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Utility of single versus sequential 
measurements of risk factors 
for prediction of stroke in Chinese 
adults
Matthew Chun1,2, Robert Clarke1,29*, Tingting Zhu2, David Clifton2,3, Derrick Bennett1, 
Yiping Chen1,4, Yu Guo5, Pei Pei5, Jun Lv6,7, Canqing Yu6,7, Ling Yang1, Liming Li6,7, 
Zhengming Chen4,29, Benjamin J. Cairns1,29* & the China Kadoorie Biobank Collaborative 
Group

Absolute risks of stroke are typically estimated using measurements of cardiovascular disease risk 
factors recorded at a single visit. However, the comparative utility of single versus sequential risk 
factor measurements for stroke prediction is unclear. Risk factors were recorded on three separate 
visits on 13,753 individuals in the prospective China Kadoorie Biobank. All participants were stroke-
free at baseline (2004–2008), first resurvey (2008), and second resurvey (2013–2014), and were 
followed-up for incident cases of first stroke in the 3 years following the second resurvey. To reflect 
the models currently used in clinical practice, sex-specific Cox models were developed to estimate 
3-year risks of stroke using single measurements recorded at second resurvey and were retrospectively 
applied to risk factor data from previous visits. Temporal trends in the Cox-generated risk estimates 
from 2004 to 2014 were analyzed using linear mixed effects models. To assess the value of more 
flexible machine learning approaches and the incorporation of longitudinal data, we developed 
gradient boosted tree (GBT) models for 3-year prediction of stroke using both single measurements 
and sequential measurements of risk factor inputs. Overall, Cox-generated estimates for 3-year stroke 
risk increased by 0.3% per annum in men and 0.2% per annum in women, but varied substantially 
between individuals. The risk estimates at second resurvey were highly correlated with the annual 
increase of risk for each individual (men: r = 0.91, women: r = 0.89), and performance of the longitudinal 
GBT models was comparable with both Cox and GBT models that considered measurements from only 
a single visit (AUCs: 0.779–0.811 in men, 0.724–0.756 in women). These results provide support for 
current clinical guidelines, which recommend using risk factor measurements recorded at a single visit 
for stroke prediction.

Stroke is a leading cause of death and disability worldwide, and China accounts for approximately one-third of the 
global burden of stroke deaths1. Current guidelines for primary prevention of stroke advocate use of risk predic-
tion equations, including the Pooled Cohort Equations2 for cardiovascular disease (CVD) or the Framingham 
Stroke Risk Profile3 for stroke4,5. Such risk scores are typically derived using Cox proportional hazards models 
that generate risk predictions based on measurements of risk factors recorded at a single baseline visit. However, 
adults without established CVD are recommended to have their risk reassessed every 3–5 years6–8, and it remains 
unclear if CVD prediction can be improved using repeated measurements of time-dependent risk factors includ-
ing blood pressure (BP), cholesterol levels, body weight, and lifestyle factors. BP has been extensively studied, and 
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while longitudinal indices of BP appear to have incrementally stronger associations with CVD than “present” BP, 
head-to-head comparisons of their predictive utility for incident disease are limited9. Previous studies comparing 
the predictive utility of sequential versus single risk factor measurements have reported conflicting results, rang-
ing from no improvement10,11 to statistically significant incremental improvements (ΔC-index: 0.0023–0.0040)12 
or substantial improvements (ΔC-index: 0.05–0.06)13,14, despite using similar modeling approaches. Moreover, 
none of these previous studies examined major risk factors for incident stroke or involved the Chinese popula-
tion, in which incidence of stroke is particularly high.

Consequently, substantial uncertainty persists about the relevance of sequential measurements of established 
CVD risk factors recorded on two or three separate visits versus those recorded on a single visit for prediction 
of incident stroke in Chinese adults. The aims of the present study were: (i) to examine changes in CVD risk 
factors and 3-year absolute risks of stroke in Chinese adults from 2004–2014, and (ii) to compare the utility of 
sequential versus single measurements of CVD risk factors for prediction of stroke in a contemporary study of 
Chinese adults.

Methods
Data sources.  The China Kadoorie Biobank (CKB)15,16 is a prospective cohort study of 512,726 adults who 
were enrolled from 10 geographically-diverse areas (5 urban, 5 rural) of China in 2004–2008. In each area, all 
permanent residents without disability aged 35–74 years were invited to participate. An interviewer-adminis-
tered electronic questionnaire was used to collect baseline risk factor input data including sociodemographic 
factors, lifestyle factors (e.g., smoking, alcohol, dietary habits), medical history and current medication, and 
physical activity. Physical measurements were also recorded, including height, weight, hip and waist circumfer-
ence, bio-impedance, blood pressure, and heart rate. All participants provided a blood sample, and random 
blood glucose tests were conducted to screen for diabetes. Two resurveys were conducted in 2008 and 2013–
2014, respectively, each including about 5% of the surviving CKB participants and recording information on the 
same risk factor inputs as were collected during the baseline survey (2004–2008). For the purposes of this study, 
we use the terms “risk factors” and “risk factor inputs” to refer to all of the CKB variables available to our models 
for risk prediction of stroke, regardless of whether they are considered established risk factors in clinical practice. 
Details of the variables assessed in the present report are provided in Supplementary Table 1.

All follow-up data on incident disease and cause-specific mortality outcomes were collected by linkage to 
death registries, established registries of major diseases, and health insurance records (covering > 97% of par-
ticipants); local residential records; and annual home visits for uninsured participants through January 1, 2018. 
All stroke cases were coded by trained medical staff using the International Classification of Diseases 10th revi-
sion (ICD-10) (Supplementary Methods 1). Ethical approval for CKB was obtained from the Oxford University 
Tropical Research Ethics Committee and the Chinese Center for Disease Control and Prevention Ethical Review 
Committee, and all participants provided written informed consent.

The present analyses were restricted to 13,753 CKB participants (5,152 men; 8,601 women) who had three 
sequential measurements of risk factor inputs recorded at baseline survey, first resurvey, and second resurvey, 
and who had no prior history of stroke through the date of their second resurvey. Among these individuals, 
644 incident cases of first-ever stroke (267 in men; 377 in women) were recorded within the first three years 
following the second resurvey.

Statistical analysis.  Included CKB individuals were randomly divided into a training set (85%) and test set 
(15%). The training set was used for model development while the test set was used for independent evaluation 
of model performance in order to avoid over-optimism. Risk factor data were preprocessed to maintain consist-
ency between the variables recorded at each visit, and missing values (< 0.03% of all data) were imputed using 
sex-specific mean imputation (Supplementary Methods 2).

To reflect the Cox models currently used in clinical practice, such as the Pooled Cohort Equations2 and the 
Framingham Stroke Risk Profile3, we first developed regularized and region-stratified, sex-specific Cox models 
for 3-year risk prediction of stroke using data on risk factors recorded at the second resurvey. These Cox models 
utilize risk factors measurements recorded at a single visit for prediction of future stroke events and serve as 
an established gold standard against which other modeling approaches can be compared. Further details of the 
Cox model development process are provided in Supplementary Methods 3, with the final set of included risk 
factors outlined in Supplementary Table 1.

In order to analyze temporal trends in absolute risks of stroke among Chinese individuals from 2004 to 2014, 
the Cox models (developed based on second resurvey data only) were retrospectively applied, for each individual, 
to risk factor measurements also recorded at the baseline and first resurvey. This yielded a total of three separate 
risk estimates for each individual, with each estimate based on risk factor measurements recorded at a single 
visit. Population-level and individual-level trends in the risk estimates were analyzed using linear mixed effects 
models (LMEs) (Supplementary Methods 3).

Finally, to assess the value of machine learning (ML) approaches and sequential measurements of risk factor 
inputs for 3-year prediction of stroke, we developed sex-specific gradient boosted tree (GBT) models using four 
modeling approaches and compared their performance against the Cox models. GBT was chosen because of its 
ability to model non-linear interactions between risk factor inputs, incorporate longitudinal features, and achieve 
best-in-class performance for stroke risk prediction in other recent studies14,17.

In the first GBT modeling approach, we used only single measurements of risk factor inputs recorded at the 
second resurvey in order to provide a direct comparison against the Cox models, which were developed using 
the same input data. In the second GBT modeling approach, we used the raw sequential measurements of risk 
factor inputs recorded at all three visits (i.e., baseline, first resurvey, second resurvey) with no further feature 
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engineering. In the third GBT modeling approach, we engineered features to provide a longitudinal summary of 
the sequential measurements recorded at all three visits, in a similar manner reported by Cho et al.13 and Zhao 
et al.14. Namely, we provided the models with (i) mean, standard deviation, minimum, and maximum values 
recorded for continuous risk factor inputs, and (ii) mean and standard deviation of recorded values for binary 
risk factor inputs. In the fourth GBT modeling approach, we engineered features to provide a longitudinal sum-
mary of the Cox-generated risk estimates at all three visits and combined these with single measurements of 
risk factor inputs recorded at the second resurvey. This fourth modeling approach was adapted from two-stage 
modeling approach described by Sweeting et al.10, and the engineered features included (i) individual-level 
random slopes and random intercepts from the linear mixed effects models, (ii) variance of Cox-generated risk 
estimates across the three visits, and (iii) absolute changes in Cox-generated risk estimates between consecutive 
visits. While the third modeling approach incorporated longitudinal summaries of the individual risk factor 
inputs, the fourth modeling approach provided a longitudinal summary of the overall stroke risk estimates for 
each individual. All GBT hyperparameters were tuned to maximize AUC using repeated threefold cross-validated 
grid searches within the training set, and all GBT models were trained and calibrated with isotonic regression 
using threefold cross-validation. Additional details of the GBT model development process are provided in 
Supplementary Methods 3.

All models were evaluated for predictive performance using the test set, in which we compared the per-
formance of the Cox and GBT models for predicting stroke during the 3 years following the second resurvey. 
Model discrimination and calibration were assessed using area under the receiver operating characteristic curve 
(AUC) and χ2 statistics from the Hosmer–Lemeshow (for binary classification models) and Nam-D’Agostino 
(for survival models) tests. Confidence intervals for AUCs were constructed using 1,000 bootstrapped samples 
from the test set. Better risk discrimination was indicated by higher AUCs, and better calibration was indicated 
by lower χ2 values. To assess the changes in predictive performance of each modeling approach against the Cox 
models, we performed Delong’s test18 for ΔAUCs and calculated category-free net reclassification index (NRI) 
and integrated discrimination improvement (IDI). Statistical analyses were performed using Python version 
3.7.0 and R version 3.6.1.

Results
Among the 13,753 CKB participants (5,152 men; 8,601 women), 644 incident cases of first-ever stroke (267 in 
men; 377 in women) were recorded within the first three years following the second resurvey. Compared with 
those who had no stroke, individuals who had a first stroke were older and more likely to have prior history of 
coronary heart disease (CHD), diabetes, or hypertension (Table 1). In both men and women, age, prior history 
of coronary heart disease, diabetes, use of antihypertensive medication, and mean levels of systolic blood pres-
sure increased from baseline to second resurvey, while the prevalence of current smoking decreased. Additional 
details about the timing of risk factor measurements are provided in Supplementary Fig. 1. Likewise, further 
details about the time-evolution in distributions of well-established stroke risk factors are provided in Supple-
mentary Figs. 2–7.

According to the Cox models, these temporal risk factor trends yielded increasing 3-year predicted stroke 
risks separately in individuals with and without stroke (Fig. 1). On average, 3-year predicted stroke risks increased 
by 0.3% per annum in men and 0.2% per annum in women, but these risks differed substantially between 
individuals (Fig. 1). Among those with stroke, predicted risk increased 1.0% per annum in men and 0.8% per 
annum in women, with average predicted risk at second resurvey being 13.9% in men and 12.0% in women. 
In contrast, among those without stroke, predicted risk increased only 0.3% per annum in men and 0.2% per 
annum in women, with average predicted risk at second resurvey being 4.3% in men and 3.7% in women. In 
both sexes, the predicted stroke risk at second resurvey was highly correlated with the annual increase of risk 
for each individual over the previous decade (men: r = 0.91, women: r = 0.89; Fig. 2).

The Cox models, which estimated risk of stroke based on a single measurement of risk factors at second 
resurvey, predicted incident stroke in the subsequent three years with good discrimination (AUC: 0.779 in men, 
0.756 in women) and calibration (χ2: 16.8 in men, 17.3 in women) (Table 2). Overall, the GBT models yielded 
slightly higher AUCs in men (0.795–0.811) and lower AUCs in women (0.724–0.750) than the Cox models 
(Table 2). However, none of these differences were statistically significant (Table 3) and there was substantial 
variability across bootstrapped samples. Except for the fourth GBT modeling approach (longitudinal summary 
of stroke risk estimates at three visits + single measurement of risk factor inputs at most recent visit), the GBT 
models generally appeared to be better calibrated than the Cox models in both men and women (Table 2; Sup-
plementary Figs. 8–12). The NRI and IDI values were negative for almost all GBT models. However, once again, 
the confidence intervals of these values typically included zero (no difference), indicating no significant change 
in their predictive utility.

Rankings of the top-10 most important features with corresponding Gini importance scores for all GBT mod-
els are provided in Supplementary Tables 2–3. Across all models, age, blood pressure variables, measurements of 
size and weight, exercise, and region were identified as important features. However, in the fourth GBT modeling 
approach, in which a longitudinal summary of the Cox-risk estimates were provided as inputs, these longitudinal 
features had higher Gini importance scores than any individual risk factor inputs across all of the GBT models.

Discussion
The present report highlighted temporal changes in mean levels of major stroke risk factors and 3-year abso-
lute risks of stroke in 13,753 geographically-diverse Chinese adults, including 644 incident cases of first stroke 
occurring between 2004 and 2014. Among men and women who were stroke-free until the second resur-
vey (2013–2014), the predicted absolute risks of stroke throughout the previous decade increased with each 
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consecutive year of follow-up, together with increasing numbers of individuals with coronary heart disease and 
diabetes, and increased use of blood pressure-lowering medication. Despite wide variations between individuals, 
the annual rate of increase of predicted stroke risk was about 3 to fourfold greater for individuals with stroke 
compared with those without stroke in the 3 years following the second resurvey. These results suggest that 
temporal trends in stroke risk can be informative for prediction of incident stroke events.

Nevertheless, while temporal changes in risk are informative for prediction of stroke, the sequential meas-
urements provided limited additional value for prediction compared with risk factors recorded at a single visit. 
Because of the high correlation between an individual’s predicted risk at second resurvey and their per annum 
increase in risk, the predicted risk at the most recent visit was informative of an individual’s temporal risk profile 
prior to that visit. The individuals at highest risk for stroke at the second resurvey (2013–2014) were largely the 
same individuals with the fastest growing risk throughout the previous decade. This correlation is an estab-
lished phenomenon in epidemiology referred to as the “horse-racing effect”19, by analogy to the fact that horses 
leading a race at any given moment are those which have been running the fastest up to that point. Thus, the 
incorporation of temporal information from sequential risk factor measurements did not yield any improved 
risk prediction compared to models developed using single measurements of risk factor inputs. The results of 
the present study confirm the utility of single rather than sequential measurements for risk prediction of stroke, 
as currently recommended in clinical practice4,5.

Other studies10–14 have investigated the utility of sequential risk factor measurements for improving prediction 
of CVD, but they have not focused specifically on prediction of stroke or risk assessment in a Chinese population. 
Consistent with the findings of the present study, comparable analyses of approximately 13,000 individuals from 
the Atherosclerosis Risk in Communities (ARIC) study reported no improvements in AUC/C-index for 3-year 
risk prediction of CVD10 (albeit with large standard errors due to a small number of events), or for prediction 
of coronary heart disease11, despite exploring a variety of modeling approaches. A larger study involving almost 
200,000 participants from the Emerging Risk Factors Collaboration explored the inclusion of repeated risk fac-
tor measurements for 5-year CVD prediction, and reported statistically significant but marginal improvements 
of C-index ranging from 0.0023 to 0.004012. Meanwhile, a study of 0.5 M Korean adults found more substantial 
improvements in CVD prediction (ΔC-index: 0.05–0.06) by including a longitudinal summary of sequential 
risk factor measurements recorded at periodic health screenings13, and a study using electronic health records 
data of 109,490 individuals from the Vanderbilt University Medical Center reported improvements in AUC of 
0.05–0.06 for 10-year CVD prediction using GBT models with longitudinal inputs.

The range of findings between these studies can potentially be attributed to differences between study set-
tings, risk factors included, and the frequency or quantity of repeated risk factor measurements. It has been 

Table 1.   Distribution of major risk factors for stroke in individuals at baseline (2004–2008), 1st resurvey 
(2008), and 2nd resurvey (2013–2014) in the China Kadoorie Biobank. Note: “No Stroke” columns include 
individuals who remained stroke-free until being censored, even if lost to follow up before 3 years.

Men

Risk factor

Baseline (2004–2008) Resurvey 1 (2008) Resurvey 2 (2013–2014)

No stroke 
(n = 4,885)

Total stroke 
(n = 267)

No stroke 
(n = 4,885)

Total stroke 
(n = 267)

No stroke 
(n = 4,885)

Total stroke 
(n = 267)

Age, mean, yr 51.3 60.3 53.9 62.9 59.3 68.4

Current smok-
ing, % 68.7 61.4 65.8 58.1 55.9 50.4

Coronary heart 
disease, % 1.8 7.9 2.8 9.7 5.9 13.9

Age 65 yrs + , % 11.5 33.7 16.2 46.4 29.3 64.4

Diabetes, % 3.5 7.1 5.6 13.1 9.3 16.9

BP-lowering treat-
ment, % 6.6 12.7 9.7 21.3 18.9 27.3

SBP, mean, mmHg 132 140 126 134 135 147

Women

Risk factor

Baseline (2004–2008) Resurvey 1 (2008) Resurvey 2 (2013–2014)

No stroke 
(n = 8,224)

Total stroke 
(n = 377)

No stroke 
(n = 8,224)

Total stroke 
(n = 377)

No stroke 
(n = 8,224)

Total stroke 
(n = 377)

Age, mean, yr 50.1 57.1 52.7 59.8 58.2 65.3

Current smok-
ing, % 2.9 4.2 2.5 3.2 2.2 2.4

Coronary heart 
disease, % 2.3 6.1 3.4 9.5 6.7 17.2

Age 65 yrs + , % 7.9 23.6 12.0 30.2 24.1 50.9

Diabetes, % 4.1 10.3 7.0 16.2 10.8 20.7

BP-lowering treat-
ment, % 8.8 15.4 11.6 20.4 20.7 32.6

SBP, mean, mmHg 130 140 124 133 135 147
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suggested that predictive improvement, if any, from sequential risk factor measurements may reflect the ability 
to account for measurement error and variability in risk factors, with no substantial further benefit derived 
from estimating individual-level slopes of risk factors over time10,12,13. Consequently, it is not surprising that the 
predictive benefit of longitudinal risk factor data can vary greatly depending on the particular characteristics of 
a study and the underlying cohort. While the present study had appropriate statistical power to detect substantial 
improvements in AUC of 0.05–0.06 reported by Cho et al.13 and Zhao et al.14, greater statistical power would 
be required to detect the much more modest improvements of less than 0.01 reported by Paige et al.12. Since 
AUC is well-known to be insensitive for detecting small differences in discriminative ability between models20, 
we have also characterized the models in this study using NRI and IDI. The validity of using these metrics has 

Figure 1.   Temporal trends in predicted 3-year stroke risk for a random sample of (a) 50 men and (b) 50 women 
from the China Kadoorie Biobank, stratified by incident stroke outcomes.
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been criticized for their risk of false positive indications of predictive differences between models21. However, 
even for these overly sensitive metrics, there was little or no evidence for differences in predictive performance 
between each modeling approach.

The limitations of the present study include (i) lack of data on certain established risk factors for stroke such as 
atrial fibrillation (AF) and blood cholesterol levels; (ii) quality of self-reported questionnaire data about medical 
history of coronary heart disease or diabetes; and (iii) inclusion of only three sequential measurements of risk 
factors recorded over 10 years. Importantly, a recent population-based study of Chinese adults involving com-
parable age groups22, reported that the prevalence of AF is low in China (0.71% in adults aged 35 years or older). 
Consequently, although AF is an important predictor of stroke, its omission is likely to have a material effect for 
only a small proportion of individuals in the present study. Similarly, mean blood levels of total cholesterol and 
LDL cholesterol are well-known to be lower in China than in Western populations and may be less important 
for stroke risk prediction in this population23. To adjust for errors in self-reported prior medical history, we 
considered an individual to have a history of coronary heart disease or diabetes if they were ever reported or 
detected (e.g., by blood glucose screening) to have such disease on any previous visit. Finally, while the present 

Figure 2.   Relationship between predicted 3-year stroke risk at second resurvey and per annum increase in 
predicted risk (fixed effect slope + random effect slope from linear mixed effects model) for (a) men and (b) 
women in the China Kadoorie Biobank. Black points: individuals with no stroke; Red points: individuals with 
stroke.

Table 2.   Comparison of discrimination and calibration performance for prediction of 3-year risk of stroke 
using Cox and Gradient Boosted Tree (GBT) modeling approaches. a  Longitudinal summary of risk factor 
inputs included (i) mean, standard deviation, minimum, and maximum values recorded for continuous risk 
factor inputs, and (ii) mean and standard deviation for binary risk factor inputs. b  Longitudinal summary 
of risk estimates included individual-level random slopes and random intercepts from linear mixed effects 
models; variance of Cox-generated risk estimates across three visits; and absolute changes in Cox-generated 
risk estimates between consecutive visits.

Modeling Approach and Included Data

Men Women

Discrimination 
AUC​
[95%CI]

Calibration 
χ2

(p-value)

Discrimination 
AUC​
[95%CI]

Calibration 
χ2

(p-value)

Single measurement of risk factor inputs

Cox: Single measurement at most recent visit 0.779
[0.709–0.845]

16.8
(p = 0.05)

0.756
[0.692–0.814]

17.3
(p = 0.04)

GBT: Single measurement at most recent visit 0.811
[0.753–0.867]

5.6
(p = 0.78)

0.743
[0.681–0.798]

7.3
(p = 0.61)

Sequential measurements of risk factor inputs

GBT: Sequential measurements at three visits 0.795
[0.721–0.858]

1.9
(p = 0.99)

0.741
[0.677–0.796]

14.3
(p = 0.11)

GBT: Longitudinal summary a of sequential measurements at three visits 0.789
[0.721–0.851]

5.0
(p = 0.83)

0.724
[0.660–0.782]

9.2
(p = 0.42)

GBT: Longitudinal summary of stroke risk estimates b at three visits + Single measurement at most recent visit 0.786
[0.719–0.851]

29.5
(p < 0.01)

0.750
[0.683–0.811]

20.2
(p = 0.02)
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study included only three sequential measurements of risk factors recorded over 10 years, increased number or 
frequency of measurements may still be useful for improving stroke prediction and should be investigated further.

Conclusions
Individuals at highest risk for stroke in China from 2013 to 2014 were largely the same individuals who had the 
fastest growing risk of stroke throughout the previous decade. However, in this population, measurements of 
CVD risk factors for prediction of stroke at three separate surveys had limited additional utility compared to 
those recorded at a single survey. These results provide further support for current guidelines for clinical practice, 
which suggest that stroke prediction is best estimated and cost-effectively implemented using models involving 
measurements of major risk factors recorded at a single visit.

Ethics approval.  Ethical approval for CKB was obtained from the Oxford University Tropical Research Eth-
ics Committee and the Chinese Center for Disease Control and Prevention Ethical Review Committee.

Consent to participate.  All participants provided written informed consent.

Consent for publication.  All authors approved the final version of this report.

Data availability
The data supporting analyses included in the present study are available from the corresponding authors upon 
reasonable request.
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Received: 10 March 2021; Accepted: 5 July 2021

References
	 1.	 Institute for Health Metrics and Evaluation (IHME). GBD Compare. Seattle, WA: IHME, University of Washington, 2015. http://​

vizhub.​healt​hdata.​org/​gbd-​compa​re. Accessed January 18, 2021
	 2.	 Goff, D. C. Jr. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of 

Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S74–S75 (2014).
	 3.	 Dufouil, C. et al. Revised Framingham stroke risk profile to reflect temporal trends. Circulation 135, 1145–1159 (2017).
	 4.	 Meschia, J. F. et al. Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American 

Heart Association/American Stroke Association. Stroke 45, 3754–3832 (2014).
	 5.	 Wang, Y. et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: Executive summary 

and 2019 update of the management of high-risk population. Stroke Vasc Neurol. 5, 270–278 (2020).
	 6.	 Graham, I. et al. European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on 

cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of 
Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine 
societies and by invited experts). Eur Heart J. 28, 2375–2414 (2007).

Table 3.   Net reclassification index (NRI) and integrated discrimination index (IDI) of Cox and Gradient 
Boosted Tree (GBT) modeling approaches for predicting 3-year risk of stroke. a  Longitudinal summary of risk 
factor inputs included (i) mean, standard deviation, minimum, and maximum values recorded for continuous 
risk factor inputs, and (ii) mean and standard deviation for binary risk factor inputs. b  Longitudinal summary 
of risk estimates included individual-level random slopes and random intercepts from linear mixed effects 
models; variance of Cox-generated risk estimates across three visits; and absolute changes in Cox-generated 
risk estimates between consecutive visits.

Modeling approach and included data

Men Women

ΔAUC​
(p-value)

NRI
[95%CI]

IDI
[95%CI]

ΔAUC​
(p-value)

NRI
[95%CI]

IDI
[95%CI]

Single measurement of risk factor inputs

Cox: Single measurement at most recent visit Referent Referent Referent Referent Referent Referent

GBT: Single measurement at most recent visit  + 0.032
(p = 0.08)

 + 0.14
[−0.17, 0.44]

−0.03
[−0.08, 0.01]

−0.013
(p = 0.59)

−0.25
[−0.51, 0.01]

−0.03
[−0.06, −0.01]

Sequential measurements of risk factor inputs

GBT: Sequential measurements at three visits  + 0.016
(p = 0.57)

−0.20
[−0.52, 0.12]

−0.03
[−0.09, 0.02]

−0.015
(p = 0.42)

−0.13
[−0.39, 0.14]

−0.03
[−0.06, −0.01]

GBT: Longitudinal summary a of sequential measurements at three visits  + 0.010
(p = 0.77)

−0.13
[−0.45, 0.18]

−0.05
[−0.11, 0.01]

−0.032
(p = 0.14)

−0.29
[−0.55, −0.03]

−0.04
[−0.06, −0.01]

GBT: Longitudinal summary of stroke risk estimates b at three visits + Single measure-
ment at most recent visit

 + 0.007
(p = 0.38)

−0.02
[−0.34, 0.30]

0.00
[−0.02, 0.02]

−0.006
(p = 0.32)

 + 0.15
[−0.11, 0.42]

0.00
[−0.01, 0.02]
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http://vizhub.healthdata.org/gbd-compare
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