 admissions (from 113,450
patients) to hospital A.

There were 266,295 admissions (159,182
patients) to fourhospitals (A–D) in the test set.
The two cohorts have similar patient
characteristics (Table 1), both with a slightly
higher proportion of female patients (of
around53%) andamedian age of 62–63years.

Table 1. Summary Description Statistics for the Cohorts

Training Test

Patients
Unique patients 113,450 159,182
Age, yr* 63 (44–77) 62 (43–77)
Sex
Males 52,720 (46.5%) 74,812 (47.0%)
Females 60,730 (53.5%) 84,370 (53.0%)

Ethnicity
White 93,853 (82.7%) 120,706 (75.8%)
Mixed 337 (0.3%) 883 (0.6%)
Black 437 (0.4%) 1,196 (0.8%)
Asian 593 (0.5%) 2,698 (1.7%)
Other 543 (0.5%) 1,280 (0.8%)
Unknown 17,687 (15.6%) 32,421 (20.4%)

Admissions within period
Hospital sites 1† 4†

Period Jan 2012 to Dec 2015 Jan 2016 to Dec 2017
Unique admissions per patient 230,415 266,295

Median 1 (1–2) 1 (1–2)
Average 2.03 (2.55) 1.67 (1.66)

Length of stay, d 1.77 (0.54–5.26) 1.36 (0.36–4.76)
Elective admissions 81,703 (35.5%) 82,402 (30.9%)
Surgical admissions 102,603 (44.5%) 116,459 (43.7%)
In-hospital deaths 7,436 (3.2%) 7,880 (3.0%)
ICU admissions 2,863 (1.2%) 4,098 (1.5%)

Unpl.
Unpl. Med. 2,004 (0.9%) 2,527 (0.9%)

Cardiac arrests 808 (0.4%) 647 (0.2%)
Primary outcome‡ 2,695 (1.2%) 3,105 (1.2%)

Definition of abbreviations: NHS=National Health Service; Unpl. = admissions to the ICU defined as unplanned (or unanticipated); Unpl.
Med.= admissions to ICU defined as unplanned and not preceded by a visit to the theater in the preceding 24 hours.
The median and interquartile range are shown for continuous variables.
*When multiple admissions are present, the age of the patient at the first admission is used.
†In total, data from four hospitals were included: three hospitals from one organization (Oxford University Hospitals NHS Foundation Trust) and one
hospital from a different organization (Portsmouth Hospitals NHS Trust). Data from the latter (collected within different periods), was used for training
and calibration.
‡Primary (composite) outcome is defined as the occurrence of a cardiac arrest and/or an unplanned admission to the ICU.
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In the test cohort, 31% of admissions to
the four hospitals (A–D) were elective, with a
median hospital stay of 1.36 (interquartile
range, 0.36–4.76) days.Hospitalmortalitywas
approximately 3%. In approximately 1% of
admissions, patients had an unplanned ICU
admission without visiting the operating
theater in the preceding 24 hours. A cardiac
arrest occurredduring 647 admissions (0.2%).
There was some variability in patient
characteristics across the four hospitals (see
Table EA1). Hospital C had a higher

proportion of elective admissions (55.6%), a
lower mortality rate (1.9%), and a higher rate
of unplanned ICUadmissions (3.9%) than the
otherhospitals.Class imbalanceandtheextent
of missing data are reported in online
supplement (SECTION E).

The calibration curve in the combined
test set is shown in Figure 1. Table 2 shows
HAVENmodelperformanceonthe test set for
predicting the observation-level primary
outcome (unplanned ICU admission or
cardiac arrest) within different time windows.

ROCAUCvalues increase as the timewindow
moves closer to the event, from0.881 (95%CI,
0.879–0.883) within the following 48 hours to
0.921 (95% CI, 0.919–0.924) within the
following 12 hours. A similar trend in ROC
AUC values occurs for the individual
secondary outcomes (Table 2). HAVEN
model performance (either by ROC or PR
AUCs) was higher for predicting unplanned
ICUadmissions than for cardiacarrests (Table
2). The average contributions (“feature
importance”) of individual predictors are
shown in the online supplement (SECTION F).

HAVENperformancewashigher thanall
other published EWS and risk scores when
predicting the primary outcomemeasured by
either theROCAUCor thePRAUC(Table3).
For example, for a time window of 24 hours,
HAVEN had a ROCAUC of 0.901 (95% CI,
0.898–0.903), whereas LAPS-2, the next best-
performing scoring system, had a ROC AUC
of 0.863 (0.860–0.865). This improved
performance remained when testing was
restricted to individual hospitals (Tables EA2
andEA4) and to the three test hospitals (B–D)
whereHAVENhadnotbeendeveloped(Table
EA5). HAVEN performed as well or better
than all other EWS and other risk scores
for the individual secondary outcomes (see
Table EA3).

Figure 2 shows the patient admission level
sensitivity of HAVEN for different prediction
time windows for three fixed degrees of
precision. A greater proportion of events were
correctly predicted, as outcomes are included
closer to the prediction point. At 10% precision
(NNE=10),HAVEN identified 42% of adverse
events occurring in the subsequent period of
,1–48 hours and 27% of adverse events
occurring between 12 and 48 hours after the
prediction point. In comparison, LAPS-2
identified 22% and14% of adverse events in the
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Figure 1. Calibration curve for Hospital-wide Alerting via Electronic Noticeboard predictions in the
test set (top), alongside the distribution of Hospital-wide Alerting via Electronic Noticeboard
predictions (bottom). The calibration curve (black) shows the locally estimated (scatterplot
smoothing) smoothed observed probability versus estimated probability of adverse events (with
95% confidence bands). The diagonal line (gray) shows ideal calibration.

Table 2. Model Performance Using the Entire Test Set

AUC by Time Window Composite Outcome* Unplanned ICU Admission Cardiac Arrest

ROC AUC (95% CI)
12 h 0.921 (0.919–0.924) 0.939 (0.936–0.941) 0.831 (0.823–0.840)
24 h 0.901 (0.898–0.903) 0.921 (0.919–0.923) 0.807 (0.800–0.814)
48 h 0.881 (0.879–0.883) 0.902 (0.900–0.904) 0.772 (0.765–0.779)

PR AUC (95% CI)
12 h 0.073 (0.069–0.078) 0.076 (0.071–0.081) 0.006 (0.003–0.010)
24 h 0.080 (0.076–0.084) 0.083 (0.079–0.087) 0.006 (0.003–0.008)
48 h 0.081 (0.078–0.084) 0.084 (0.080–0.087) 0.006 (0.003–0.008)

Definition of abbreviations: AUC=area under the curve; CI= confidence interval; PR=precision recall; ROC= receiver operating characteristic.
ROC AUC and PR AUC performance when predicting the risk of future adverse event (and each event separately, namely, unplanned admission to
ICU and cardiac arrest) across different time windows.
*Composite outcome is defined as the occurrence of a cardiac arrest and/or an unplanned admission to the ICU.
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corresponding time periods (Figure EB1).
NEWS and LAPS-2 performed similarly. The
total number of events becomes smaller as the
window duration decreases. Nearly all patients
were in thehospital for anhour before an event,
but progressively fewer were hospitalized as the
prediction horizon increased (roughly 60% of
events occurredmore than 24h after admission
to a general ward).

Decision curve analysis showedHAVEN
had a higher net benefit than all other scoring
systems over a range of risk thresholds (see
Figures EB3 and EB4). Including unplanned
ICU admissions preceded by a theater visit
decreased the performance of HAVEN and all
other scoring systems (Table EA4).

Discussion
Main Findings
In this large, retrospective, observational
study, we developed a novel risk score
(HAVEN) to identify hospitalized patients at
risk of potentially reversible deterioration.
HAVEN had higher discrimination than all
previously published EWSs and physiological
scoring systemswe tested (Tables 2 and 3) and
was well calibrated (Figure 1). At 10%
precision, themodel identified nearly twice as
many adverse outcomes in advance of the
event (depending on the prediction horizon)
(Figure 2) as the next best scoring system,
LAPS-2 (Figure EB1).

Strengths and Limitations
Our study used data from four large hospitals
and follows the latest recommendations for
developing and validating prediction models
and EWSs (45, 59). We used a composite
primary outcome of unplanned admission to
the ICU and in-hospital cardiac arrest as a
proxy for potentially reversible clinical
deterioration, as no well-defined indicator of
“reversible” deterioration is recorded. This
contrasts with other studies that either used
only one of these two outcomes or used
in-hospitalmortality (60–62).We deliberately
excluded in-hospital mortality from our
composite outcome. In the United Kingdom,
40–50% of deaths occur in hospitals and only
3.6%of theseare estimated tobeavoidable (63,
64). Excluding in-hospital mortality reduces
the risk that ourmodel would be optimized to
predict inevitable, rather than potentially
preventable, deterioration. The importance of
outcome selection has been noted previously
by ourselves and others (32, 61). LAPS-2 was
optimized to predict in-hospital mortality,
which may have impacted its performance in
our study.

Weexcludedunplanned ICUadmissions
precededbyanoperating theatervisit fromthe
primary outcome.We assessed the impact of
this exclusion on HAVEN performance,
finding (as with other scoring systems) lower
performance when including unplanned ICU
admissions preceded by a theater visit. This
decrease was particularly marked in hospital
C, a dedicated center for cancer and renal
services (including transplants).
Notwithstanding the case-mix differences in
comparisonwith the other three hospitals (see
Table EA1 and Figure EB2), certain surgical

Table 3. Comparative Performance of Scoring Systems Using the Entire Test Set

Scoring System ROC AUC (95% CI) PR AUC (95% CI)

CEWS 0.838 (0.834–0.841) 0.031 (0.028–0.033)*
MEWS 0.836 (0.833–0.839) 0.031 (0.028–0.033)
NEWS 0.842 (0.839–0.845) 0.028 (0.025–0.030)
SEWS 0.791 (0.788–0.795) 0.026 (0.024–0.028)
NEWS:LDTEWS 0.860 (0.858–0.863)† 0.029 (0.026–0.031)
CART 0.700 (0.696–0.704) 0.023 (0.021–0.025)
eCART 0.796 (0.792–0.800) 0.026 (0.024–0.029)
LAPS-2 0.863 (0.860–0.865)† 0.031 (0.028–0.033)*
HAVEN 0.901 (0.898–0.903)† 0.080 (0.076–0.084)*

Definition of abbreviations: AUC=area under the curve; CART=cardiac arrest risk triage;
CEWS=centile-based EWS; CI= confidence interval; eCART=electronic CART; EWS=early
warning score; HAVEN=Hospital-wide Alerting via Electronic Noticeboard; LAPS-2= laboratory-
based acute physiology score 2; LDTEWS=Laboratory Decision Tree EWS; MEWS=modified
EWS; NEWS=National EWS; PR=precision recall; ROC= receiver operating characteristic;
SEWS=standardized EWS.
ROC AUC and PR AUC performance when predicting the risk of future composite adverse event
(unplanned admission to ICU and cardiac arrest) within 24 hours.
*Top 3 performing systems according to the PR AUC.
†Top 3 performing systems according to the ROC AUC.
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Figure 2. Patient admission level sensitivity: average proportion of (candidate) adverse events to be identified within each window (left); and the
average proportion of adverse events identified ahead of time for Hospital-wide Alerting via Electronic Noticeboard at different precision levels (5%,
10%, and 20%) (right). The error bars denote 1 SD.
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procedures are undertaken on physiologically
stable patients, who are routinely transferred
to the ICU postoperatively and coded as an
unplanned ICU admission. This again
demonstrates the importance of selecting the
appropriate outcome when evaluating risk
scoring systems.

There are limitations to using unplanned
ICUadmissionandcardiacarrestasoutcomes.
These outcomes are affected by existing
treatment-limitation plans and “do not
attempt cardiopulmonary resuscitation”
decisions. Electronic coding of these decisions
varies between hospitals and is currently
insufficiently robust for inclusion in a
generalizable model. A recent systematic
review found that ICU admission can be
affected by clinicians’ experience, the
perception of benefit, and organizational
factors (e.g., bed availability) (65). Training
our model on retrospective data risks
incorporating thesepotential “culturalbiases.”
We sought to reduce bias (e.g., against older
patients) by including a broad range of patient
factors (comorbidities, frailty) in our model.
Indeed, Figure EF3 shows that although, on
average, patients aged over 80 years have a
decreasing likelihoodofeithercardiacarrestor
ICU transfer, there is wider variation in the
overall predicted risk for each age value above
80 years.

To further evaluate HAVEN’s predictive
performance, we computed the percentage of
adverse events identifiedaheadof time (Figure
2). We used a patient-level approach to
determine the sensitivity of the model at
different degrees of precision.AsHAVENwas
targeted at patientswhodeteriorate ongeneral
wards (rather thandirect ICUadmissions),we
only included time periods after patients were
transferred to a general ward. Our results
therefore cannot be applied to patients who
deteriorated in the emergency department.
Despite the lowprevalenceof theoutcome, the
HAVENmodel identified 42% of adverse
events up to 48 hours in advance at anNNEof
10. Although nearly twice as good as the next
best system (LAPS-2), seeing 10 patients to
detect 1 would still create a significant
workload. However, decision curve analysis
(Figures EB4 and EB5) showed that HAVEN
has higher net benefit than the next three
highest scoring systems (including NEWS, in
common use in the United Kingdom).
Together, these findings suggest that
implementing the HAVENmodel should
improve patient care.

Studies of EWSs and other risk scores for
identifying deteriorating patients vary in the
outcomes and statistical methods used to
validate their performance, making
comparisons difficult (22, 43, 45, 66). A large

retrospective study of the Advanced Alert
Monitor (AAM) score showed that the AAM
scorehadadiscrimination(ROCAUC)of0.82
incomparisonwithdiscriminationof0.79and
0.76 for electronic CART and NEWS,
respectively, for predicting unplanned ICU
admissions within 12 hours (22). In contrast,
the discrimination of HAVENwas 0.92 for
predicting unplanned ICU admissions within
24hours,outperformingtheAAMscoreovera
longer prediction horizon.

Conclusions
HAVEN performed significantly better than
other published scores, such as NEWS and
LAPS-2, when externally validated on an
independent test set. Through the use of an
ensemble of “weak learners” (gradient
boosting decision trees) as our machine-
learning algorithm, we were better able to
model patients’ physiological measurements
in the context of their known comorbidities
and frailty.Weplan further external validation
to ensure HAVENmodel performance is
sustained in other hospitals before a
prospective evaluationonpatientoutcomes.�

Author disclosures are available with the text
of this article at www.atsjournals.org.
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