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Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality
worldwide. Electrocardiogram (ECG) is an important clinical measurement of
cardiac activity. The major challenge in incorporating ECG time-series into
CVD risk metrics is extracting features and classifying the ECG time-series into
appropriate ECG abnormality groups. Therefore we set out to use machine learning
to address this challenge.

We used machine learning to analyse 12-lead, 500Hz, 10-s electrocardiogram
(ECG) data provided by the Mortara device to perform ECG signal classification in
a large cohort study of 25,019 participants in the China Kadoorie Biobank (CKB).
We compared the performance of 11 representative traditional machine learning
algorithms for four-class classification of normal, “arrhythmia”, “ischemia”, and
“hypertrophy”. We extracted 72 novel features and improved the 4-class classification
accuracy from 53.5% using only Mortara features to 77.3%. We demonstrated
that machine learning models could classify ECG with high accuracy without any
knowledge of the diagnosis criteria, and the top features identified by the best model
(SGB-F84) were very di�erent from the ones commonly used in clinic.

We further proposed a novel neural network architecture family - the Layer-wise
Convex Network (LCN), and a neural architecture search algorithm - the AutoNet,
to classify the ECG raw signals end-to-end without signal denoising, preprocessing,
nor feature extraction. We benchmarked the AutoNet-LCN with the state-of-the-
art ResNet-based model on three datasets: CKB, PhysioNet, and ICBEB. The
AutoNet generated LCNs has no more than 2% of the parameters compared to
the state-of-the-art architectures, outperformed the latter on all three datasets
by a wide margin (9-16% improvement in terms of F1 score) within 2 hours of
architecture search time, in comparison to weeks to months of trial-and-error by
human researchers in the conventional deep learning model development process.
The neural networks found by AutoNet-LCN are robust to varying noise levels,
ECG signal length, sampling frequency, number of leads, amplitude scale, ECG
abnormality types, and cohort sizes of the study populations.

Finally, to address the issue that the labels in the CKB were provided by the
deterministic rule-based Minnesota code, which in theory can be approximated to
arbitrary precision by a neural network, we proposed a novel paradigm: learning from



alternative labels. We provided proof-of-concept by predicting the participants’ age
from the 10-s ECG waveforms in the CKB dataset using AutoNet-LCN. We trained
the AutoNet-LCN on the normal population and tested on the normal, “arrhythmia”,
“ischemia”, and “hypertrophy” classes. We developed the gender-agnostic model
as well as the gender-stratified mode, achieving mean absolute error of 5.7 years
(R2 = 44.1%), 5.6 years (R2 = 45.4%), and 6.2 years (R2 = 34.7%) for gender
agnostic, female, and male models in the normal class, respectively. The absolute
deviation of the predicted “heart age” from one’s chronological age suggests higher
CVD risks, and a high “heart age” was associated with “hypertrophy”, “ischemia”,
and “hypertension”, while a low “heart age” was associated with “arrhythmia” and
“hypotension”. The “heart age” may be considered as an intuitive risk score for
cardiovascular health and warrants further study of its associations with di�erent
CVD outcomes.
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1
Introduction

1.1 Clinical Need

Cardiovascular diseases (CVDs), including coronary heart disease, cerebrovascular

disease, peripheral arterial disease, rheumatic heart disease, congenital heart

disease, deep vein thrombosis, and pulmonary embolism, are the leading causes of

mortality worldwide and also in China. There are large geographical di�erences

in CVD mortality rates in China, suggesting appropriate measures may be taken

to prevent and e�ectively treat the disease. Identifying risk factors for CVD in

the Chinese population could help in providing advice on lifestyle changes and

enable clinicians to discover appropriate treatments for specific CVD outcomes

to reduce mortality and healthcare expenditure. Many risk factors have been

identified by long-term prospective studies, such as obesity (Arsanjani, Dey, et al.

2015), diabetes (Association et al. 2007), metabolic syndrome (Dekker et al. 2005),

smoking (Tracy et al. 1997), hypertension (Colombet et al. 2000), and genetic risk

factors (Gamberger, Lavrač, and Krstačić 2003).

Electrocardiogram (ECG) is a widely used screening and diagnostic tool for

CVD, and ECG findings are additional CVD risk factors included in large cohort

studies. For example, in the Framingham study, Kannel et al. reported that left

ventricular hypertrophy on ECG tracings in asymptomatic adults was a strong

1



2 1.1. Clinical Need

predictor of cardiac morbidity and mortality (Kannel, Gordon, and O�utt 1969);

in another study of 12,142 patients with symptoms of cardiac ischaemia at rest

and signs of myocardial ischaemia confirmed by ECG within 12 hours of admission,

22% had T wave inversion, 28% had ST-segment elevation, 35% had ST-segment

depression, and 15% had a combination of ST-elevation and depression (Kannel,

Anderson, et al. 1987). Savonitto demonstrated the use of ECG at presentation

allowed immediate risk stratification of patients across the spectrum of the acute

coronary syndrome (Kannel, Anderson, et al. 1987). Individual markers on ECG,

such as spatial QRS angle has also been shown to be a stronger predictor of

cardiac mortality than the conventional CVD risk factors in older population and

provides additional value for prediction of fatal cardiac events (Kannel, Anderson,

et al. 1987; Savonitto et al. 1999).

However, the interpretation of ECG requires clinical knowledge, which is subject

to substantial inter-personal variation and human error. Computerised ECG has

been developed to aid this process and is typically based on rule-based coding

schemes such as the Minnesota Code (Prineas, Crow, and Z.-M. Zhang 2009),

which was first developed in the 1960s, and few modifications were made since

then. Minnesota Codes use common heuristics and fixed voltage and duration

thresholds for diagnosis. For example, the Minnesota Code for high left R amplitude

patterns is “if any of the following criteria are present: R amplitude > 26 mm

in either lead V5 or V6; R amplitude > 20mm in any of leads I, II, III, have

(see figure confirmation report 6.2); R amplitude > 12mm in lead aVL” (Prineas,

Crow, and Z.-M. Zhang 2009). This approach has a limited accuracy as it does

not take interpersonal variation and signal quality into consideration. However, it

can be normal for lean individuals as the electrodes are closer to the heart, and

tall QRS may not be observed on the ECG of obese patients. An absolute voltage

threshold would result in false-positive indications of sudden death for the lean

individual and false-negative for the obese individual. In clinical practice, the ECG

is not used as a standalone diagnosis tool but is combined with other medical data,

such as age, gender, physical symptoms, CT, MRI scan, blood pressure, medical
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1. Introduction 3

history, genetics, and lifestyle information, which are available in electronic health

records. While incorporating all this information can improve the computer-aided

diagnosis, it is a cumbersome process to develop heuristic rules to include all the

above data into the diagnosis criteria.

Risk stratification in large cohort studies typically uses statistical tests and

simple regression models to study the significance and e�ect of risk factors on

clinical outcomes. Cox proportional hazards regression model (Syed et al. 2011),

the ‰2 test (Vapnik 2013), logistic regression (Consortium 2009), Fisher’s exact

test (Kubo et al. 2007; Wasan et al. 2013), the t-test (Kubo et al. 2007), and

linear regression (J. M. Hill et al. 2003) are among the most familiar methods to

the medical community. Scoring systems involving multiple risk factors (blood

pressure, total cholesterol, high-density lipoprotein cholesterol, smoking, glucose

intolerance, and left ventricular hypertrophy) have been evaluated to predict the

risks of myocardial infarction, coronary heart disease, stroke, and death from these

diseases. A limitation of conventional statistical methods is that when the feature

dimension increases, commensurately larger sample sizes are required (McKinney

et al. 2006). With an increasing number of risk factors being identified, and especially

with abundant genetic and lifestyle data now available, it can be expected that

statistical approach will face di�culty as the “healthy” range of the newly-identified

factors are hard to obtain or quantify.

Machine learning has the advantage of estimating the associations between risk

factors and disease without prior knowledge of accurate reference values of the risk

factors. Such approaches have been widely used for risk evaluation and diagnosis of

chronic diseases (Oresko et al. 2010; Rajkumar and Reena 2010; Katritsis et al. 2013).

In CVD, Knuiman et al. have predicted coronary mortality in the Busselton cohort

using a discriminative decision tree (Knuiman and Vu 1997); Lapuerta et al. used a

neural network for prediction of coronary disease risk using serum and lipid profiles

(Lapuerta, Azen, and LaBree 1995); Gamberger et al. used logistic regression and

multilayer perceptrons to predict CVD risks from the INDIANA (Individual Data

Analysis of Antihypertensive Intervention Trials) cohort (Gamberger, Lavrač, and
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4 1.2. ECG Risk Analysis using Machine Learning: Existing Methods

Krstačić 2003); and Das et al. performed heart disease diagnosis using ensembles

of neural networks (Das, Turkoglu, and Sengur 2009). ECG information may be

incorporated through categorised software findings (Rajkumar and Reena 2010;

Berikol, Yildiz, and Özcan 2016) or heuristically extracted features (Alickovic and

Subasi 2015; Arsanjani, Dey, et al. 2015; Mitra and Samanta 2013; Homaeinezhad

et al. 2012). A classic example is to discover novel patterns in time series (Syed

et al. 2011), where Syed et al. improved risk stratification after acute coronary

syndrome by 7-13% using three computational ECG biomarkers: morphologic

variability, symbolic mismatch, and heart rate motifs (Syed et al. 2011). These

features, however, are all unintuitive to human inspection but were shown to be

useful indicators of ECG risks.

1.2 ECG Risk Analysis using Machine Learning:
Existing Methods

The typical 3-step framework for risk assessment using traditional machine learning

on ECG data is feature extraction, classification, and model evaluation (Gamberger,

Lavrač, and Krstačić 2003). The performance of the risk models is usually evaluated

by how accurately the model predicts the labels that are regarded as the “gold

standard” such as the clinical diagnosis. The aim is to improve clinically relevant

evaluation metrics such as classification accuracy, sensitivity, and specificity with

respect to the “gold standard”.

In the classification step, the most commonly used classifiers include support

vector machine (SVM) (Berikol, Yildiz, and Özcan 2016; Übeyli 2008a; Özdemir

and Barshan 2014; Kim et al. 2009; Q. Li, Rajagopalan, and Cli�ord 2013;

Karpagachelvi, Arthanari, and Sivakumar 2011; C. Yu et al. 2006; Khandoker,

Gubbi, and Palaniswami 2009; Kampouraki, Manis, and Nikou 2008; Bsoul, Minn,

and Tamil 2010; Monte-Moreno 2011), neural networks (Özdemir and Barshan 2014;

Kim et al. 2009; Mitra and Samanta 2013; Monte-Moreno 2011; Tantimongcolwat

et al. 2008; Y. Sun and A. C. Cheng 2012), the extreme learning machine (ELM)

(Zavar et al. 2011; Kim et al. 2009; Karpagachelvi, Arthanari, and Sivakumar 2011),
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1. Introduction 5

random forest (Monte-Moreno 2011; Hsich et al. 2011), k-nearest neighbour (KNN)

(Özdemir and Barshan 2014; Karpagachelvi, Arthanari, and Sivakumar 2011),

Bayesian decision making (BDM) (Özdemir and Barshan 2014; Luz et al. 2013),

ensembles (Arsanjani, Xu, et al. 2013), fussy finite state machines (Pantelopoulos

and Bourbakis 2010), stochastic Petro nets (Pantelopoulos and Bourbakis 2010),

evolution algorithms (Zavar et al. 2011), self-organizing maps (Tantimongcolwat

et al. 2008), radial basis function networks (Kim et al. 2009), and linear regression

(Monte-Moreno 2011), and decision trees (Arsanjani, Dey, et al. 2015; Hsich et al.

2011; Kurz et al. 2009).

For feature extraction and selection, the most commonly used methods include

the wavelet transform (El-Dahshan 2011; Zavar et al. 2011; Übeyli 2008b), genetic

algorithms (El-Dahshan 2011), dynamic time warping (DTW, Syed et al. 2011;

Özdemir and Barshan 2014), principle component analysis (PCA, Kim et al. 2009),

symbolic aggregate approximation (SAX, Syed et al. 2011), correlation-based feature

selection (Mitra and Samanta 2013), linear forward selection (Mitra and Samanta

2013), power-spectrum methods (Kim et al. 2009), Lyapunov exponents (Zavar

et al. 2011) among many others.

Traditional machine learning models depend heavily on feature engineering;

handcrafting salient features requires human time and e�ort as well as domain

knowledge. For example, expertise in signal processing is required to obtain a good

set of ECG features. The handcrafted features are often not transferable, and

redesigning feature sets is required for di�erent tasks. In contrast to traditional

machine learning approaches, deep learning-based approaches can self-learn useful

features from the ECG signals. Numerous deep learning models have been proposed

for CVD detection in ECG. A comprehensive review is provided in Chapter 3.

Since the major challenge in incorporating ECG time-series into CVD risk

metrics is extracting features and classifying the signals into appropriate ECG

abnormality groups, this thesis looks at ECG-associated risk evaluation for CVD

from the perspective of ECG time-series classification. There is a large body of

literature concerning ECG classification, which reports high classification accuracy,
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6 1.3. Structure of the Thesis

especially concerning arrhythmia beat classification. However, existing studies are

mostly limited to small sample size in terms of recruited study participants. Also,

most studies only concern the classification of normal vs abnormal beats from

a single CVD group, such as normal vs di�erent types of arrhythmia beats, or

normal vs ischemic beats, while rarely study a dataset where ECG abnormalities

associated with a broad range of CVD conditions such as arrhythmia, ischaemia,

and hypertrophy co-exist. In comparison, the significant challenges of the main

dataset this thesis studies - the China Kadoorie Biobank dataset (described in detail

in Chapter 4) - has a large sample size (n = 25, 019), short ECG recording length

(t = 10s), noisy labels due to a lack of human expert labelling, and unbalanced

classes with a large number of data points in the “middle ground” between di�erent

classes. This thesis aims to address these unique challenges.

1.3 Structure of the Thesis

The structure of this thesis is as follows: Chapter 2 provides an overview of the

medical background of the CVD physiology and pathology, and an introduction

to the ECG; Chapter 3 provides a comprehensive review of ECG classification

using deep learning; Chapter 4 describes the data stricture of the three datasets

studied in this thesis and provides descriptive statistical analysis of the CKB

data. The next chapter studies a range of classical machine learning methods

except for neural networks and uses extracted features from the “typical cycle”,

provided by the Mortara device, and analyse which features the machine learning

models consider important; Chapter 6 analyses the raw ECG signals directly, in

which we introduce a novel theorem, called the Layer-wise Convex Network, and

a heuristic network architecture search algorithm - the AutoNet algorithm, which

can design LCNs automatically end to end given any dataset and machine learning

task. In Chapter 7, we address the issue that the targets in the CKB dataset are

provided by the deterministic rule based Minnesota Code, and proposes a novel

paradigm of learning using alternative labels, and built models using AutoNet-LCN

to predict the ECG-derived age and analyse its association with CVD outcomes
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1. Introduction 7

and with blood pressure. Chapter 8 summarises the above work and outlines

potential directions for the future work.
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2
Medical Background

2.1 The Physiology of Human Heart

2.1.1 Anatomy of the Heart

The human heart has four chambers: right atrium, right ventricle, left atrium, and

left ventricle. The right atrium receives venous blood from the superior vena cava,

inferior vena cava, coronary sinus, and anterior cardiac veins. The right ventricle

pumps blood into the pulmonary artery and is connected to the right atrium via

the tricuspid valve and connected to the pulmonary trunk by the pulmonary valve.

The left atrium receives oxygenated blood from the four pulmonary veins. The

left ventricle pumps oxygenated blood into the aorta through the pulmonary valve

and receives blood from the left atrium through the mitral valve.

2.1.2 Cardiac Myocytes

The heart muscle cells are known as cardiac myocytes. The electrical changes

occurring during the activation phase of an excitable cell (nerve cells and muscle cells)

are called “depolarisation”, and those during relaxation are called “repolarisation”.

During depolarisation, a small amount of calcium cations (Ca2+) enters the cell

through the L-type voltage-gated Ca2+ channels, which increases the concentration

of Ca2+ in the gap between the sarcolemma and the sarcoplasmic reticulum (SR),

9



10 2.2. Introduction to Electrocardiogram

which activates the Ca2+ sensitive Ca2+-release channels in the SR to release a large

amount of Ca2+ to enable the myocyte to contract. When the Ca2+ concentration

exceeds the resting level, Ca2+-ATPase pumps Ca2+ from the cytosol back to

the SR, which reduces the concentration of Ca2+ to the resting level, leading to

the relaxation of the myocyte.

2.1.3 The Cardiac Conduction System

The conduction sequence of a normal cardiac cycle begins with sinoatrial (SA)

node depolarisation and progressively results in atrial contraction, atrioventricular

(AV) node depolarisation, bundle of His depolarisation, left and right bundle

branches of His depolarisation, Purkinje fibre depolarisation, and ventricular

contraction, respectively.

The SA node is the pacemaker of the heart and is located at the junction of

the superior vena cava and the right atrium. The AV node lies in the interatrial

septum immediately above the opening of the coronary sinus. The normal heart

beats at 60-100 beats per minute (bpm).

2.2 Introduction to Electrocardiogram

The electrical signals created by the cardiac myocytes can be detected by the

electrodes placed on the body surface. An electrocardiogram (ECG) is a graphical

interpretation of the electrical activity of the heart. The wave of depolarisation

travelling towards an electrode produces a positive deflection and the wave of

depolarisation travelling away from an electrode produces a negative deflection. A

typical electrocardiograph (ECG) cycle is shown in figure 2.1. In clinical practice,

the ECG is usually printed on standard ECG grids, as shown in figure 4.1. The

smallest squares are 1 mm by 1 mm, and the horizontal 1 mm represents 0.04s,

and the vertical 1 mm represents 0.1 mV.
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2. Medical Background 11

Figure 2.1: Schematic plot of an ECG cycle. (reproduced from Vaswani et al. 2015)

Table 2.1: The positions of the ten electrodes in a standard 12-lead ECG.

Electrode Position
RA right arm
LA left arm
LL left leg
RL right leg (ground)
V1 right sternal edge, fourth intercostal space
V2 left sternal edge, fourth intercostal space
V3 midway between V2 and V4
V4 left mid clavicular line, fifth intercostal space
V5 midway between V4 and V6
V6 left mid-axillary line

2.2.1 The Standard 12-Lead ECG

The standard 12-lead ECG includes 10 electrodes: the 4 electrodes on the extremities

of each limb yielding 6 limb leads (I, II, III, aVF, aVL, aVR), and the 6 electrodes

on the precordium generate 6 precordial leads (V1, V2, V3, V4, V5, V6). The

placement of the electrodes is shown in table 2.2. The 12 ECG leads are simply

the voltage di�erences between the 10 electrodes. When calculating the augmented

limb leads (aVR, aVL, and aVF), the average potential of the left arm (LA) and the

right arm (RA) is used as the negative pole; when calculating the precordial leads,

Wilson’s central terminal (VW = RA+LA+LL
3 ) is used as the negative pole. Because

only nine electrodes are used to calculate the 12 leads, the 12 leads are not linearly

independent - knowing any 9 of the 12 allowing calculations on the other 3 leads.
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12 2.2. Introduction to Electrocardiogram

Table 2.2: The calculation of the 12 ECG leads. Note that to distinguish precordial
leads and precordial nodes, the leads are capitalised while the nodes are not.

Lead Corresponding
Electrodes

Origin

I LA ≠ RA lateral wall
II LL ≠ RA inferior wall
III LL ≠ LA inferior wall
aVR RA ≠

1
2(LA + LL)

aVL LA ≠
1
2(RA + LL) lateral wall

aVF LL ≠
1
2(RA + LA) inferior wall

V1 v1≠
1
3(RA+LA+LL) anterior wall of right ventricle and the

posterior wall
V2 v2≠

1
3(RA+LA+LL) anterior wall of right ventricle and the

posterior wall
V3 v3≠

1
3(RA+LA+LL) anteroseptal and anterior walls of the

left ventricle
V4 v4≠

1
3(RA+LA+LL) anteroseptal and anterior walls of the

left ventricle
V5 v5≠

1
3(RA+LA+LL) lateral wall

V6 v6≠
1
3(RA+LA+LL) lateral wall

2.2.2 Waves, Segments, and Intervals

The cardiac cycle starts with the sinoatrial (SA) node on the wall of the right atrium,

which sends depolarisation wave to the right and left atria, causing them to contract,

represented as the P wave on the ECG (figure 2.1). Then the depolarisation wave

reaches the atrioventricular (AV) node which delays for 100ms, represented as the

PR interval, then causes a contraction in both ventricles. Meanwhile, the atria

repolarise and relax, represented as the QRS wave. Finally, the ventricles repolarise

and relax, represented as the T wave. Sometimes a U wave is also visible following

a T wave, but the origin of U wave is uncertain.

An ECG segment is the period between the end of one wave and the beginning

of the next wave. An interval contains at least one segment and at least one wave

(figure 2.1). The PR segment is the segment between the end of P wave and the

beginning of Q wave, and is usually flat and isoelectric. The ST segment is the

interval between the end of S wave and the beginning of T wave, and represents

ventricular repolarisation and should be isoelectric with the PR segment in healthy
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2. Medical Background 13

individuals. The PR interval is the interval between the start of the P wave and

the beginning of QRS complex, and represents the wave of depolarisation spreading

from the SA node to the ventricles. The QT interval is the interval between the

beginning of the QRS complex and the end of T wave and represents the time

for ventricles to depolarise and subsequently repolarise.

The origins, normal morphology, and abnormal indications of the ECG waves,

segments, and intervals are summarised in table 2.3.
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16 2.2. Introduction to Electrocardiogram

Figure 2.2: Cardiac axis. If the depolarization propagates towards the positive pole, it
will yield the maximum positive amplitude on the relevant ECG lead. If the depolarization
propagates more than 90o away from the positive pole, the deflect will be negative on the
relevant lead.

Table 2.4: Rules to determine axis deviation

I II aVF
Normal + + +
Right axis deviation ≠ + +
Left axis deviation + ≠ ≠

2.2.3 Cardiac Axes

The cardiac axes are the directions in which the depolarisation wave propagates

(figure 2.2), and are influenced by the size of the muscles in di�erent parts of the

heart. Therefore, the cardiac axes indicate chamber enlargement and hypertrophy.

Typically, the cardiac axes are evaluated on leads I, II, and aVF, shown in table

2.4. For example, in right ventricular hypertrophy, increased muscle thickness

causes the wave of depolarisation to deviate to the right. Hence the QRS complex

is negative in lead I and positive in II and aVF. In left ventricular hypertrophy,

the wave of depolarisation deviates to the left, hence QRS is negative in lead II

and aVF and positive in lead I.

2.2.4 ECG Interpretation

It is recommended in clinical practice to follow a systematic approach to interpret

ECG (Vaswani et al. 2015), especially for the interpretation of ECG abnormalities
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Arrhythmia

Bradycardia
Sinus
Brady-
cardia

heart
blocks

Tachycardia

narrow
complex

sinus

atrial

atrial
fibril-
lation

atrial
flut-
ter

junctional

broad
complex ventricular

fibrilla-
tion

ventricular
tachy-
cardia

SVT
with

aberrant
conduc-

tionExtra beats
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Figure 2.3: Taxonomy of arrhythmia

associated with arrhythmias. Generally, a medical practitioner examines the ECG

for information including the heart rate, rhythm, cardiac axis, and wave morphology.

The heart rate is usually taken by counting the heartbeats for 10s then multiplying

by 6. The rhythm refers to whether the waves are in the P-QRS-T order (which is

known as the sinus rhythm) and whether it is regular, regularly irregular, or

irregularly irregular.
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18 2.3. Major Cardiovascular Disease Types

2.3 Major Cardiovascular Disease Types
2.3.1 Arrhythmias

Arrhythmias are the disorders in the cardiac rhythm, which are the most common

cardiac abnormalities. The majority of cardiac arrhythmias are benign, but some

arrhythmias are life-threatening, including ventricular fibrillation and ventricular

tachycardia. A 12-lead ECG is routinely performed in all patients with suspected

arrhythmias (Vaswani et al. 2015). The first line investigations of patients with

suspected arrhythmias are 12-lead standard ECG, cardiac enzymes and selected

cases have additional investigations including ambulatory 24-hour Holter recording,

echocardiography, and electrophysiology studies. The taxonomy of arrhythmias is

illustrated in figure 2.3 and introduced in the following sections.

Bradycardia

In bradycardia, the heart rate is below 50 bpm and it a�ects 20-25% of the people

under 25 years old (Vaswani et al. 2015). Treatment is usually not required for

asymptomatic patients. Heart block is a sub-type of bradycardia, which refers to

the disorder in the cardiac conduction system. Heart block can be further divided

according to its origin:

Atrioventricular Block

Atrioventricular (AV) block refers to abnormal conduction between the atria and

the ventricles. Typically, AV block is classified into four categories:

• First-degree AV block (I-AVB): delayed atrioventricular conduction resulting

in a constant prolonged PR interval (>0.2s) on ECG.

• Second-degree AV block (II-AVB) Mobitz type I (Wenckebach): an atrioven-

tricular conduction disorder resulting in progressive prolongation of the PR

interval until a beat is dropped.

• Second-degree AV block Mobitz type II (non-Wenckebach): an atrioventricular

conduction disorder resulting in intermittently dropped beats without changes

in the PR interval.

DRAFT Printed on April 4, 2021



2. Medical Background 19

• Third-degree AV block (also known as complete heart block): the complete

failure of AV conduction resulting in loss of communication between the atria

and the ventricles, causing them to beat independently.

Bundle Branch Block (BBB)

The bundle of His splits into the left and right bundle branches. Bundle branch

block refers to a disorder in the conduction pathways along the His-Purkinje system

and results in asynchronous activation of the ventricles. BBB has two types:

• Right bundle branch block (RBBB): A conduction disorder in the right bundle

branch of His resulting in a delay in right ventricular depolarisation. The

ECG features are broad QRS complexes (Ø 0.12s), RSR pattern in V1-V3

(M pattern), long S wave duration in leads V6 and I.

• Left bundle branch block (LBBB): a conduction disorder in the left bundle

branch of His resulting in a delay in left ventricular depolarisation. Its ECG

features are broad QRS complex (Ø 0.12s), deep S wave in V1 and M-shaped

R wave in V6, and R wave progression in chest leads. A new onset LBBB

on ECG associated with chest pain should raise clinical suspicion of acute

myocardial infarction (Vaswani et al. 2015).

Tachycardia

In tachycardia the heart rate is above 100 bpm. It can be further classified into

narrow complex tachycardia, in which the QRS complex is less than 0.12s, and

broad complex tachycardia, in which QRS complex is no less than 0.12s.

Narrow Complex Tachycardia

The majority of tachycardias are narrow complex in nature. All narrow complex

tachycardias are supraventricular in origin and are benign. The sub-types of narrow

complex tachycardia include:
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• Atrial fibrillation: it is characterised by irregularly irregular heart rhythm

and absent P waves on ECG and a�ects 1% of the population and has male

dominance. The common causes of atrial fibrillation include ischemic heart

disease, hypertension, and mitral pathologies.

• Atrial flutter: it is characterised by regular, rapid atrial rate. It should always

be suspected in tachycardias with fixed atrioventricular conduction ratio (2:1).

Atrial flutter typically has an atrial rate of approximately 300 bpm and a

ventricular rate of 150 bpm. It can be caused by ischemic heart disease or

can be a normal variant in tall males. Its ECG features “sawtooth” pattern

of flutter waves.

Broad Complex Tachycardia

Broad complex tachycardia should be considered ventricular tachycardia (VT) or

ventricular fibrillation (VF) until proven otherwise, as these two conditions are the

most dangerous cardiac arrhythmias. Wide complex tachycardia is often ventricular

in origin, but may also be supraventricular with aberrant conduction (usually a

bundle branch block). They may be regular (monomorphic ventricular tachycardia)

or irregular (Torsades de Pointes, or polymorphic ventricular tachycardia) in nature.

Its subtypes include:

• Ventricular tachycardia (VT) is the tachyarrhythmia that originates from the

ventricles producing three or more successive broad QRS complexes at a rate

over 100bpm. Ventricular tachycardia and ventricular fibrillation account for

the most common causes of sudden cardiac death. Common causes of VT

are ischaemic heart disease (post-MI scarring), structural heart disease, and

electrolyte disturbances (hyper-/hypokalaemia, hyper-/hypomagnesaemia).

• Ventricular fibrillation (VF) is a rapid, uncoordinated and life-threatening

ventricular arrhythmia resulting in weak myocardial contraction, eventually

leading to cardiac death. Ventricular fibrillation is usually a progression

from ventricular tachycardias. Common causes include ischemic heart disease,
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typically following an acute MI and electrolyte abnormalities (particularly

hyperkalaemia). Its ECG demonstrates chaotic waveforms with varying

amplitudes, unidentifiable P-waves, QRS complexes, or T waves.

2.3.2 Ischaemia

Ischaemia, or ischemic heart disease (IHD), refers to a group of diseases where there

is an imbalance between myocardial oxygen demand and oxygen supply resulting in

tissue hypoxia, which may progress to myocardial infarction. The discrepancy in

supply and demand of oxygenated blood is most commonly caused by atherosclerotic

diseases of the coronary arteries (Vaswani et al. 2015). Ischaemia on ECG is typically

more common in men than in women. The first line investigations for ischaemia

include ECG and blood tests for cardiac enzymes. The National Institute for Health

and Care Excellence (NICE) recommends stratifying patients into risk categories

and conduct further investigations accordingly:

• risk score <10%: consider an alternative diagnosis

• risk score 10-29%: CT calcium scoring

• risk score 30-60%: functional testing

• risk score 61-90%: coronary angiography/functional testing.

The acute coronary syndrome (ACS) is a sub-type of ischaemia in which a sudden

disruption in the coronary blood supply to the heart happens after myocardial

infarction. ACS ranges from the progression of tissue ischaemia to the development

of infarction and necrosis, and is the most common cause of death in western

countries (Vaswani et al. 2015). The majority of the a�ected individuals are

male and mostly caused by atherosclerosis. The risk factors of ACS include old

age, family history of coronary heart disease, diabetes mellitus, hypertension,

smoking, obesity, male, ethnicity, and previous myocardial infarction (Vaswani

et al. 2015). Blood tests, including cardiac troponin, and ECG are the first-line

investigations for diagnosis of ACS.
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22 2.3. Major Cardiovascular Disease Types

In the ECG of ACS patients, ST-elevations typically appear for a few hours,

T wave inversion appears for days, and pathological Q waves appears for days to

months. Clinically, ACS is classified according to the changes in the ECG and

biochemical markers of myocardial necrosis into unstable angina, non-ST elevation

myocardial infarction (NSTEMI) and ST-elevation myocardial infarction (STEMI).

STEMI is defined as ST-elevation Ø1mm in at least two adjacent limb leads or

Ø 2mm in 2 contiguous precordial leads or new-onset left bundle branch block.

NSTEMI and unstable angina feature ST depression, and T wave inversion (T wave

inversion is typical in aVR, III, and V2) on the ECG waveforms.

2.3.3 Hypertrophy

Hypertrophy is a compensatory enlargement of the heart muscles due to failure in

other parts of the heart. It is frequently a symptom, rather than an underlying cause

itself. Hypertrophy can be identified by studying the cardiac axis deviation on ECG.

A special case is hypertrophic cardiomyopathy, which is an autosomal dominant

genetic disorder characterised by asymmetrical left ventricular hypertrophy with

impaired diastolic filling. It is the most common cause of sudden death under

35 years, which is usually caused by arrhythmias or severe ventricular outflow

tract obstruction (Vaswani et al. 2015). It occurs in 0.2% of the population and

has male dominance (Ashish Vaswani et al. 2017). The majority of hypertrophic

cardiomyopathy are asymptomatic, and sudden death may be the first presentation.

The ECG features of hypertrophic cardiomyopathy include jerky pulses and/or

double impulses at the apex, left ventricular hypertrophy, and T wave inversion.
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A literature search was conducted using the key words such as “deep learning”,

“neural network”, “ECG”, “EKG”, “electrocardiogram”, “electrocardiograph” “elec-

trocardiography” of the past 10 years on human subjects and in English language,

on the PubMed database on 28 May 2019, and 250 entries were obtained. Manual

screening was performed to exclude studies that were unrelated to machine learning

(e.g. “neural network” as a physiology term), unrelated to cardiovascular diseases

(e.g. using ECG for biometric identification), or non-ECG classification studies

(e.g. studies on ECG denoising). In the end, 70 publications remained and they are

summarised in table 3.1. The works are organized by the datasets they studied and

ordered chronically. The sample size refers to the number of recordings or beats in

the training and test sets on which classification was performed. In other words, the

sample size is the number to be considered when evaluating the statistical power

of the study. These samples, however, typically come from much fewer human

subjects. The asterisk next to the author-year means it is a signal classification

(see section 3.4) study. The rest are beat classification.

Note that in this thesis the ECG abnormalities typically associated with arrhyth-

mia, ischemia, and hypertrophy, and ischemia are frequently referred to “arritmia”,

“iscemia”, and “hypertrophy” (inside double quotation marks), respectively, where

23
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ambiguous, and not to be confused with the actual clinical diagnosis of arrhythmia,

ischemia, and hypertrophy.
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3.1 Types of Cardiovascular Diseases

Many studies used standard ECG databases such as the MIT-BIH database (Moody

and Mark 2001), the MIT-BIH long-term ST database (Goldberger et al. 2000), the

PhysioNet Atrial Fibrillation (AF) Detection Challenge (Cli�ord et al. 2017), and

the Physikalisch-Technische Bundesanstalt (PTB) database (Bousseljot, Kreiseler,

and Schnabel 1995; Goldberger et al. 2000). Each database focuses on di�erent

cardiovascular diseases or conditions, including “arrhythmias”, ST changes, atrial

fibrillation, and myocardial infarction (MI), respectively. As a result, few studies

attempted to classify ECG abnormalities associated with diverse cardiovascular

diseases, such as co-existence of arrhythmia, ischaemia, and hypertrophy in the

same database using a single model. Most studies construct a dataset consisting

of the normal class and an abnormal class, such as MI, and perform binary

classification (Chudáček et al. 2009; Leite et al. 2010; Yaghouby et al. 2010).

However, in a real-world application, the dataset typically contains many more

types of medical conditions.

3.2 Number of ECG leads

Most studies only used one or two ECG leads, even when more leads are available

in the dataset (Masetic and Subasi 2016; Kora 2017). Di�erent ECG leads represent

di�erent parts of the heart, thus using single or few leads may not be su�cient when

various cardiac conditions coexist in the same dataset. For example, a Q wave with

more than 0.04s in duration and deeper than 0.2mV in amplitude is only considered

pathological when it occurs in more than one lead, which is commonly a sign of

previous myocardial infarction (Vaswani et al. 2015); R wave progression is the

phenomenon that the amplitude of R wave increases gradually across chest leads

V1-V4 and decreases gradually in leads V5-V6, which can only be observed when all

six chest leads are present; T wave inversion is considered normal in leads aVR, III,

and V1, but indicates ischaemia, infarction or bundle branch block when widespread
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30 3.3. Model Evaluation

in the leads; QRS axis deviation can only be assessed by taking consideration of

I, II, and aVF leads together (Vaswani et al. 2015).

3.3 Model Evaluation

Accuracy, sensitivity, specificity, area-under-receiver-operating-curve (AUROC),

and F1 are common model evaluation metrics for ECG classification. However,

accuracy can be misleading when classes are highly unbalanced. For example, in a

classification problem where 99% of the test set samples belong to class i, a trivial

solution which classifies all samples to class i would yield 99% accuracy. AUC is

more robust towards class skewness; however, it can only evaluate binary classifiers.

Sensitivity, together with specificity, is a fair metric for skewed classification, yet

two numbers are not as convenient as one number for model comparison. F1

is a single-number metric that is robust to class skewness, therefore it is the

evaluation criterion of many machine learning competitions, including PhysioNet

AF Detection Challenge, and International Conference on Biomedical Engineering

and Biotechnology (ICBEB) Physiological Signal Classification Challenge1. F1 is

almost always lower than accuracy, sensitivity, and specificity values on the same

confusion matrix (the matrix whose element Cij represents the number of samples

known to be in class i being classified to class j). For example, in Luo et al. 2017,

the authors reported an accuracy of 97.5% for 4-class classification; however, the

equivalent F1 value on the same confusion matrix was only 45.3%.

3.4 Beat Classification vs Signal Classification

In this thesis, we distinguish beat classification from signal classification in the

literature. Beat classification aims to classify an ECG beat, while signal classification

aims to classify a signal that consists of many ECG beats. Beat classification is

useful for real-time monitoring, while signal classification is appropriate for screening

and medical investigation. Beat classification often yields high accuracy, sensitivity,
1http://www.icbeb.org/CPSC2018Awards.html
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and specificity, while signal classification renders much lower performance, due to

the following di�culties faced by signal classification uniquely:

• Smaller labelled datasets: for example, a 30-s ECG signal typically has over

30 beats, which means it has 30 labelled examples for beat classification, but

one labelled example for signal classification;

• Decision rules: It is di�cult to decide whether a signal with majority normal

beats and occasional abnormal beats should be classified as normal.

• Curse of dimensionality: while the number of labelled examples is much

scarcer for signal classification than for beat classification, the dimensionality

of each training example is much higher than that in beat classification; thus,

the sample to dimension ratio for signal classification is more challenging to

handle.

Comparing with signal classification, beat classification requires one label per

beat, which is labour-intensive for human experts to provide in datasets containing

hundreds of thousands of beats. Many studies approach signal classification problems

by labelling all beats within a signal to be of the same class as the entire signal

(Masetic and Subasi 2016; Kora 2017; W. Liu et al. 2018). For example, if a human

expert labelled a 30-s segment as an atrial flutter episode, then the study would

label all beats within the 30-s signal as atrial flutter beats. Beat classification also

requires beat segmentation, which can be a challenging task in itself if the signal

quality is low. Beat classification circumvents the challenges in beat segmentation

by reporting post-segmentation classification results, which is another reason beat

classification studies seem to have higher performance than signal classification

studies. However, in real-world application, the beats are not readily segmented,

thus signal classification is more relevant to the real-world medical problem. Signal

classification is understudied in comparison to beat classification, as shown in table

3.1, where only 9 (studies with asterisk) out of 70 studies were signal classification.
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3.5 Methods of ECG Classification

Before the era of deep learning, the typical workflow of ECG classification is

signal quality analysis, involving discarding low-quality signals, denoising and

removing baseline wander and artefacts, then a QRS detection is performed for beat

segmentation. Furthermore, phase alignment and normalization are required to

align the R peaks for feature extraction. Prior to classification, feature selection is

performed. Although neural network was first applied to ECG classification in 1998

(Yao et al. 1998), most early studies tend to rely on handcrafted heuristic features

(Chudáček et al. 2009; Kim et al. 2009; Leite et al. 2010); researchers gradually lean

towards more principled feature extraction schemes, from using discrete wavelet

transform coe�cients as the input features to the classifier (Kostka and Tkacz

2011; Martis et al. 2012; Javadi 2013), to using a neural network to extract features

automatically (Jin and Dong 2016; Sayantan, Kien, and Kadambari 2018).

From table 3.1 we can see that convolutional neural network (CNN), recurrent

neural network (RNN), deep belief network (DBN), and auto-encoders are the most

popular deep learning models for ECG classification. Regarding the inputs to the

neural networks, very few studies use raw ECG time-series signals. In particular,

time-frequency transform of the raw ECG waveforms is considered as an input

which often yields good results. For example, Isin and Ozdalili 2017 used AlexNet

to extract features from the time-frequency domain of ECG beats. Xiao et al. 2018

used a novel approach of overlaying raw ECG signals on standard ECG grid sheets

and saved them as images, to mimic the same format as commonly interpreted by

cardiologists. The authors then used the trained Google Inception v3 (Szegedy et al.

2015) as a feature extractor to detect sudden ST changes in an ambulatory setting.

End-to-end deep learning refers to the approach to use a single neural network

to perform the full pipeline from feature extraction to ECG classification. The first

end-to-end deep learning study was performed by Rajpurkar et al. 2017 who used

a 34-layer ResNet-like CNN (K. He et al. 2016) to classify 14 rhythm classes, and

outperformed average cardiologists. This work was the precursor of the model by

Hannun et al. 2019, which is considered the state-of-the-art of ECG classification
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nowadays. Hannun et al. 2019 reported cardiologist-level performance of their

model on 12 “arrhythmia” classes that were trained on 91,232 signals from 53,549

patients and tested on 336 recordings and benchmarked against six cardiologists

using 30s single-lead ECGs. The authors also tested their model post-hoc on the

PhysioNet AF Detection Challenge and reported F1 = 0.83, which is among the

highest performances on the Challenge. Although none of the four o�cial winners

(F1 = 0.83) of the PhysioNet AF Detection Challenge used end-to-end deep learning

(Cli�ord et al. 2017), Kamaleswaran, Mahajan, and Akbilgic 2018 recently developed

a 13-layer end-to-end CNN to obtain F1 = 0.83 on the hidden test set, demonstrating

again that an end-to-end CNN can perform as well as using handcrafted features

and ensemble classifiers (Kamaleswaran, Mahajan, and Akbilgic 2018).

In the latest ECG classification competition held by ICBEB, the winning team

Chen et al.2 also used deep end-to-end learning. The power of deep learning is

proven by all three state-of-the-art models (Chen’s model, Rajpurkar-Hannun model,

and Kamaleswaran’s model), but all these models are computationally intensive:

Rajpurkar-Hannun model has over 10 million parameters, while Kamaleswaran’s

model has 3 million parameters.

In the following chapters of this thesis, we study ECG classification on the

Chinese population. We first look at the statistical characteristics of the CKB,

then study ECG classification using traditional machine learning with handcrafted

features. We then propose a novel neural network architecture family for time-series

classification, called layer-wise convex networks, which characterises in parameter

parsimony, and benchmark our results with Rajpurkar-Hannun model on 3 databases:

the CKB, the PhysioNet AF Detection Challenge, and the ICBEB Physiological

Signal Classification Challenge.

2Tsai-Min Chen, Chih-Han Huang, Edward S. C. Shih, Ming-Jing Hwang
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4
Data Description

4.1 China Kadoorie Biobank

The China Kadoorie Biobank (CKB) is a prospective cohort study of 521,891 adults

recruited from 10 areas in China during the years 2004 - 2008 (Z. Chen et al. 2011).

Data were collected using questionnaires, and clinical measurements were recorded

at baseline. After every five years, approximately 25,000 surviving participants were

resurveyed using further questionnaires and clinical measurements. The second

resurvey in 2013-2014 included a 12-lead ECG on 24,959 participants. Ethics

approval was obtained from all relevant local and national committees. Public

access to the CKB can be found at http://www.ckbiobank.org/site/Data+Access.

The ECG data used for this thesis are described below:

4.1.1 ECG Time-Series

A standard 12-lead ECG (each with 10-s duration, sampled at 500Hz) was recorded

on 24,959 participants using a Mortara ELIx50 device during the years 2013 -

2014. An ECG cycle template, representing a “typical” cycle, for an individual

lead, was also generated by the Mortara device using the proprietary VERITAST M

algorithm. The raw ECG time-series are overlaid on the standard ECG grids

and are shown in figure 4.1.
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Table 4.1: The Mortara features and the blood pressure features

Independent Features Explanation
Age
Average RR interval Average distance between two R peaks
QRS o�set The end of the QRS complex
P wave duration
PR interval P onset to QRS o�set
QRS duration
QT interval Q onset to T o�set
P axis Determined by P deflect in I, II, aVF
QRS axis Determined by QRS deflect in I, II, aVF
T axis Determined by T deflect in I, II, aVF
Dependent Features Explanation
ventricular rate = 6000

average RR interval

R peak © 500 ms
P wave onset = Q o�set ≠ PR interval ≠ QRS duration
P wave o�set = P onset + P duration
QRS onset = PR interval+P onset
T wave o�set = Q onset + QT interval
QTc duration = QT interval +154(1 ≠

60
ventricular rate)

QTcB duration = QT interval

(average RR interval)
1
2

QTcF duration = QT interval

(average RR interval)
1
3

Blood Pressure Explanation
SBP Systolic blood pressure
DBP Diastolic blood pressure

4.1.2 ECG Features

A total of 19 unique features were provided for each participant by the Mortara device

(table 4.1). Ten features that could not be expressed as functions of the other features

are collectively referred to as “independent features”, and the remaining nine features

which can be expressed as functions of the ten independent features or is constant

for the duration of the typical cycle is referred to as the “dependent features”.

4.1.3 Mortara Labels

For each participant, up to 10 textual descriptions describing the ECG were provided,

such as “atrial fibrillation”, “acute myocardial infarction”, and “normal ECG”, by

the Mortara device using a propriety algorithm according to the Minnesota Code
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Table 4.2: Grouping criteria and the number of participants in each group in the CKB

Class N (%) Inclusion Criterion
Normal 10,779 (43%) Normal ECG
“Arrhythmia” 2,472 (10%) Abnormal rhythm

Atrial fibrillation
Early repolarization
Pre-excitation
Premature ectopic beats
Ectopic conditions
Blocks
Uncertain rhythm

“Ischaemia” 1,870 (8%) Explicitly stated “ischaemia”
“Hypertrophy” 3,423 (14%) “Hypertrophy” or enlargement
“Others” 6,362 (26%) None of the above
All 24,906 (100%)

(Prineas, Crow, and Z.-M. Zhang 2009). Each textual label is chosen from 236

possible values. We grouped the 236 Mortara labels into “normal”, “arrhythmia”,

“ischaemia”, “hypertrophy”, and “others”, according to (Ramrakha and J. Hill 2012).

After removing 113 participants with incomplete records, the remaining 24,906

participants were grouped in the the five classes, shown in table 4.2. The complete

mapping from the 236 Mortara labels to the 5 groups are shown in appendix F.

4.1.4 Blood Pressure Data

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded

twice on each participant after resting for at least 5 minutes using an Omron UA-779

digital sphygmomanometer. If the di�erence between the two measurements was

more than 10mmHg, a third measurement was performed, and only the last two

readings were recorded. Sphygmomanometers were supplied centrally, calibrated

daily and only used by trained field workers. We use the average of the two

blood pressure readings in our study.

4.1.5 Signal Quality

A signal quality index (SQI) was evaluated for all 12-lead ECG signals using

in-house software. The SQI œ [0, 1], depending on the agreement of two peak
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detectors on the positions of the R peaks. High agreement yields a high SQI, which

corresponds to high signal quality. 97% of all 12-lead waveforms were found to

have high signal quality (SQI>0.9). The signal quality of the data was deemed

su�cient to classify the 24,906 participants.

4.1.6 Descriptive Statistics of CKB

Age Group, Gender, and Class Distribution

The percentage of the participants in each age group and class is shown in figure

4.2. The exact numbers are provided in appendix A. The percentage is calculated

relative to the total number of male or female participants in each age group.

For example, there were 1,974 men aged under 50, and 133 of them had ECG

abnormalities associated with arrhythmias, thus the percentage of males under

50 having “arrhythmia” is 133
1974 = 7%.

We can see a higher percentage of males have “arrhythmia” and “hypertrophy”

in their relevant age groups than their female counterparts, but the percentage

of “ischaemia” is similar for men and women. In both men and women, as the

age increases, the percentage of normal participants declines, and the percentage

of “arrhythmia” increases. The percentage of women having “hypertrophy” also

increases steadily with age. The percentage of men and women having “ischaemia”,

as well as men having “hypertrophy”, are relatively stable across age groups. These

observations are consistent with available evidence from epidemiology studies of

heart disease, although the male dominance in “ischaemia” was not observed in

the CKB dataset, perhaps because there were relatively few people (n = 1, 870)

having “ischaemia”.

Blood Pressure Distribution

We performed Gaussian kernel density fitting (D. W. Scott 2015) using the Scipy

package on the systolic and diastolic blood pressure to obtain the distribution of

the blood pressure in the four classes, as shown in figure 4.3. For all participants,

the mode of systolic blood pressure (SBP) of the normal class is lower than those of

“arrhythmia”, “ischaemia”, and “hypertrophy” classes, meaning the abnormal classes
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Table 4.3: Class size in ICBEB.

Class Index Class Number of Recordings
1 Normal (N) 918
2 Atrial Fibrillation (AF) 1,098
3 First-degree atrioventricular block (I-AVB) 704
4 Left bundle branch block (LBBB) 207
5 Right bundle branch block (RBBB) 1,695
6 Premature atrial contraction (PAC) 556
7 Premature ventricular contraction (PVC) 672
8 ST-segment depression (STD) 825
9 ST segment elevation (STE) 202

Total 6,877

tend to have higher SBP. In female participants, the mode of SBP has the ascending

order of normal < “arrhythmia” < “ischemic” < “hypertrophy”, which agrees with

medical knowledge. A similar trend can be observed in female diastolic blood

pressure (DBP), but less obvious in male DBP. The reference values for normal

SBP and DBP are 120 mmHg and 80 mmHg, respectively (B. Zhou et al. 2017).

4.2 The ICBEB Dataset

The publicly available training set of International Conference on Biomedical

Engineering and Biotechnology (ICBEB) 2018 challenge 1 includes 12-lead 500Hz

5-143s 2 ECG time-series waveform from 6,877 participants (3,178 female and 3,699

male) obtained from 11 hospitals. The dataset has nine classes and the number

of recordings in each class is shown in the table 4.3.

The hidden test set contains 2,964 ECG recordings of similar duration. The

final evaluation is based on a balanced test set comprised of 50 samples randomly

selected from each of the nine classes from the hidden test set. The training and

test sets are mutually exclusive.

The primary evaluation criterion of the Challenge is the 9-class average F1,

calculated as equation 4.1 The secondary evaluation criteria are F1 scores of sub-

abnormal classes: FAF , FBlock, FP C , FST calculated as equations 4.2, 4.3, 4.4 and
1http://2018.icbeb.org/Challenge.html
2The website states 6-60s duration, however the actual signal duration in the dataset is 5-143s.
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Table 4.4: The number of recording in each class in the PhysioNet dataset.

Class Number of recordings
normal 5,050
atrial fibrillation (AF) 738
other rhythms 2,456
noise 284
total 8,528

4.5. The winning team was Chen et al.3 who achieved 9-class average F1 of 0.837, as

well as the highest FAF (0.933), FP C (0.847), FST (0.779), and the 5th highest FBlock

(0.899). They used bidirectional GRU and attention mechanism, and trained a

di�erent model for each lead as well as a 12-lead joint model, then performed 10-fold

model averaging of each of the 13 models. Thus the final prediction was based on the

average probability given by 10 ◊ (12 single-lead models + the 12-lead joint model)

= 130 models. The second place in terms of 9-class F1 was Cai et al.4, who also

achieved the highest FBlock (0.912). They used Long Short-Term Memory (LSTM).

F1 = 1
9

9ÿ

i=1

2Niiq9
j=1(Nij + Nji)

(4.1)

FAF = 2N22q9
j=1(N2j + Nj2)

(4.2)

FBlock = 2 q5
i=3 Niiq5

i=3
q9

j=1(Nij + Nji)
(4.3)

FP C = 2 q7
i=6 Niiq7

i=6
q9

j=1(Nij + Nji)
(4.4)

FST = 2 q9
i=8 Niiq9

i=8
q9

j=1(Nij + Nji)
(4.5)
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4.3 The PhysioNet Dataset

The publicly available training set of the PhysioNet 2017 Atrial Fibrillation Detection

Challenge (Cli�ord et al. 2017) has 8,528 recordings, 9-60s in duration, 300Hz,

single-lead ECG acquired using AliveCor. The dataset has four classes: normal,

atrial fibrillation, “other rhythms”, and noise. The number of recordings in each

class is shown in table 4.45.

The hidden test set of the challenge had 3,658 recordings of similar duration. The

final results were evaluated by the 3-class average F1 of atrial fibrillation, normal,

and “other rhythms” classes. The winning teams achieved 3-class average F1 = 0.83

(Cli�ord et al. 2017). There are a few post-hoc studies including Hannun et al. 2019

and Kamaleswaran, Mahajan, and Akbilgic 2018, trained on the entire publicly

available training set and achieved 0.83 three-class F1 on the hidden test set as well.

Both Kamaleswaran and Hannun used CNN-based architectures for their analysis.

3Tsai-Min Chen, Chih-Han Huang, Edward S. C. Shih, Ming-Jing Hwang
4Wenjie Cai, Jing Ma, Li Yang, Danqin Hu, Yanan Liu
5The numbers are counted from the downloaded dataset, which is very di�erent from what is

stated on the website.
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42 4.3. The PhysioNet Dataset

(a) Lead II Normal

(b) Lead II “Arrhythmia”

figures/Lead II Ischaemia (2).png

(c) Lead II “Ischaemia”

(d) Lead II “Hypertrophy”

Figure 4.1: Examples of Lead II ECG waveform for the four conditionsDRAFT Printed on April 4, 2021
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Figure 4.2: The percentage of participants in each age group and class
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(a) SBP (b) DBP

(c) SBP (d) DBP

(e) SBP (f) DBP

Figure 4.3: Distribution of SBP and DBP among the four classes
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5
ECG Classification using Traditional

Machine Learning Methods

5.1 Introduction

In this chapter, we present results of analysis of ECG data using traditional (i.e.

non-deep) machine learning to classify the ECG signals into normal, “arrhythmia”,

“ischaemia”, and “hypertrophy” classes. We start with a brief introduction to

the principles of machine learning and the methods to be used. These methods

are representative of all major machine learning model families except neural

networks. As neural networks, or known by their legacy names artificial neural

networks (ANN) or multilayer perceptron (MLP), are a very flexible model family

and have now evolved into the regime of deep learning, they are not included

in this chapter but will be the focus of Chapters 6 and 7. We will continue the

chapter with data preprocessing and feature extraction, which are necessary for

all the traditional machine learning models evaluated in this chapter. We then

compare the performance of these methods on di�erent combinations of the Mortara

features, introduced in the previous chapter, and our new features, and finally

perform feature ranking and conclude with comparative analysis of the Mortara

features and the new features.

45
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5.2 Introduction to Machine Learning

Mitchell et al. 1997 defined machine learning as “learning from experience E

concerning some tasks T and performance measure P , if its performance at tasks

T , as measured by P , improves with experience E”. In this thesis we focus on

supervised learning whose goal is to discover the data generating process f : X ‘æ Y ,

where X and Y represent the features and the labels, respectively.

5.2.1 Linear Models

Linear Discriminant Analysis

Linear discriminant analysis (LDA) assumes the likelihood p(x|C) is Gaussian, and

all classes share the same covariance matrix. Formally, for K-class classification:

p(x|Ck) = 1
(2fi)D

2 |�|
1
2

exp{≠
1
2(x ≠ µk)T �≠1(x ≠ µk)} (5.1)

for k = 1, ..., K, where x is the feature vector of a single training example, Ck

represents the true class membership of the training example, µk and � are the

mean and covariance of the multivariate Gaussian distribution for class k. Since

linear discriminate analysis assumes all classes have the same covariance, the class

index for � is omitted. At the decision boundary between two classes k and

j, p(Ck|x) = p(Cj|x), we have

1 = p(Ck|x)
p(Cj|x) = p(Ck)

p(Cj)
exp{≠

1
2(x ≠ µk)T �≠1(x ≠ µk) + 1

2(x ≠ µj)T �≠1(x ≠ µj)}

= p(Ck)
p(Cj)

exp{
1
2�≠1(2x

T
µj ≠ 2x

T
µk + µ

T
k µk ≠ µ

T
j µj)}

(5.2)

We can see that the decision boundary is linear with respect to x. The parameters µk

and � can be estimated by the training set sample mean and covariance, respectively,

and the class prior p(Ck) can be estimated by the class ratios in the training set.
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Logistic Regression

From Bayes theorem:

p(C1|x) = p(x|C)p(C1)
p(x) = p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
(5.3)

use p(x|C1)p(C1) to divide the nominator and denominator, we have

p(C1|x) = 1
1 + p(x|C2)p(C2)

p(x|C1)p(C1)
(5.4)

If we denote a = ln p(x|C1)p(C1)
p(x|C2)p(C2) and substitute it into equation 5.4, we obtain

‡(a) = p(C1|x) = 1
1 + exp(≠a) (5.5)

a is also called log odds. If a is linear with respect to the input features, we

obtain the formulation of logistic regression:

p(C1|„(x)) = ‡(wT
„(x) + b) = 1

1 + e≠(wT „(x)+b) (5.6)

where w is the weight vector, and „(x) is called the basis function of x. „(x) is

a fixed function that transforms the original data point x into a “feature space”,

thus can be seen as the feature extraction step. Logistic regression is said to be

a linear classifier because the decision surface is linear with respect to the input

feature vector x. We can use a maximum likelihood approach to estimate w and

b. If we use ti œ {0, 1} to denote the labels, with ti = 1 denoting samples in class

C1, then the likelihood of the class membership of the entire training set T = {ti}

given the design matrix X and the model parameters w and b can be written as

p(T |X, w, b) =
mŸ

i=1
‡ti

i (1 ≠ ‡i)1≠ti (5.7)

E = ≠ ln p(T |X, w, b) = ≠

mÿ

i=1
ti ln ‡i + (1 ≠ ti) ln(1 ≠ ‡i) (5.8)

Take the first and second derivatives of E with respect to w and obtain

ˆE

ˆw
=

mÿ

i=1
(‡i ≠ ti)xi (5.9)
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ˆ2E

ˆw2 =
mÿ

i=1

x
T
i xiew

T
xi+b

(1 + e≠wT xi+b)2 Ø 0 (5.10)

we can see that the second derivative is non-negative, and only equals 0 when

x = 0. This means the loss is convex but not quadratic, as ˆ2E
ˆw2 depends on w,

which means we can use iterative convex optimization to find the optimal w, but

there is no analytical solution for w.

The multi-class logistic regression is similar to the binary logistic regression,

except that we use softmax function (equation 5.11) instead of equation 5.5 to

model P (Ck|x). The maximum likelihood approach is similar.

‡(a)i = eai

qK
i=1 eai

(5.11)

for i = 1, .., K and a = {zi} œ RK . The output of softmax is a K-element vector.

5.2.2 Näıve Bayes

Näıve Bayes assumes that the distribution of the input features is conditionally

independent, given the class. Suppose we are performing K class classification on

data points with D features for each data point, we have

p(x|Ck) = p(x1, ..., xD|Ck) =
DŸ

i=1
p(xi|Ck) (5.12)

where x1, ..., xD are the input features of a training example x. To make predictions,

we can calculate the posterior by

p(Ck|x1, ..., xD) = p(x1, ..., xD|Ck)p(Ck)
p(x1, ..., xD)

=
rD

i=1 p(xi|Ck)p(Ck)
p(x1, ..., xD)

=
rD

i=1 p(xi|Ck)p(Ck)
qK

j=1 p(x1, ..., xD|Cj)p(Cj)

=
rD

i=1 p(xi|Ck)p(Ck)
qK

j=1
rD

i=1 p(xi|Cj)p(Cj)

(5.13)

We can obtain p(Ck) by calculating the class ratio in the training set, and fit p(xi|Cj)

by maximum likelihood. Naive Bayes is suitable when the feature dimension is high

and is an excellent way to link models trained on di�erent features.
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5.2.3 Kernel Methods
Support Vector Machine

Support vector machine (SVM, Taylor and Cristianini 2000; Müller et al. 2001;

Schölkopf and Smola 2002; Herbrich 2001) aims to find the solution that separates

the two classes with the largest “margin”, defined as the minimum distance between

the data points and the decision boundary. Suppose a binary classification where

the decision boundary is expressed as

y = w
T
„(x) + b = 0 (5.14)

The distance between a data point x and the decision boundary is

d = |w
T
„(x) + b|

ÎwÎ
(5.15)

Because the SVM is a “large margin” classifier, the convention of class mem-

bership notation is di�erent. In SVM, the class labels are usually denoted as

tn œ {≠1, 1}, then for correctly classified data points, we have:

tnyn = tn(wT
„(xn) + b) > 0 (5.16)

SVM maximises the margin. Thus the optimisation problem can be written as

w, b = argmin
w,b

min
i

tn(w„(xi) + b)
ÎwÎ

(5.17)

where i indexes the training examples. Because the distance does not change if

we scale w and b by a factor, we can set ti(wT
„(xi) + b) = 1 for the data points

closest to the decision boundary, and the optimisation problem can be written as

w = argmax
w

1
ÎwÎ

(5.18)

subject to

ti(wT
„(xi) + b) Ø 1 (5.19)

for i = 1, 2, ..., m. The margin boundaries can be expressed as y = w
T
„(xn) + b =

±1.
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Because maximising 1
ÎwÎ

is equivalent to minimisingÎwÎ
2, we obtain the canonical

optimisation representation of SVM:

w = argmin
w

1
2ÎwÎ

2 (5.20)

subject to equation 5.19, and 1
2 is for convenience of derivation. This is a constrained

optimisation problem, corresponding to minimising

L(w, b, a) = 1
2ÎwÎ

2
≠

mÿ

i=1
ai{ti(wT „(xi) + b) ≠ 1} (5.21)

with Karush-Kuhn-Tucker (KKT) conditions:

ai Ø 0 (5.22)

ti(wT
„(x) + b ≠ 1) Ø 1 (5.23)

ai(ti(wT
„(x) + b) ≠ 1) = 0 (5.24)

where an are called Lagrange multipliers. Setting derivative of L(w, b, a) w.r.t

w and b to 0, we obtain

w =
mÿ

i=1
aiti„(x) (5.25)

0 =
Nÿ

i=1
aiti (5.26)

and substitute into equation 5.21, we obtain the dual representation of the op-

timisation problem:

L̃(a) = ≠
1
2

mÿ

i=1

mÿ

j=1
aiajtitjk(xi, xj) +

mÿ

i=1
aitib +

mÿ

i=1
ai

=
mÿ

i=1
ai ≠

1
2

mÿ

i=1

mÿ

j=1
aiajtitjk(xi, xj)

(5.27)

subject to

ai Ø 0, ’n (5.28)
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mÿ

i=1
aiti = 0 (5.29)

where k(xi, xj) = „(xi)T
„(xj) is called the kernel function. The benefit of dual

representation is that we do not need to represent „(x) explicitly. Also, if the

dimension of feature space is larger than the number of training examples, optimizing

the dual representation 5.27 is computationally more e�cient than optimising the

canonical representation 5.21. We can also represent y using dual formulation by

substituting equation 5.25 into equation 5.14, and obtain

y(x) =
mÿ

i=1
aitik(x, xi) + b (5.30)

From equation 5.30 we can see that either an = 0 or tnyn ≠ 1 = 0, which

means only points on the margin contribute to the prediction. These points are

called “support vectors” hence the name of the model. For datasets that are not

linearly separable in the feature space („ space), we introduce a slack parameter

›n and replace constraint 5.19 by equation 5.31:

ti(wT ›(x)) Ø 1 ≠ ›i (5.31)

›i = 0 for points on the margin or on the correct side of the margin, 0 < ›i Æ 1 for

points within the margin but on the correct side of the decision boundary, and ›i > 1

for points on the wrong side of the decision boundary. Therefore we try to minimise:

C
mÿ

i=1
›i + 1

2ÎwÎ
2 (5.32)

Subject to equation 5.31, where C > 0 is a hyperparameter controlling the trade-o�

between training error and model complexity. This is called “soft-margin” SVM. We

can see that both the canonical representation and the dual representation losses

are quadratic with respect to the parameters, thus SVM loss is quadratic.

The original SVM does not make probabilistic predictions, but makes classi-

fications by the sign of y. Platt, Cristianini, and Shawe-Taylor 2000 proposed

probabilistic SVM by “squashing” y in equation 5.14 by a logistic function, i.e.
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equation 5.33, and the parameters A and B are learned from minimising the cross-

entropy loss using data not used when training the SVM. Because this two-step

approach does not jointly optimise the SVM parameters and A and B, it may

give sub-optimal posteriors (Tipping 2001).

p(t = 1|x) = 1
1 + e≠(Ay(x)+B) (5.33)

SVM does not readily extend to K > 2 classification scenarios, and one common

approach is constructing K separate one-vs-rest classifiers. SVM can also be

extended to regression. ‘-insensitive SVM replaces the mean squared loss used

in linear regression by

E‘(y, t) =

Y
]

[
0 if |y ≠ t| < ‘

|ŷ ≠ y| ≠ ‘ if |ŷ ≠ y| Ø ‘
(5.34)

and minimises

C
Nÿ

i=1
E‘(yi, ŷi) + 1

2ÎwÎ
2 (5.35)

5.2.4 K-Nearest Neighbours

K nearest neighbours (KNN) comes from density estimation, where the density

of a class in a small region R is

P = K

NV
(5.36)

Where K is the number of data points of class K in the region, N is the total

number of data points, and V is the volume of the small region. KNN partitions

the entire feature space into hyperspheres each having exactly K data points and

the class membership of the region is assigned to the class that is most represented,

i.e. to the class with the most number of data points within the region, and

ties are broken at random. KNN is quick to train but slow to predict, because

given a new test data point, it needs to calculate the distances of the new test

point to every training data point.
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5.2.5 Decision Trees

Tree-based models, also known as decision trees, partitions the input space into

axis-aligned regions and assigns a simple model to each region. The process of

selecting the region given an input data point x can be described as traversal of

a binary tree. Classification and regression trees (CART Breiman et al. 1984) is

a widely used framework of decision trees. Variations of CART including ID3,

and C4.5 (J. Quinlan 1993; J. Ross Quinlan 1986). The training procedure of

CART involves growing the tree by exhaustive search of the input variables and the

solution thresholds that minimise the residual loss, typically mean squared error

for regression and cross-entropy for classification. Decision trees are popular in

medical diagnosis as it is intuitive to interpret and similar to the typical medical

diagnosis process. However, the split of the tree is very sensitive to the input data:

small changes in the training data can result in a very di�erent split of the tree

(Hastie, Tibshirani, and J. Friedman 2001). Another drawback of decision trees is

that the region boundaries are aligned to the feature axis. Thus the performance

of decision trees relies heavily on the input features.

5.2.6 Ensembles
Bagging

Bagging (Breiman et al. 1984), also called bootstrap aggregation, trains a di�erent

model on M bootstrapped datasets X i from the original dataset X, then average

the predictions of the N models:

ybag(X) = 1
N

Nÿ

i=1
yi(X i) (5.37)

Averaging the predictions from independently trained models is called committee,

and boosting is a type of committee.

Random Forest

Random forest is an ensemble of decision trees. Because a single decision tree is

sensitive to the feature split, the random forest is an ensemble of decision trees
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that introduces variations among the models by bootstrapping the dataset and

constructing a di�erent tree on each bootstrapped subset, then use majority voting

to predict the class. In a random forest, the optimal feature selection is made on a

randomly selected feature set, and the threshold is chosen to be the optimal split.

Extra Trees

Extra trees, short for “extremely random trees”, is similar to random forest, except

that 1) it is trained on datasets drawn from the original training sets without

replacements, 2) it chooses both the features and the split thresholds at random

(Geurts, Ernst, and Wehenkel 2006).

AdaBoost

Boosting di�ers from committee methods by training a sequence of classifiers

each minimising a weighted loss function, instead of training the base classifiers

independently. Data points misclassified by the previous classifiers will be given

a higher weight in the subsequent classifier. Boosting can give good results even

if the base classifiers are weak classifiers, i.e. they are only slightly better than

random. Originally designed for classification, boosting can also be extended for

regression (J. H. Friedman 2001). AdaBoost (Freund, Schapire, et al. 1996), short

for “adaptive boosting”, is the most widely used form of boosting (Bishop 2006).

Suppose we train a binary AdaBoost classifier containing N base classifiers on a

dataset containing m data points. The weight w
(0)
i for each data point is initialised

as 1
m . For j = 1, ..., N , we train a base classifier to minimise the loss function

Ej =
mÿ

i=1
w

(j)
i I(ŷj(xi) ”= yi) (5.38)

where x represents a single data point, I is the indicator function. I(ŷj(xi) ”=

yi) = 1 and I(ŷj(xi) = yi) = 1.

We then calculate ‘j and –j:

‘j =
qm

i=1 w
(j)
i I(ŷj(xi) ”= yi)
qm

i=1 w
(j)
i

(5.39)
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–j = ln 1 ≠ ‘j

‘j
(5.40)

and update the weights for each data point:

w
(j+1)
i = w

(j)
i exp{–jI(ŷj(xi) ”= yi)} (5.41)

and finally make predictions:

Y j(X) = sign(
Nÿ

j=1
–jyj(X)) (5.42)

J. Friedman, Hastie, Tibshirani, et al. 2000 interpreted binary AdaBoost classifier

as sequential minimisation of the exponential loss:

E =
mÿ

i=1
exp{≠tifj(xi)} (5.43)

The exponential loss is exponential with respect to ≠tifj(xi), which means it

penalises large negative tifj(xi) heavily, thus sensitive to outliers or mislabeled

data points. Another drawback of exponential loss is that it cannot extend to

K > 2 classification scenarios, nor has negative-log likelihood interpretation of

any probability distribution.

Stochastic Gradient Boosting

Stochastic gradient boosting (SGB, J. H. Friedman 2002) is analogous to stochastic

gradient descent, but in the function space. It initialises with a base learner, typically

a decision tree, and in each iteration, uses another learner trained on a bootstrapped

subset of the original dataset to minimise the residual error. Formally, assume the

ground truth is F (x, ◊), the base learner is initialised to minimise the loss E as

F0(x, ◊) = argmin
◊

mÿ

i=1
E(yi, ◊) (5.44)

where ◊ are the parameters of the base learner F0, m is the number of data points

in the bootstrapped subset. For j = 1, .., N,

Fj(x) = Fj≠1(x) + argmin
hjœH

mÿ

i=1
L(yi, Fj≠1(xi) + hj(xi)) (5.45)

where hj œ H is a base learner.
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Figure 5.1: Feature extraction. The 12-lead amplitudes of P, Q, R, S, T waves and the
baseline level (approximated as the voltage level at the QRS o�set) were extracted for
each participant from the “typical cycles”. The timestamps of onsets and o�sets of these
waves were given by the Mortara device and are shown by the blue arrows.

5.3 Methods

5.3.1 Feature Extraction

Six additional features were extracted from a “typical cycle” from each of the 12

leads, forming a total of 72 new features for each participant (figure 5.1). They are

the P, Q, R, S, T wave amplitudes in the 12 ECG leads and the baseline levels,

which are approximated as the voltage level at QRS o�set. The positions of the

onset and o�set of the waves were provided by the Mortara device.

5.3.2 The 11 Machine Learning Models

We selected 11 representative machine learning models from the major machine

learning families except neural networks which we will study in the next chapter.

They are linear models (Logistic Regression, Linear Discriminant Analysis (LDA)),

Naive Bayes, kernel models (SVM), decision trees (CART), neighbours models

(KNN), and ensembles (SGB, Bagging, Random Forest, AdaBoost, Extra Trees).

Section 5.2 provided a detailed summary of the models used in the analysis. All

hyperparameters were left as default as used in the sklearn package (version 0.19.1).

We studied the e�ects of di�erent combinations of the Mortara features, blood
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pressure features, and the 72 new ECG features on the classification accuracy,

and denote the following feature sets:

• F10: The 10 independent Mortara features described in table 4.1.

• F12: F10, SBP and DBP

• F19: All features described in table 4.1

• F82: F10 and the 72 new features (P, Q, R, S, T, baseline level (see section

5.3.1) ◊ 12 leads)

• F84: F82, SBP, and DBP

5.3.3 Five-Fold Cross-Validation

We used a standard machine learning approach K-fold cross-validation to separate

the training and test sets. In brief, the dataset was divided into K equal portions,

and each portion becomes the test set once and only once, while the rest of the

dataset becomes the training set. The model was trained on the training set and

evaluated on the test set. The mean and standard deviation of the K accuracy

values on K test sets were reported as the final results of K-fold cross-validation.

We used 5-fold cross-validation in this study.

5.3.4 Normalisation

Machine learning models are sensitive to the scale of the input features. Therefore,

we normalised the features according to the mean and standard deviation (SD) of

the training set, according to equations 5.46 and 5.47.

xtrain := xtrain ≠ µtrain

‡train
(5.46)

xtest := xtest ≠ µtrain

‡train
(5.47)
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5.3.5 Four-Class Classification

We constructed balanced four-class classification dataset by sampling n samples

from each of the “normal”, “arrhythmia”, “ischaemia”, and “hypertrophy” classes
1, with n being the size of the smallest class, i.e. 1,870 (table 4.2), to build a

balanced four-class dataset of 7,480 individuals for five-fold cross-validation. The

down-sampling and five fold-cross validation were repeated 100 times, and the

means and standard deviations of the 100 repeats of the 5-fold cross-validation

mean accuracy were reported. In other words, the final result mean µ, and standard

deviation ‡ were calculated as follows:

aj = 1
5

5ÿ

i=1
aij (5.48)

µ = 1
100

100ÿ

j=1
aj (5.49)

‡ = ( 1
100

100ÿ

j=1
(aj ≠ µ)2) 1

2 (5.50)

where aij is the accuracy of ith fold cross-validation accuracy in jth repeat. The

above process was repeated for the 11 machine learning models on the five feature

sets to find out the best combination of the machine learning model and the feature

set for the subsequent analysis.

5.3.6 One-vs-Rest Classification

To study the performance of the identified best machine learning model and feature

set to identify normal, “arrhythmia”, “ischaemia”, and “hypertrophy” from a

general population containing “borderline” participants, we performed one-vs-rest

classification. The “rest” class included participants from the “other” class (table

4.2). We sampled participants randomly from the class of interest and the “rest” class,

with n being the size of the smaller of the two. Then mean and standard deviation of

the 100 repeats of the sampling and 5-fold cross-validation accuracy were reported.
1Note that here the “arrhythmia”, “ischaemia”, and “hypertrophy” classes refer to the ECG

abnormality groups that are typically associated with the clinical CVD conditions of “arrhythmia”,
“ischaemia”, and “hypertrophy”, not to be confused with actual clinical diagnosis, hence the
quotation marks.
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Table 5.1: Four class classification results.. Results are shown as the mean and std of
100 repeats of 5-fold cross-validation mean accuracy.

Rank Model F19 F10 F12 F82 F84
1 SGB 53.5±0.4 53.1±0.4 54.0±0.4 77.3±0.4 77.3±0.4
2 SVM 51.4±0.4 51.8±0.4 52.6±0.4 73.3±0.3 73.1±0.3
3 Bagging 48.0±0.6 47.9±0.5 48.5±0.5 71.9±0.5 71.8±0.4
4 Random Forest 47.4±0.5 47.8±0.5 48.2±0.5 70.0±0.5 69.9±0.5
5 AdaBoost 50.6±0.6 50.5±0.6 51.3±0.6 69.8±0.5 69.7±0.6
6 Logistic Regres-

sion
43.9±0.4 42.4±0.4 43.3±0.4 66.4±0.3 66.3±0.4

7 LDA 44.4±0.4 42.2±0.4 43.3±0.4 65.6±0.4 65.5±0.4
8 Extra Trees 45.2±0.6 46.2±0.5 46.1±0.5 64.9±0.5 64.7±0.6
9 CART 41.2±0.6 41.9±0.6 41.3±0.5 63.2±0.6 63.0±0.6
10 KNN 43.9±0.5 43.5±0.5 43.9±0.5 58.7±0.5 58.4±0.5
11 Naive Bayes 46.9±0.4 46.5±0.4 47.5±0.4 58.3±1.0 58.4±1.0

5.3.7 Feature Ranking

To find out which features the identified best model considered as the most important,

we ranked the features in descending order of the average weights of 100 repeats

of the 4-class classification and one-vs-rest classification

5.4 Results

5.4.1 Accuracy of Four-Class Classification

Table 5.1 ranked the 11 models in descending order of the average accuracy of the

100 repeats of the 5-fold cross-validation using the F82 set. Of the machine learning

models, stochastic gradient boosting (SGB) performed consistently better than

other algorithms. SVM and ensembles (bagging, random forest, AdaBoost) generally

performed well. F82 with SGB yielded the highest mean accuracy, although no

significant di�erence was found between SGB-F82 and SGB-F84 models (p-value

= 0.75 > 0.05, unpaired two-tail t-test, n = 200). Comparing F19 and F10, removal

of the nine dependent Mortara features did not influence classification accuracy

significantly (p = 0.29 > 0.05, Wilcoxon signed-rank test on means, n = 22).

Comparing F10 and F82, the addition of 72 new features significantly improved

classification accuracy (p-value = 0.0017 < 0.05, one-sided Wilcoxon ranked test

DRAFT Printed on April 4, 2021



60 5.4. Results

Table 5.2: One-vs-rest classification, including the borderline participants. Results are
shown as the mean and STD of 100 repeats of five-fold cross-validation mean accuracy.

Class Sample Size Accuracy (%)
Normal 21,446 83.3±0.2
“Arrhythmia” 4,294 84.1±0.4
“Ischaemia” 3,616 95.3±0.2
“Hypertrophy” 6,680 95.7±0.2

on means, n = 22). Similarly, comparing F82 and F84, the addition of SGB

significantly lowered classification accuracy, although by a slight margin (Wilcoxon

ranked test in means, n = 22, p-value = 0.002 < 0.05), suggesting blood pressure

data is a confounder at the presence of the 72 additional features.

5.4.2 One-vs-Rest Classification

We used the SGB-F82 model to perform one-vs-rest classification. The purpose of

this experiment was to see how well the model identified the four classes from a

general population that includes participants in the “borderline” area that cannot

be categorised into any of the four categories.

Table 5.2 shows that the SGB-F82 model performed well for all one-vs-rest

classification, achieving over 80% mean accuracy for all experiments. “Hypertrophy”

was reliably detected, followed by “ischaemia”, “arrhythmia”, and normal. The

relatively low performance on the normal class may reflect the fact that borderline

participants belong to the “sub-healthy” group, and are therefore, closer to the

“normal” class than the “arrhythmia”, “ischaemia”, and “hypertrophy” classes in

the latent space. To test this hypothesis, we performed one-vs-rest classification

excluding the borderline participants, and the results are shown in table 5.3.

Comparing table 5.2 with 5.3, the removal of the borderline participants from

the “rest” class indeed boosted normal class classification, but also made the other

three disease classification more complicated because it is hard to distinguish them

from each other. This led to another question: which of the three disease classes

(arrhythmia, “ischaemia”, and “hypertrophy”) are more likely to be confused with

another disease class by the SGB-F82 model?
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Table 5.3: One-vs-rest classification excluding the borderline participants. Results are
shown as the mean and std of 100 repeats of five-fold cross-validation mean accuracy.

Class Sample Size Accuracy (%)
Normal 13590 89.1±0.1
“Arrhythmia” 4294 79.5±0.4
“Ischaemia” 3616 86.6±0.4
“Hypertrophy” 6680 92.1±0.2

Table 5.4: 2- and 3-class classification, excluding the borderline participants. Results
are mean±std of 5-fold cross-validation.

Experiments n Accuracy
(%)

2-class Normal vs “Hypertrophy” 6680 94.1±0.7
“Ischaemia” vs “Hypertrophy” 3616 91.5±1.3
Normal vs “Ischaemia” 3616 91.0±0.6
“Arrhythmia” vs “Hypertrophy” 4294 88.9±1.2
Normal vs “Arrhythmia” 4294 85.8±0.5
“Arrhythmia” vs “Ischaemia” 3616 83.1±0.5

3-class Normal vs “Ischaemia” vs “Hypertrophy” 5424 86.6±0.8
Normal vs “Arrhythmia” vs “Hypertrophy” 6441 83.3±0.7
“Arrhythmia” vs “Ischaemia” vs “Hypertro-
phy”

5425 81.3±1.0

Normal vs “Arrhythmia” vs “Ischaemia” 5425 78.9±1.1
4-class Normal vs “Arrhythmia” vs “Ischaemia” vs

“Hypertrophy”
7232 77.5±0.8

5.4.3 Two- and Three- Class Classification

To answer this question, we conducted 2- and 3- class balanced classification. An

equal number of samples were selected from the larger classes to match the smallest

class in order to construct balanced datasets for five-fold cross-validation. Results are

shown in table 5.4 as the mean and standard deviation of the 5-fold cross-validation

accuracy and ranked in descending order of the means in each of the 2- and 3-class

categories. In 2-class classification, classification of “arrhythmia” and “ischaemia”

yielded the lowest accuracy, suggesting SGB-F82 has di�culty in distinguishing

“arrhythmia” and “ischaemia”. It is validated in 3-class classification results where

the absence of either “arrhythmia” or “ischaemia” produced better performance.
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5.4.4 Feature Ranking

Although SGB-F82 yielded the highest mean accuracy in section 5.4.1, there is very

little di�erence between SGB-F82 and SGB-F84, and we wish to see the ranking

of blood pressure in feature ranking analysis. Therefore, we included SBP and

DBP, using SGB-F84 for feature ranking.

We listed the top 10 features from each of the one-vs-rest classifications, and

the four-class classification in descending order of the mean weights in 100 repeats.

The 72 new features are shown in bold font on table 5.5.

Table 5.5 shows that the Mortara features are most important for distinguishing

individuals with normal, “arrhythmia”, or “ischaemia”, while the new features are

particularly important for “hypertrophy” classification.

Of all the 84 features, QRS duration appeared most frequently (5 times), followed

by QRS axis (4 times), average RR (4 times), PR duration (4 times), R amplitude in

V5 (4 times), S amplitude (V1, 4 times), and age (3 times). Blood pressure features

only appeared once in top 10 features, ranking 10th in “ischaemia” classification.

Lead V5 appeared most frequently among the 12 leads, for 5 times, followed by

leads V1 (4 times), and (3 times), II (twice), III (twice), aVF (twice), and V6

(twice). Lead I did not appear at all. In terms of the amplitude of the waves, T

wave amplitude appeared most frequently, for 9 times, followed by Q (7 times),

S (5 times), and R (4 times). P wave amplitude did not appear at all. While

R and S wave amplitudes concentrate in lead V5 and V1, respectively, Q and T

wave amplitudes spread to many leads.

These features are quite di�erent from the clinical criteria. For example, the

three most common clinical criteria for left ventricular hypertrophy - Sokolow-Lyon

index (Sokolow and Lyon 1949), Cornell voltage criterion (Casale et al. 1987), and

Romhilt-Lyon point score system (Romhilt and Estes Jr 1968) - all consider S and R

amplitudes exclusively, while SGB-F84 model identified mostly Q and T amplitudes

in the top 10 features to detect “hypertrophy”, suggesting our model may have

discovered di�erent patterns than those already identified in clinic.
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5.5 Discussion and Conclusion

In this chapter, we demonstrated that machine learning models could indeed classify

ECG features with high accuracy without any knowledge of the diagnosis criteria

- all they need are relevant features. The 77.3% four-class classification accuracy

by SGB-F84 and SGB-F82 is encouraging, especially considering the “arrhythmia”,

“ischaemia”, and “hypertrophy” classes are not mutually exclusive. In fact, they may

be the underlying causes of one another. For example, a subclass of arrhythmia,

ventricular fibrillation, is often caused by ischemic heart disease (Vaswani et al.

2015). Although for the ease of presentation, the results given in this chapter are

classification accuracy, but in fact, the machine learning models give a probability

score for each of the target class. We can further validate the models by comparing

the probabilities for the four classes with the actual clinical diagnosis for each patient.

The dependent features in table 4.1 can be all expressed as transformations of the

independent features, thus contain no additional information beyond the independent

features. The comparison between F10 and F19 in table 5.1 validates that there are

no improvements in classification accuracy by introducing the dependent features

models, and the addition of dependent features may serve as a confounder when

there are limited training examples.

The significant improvement using the 72 additional features compared to

the Mortara features and the blood pressure features is especially encouraging,

considering the näıve feature extraction scheme we used in this chapter. We did not

perform any denoising nor advanced signal processing. However, all features were

extracted from the “typical cycle” thus did not include much rhythmic information,

which may explain the relatively low accuracy in classification of “arrhythmia”

(table 5.4). In the next chapter, we will use deep learning to analyse the raw

10-s ECG signals directly.

This chapter has several surprising observations. The top features identified by

SGB-F84 are quite di�erent from those that are commonly used in clinical practice.

We discovered that lead I was not selected in the top features at all, which may

suggest many studies that used only single lead, typically lead I or II, even when the
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12-lead ECG is available, have sub-optimal performances and our findings suggest

using lead V5 instead of lead I when the single-lead analysis is inevitable due to

resource constraints. This can also be understood by looking at table 2.2, which

shows lead I is solely determined by the voltages of the left and right arm electrodes,

which also contribute to aVR, aVL, aVF, and V1-V6 leads. In other words, the

information contained in lead I is already contained in aVR, aVL, aVF, and V1-V6

leads, while V1-V5 contain information from the precordial electrodes (v1-v6) which

are not shared with another lead. Thus it makes sense for a machine learning

model to exclude redundant information and include independent information (i.e.,

information that cannot be obtained from other sources).

On further analysis of the features provided by the Mortara device (table 4.1)

and compare with the features commonly used in clinical ECG interpretation (table

2.3), we can see that, similarly, Mortara device included many “redundant” features

(i.e. features that could be expressed as functions of other features, such as P wave

onset) and did not include clinically-relevant features such as ST-segment, which is

likely due to the di�culty in detecting the onset of T waves in ECG. This is a general

problem in ECG classification using the traditional machine learning pipeline of beat-

and-wave segmentation æ feature extraction æ classification, as the di�culties in

beat-and-wave segmentation would prevent accurate information to flow to the next

step of the pipeline. For example, ST-segment feature may be left out because of the

challenges in T wave onset detection, and even if the researchers detected T wave

onset and extracted the ST segment feature, the error in T wave detection might

propagate to the downstream steps via the ST segment feature. This motivates

the need to apply machine learning methods to unsegmented signals, essentially

learning the feature extraction step and classification step jointly. Deep learning is

most powerful in this respect, which will be the focus of our next two chapters.

The analysis in this chapter has several limitations. For example, we used a

point estimate of the voltage level of Q o�set as the baseline level, while in theory,

we should have used the average level of P o�set to Q onset segment and Q o�set
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to T onset segment. This is also due to the di�culty in T wave segmentation and

will be addressed in the next chapter using deep learning.

Another limitation of this chapter is that our labels were provided by the Mortara

machine, which is based on the deterministic rule-based Minnesota Code (Prineas,

Crow, and Z.-M. Zhang 2009). In theory, machine learning models can discover the

rules given enough training data and training time. To address this issue, in the next

chapter, we will perform classification using machine learning models on additional

datasets (ICBEB and PhysioNet) where the labels were provided by the cardiologists.

Another limitation of our study is that we did not build gender-stratified models,

nor did we include gender as a feature. As introduced in section 2.3, men and women

have di�erent risks in many cardiac diseases. For example, men have predominance

in ischemic heart disease, we can expect that a gender-stratified model would

perform better and be of higher clinical relevance than the unstratified model. We

will look at gender-stratified models in Chapter 7.
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Deep Learning ECG Classification

6.1 Introduction

In the previous chapter, we studied 11 representative traditional machine learning

models, although some of them obtained good ECG classification, their performance

is sensitive to the choice of the features. Also, these methods need feature extraction

from the raw ECG signals. In this chapter, we use end-to-end deep learning to classify

ECG signals, taking the raw ECG signals as input, without preprocessing or feature

extraction steps. We start with an overview of the core principles of deep learning,

followed by a proposal to use a novel deep learning architecture family, called

Layer-Wise Convex Networks (LCNs), and a theorem by the same name. Then we

introduce a heuristic algorithm - the AutoNet - designed to automatically generate

LCNs based on the characteristics of the training set. Finally, we demonstrate the

performance of AutoNet-generated LCNs compared to the state-of-the-art end-to-

end deep learning model for ECG classification on three datasets: (i) International

Conference on Biomedical Engineering and Biotechnology (ICBEB)1 Physiological

Signal Challenge 2018, (ii) the PhysioNet Atrial Fibrillation Detection Challenge

2017 (Cli�ord et al. 2017), and (iii) the China Kadoorie Biobank (CKB)2. The data

description for the three datasets are provided in Chapter 4.
1http://2018.icbeb.org/Challenge.html
2https://www.ckbiobank.org/site/
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6.2 Introduction to Deep Learning

A comprehensive introduction to deep learning merits a textbook in itself. This

section summarises the core principles of deep learning to enable the readers to

understand this thesis. Interested readers are encouraged to refer to I. Goodfellow,

Bengio, and Courville 2016 for further details.

The name “deep learning” was given to neural networks after the rediscovery

of their power in pattern recognition since 2012, thanks to the growing amount of

training data, increasing computational capacity, and theoretical and algorithmic

advances which have enabled successful training of much deeper neural networks

than what was previously possible. In this thesis, we use the term “deep learning”

and “neural networks” interchangeably.

6.2.1 Basic Formulation

Let us use supervised K-class classification as an example, and denote the design

matrix with X œ RD◊m, where D is the dimension of the feature vector, m is the

number of training examples, Y œ RK◊m represents the one-hot-encoded training

targets (in unsupervised learning, Y may be equal to X or some function of X),

where K is the number of classes. Let Ŷ represent the prediction of Y given by

an L-layer neural network, then each layer of the network computes:

Z
[l] = W

[l]
A

[l≠1] + b
[l] (6.1)

A
[l] = g[l](Z [l]) (6.2)

for l = 0, 1, ..., L. Layer 0 and layer L represent the input and the output layers,

respectively; in other words, A
[0] = X, and A

[L] = Y . A
[l]

œ Rn[l]
◊m is called the

activation or output of layer l; g[l] is (usually) the non-linear activation function of

layer l; Z
[l]

œ Rn[l]
◊m is the a�ne transformation of the activations of layer l ≠ 1;

W
[l]

œ Rn[l]
◊n[l≠1] is the weight matrix pointing from layer l ≠ 1 to layer l in the
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forward pass; n[l≠1] and n[l] are the number of neurons in layer l ≠ 1 and layer l,

respectively. b
[l]

œ Rn[l] is the bias vector of layer l.

Loss Functions and Output Activations

The choice of the loss functions and the output activation functions are closely linked

to the machine learning problem. For binary classification, the default choice is the

binary cross-entropy loss (equation 6.3) with a sigmoid output; for K-class (K > 2)

classification, the default choice is the multi-class cross-entropy loss (equation 6.4)

with a softmax output; and for regression problems, the default choice is the mean

squared error (equation 7.4), and linear output (identify mapping). These choices

correspond to the maximum likelihood approach.

E = ≠
1
m

mÿ

i=1
[yi log ŷi + (1 ≠ yi) log(1 ≠ ŷi)] (6.3)

E = ≠
1
m

mÿ

i=1

Kÿ

k

yik log ŷik (6.4)

E = 1
m

mÿ

i=1
(yi ≠ ŷi)2 (6.5)

To see this, we first look at binary classification and assume we have m training

examples and denote the two classes as class 0 and class 1, and the training target

for the ith training example as yi œ {0, 1}. We interpret the output of the neural

network as the estimate of the posterior for class 1, i.e. ŷi = p(yi = 1|xi), then

we can write down the posterior for each training example xi as:

p(yi|xi, ◊) = ŷi
yi(1 ≠ ŷi)1≠yi (6.6)

where ŷi = ŷi(xi, ◊). Assume the training examples are identically and independently

distributed (i.i.d.), using the Bayes rule, we can write down the likelihood of

the entire training set as

p(X|Y , ◊) =
mŸ

i=1
p(xi|yi, ◊) =

mŸ

i=1

p(yi|xi, ◊)p(xi)
p(yi)

=
mŸ

i=1
ŷyi

i (1 ≠ ŷi)1≠yi
p(xi)
p(yi)

(6.7)
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Taking the negative logarithm of equation 6.7, we have

≠log p(X|Y , ◊) = ≠

mÿ

i=1
[yi log ŷi+(1≠yi) log(1≠ŷi)]≠

mÿ

i=1
log p(xi)+m log C (6.8)

Because the logarithm function is monotonically increasing, maximising the

likelihood (equation 6.7) is equivalent to minimising the negative log-likelihood

(equation 6.8); and because the term ≠
qm

i=1 log p(xn) + m log C in equation 6.8

is invariant to ◊, maximising the likelihood is equivalent to minimising the first

term on the right-hand side of equation 6.8, which is equivalent to minimising

the binary cross-entropy loss (equation 6.3).

One justification for using the sigmoid output for binary classification is that

the output of the sigmoid function lies in the open interval of (0, 1). Another

justification is that we can rearrange the posterior p(y = 1|x) into a sigmoid

function, the proof of which has been given in Chapter 5.

The similar argument applies to softmax output layers with multi-class cross-

entropy loss for multi-class classification, as the sigmoid function can be seen as a

particular case of softmax when K = 2. Similarly, the mean squared error loss with

linear output can be derived from taking the negative log of Gaussian likelihood
rm

i=1 N (ŷi, —≠1), where —≠1 is the precision and is invariant to ◊. We can see that

these choices mean that the loss is non-convex with respect to the parameters if

the network has at least one non-linear hidden layer.

Hidden Layer Activation

In principle, the aforementioned activation functions - sigmoid, softmax, and linear

- can also be used in hidden layers, although now the use of sigmoidal activations

is discouraged in feed-forward hidden layers. Hidden layers with linear activations

have the e�ect of dimension reduction, and two consecutive linear layers are not

equivalent to a single linear layer with the same number of parameters, as the

former approach requires the resulting weight matrix to be decomposable into two

real matrices, while the latter approach has no such constraint.

Rectified linear unit (ReLU, Jarrett et al. 2009; Nair and G. E. Hinton 2010;

Glorot, Bordes, and Bengio 2011, equation 6.9) remains the default choice when
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building neural networks. The drawback of ReLU is that it has large regions with 0

gradient, therefore researchers have come up with piece-wise linear activations that

have gradients everywhere, such as leaky ReLU (Maas, Hannun, and A. Y. Ng 2013),

parametric ReLU (K. He et al. 2015) and maxout (I. J. Goodfellow, Warde-Farley,

et al. 2013), where the domain of the function is divided into K regions, with

each region having increasingly larger positive gradient than the previous region,

and the gradient can be learned or fixed.

y = max{x, 0} (6.9)

It was once believed that only the everywhere-di�erentiable functions could be

valid hidden layer activations, and sigmoidal functions were the most popular choices.

However, sigmoidal functions have large regions of saturation, where the gradient

is very small, which hindered the training of deep neural networks. Nowadays,

it is found that functions with defined left and right gradients everywhere are

su�cient to act as the hidden activations, while everywhere-di�erentiability is not

necessary. Now the choice of hidden layer activation has the trend of having mostly

piece-wise linear regions. This is because piece-wise linear activation functions

do not introduce second-order e�ects. Also, almost all commonly used activation

functions are monotonic. I. Goodfellow, Bengio, and Courville 2016 observed that

non-monotonic activation functions make training extremely di�cult. The switch

from sigmoidal functions to piece-wise linear functions as hidden activation is one

of the key factors contributing to the recent advancements in deep learning. Jarrett

et al. 2009 observed that in small datasets, using piece-wise linear hidden units is

more important than actually learning the appropriate weights: ReLU nets with

random weights are su�cient to propagate useful information.

Although the use of sigmoidal activations are discouraged in feed-forward hidden

layers, they are useful in specialised architectures. For example, tanh and sigmoid

can act as “gates” in gated architectures such as the long sort-term memory (LSTM)

and the gated recurrent units (GRU).
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Width and Depth

The primary neural network architecture design consideration, after deciding on

the model family (e.g. feed-forward, recurrent, or convolutional neural networks), is

the width and depth of the network. The width refers to the number of neurons

in each layer of the network, and the depth refers to how many layers the network

contains. There is no consensus as to how to count the layers: some authors count

only one of the output and input layers, while others count both; some authors

only count layers with learnable parameters, while others also count layers without

learnable parameters, such as pooling layers; some authors count the convolutional

layers and activation layers separately, while others consider the convolutional and

activation a single layer and call it convolutional layer. There is also no consensus

as to how many layers qualify as deep.

There is also little theoretical guidance on the choices of the width and depth of

the network. A narrow and deep network is generally believed to generalise better

than a broad and shallow network, given a fixed total number of parameters. A deep

network, compared to a shallower one, also encodes the practitioners’ preference

for learning hierarchical factors of variations over independent factors of variations,

meaning more complicated factors of variations may be built upon simpler factors

of variations. However, a deep network can also be more challenging to train, due

to vanishing and exploding gradients, and the worsening of Hessian conditioning (in

more detail in section 6.2.2) as the depth increases. Another intuition that depth

may not always help is that the human brain only has six layers of neurons (Marieb

and Hoehn 2007), although there is an abundance of interconnections and feedback

loops. Hanin 2018 et al. proved that for ReLU nets, given a fixed total number of

parameters, the network with all identical width layers is the least susceptible to

vanishing and exploding gradients, suggesting deep networks with the same number

of neurons in each layer may have desirable properties.

The choice of depth and width of an neural network is mostly designed by trial

and error. In this thesis, we attempt to determine them, based on principles of

information theory. We regard each training example as one piece of information,
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and our goal is to create a model that makes the most use of the training set while

also facilitate optimisation. We determine the depth using principles of reinforcement

learning and adapt the model size according to training and validation losses.

6.2.2 Optimisation

From section 6.2.1 we learned that the common choices of loss functions are no

longer quadratic with respect to the parameters to be optimised if the network has

at least one non-linear hidden layer. Also, neural networks have the property of

weight space symmetry, which means swapping two neurons of the same layer and

their input and output weights, we can obtain an equivalent neural network with

di�erent parameters. Thus we cannot solve for the parameters that minimise the

loss. Instead, we must resort to iterative numerical optimisation to reduce the loss.

Gradient Descent

Let ◊ denote the vector collecting all parameters of a neural network (including

weights and biases), the directional gradient of loss E with respect to any unit

vector u is ÒuE(◊). To minimise E(◊), we follow the direction that decreases

E the fastest, i.e.

u
ú = argmin ÒuE(◊) (6.10)

from vector calculus, we have

u
ú = ≠Ò◊E(◊) (6.11)

which means the direction that minimises E the most is the negative gradient. The

iterative optimisation following the negative gradient of the loss is called steepest

descent, gradient descent, full-batch gradient descent, or batch gradient descent.

Formally, it updates the parameters by

◊ = ◊ ≠ –Ò◊E(◊) = ◊ ≠
–

m

mÿ

i=1
Ò◊Ei(◊) (6.12)
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where – is the learning rate. Since the loss term is usually a sum over all training

examples, one update step of steepest descent would require O(m) computation

just for the summation operation. Deep learning typically handles millions of

training examples, thus O(m) complexity is undesirable. Researchers realised the

loss term could be interpreted as an expectation over the training set. Therefore

the expectation can be estimated with much fewer training examples, leading to

stochastic gradient descent. There is some inconsistency in the literature regarding

the use of the term “batch”. Here we follow the convention by I. Goodfellow, Bengio,

and Courville 2016 and define the following concepts:

• Batch size: the number of training examples used to make an update of the

parameters, demoted as mb.

• Batch gradient descent: same as steepest gradient descent, using all training

examples to make one update of the parameters, i.e. mb = m.

• Stochastic gradient descent: using less than all training examples to make one

update of the parameters, i.e. 1 Æ mb < m.

• Mini-batch gradient descent: using less than all and more than one training

examples to make one update of the parameters, i.e. 1 < mb < m.

• Online learning: using only one training example to make one update of the

parameters, i.e. mb = 1.

Almost all modern deep learning is powered by stochastic gradient descent (I.

Goodfellow, Bengio, and Courville 2016). A full pass through the entire training set

is called an epoch. The batch size influences generalisation error and training speed:

a small batch size has a regularisation e�ect to reduce overfitting, but it takes longer

than a large batch size to go through all training examples. The batch size is often

set as powers of 2 to take computational advantage of multi-core hardware.

DRAFT Printed on April 4, 2021



6. Deep Learning ECG Classification 75

Figure 6.1: Back-propagation expressed as propagation of ”. Blue arrow: forward pass;
red arrow: backward pass. Reproduced from Bishop 2006.

Backpropagation

In the last section, we can see that gradient descent requires the evaluation of

Ò◊E(◊). This is implemented in deep learning using backpropagation, or backprop

for short. Backprop is not an optimisation algorithm, but a way to calculate the

gradient iteratively using the chain rule of calculus and smart representation of

recursive entities, and can be used outside the deep learning context.

The mechanism of backprop is shown in Figure 6.1. Let us denote the weight

pointing from unit i to unit j in forward propagation as wij, then the gradient of

the nth training example with respect to wij can be obtained by the chain rule:

ˆE

ˆwij
= ˆE

ˆzj

ˆzj

ˆwij
(6.13)

We aim to find an entity that can be expressed recursively from the output

layer to the input layer, much like z and a in forwarding propagation, but in

reverse. If we use ”j to denote ˆE
ˆzj

, we have

”j = ˆE

ˆzj
=

ÿ

k

ˆE

ˆzk

ˆzk

ˆzj
=

ÿ

k

”k(ˆzk

ˆaj

ˆaj

ˆzj
) =

ÿ

k

”k(wjkgÕ

j) = gÕ

j

ÿ

k

wjk”k (6.14)

where k denotes the neurons of the layer above, and we have made use of

equations 6.1 and 6.2 and the fact that any changes in neuron j of layer l will

influence the loss E via all neurons of the layer above (layer l + 1). We can see that

” is indeed expressed as a weighted sum over the same entity of the layer above.

Finally, we substitute equation 6.14 into equation 6.13 and obtain
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ˆE

ˆwij
= ”jai (6.15)

Comparing equations 6.14 and 6.15 with equations 6.1 and 6.2, we can see that

backprop is analogous to propagating the “di�erential” information (”) from the

output to the input layer, and ” is calculated as the weighted sum of ” of the layer

above, multiplied by the derivative of the activation function of the current layer.

The most common implementation of backpropagation updates all parameters

together in each iteration. Block optimisation updates a subset of the parameters

in each iteration, for example, layer-by-layer.

Challenges Faced by Gradient Descent

Almost all deep learning is powered by stochastic gradient descent and its variations

(I. Goodfellow, Bengio, and Courville 2016). Gradient descent, including stochastic

gradient descent, faces several challenges, presented as follows:

Learning Rate

The learning rate (–) is arguably the most critical hyperparameter to tune (I.

Goodfellow, Bengio, and Courville 2016). If the learning rate is too high, the

training can miss the minimum or even diverge, but if the learning rate is too low,

training is prolonged or can get stuck at local minima or plateaus. The choice of

the learning rate is highly associated with the conditioning of Hessian, as to be

discussed shortly. The most common practice is to have an initial learning rate –0

and reduce it as the training progresses. There are several protocols: exponential

decay (– = –0 ◊ 0.95epoch number), – = –0
1+decay rate◊epoch number , – = Ÿ–0

(epoch number)
1
2
,

step decay, and manual decay. Ng recommends prioritising tuning –0 over the other

hyperparameters in the learning rate schedule (A. Ng 2015). I. Goodfellow, Bengio,

and Courville 2016 suggests training the model for a few epochs with di�erent

learning rates, then initialise the learning rate to be slightly higher than the best-

performing learning rate. Learning rate can also increase as training progresses:

cyclic learning rate scheduling (Smith and Topin 2017; Smith 2017) periodically
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increases and decreases the learning rate, aiming to escape poorly-conditioned areas

and local minima.

Poor Conditioning of the Hessian

The Hessian matrix is the second derivative matrix of the loss with respect to the

parameters. The conditioning of Hessian is quantified by the condition number

of the matrix, calculated as maxi,j |
⁄i
⁄j

|, where ⁄ = {⁄i} are the eigenvalues of the

Hessian matrix. Since the second derivative of any continuous function is permutable,

and we rarely use non-continuous activation functions, if at all, the Hessian we

encounter in deep learning is real symmetric. Any real symmetric matrix has real

eigendecomposition, so the condition number is defined unless the Hessian is singular.

The conditioning of Hessian describes the “curvature” of the loss surface. If

the condition number is large, the gradient in the directions corresponding to

large-magnitude eigenvalues changes fast, while the gradient in the directions with

small eigenvalues changes slowly. Gradient descent has no information regarding the

second-order behaviour of the loss surface, thus will take a long time “zigzagging”

along the fast-changing directions and make little progress in the slow-changing

directions. Training can waste much time if the direction leading to a minimum

has a slow-changing gradient. Poor conditioning can also make choosing learning

rate di�cult, as some directions require a high learning rate, while other directions

require a low learning rate.

The Hessian can even be singular, meaning its determinant is 0. Singular Hessian

completely degenerates along one or more dimensions, which may be caused by

redundancies in the training data (meaning some of the training data are co-linear of

each other). In practice, the Hessian can also be singular due to numerical rounding

errors and underflow. Singular Hessian’s condition number is e�ectively infinite.

The above problems will cause numerical instability and often result in errors in

the program.

Critical Points other than Global Minima
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Critical points are the points at which all derivatives are 0. In addition, if the

Hessian is positive definite, the critical point is a minimum; if the Hessian is

negative definite, the critical point is a maximum; if the determinant of the Hessian

is negative, meaning the Hessian has both positive and negative eigenvalues, the

point is a saddle point. Finally, if at least one eigenvalue is 0 while other eigenvalues

have the same sign, then the point is inconclusive.

For a long time, researchers attributed the di�culty in training deep neural

networks to the presence of local minima. This is now found not the case, especially

when the parameter space is of high dimension: the probability of encountering

minima and maxima are exponentially lower than encountering saddle points.

I. Goodfellow, Bengio, and Courville 2016 concluded that local minima typically

have low loss rather than high cost; critical points with high loss are typically saddle

points, while critical points with very high loss are typically local maxima.

Local maxima rarely cause problems in neural network training using first-order

methods, as gradient descent follows the negative gradient downhill, rather than

solving for a critical point, where the gradient is 0. Saddle points may cause

problems because training can get stuck at the saddle points where the gradient is 0,

but the loss is still high, as saddle points are maxima in the directions with negative

eigenvalues. I. J. Goodfellow, Vinyals, and Saxe 2014 observed that stochastic

gradient descent can escape saddle points relatively quickly, perhaps thanks to

the noisy gradient estimation introduced by the mini-batches, resulting in the

estimated gradient not precisely 0 even at saddle points, thus training can follow

the negative gradient to reduce the loss further.

Plateaus are more problematic. At plateaus, gradients of all orders are 0;

training no longer has a guide as to which direction to travel in order to reduce loss

further.

Exploding and Vanishing Gradients

Another problem plaguing deep neural network training is the vanishing and

exploding gradient problem, especially in architectures that reuse the weight
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matrices over may layers (equivalent to unrolling recurrent neural networks along

the time axis).

Suppose an architecture reuses W for t layers (or time steps in RNN case), then

W
t term will exist in the function it represents. Using eigendecomposition of W

t

(equation 6.16), we see that if the diagonal matrix formed by the eigenvalues ⁄ of W

deviate slightly from the identity matrix, the resulting ⁄
t will have very large or very

small values for large t, causing numerical overflow or underflow. This is the reason

that learning long-term dependencies is di�cult for recurrent neural networks.

W
t = (V diag(⁄)V ≠1)t = V diag(⁄)t

V
≠1 (6.16)

Even if these values can be represented in a computer, they will result in very

small or very large gradients (equation 6.14 and 6.15), causing the training to make

infinitesimal steps or “jump o� cli�s”. Researchers realised that it is the direction,

rather than the magnitude of the gradient, that matters, and proposed gradient

clipping heuristic to mitigate the exploding gradient problem, by capping the

magnitude of the gradient to a predefined value. A similar idea inspired optimisation

algorithms that adapt the learning rate or re-scale the gradient according to the

local gradient magnitude, presented next.

Adaptive Learning Rate Algorithms

In this section, we present algorithms using adaptive learning rates adjusted for

local gradient or curvature. They are primarily designed to mitigate the poor

conditioning of the Hessian and the vanishing and exploding gradient problems,

and to facilitates the choice of learning rate.

Momentum

The intuition of momentum (Polyak 1964) is that we can avoid oscillation along

the direction with large Hessian eigenvalues by using an exponentially weighted

moving average of the gradient, rather than the gradient in situ, to make parameter

updates. The momentum update rule is as follows:
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Initialise v = 0. In each iteration,

v = —v + (1 ≠ —)Ò◊E(◊) (6.17)

◊t+1 = ◊t ≠ –v (6.18)

where Ò◊E is calculated on the current mini-batch. The default choice of —

is 0.9. Bias correction is usually not implemented. Momentum is named after

the analogy of Newtonian motion in physics. v is analogous to velocity, Ò◊E is

analogous to acceleration, ◊ is analogous to the position, and – is analogous to

the time interval. In physics, momentum equals mass times velocity, and here we

assume unit mass. Therefore v is also the value of momentum. Momentum can

work with full batch gradient descent or stochastic gradient descent.

RMSprop

Hinton proposed Root Mean Squared Propagation (RMSprop) in the Coursera

course Neural Networks and Machine Learning (G. Hinton, Nitsh Srivastava, and

Swersky 2012). RMSprop rescales the gradient by its magnitude, which is calculated

as the square root of an exponentially weighted moving average of the element-wise

square of the gradient. The update rule of RMSprop is as follows:

Initialise S◊ = 0. in each iteration,

S◊ = —S◊ + (1 ≠ —)(Ò◊E)2 (6.19)

◊t+1 = ◊t ≠
–

(S◊ + ‘) 1
2
Ò◊E (6.20)

where ‘ is a small positive value, typically 10≠8, to avoid division by 0. RMSprop

can work with both full-batch or stochastic gradient descent. RMSprop is an

excellent go-to optimisation algorithm to try.

Adam

Adaptive momentum estimation (Adam, Kingma and Ba 2014) combines momentum
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and RMSprop. Initialise v◊ to 0. In each iteration, compute ˆE
ˆ◊

using the current

mini-batch, then calculate:

v◊ = —1v◊ + (1 ≠ —1)Ò◊E (6.21)

v
corr
◊

= V ◊

1 ≠ —t
1

(6.22)

S◊ = —2S◊ + (1 ≠ —2)(Ò◊E)2 (6.23)

S
corr
◊

= S◊

1 ≠ —t
2

(6.24)

◊t+1 = ◊t ≠ –
v

corr
◊

(Scorr
◊

+ ‘) 1
2

(6.25)

Typically bias correction is implemented in Adam, unlike in momentum and

RMSprop. The default choice for —1 (the first moment) and —2 (second moment)

are 0.9 and 0.999, respectively. – still needs to be tuned. Adam is also an

excellent go-to algorithm to try.

Batch Normalisation

Another approach to mitigate poor conditioning of Hessian and the vanishing and

exploding gradient problems is to look at the neural networks layer by layer. If

we fix all other layers, layer l can only “see” the activations coming out of layer

l ≠ 1, which means that the Hessian with respect to the parameters of layer l is

determined by A
[l≠1]. Thus a hidden layer cannot tell whether the input is from

the training data or a hidden layer. We can normalise the hidden layers just as

we can normalise the input data. Batch normalisation (Io�e and Szegedy 2015)

works by addressing the so-called covariance shift. In machine learning, we usually

normalise the input features to a standard distribution N (0, 1). Covariance shift

refers to the phenomenon that as training progresses, the hidden layer activations

gradually deviate from the standard distribution, causing the Hessian to be poorly
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conditioned. The authors also commented that batch normalisation might make

the deep layers more robust to small perturbations in the shallower layers. The

update rule of batch normalisation is as follows:

Within a mini-batch, calculate

µ = 1
n

n[l]ÿ

i=1
zi (6.26)

‡2 = 1
n

n[l]ÿ

i

(zi ≠ µ)2 (6.27)

znorm
i = zi ≠ µ

(‡2 + ‘) 1
2

(6.28)

zú

i = “iz
norm
i + —i (6.29)

ai = g(zú

i ) (6.30)

where i indices each neuron in the layer. —i, “i are learnable parameters with

each element corresponding to each neuron of the layer. So the parameters of

the network are W
[l]

œ Rn[l]
◊n[l≠1], “

[l]
œ Rn[l], —

[l]
œ Rn[l]. b

[l] is “absorbed” by

—
[l], so no longer needed. (— is not to be confused with the hyperparameters of

momentum). “
[l] and —

[l] have the same dimension as b
[l]. — and “ are updated

similarly as W using backprop.

Batch normalisation is one of the most exciting recent innovations in deep

learning. As the Hessian becomes better conditioned, the learning rate can be

increased, thus dramatically accelerate training, especially when adaptive learning

rate algorithms such as RMSprop and Adam are used, where the impact of improved

Hessian conditioning will reflect in the increased magnitude of update steps. Also,

by normalising A or Z, batch normalisation can prevent ÒW E to be extremely large

or small (equation 6.14 and 6.15), ameliorating exploding and vanishing gradient

problems. There is some debate as to whether to normalise Z or A. Ng recommends
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normalising Z, but the original paper normalised A, and we also find normalising

A works slightly better for Layer-Wise-Convex networks in the experiments.

Batch normalisation with small batch size (32, 64, or 128) also has a slight

regularisation e�ect, as the mean and variance are calculated from mini-batches,

hence contain noise. Batch normalisation can sometimes render dropout unnec-

essary, although batch normalisation is not recommended to be used as the only

regularisation method (I. Goodfellow, Bengio, and Courville 2016). If the batch

size is 1, for example, when testing one case at a time, the mean and variance can

no longer be evaluated using equations 6.26 and 6.27. An exponentially weighted

running average of mean and variance obtained during training may be used instead.

Second-Order Methods

Optimisation algorithms using only the first-order derivative is called first-order

methods, and algorithms using the second-order derivative is called second-order

methods, presented below:

Newton’s Method

Newton’s method is the most commonly-used second-order method (I. J. Goodfellow,

Warde-Farley, et al. 2013). It is derived from the second order Taylor expansion

of the loss at any point ◊0:

E(◊) = E(◊0) + (◊ ≠ ◊0)|Ò◊E(◊0) + 1
2(◊ ≠ ◊0)|H(◊ ≠ ◊0) + O((◊ ≠ ◊0)3) (6.31)

where H is the Hessian evaluated at ◊0. Ignoring O((◊ ≠ ◊0)3), at a critical point

◊
ú, Ò◊E(◊ú) = 0, we obtain the update rule for Newton’s method:

◊
ú = ◊0 ≠ H

≠1
Ò◊E(◊0) (6.32)

If the loss is a quadratic function, Newton’s method can jump to the global

minimum in one step. If the loss is locally convex, then Newton method can be

applied iteratively and converges faster than gradient descent. However, if the

Hessian is not locally positive definite, as is often encountered in deep learning,
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Newton’s method can update in the wrong direction and be attracted to saddle points

and maxima. The Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt

1963) improves upon Newton’s method by introducing a hyperparameter – which

is added to the diagonal of the Hessian, but it works only when the negative

eigenvalues do not have large magnitude, in which case – would need to be so large

that the Hessian is dominated by the diagonal and behaves similar to gradient

descent but at a low convergence rate (the rate of convergence is roughly linear

to |
1

⁄max
|, and in this case, roughly |

1
– |).

Newton’s method also requires inverting H , which has cubic complexity of the

number of parameters. Thus Newton’s method is only applicable to networks with

few parameters.

Conjugate Gradient Descent

One way to utilise H without inversion is conjugate gradient descent. It is developed

from analysing the drawbacks of gradient descent with line search. Line search

is the method of jumping to the minimum of the direction corresponding to the

negative gradient in each iteration. The next iteration will start at the critical

point of the previous gradient-direction, thus in steepest descent with line search,

the two consecutive updates are along orthogonal directions. It is easy to see that

this certainly is not the shortest path towards a minimum. Conjugate gradient

descent makes training follow the “conjugate directions” in two consecutive steps,

defined as d
|
t Hdt≠1 = 0, where dt and dt≠1 are the directions to descent in step

t and step t ≠ 1, respectively. It can be shown that conjugate gradient descent

will take at most n◊ steps to converge to a minimum for quadratic surfaces, with

n◊ being the number of parameters.

Traditionally conjugate gradient descent was developed for convex loss functions

and as a batch approach. Non-convex conjugate gradient descent has been developed

with occasionally resets using steepest descent with line search, and I. Goodfellow,

Bengio, and Courville 2016 commented that it is beneficial to initialise conjugate

gradient descent with stochastic gradient descent, possibly to arrive at a location
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where the surface is approximately quadratic.

BFGS

Algorithms that approximate Newton methods are called quasi-Newton methods,

of which the Broyden-Fletcher-Goldfarb-Shanno (BFGS, (Head and Zerner 1985))

algorithm is the most prominent, which approximates H
≠1 by iterative low-rank

updates of a matrix M of the same dimension. As the update is of lower-rank, the

computational complexity is less than O(n2
◊
), but it requires storage of the matrix

M , which requires O(n2
◊
) memory. The limited memory BFGS (L-BFGS) initialises

the M to be identity matrix for each step, and stores the vectors used to update

M instead of M itself, which only requires O(n◊) memory.

Parameter Initialisation

Finally, we discuss issues in parameter initialisation. As deep learning uses iterative

numerical optimisation, and the loss surface is non-convex, the optimisation is

sensitive to the initial parameter values. The initialisation can determine whether

the training will converge at all. Weights and biases are usually initialised di�erently.

Weights are usually initialised to be small random values, rather than 0, as the latter

will not be able to learn anything due to weight space symmetry. Bias is allowed to

be initialised to be 0, although it is advisable to be initialised to be small positive

values in ReLU nets to allow gradients to propagate at the beginning of training.

There are several heuristics for weight initialisation: we take note that Z
[l] is

a weighted sum of A
[l≠1], so the larger the dimension (number of neurons) of the

previous layer, the smaller we want the activation to be. One way is to initialise the

weights of layer l to be a uniform distribution of U(≠
Ò

6
nin+nout

,
Ò

6
nin+nout

), where

nin and nout are the number of input and output units, respectively (Glorot and

Bengio 2010). This is known as the Xavier initialisation. Moreover, if the layer

l activation function is ReLU, then initialising the weights to be N (0, 2
nin

) works

better (K. He et al. 2015). This is known as He Initialisation.
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6.2.3 Regularisation
Weight Norm Penalty

Just like traditional machine learning, we can add a regularisation term to discourage

the network from learning exceedingly large parameters in order to reduce overfitting.

Weight norm penalty is simply adding a regularisation term qnw
i=1 |wi|p, where nw

is the number of weights in the network. L1 loss is the p = 1 case and encourages

the network to be sparse, while L2 regulation, also called weight decay, in which

p = 2, encourages weights to shrink to small magnitude. I. Goodfellow, Bengio,

and Courville 2016 commented that training may be stuck at a local minimum

corresponding to small weight norms, because weight norm penalty will also shrink

the magnitude of the gradients (equation 6.14 and 6.15).

Dropout

Dropout (Nitish Srivastava et al. 2014) is one of the most popular regularisation

techniques in deep learning thanks to its simplicity. In the layers with dropout,

each neuron has the probability d of being multiplied by 0, in other words, being

“turned o�”. d is called the dropout rate. The output of these layers are then

divided by 1 ≠ d to keep the expectation of the output unchanged. Dropout

could be interpreted as an implicit ensemble of many sub-networks of the original

network, thus reaping many benefits of ensemble methods. However, dropout can

introduce much noise and make hyperparameter tuning di�cult, as we would be

less sure whether the loss reduction is due to an intervention or the noise in training.

Dropout can also limit the model capacity, and when the training set is large,

under-fitting rather than overfitting is the primary concern. Thus in large training

sets, dropout’s harm outweighs its benefit.

Early Stopping

Early stopping is perhaps the most popular regularisation technique in deep learning,

thanks to its simplicity and saving of computational resources. It works by tracking

the loss on the validation set then terminate training when the validation loss
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stops improving for a preset number of epochs or is below a preset value. After

the training is completed, the set of parameters with the minimum validation

loss is used to make final predictions on the test set. I. Goodfellow, Bengio, and

Courville 2016 proved that early stopping is equivalent to L2 weight decay for linear

nets. A. Ng 2015 recommends the “orthogonalisation” principle in training neural

nets: separating techniques that reduce the training loss (i.e. reduce under-fitting)

and techniques that reduce the gap between the training and validation losses

(i.e. reduce overfitting), and first apply techniques to lower the training loss to

satisfactory values, then use techniques to reduce the gap between the training and

validation losses. Early stopping impacts both overfitting and under-fitting thus

does not fit into the orthogonalisation principle. Nonetheless, modern practitioners

use early stopping almost universally.

Besides the techniques mentioned above, there are many other approaches to

improve generalisation, including data augmentation, adversarial training, using

small batches, weight sharing/tying, using narrow-and-deep networks instead of

wide-and-shallow networks, and as mentioned before, batch normalisation with

small batches also has regularisation e�ects. Usually, if a technique is broadly

applicable to di�erent application domains, such as dropout and early stopping,

it is considered a regularisation technique, while approaches highly specific to an

application domain, such as flipping images, are considered data preprocessing.

I. Goodfellow, Bengio, and Courville 2016 recommends when the training loss is

acceptably low and the gap between training and test losses are large, gathering more

data is almost always the most desirable way to reduce overfitting. When collecting

more training data is infeasible, invasive, risky, or costly, which is typical in medical

applications, innovation in algorithmic regularisation is especially important.

6.2.4 Specialised Architectures

In this section, we introduce neural network architectures that are especially suitable

to process input data with specific structures, namely convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). Note that although CNNs and
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RNNs were initially proposed to process image data and sequential data, respectively,

they have also been successfully applied to many other types of data, thus although

the type of neural networks may hint what kind of data they are most adept at, they

are not limited to those data structures. The underlying mathematical operations

and computational costs, and the practitioners’ familiarity with the architecture

(for ease of hyperparameter tuning) should be the primary considerations when

deciding which type of neural network to employ.

Convolutional Neural Networks

Convolutional neural networks (CNN) are networks with at least one layer of

convolutional operation, illustrated in Figure 6.2, equations 6.33 and 6.34, and

formally defined by equation 6.35. It is an example of weight sharing mechanism.

The “small patch” (yellow) in Figure 6.2 is called a kernel or filter, which acts as a

feature detector. The motivation for CNN is that we want to reuse the “feature

detectors” at multiple locations of the input data. For example, we might want

to detect eyes anywhere in the image. CNN is not restricted to applications in

image processing. Instead, it applies to any data that has distributed features, such

as the ECG time-series waveform. Another motivation is that we want to share

the weights within the same layer in order to reduce the number of parameters,

e�ectively reducing overfitting and lower computational cost.

z11 = w111x111 + w121x121 + ... + w333x333 (6.33)

z12 = w111x121 + w121x131 + w131x141 + ... + w333x343 (6.34)

ziÕ,jÕ = b +
fcÿ

k=1

fhÿ

i=1

fwÿ

j=1
wi,j,kx(iÕ≠1)s+i,(jÕ≠1)s+j,k (6.35)

Figure 6.2 and equations 6.33 and 6.34 show the convolution operation in deep

learning, which is slightly di�erent than what is defined in mathematics, where
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Figure 6.2: The convolution operation of a filter

typically a kernel flipping operation is involved. In deep learning, kernel flipping is

usually not implemented. The convolution operation in deep learning is formally

defined by equation 6.35, where b is the bias parameter, by convention one bias

per filter; c is the number of input channels; fh and fw are the kernel height and

width respectively; w is the kernel weights; x is the element in the input tensor;

s is the stride. The input tensor and the filters must have the same number of

channels. Let fh, fw, and fc denote the height, width, and the number of channels

of the filter, then the filter has fh ◊ fw ◊ fc weight parameters. The resulting

tensor from the convolution operation Z = {ziÕ,jÕ} is called a feature map. If we

have nf filters, then we will have nf feature maps. If we use the convention of

having one bias parameter per filter, a convolutional layer with nf filters will have

nf ◊ fw ◊ fh ◊ fc weights and nf bias parameters. The filters in CNN is equivalent

to the neurons in feed-forward neural networks.

The number of pixels shifted each time is the stride hyperparameter, denoted

s, and Figure 6.2 and equations 6.33 and 6.34 show the case when s = 1. We can

see that the resulting feature map’s dimension is 5 ◊ 5, which is smaller than the

input tensor. If we perform this convolution operation for many layers, the resulting

tensor will be smaller and smaller. We can “pad” arbitrary values, typically 0s,

around the edges of the input tensor, and the number of rows or columns added

is another hyperparameter, called padding. If there is no row nor column added,

it is called “valid padding”, and if the resulting feature map has the same width

and height as the input tensor, it is called “same padding”. The “same padding” is

often used to preserve the dimensions of the layers to facilitate skip connections.
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In summary, if the input tensor dimension to a convolutional layer is nh ◊nw ◊nc,

the kernel dimension is fh◊fw◊fc, and there are nf filters, and we use the convention

of one bias per filter, and pad p rows or columns on all edges, with stride s, then

by convention fc = nc, then the output shape of such a convolutional layer is

Â1 + nh≠fh+2p
s Ê ◊ Â1 + nw≠fw+2p

s Ê ◊ nf , and the number of parameters (weights

and biases) are nf ◊ (fw ◊ fh ◊ fc + 1).

The convolutional operation is linear and is often followed by a non-linear

activation layer, such as ReLU. Another operation often applied in CNN is pooling,

which calculates a value from every k input values, typically the max value or

the mean value, in e�ect reduces the dimension of the resulting tensor. Pooling

layers do not have parameters to learn. If the input tensor has nc channels, the

output of max-pooling also has nc channels. The pooling is done on each channel

independently. Average pooling is less often used than max-pooling, perhaps

because the averaging operation is linear, which can be learned at the convolutional

layer, while maxing operation cannot be learned from other layers. Maxpooling

usually does not use any padding.

There is very little theoretical guidance on the choice of the CNN hyperparam-

eters - kernel size fh, fw, stride s, number of filters in each layer, the number of

layers, etc. The following notable CNN architectures have played essential roles

in the renaissance of deep learning, and mostly drew attention when they won

the ImageNet Large Scale Visual Recognition Competition (ILSVRC) held each

year. As will be introduced shortly, they all made some attempts to choose the

hyperparameters in a principled way.

Notable Architectures

The first CNN, LeNet-5, was proposed by LeCun et al. 1998 to read handwritten

digits. LeNet-5 started using repeating structures comprised of one or more

convolutional layers, followed by a pooling layer. These repeating structures were

then followed by a flatten layer to concatenate the last output tensor into one long

vector, then connect to several densely connected layers for classification. LeNet-5
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also popularised the heuristic of reducing fh and fw and increasing fc as the layers

go deeper. The convolution-pooling blocks served as feature extraction layers,

and the fully-connected layers, typically having a decreasing number of neurons,

reduced dimensions gradually, and the final layer served as the classifier. LeNet-5

was trained on grey-scale images and had 7 layers and about 60,000 parameters.

Modern CNNs typically have millions of parameters.

AlexNet was proposed by and named after Alexander Krizhevsky (Krizhevsky,

Sutskever, and G. E. Hinton 2012) and was the first neural network to win ILSVRC,

which has a profound impact on deep learning history as it convinced the computer

vision community of the power of deep learning. AlexNet has a similar architecture as

LeNet-5 but is a much larger network, with 8 layers and over 62 million parameters.

AlexNet was trained on RGB images.

AlexNet has many arbitrary choices of the hyperparameters, especially the kernel

size and the stride. Google Inception (Szegedy et al. 2015) forsook the choice of

kernel size, and whether or not to use max-pooling, instead, it stacks the outputs

of 64 1 ◊ 1, 128 3 ◊ 3, 32 5 ◊ 5 convolutional layers, and one maxpooling layer to

form an “inception module”, then stack the inception modules to form the whole

inception network. Inception has 22 layers and over 6 million parameters. It won

ILSVRC in 2013. The computational cost of inception is very high. It used 1 ◊ 1

convolution (M. Lin, Q. Chen, and Yan 2013) to reduce the computational cost.

Inception network has a few side branches with softmax outputs to make sure

that hidden layers are indeed learning useful features for the final classification.

Inception is also named “GoogLeNet” to pay homage to Yann LeCun and LeNet-5.3

Simonyan and Zisserman 2014 took the “principled” hyperparameter selection to

another level to build VGG-16. They used an increasing number of neurons as the

layers go deeper, resulting in a total of 16 layers and 138 million parameters. The

relatively rational choice of hyperparameters makes it attractive to the developers.

VGG-16 won ILSVRC in 2014.
3The name “inception” comes from the internet meme “we need to go deeper” from the movie

Inception (2010).
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Residual connections (K. He et al. 2016) are also called skip connections. It

is one way to address the vanishing gradient problem in training deep networks

and works by copying the activations of a faraway layer to the current layer,

and the addition is performed originally before activation and after the a�ne

transformation (equation 6.36, where the residual connection connects layer l and

layer l ≠ ”), although there are many variations. K. He et al. 2016 developed

the “ResNet” featuring residual connections and won ILSVRC in 2015. ResNet

has 152 layers and 60 million parameters.

A
[l] = g(W [l]

A
[l] + b

[l] + A
[l≠”]) (6.36)

We can see that the development of the state-of-the-art CNNs has the trend of

increasing depth, but the number of parameters does not necessarily increase.

1-D CNN

The convolution operation can also be performed on sequential data, such as ECG

time-series waveform, which can be single-lead or multi-lead, and the ECG leads

correspond to the RGB channels of images. The only di�erence is that nh = fh = 1.

Note that 1-D CNN does not treat multi-channel sequential data as an image. In

other words, using 1-D CNN on multi-channel sequential data is not equivalent to

stacking the channels together and form a 2-D “image” then feed into a 2-D CNN,

as the former approach would require the kernels of the first convolutional layer to

have precisely nc channels, while the latter approach allows for free choice of the

kernel size along the nh dimension as long as fh Æ nc, while fc = 1.

Recurrent Neural Networks

Recurrent neural networks (RNN), illustrated in Figure 6.3, is designed to use the

same model parameters to process long sequences of data, by reusing the weight

matrices over many time-steps. RNN is also a weight sharing mechanism, and

instead of sharing the weights within the same layer, as CNN does, RNN shares
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Figure 6.3: Recurrent neural network unrolled through time

weights over depth. If we use X
<t> and Y

<t>to denote the value of X and Y

at time step t, then the network can be expressed as

A
<t> = g1(W aaA

<t≠1> + W axX
<t> + ba) = g1(W a[A<t≠1>; X

<t>] + ba) (6.37)

Ŷ
<t> = g2(W yA

<t> + by) (6.38)

where A
<0> is initialised as 0. [A; B] means vertically stacking matrices A and

B, and [A, B] means horizontally stacking matrices A and B. W a = [W aa, W ax].

Backpropagation in RNN along the time axis is called backprop through time.

The activation function g1 in RNN is usually tanh, and less commonly ReLU. The

output activation g2 is usually sigmoid.

Sometimes not only the information before the query is informative but also

the information following the query, such as in the blank-filling task of “They are

taking the to Isengard.” This gives rise to bidirectional RNN (Schuster

and Paliwal 1997).

Because of the weight sharing mechanism, RNN typically has few parameters,

but reusing the weight matrices over depth makes RNN especially susceptible to the

vanishing and exploding gradient problem. As a result, it is di�cult to train RNN

over long sequences. Similar to skip connections in CNN, researchers come up with

addition operations to help gradient to propagate to distant time-steps. Moreover,
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unlike the number of skipped layers being fixed hyperparameters in the ResNet,

researchers make the network learn the appropriate time-steps to skip, using “gates”.

At each time-step, the “state” of the network has a probability of being forgotten,

kept the same, or updated. This idea gives rise to gated architectures, with Gated

Recurrent Units (GRU, Cho et al. 2014) and Long Short-Term Memory (LSTM,

Hochreiter and Schmidhuber 1997) as the most prominent examples. Despite

these advances, an RNN still struggles to retrieve information from very distant

sequences. The attention mechanism (Ashish Vaswani et al. 2017) makes significant

contribution in this respect. It was developed as an encoder-decoder RNN network.

The encoder RNN is typically a bidirectional LSTM, and the decoder network is

another RNN. The encoder and decoder networks are linked by learnable parameters

which represent how much weight the decoder RNN should place on the di�erent

time-steps of the encoder RNN outputs.

RNNs can also be stacked together, although the computational cost of a 3-layer

RNN is already intensive, so deep RNN is relatively rare.

6.3 Layer-Wise Convex Networks

6.3.1 Motivation

The Layer-Wise convex network (LCN) theorem is motivated by the aim to design

neural networks rationally and to make the most out of the training set. A feed-

forward neural network is essentially a computational graph where each layer can

only “see” the layers directly connected to it, and has no way to tell whether its

upstream layer is an input layer or a hidden layer. This “layer-unawareness” idea

is similar to what is acknowledged in the development of batch normalisation and

is central to the LCN theorem. LCN approaches machine learning from function

approximation and information theory perspectives, detailed below:

6.3.2 Derivation

Suppose we have a training set of X œ RD◊m and training labels Y œ Rm, and there

exists a deterministic data generating process f : X ‘æ Y . We aim to approximate
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the data generating process f using a neural network. The universal approximation

theorem (Hornik, Stinchcombe, and White 1989; Cybenko 1989) states that a feed-

forward neural networks with linear output and at least one su�ciently-wide hidden

activation layer with a broad class of activation functions, including sigmoidal and

piece-wise linear functions (Leshno et al. 1993, can approximate any continuous

function and its derivative (Hornik, Stinchcombe, and White 1990)) defined on a

closed and bounded subset of Rn to arbitrary precision. But how wide should

the hidden layer be?

According to universal approximation theorem, there exists a set of neural

network parameters ◊ such that

|f ≠ f(◊)| < ‘ (6.39)

’‘ > 0. As the neural network computes a chain of functions, if we can find ◊, then

’‘ > 0 and l œ [0, L], it must satisfies the following equations:

|g[l](◊[l]
Ã

[l≠1]) ≠ Ã
[l]

| < ‘ (6.40)

A
[0] = X (6.41)

|A
[L]

≠ Y | < ‘ (6.42)

where Ã
[l]

œ R(n[l]+1)◊m and it di�ers from A
[l] as it has one dummy row of 1s

to include b into ◊. In other words, Ã = [1; A]

To estimate ◊: Recall an over-determined system of linear equations Ax = y

has a unique set of solutions that minimises the Euclidean distance |Ax ≠ y|2.

Can this property be extended to nonlinear equations? The answer is yes, as long

as the nonlinear activation g[l] is strictly monotonic and its reverse function is

Lipschitz continuous. A real function h is said to be Lipschitz continuous if one

can find a positive real constant K such that
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|h(x1) ≠ h(x2)| Æ K|x1 ≠ x2| (6.43)

for any real x1 and x2 on the domain of h. Any function with bounded gradient on

its domain is Lipschitz continuous. As the inverse function of strictly monotonic

function is defined and unique, we can write the equivalent form of inequality

6.40 and take reverse function of both sides:

g≠1[l](Ã[l]
≠ ‘) < ◊

[l]
Ã

[l≠1]
< g≠1[l](Ã[l] + ‘) (6.44)

Using Lipschitz continuity of g≠1[l], we can find a positive real constant K such that

g≠1[l](Ã[l]) ≠ K‘ Æ g≠1[l](Ã[l]
≠ ‘) < ◊

[l]
Ã

[l≠1]
< g≠1[l](Ã[l] + ‘) Æ g≠1[l](Ã[l]]) + K‘

(6.45)

’‘, which implies

|◊
[l]

Ã
[l≠1]

≠ g≠1(Ã[l])| < K‘ (6.46)

lim
‘æ0

◊
[l]

Ã
[l≠1] = g≠1(Ã[l]) (6.47)

We have conveniently transformed the nonlinear inequations 6.40 into a set of

linear equations (equation 6.47), and all we need to do is to make sure equation 6.47

is over-determined, i.e. we have more equations than the number of variables, as

we have m training examples, each contributing to one equation, thus the su�cient

and necessary condition for equation 6.47 to have a unique solution that minimises

the Euclidean distance |◊Ã
[L≠1]

≠ g≠1(A[L])|2 is n◊ Æ m, and it is easy to see that

when n◊ = m we can find the unique solution to make the Euclidean distance

arbitrarily close to 0. The formal theory is given in the next section.
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6.3.3 The Layer-Wise Convex Theorem

Theorem 1 For an L-layer feed-forward neural network, the su�cient conditions

for there to exist a unique set of parameters W
[l]

and b
[l]

that minimises the

Euclidean distance |A
[l]

≠ g[l](W [l]
A

[l≠1] + b
[l])|2, ’l œ [1, L] are:

• n[l]
W + n[l]

b Æ m, ’l œ [0, L], where m is the number of training examples, and

n[l]
W and n[l]

b are the number of weights and biases in layer l, respectively.

• The network does not have skip connections;

• All activation functions of the network are strictly monotonic, but di�erent

layers may have di�erent monotonicity. For example, some layers can be

strictly increasing, while other layers can be strictly decreasing.

• All reverse functions of the activation functions are Lipschitz continuous.

Definition 6.3.1 Layer-Wise Convex Network: Any network fulfilling theorem 1

is called a Layer-Wise Convex Network (LCN).

Intuitively, the LCN theorem states that if a network fulfills the above conditions,

then there exists a unique set of W
[l] and b

[l] that minimises the distance between

A
[l] and g[l](W [l]

A
[l] + b[l]). One may wonder: isn’t the distance suppose to be 0 all

the time, as defined by equations 6.1 and 6.2? The key di�erence is that in each

backpropagation iteration, LCN views the activations as fixed and already have

the appropriate values corresponding to the “optimal” model that can approximate

the data generating process with minimum possible error from the information

available in the training set, and our goal is to “reverse-engineer” the appropriate

values for W and b. During forward pass, the values of A are updated with the

new W and b using equations 6.1 and 6.2, and our hypothesis is that in this

way the network will converge to the “optimal model”. In some sense, the LCN

reverses the role of A and ◊, and regards A being the ones that are initialised at

the beginning of training (which is equivalent to initialising the W and b), and

training should in theory start with backward pass rather than the forward pass.
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However, so far we still use conventional optimizers such as Adam, mainly due to

limitations in programming skills to build robust customised optimizer for LCN.

As will be shown in the later sections, optimizing LCN with Adam works very

well, which validates our hypothesis that training starting from backward pass or

forward pass are computationally equivalent, but may have di�erent interpretations

depending on the perspectives to view the network.

The name “Layer-Wise convex network” comes from a related legacy hypothesis

which states that for a network ŷ(◊) fulfilling conditions in theorem 1, any convex

loss E(ŷ(◊), y) with respect to ŷ is also convex with respect to the hidden layer

parameters, provided all parameters of the other layers are fixed. This is later

proven not true for networks allowing negative activations, such as leaky ReLU nets,

and we would not want to restrict the network to have only positive activations,

thus we proposed the current version of the LCN theorem. It is easy to see that

minimising the Euclidean distance is equivalent to minimising the mean squared

error (MSE), which is not only convex but quadratic, thus a more accurate name

should be “Over-Determined Layer-Wise Quadratic Networks (OLQN)”, but it

is a mouthful and does not have a nice ring like “Layer-Wise Convex Network

(LCN)”, thus we continue naming it LCN theorem.

6.3.4 The Timescale Hyperparameter for Periodic Sequen-
tial Inputs

In our pilot experiments, we found that for signals with clear periodicity, informing

the model with the timescale of the period can be very helpful. The estimation of

the period need not be precise. For example, in the ECG data, we only need to

let the model know that the input data period is in the order of seconds, so the

model is designed to create a prediction roughly every second. As one can see, the

timescale information given to the model is very rough, as the average heart rate is

70-100 beats per minute, meaning the period is, in fact, less than 1s, and irregular

heartbeats may be even more o� the 1s estimation. Still, as will be demonstrated

shortly, the model can learn well with this simple information.
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We call this rough estimation of the input data period the timescale hyperpa-

rameter and denote it as · . The number of max-pooling layers is determined by the

timescale hyperparameter · , sampling frequency fs, and pooling size p according

to the equation 6.48. For example, if the input is 500Hz ECG time-series, and we

set the timescale · = 1s, and use default p = 2, then we can calculate the number

of max-pooling layers to be Á1s log2(500Hz)Ë = 9.

nmaxpool = Álogp(fs·)Ë (6.48)

If the input signal is not apparently periodic, then one only needs to set fs· = D,

i.e., assume the entire input time-series represents one period, and the model will

output only one prediction for the entire signal.

6.3.5 Building Layer-Wise Convex Networks: a Worked
Example

Let us look at a concrete example of applying LCN theorem to design model

architecture for the CKB dataset. The CKB problem can be cast into a four-class

classification problem. The balanced dataset has 7,472 examples. If we separate it

into training, validation, and test sets at 8.1:0.9:1 ratio, then we have 6,056 training

examples, 672 validation examples, and 744 test examples. Each training example

is 12-lead, 10s, 500Hz ECG time-series, which means the input dimension D of

each training example is 5, 000 ◊ 12 = 60, 000. According to the LCN theorem, the

number of parameters per layer should not exceed 6,065. Because D > m, if we

use a feed-forward network, the first layer will have at least D parameters, thus we

must use weight-sharing mechanisms, and CNN is a natural choice.

Because we are analysing time-series data, 1-D CNN is a natural choice. In

1-D CNN, one of nw and nh equals 1, and nc equals the number of input channels.

In this thesis we use the convention nh = 1, fh is also constrained to be 1. We

use the letter k to denote fw.

To simplify the design process, we use repeating structures and make sure all

layers have the same output shape until the output layer. The repeating structure
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not only reduces the number of hyperparameters, but also is the least susceptible to

vanishing and exploding gradient problems (Hanin 2018). It is also easy to see that

between the last convolutional layer and the output layer we should not add fully

connected layers, because in order not to exceed the upper bound, the dimension

of densely-connected layers has to be very small, which means that it will become

“bottlenecks” of the flow of information. Therefore we should only use convolutional,

pooling (for dimension reduction because of 5, 000 ◊ 12 ◊ 4 + 4 > 6, 056), and

softmax output layers. If we use CNN layers with kernel size k, stride s, padding

p, and the number of filters nf , the output shape of such convolutional layer is

(Â input dimension≠k+2p+1
s Ê, nf), and the number of parameters of this convolutional

layer is nf (knf + 1) (assuming we are stacking several convolutional layers together).

Since stride s > 1 will result in dimension reduction, and empirically, it is not

performing as well as max-pooling, we keep s = 1. To keep output shape identical to

the input shape, we use “same” padding, then we calculate k and nf by equation 6.50.

k = nf = argmax nf (n2
f + 1) (6.49)

subject to

nf (n2
f + 1) Æ m (6.50)

We constrain k = nf to avoid k being unreasonably large for long signals

with few channels.

Since the CKB problem is a four-class classification problem, the output layer

will be a four-unit softmax layer. Finally, to determine the number of max-pooling

layers, we recommend using as small a pooling kernel as possible , so we can build

as deep networks as possible. The smallest pooling size is 2. Since the CKB input

data contains highly periodic ECG, with the duration of a heartbeat roughly once

a second, we therefore set the timescale hyperparameter · = 1s, and make the

model produce one prediction roughly every second. The number of max-pooling

layers is thus Álogp(fs·)Ë = Álog2(500Hz ◊ 1s)Ë = 9.
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Figure 6.4: Baseline model architecture. The number of max-pooling layers is calculated
by equation 6.48. Before each max-pooling layer, the baseline model has one convolutional
layer and one activation layer, which can be ReLU or leaky ReLU. When adding skip
connections, the post-convolution (before activation) tensor is added to every nmaxpool ≠ 1
post-convolution tensor (see figures 6.5). When necessary, the batch normalisation layers
are added after the input layer, and after every activation layer.

Now we have the baseline model (figure 6.4), and to improve results, we only

need to stack convolutional layers between max-pooling layers. The number of

convolutional layers stacked between 2 maxpooling layers is a hyperparameter called

nrepeat. Unfortunately, there are no guidelines to calculate the optimal depth, but the

principle is that adding layers should not harm performance, although the training

may become more di�cult. In the next section, we introduce a heuristic algorithm

that is inspired by the principle of reinforcement learning, called the AutoNet.

6.4 The AutoNet Algorithm

The AutoNet algorithm is designed to generate a Layer-Wise convex network

given a dataset automatically. The algorithm is outlined in algorithms 1 and

2 and described as follows:

6.4.1 Step One: Generate the Baseline Model

The LCN model for ECG classification has only five hyperparameters: nrepeat œ N,

nmaxpool œ N, nf œ N, skip œ B (Boolean domain), and bn œ B, which can all
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102 6.4. The AutoNet Algorithm

Algorithm 1: Build LCN. See Figure 6.5 for the positions of convolutional,
activation, batch normalisation, and maxpooling layers.

Input: m, nchannel, nclass, nrepeat, skip, bn, nmaxpool

Output: model
1 nf = argmaxnf

nf (n2
f + 1) subject to nf (n2

f + 1) Æ m

2 add the input layer
3 if bn then
4 add a batch normalisation layer
5 end
6 add a convolutional layer, kernel size = nf , nfilters = nf

7 if bn then
8 add a batch normalisation layer
9 end

10 add a maxpooling layer, pooling size= 2
11 for in range nmaxpool-1 do
12 for in range nrepeat do
13 add a convolutional layer, kernel size = nf , nfilter = nf

14 if skip then
15 connect the before-activation output of every nmaxpool ≠ 1

convolutional layers by addition
16 end
17 add an activation (ReLU or leaky ReLU) layer
18 if bn then
19 add a batchnorm layer
20 end
21 end
22 add a maxpooling layer
23 end
24 add a time distributed softmax layer

be determined from the training set or by the AutoNet algorithm. nf is the

number of filters of each convolutional layer, calculated according to equations

6.49 and 6.50. The number of max-pooling is determined according to equation

6.48. The output layer is a time-distributed softmax layer for classification and

classifies the entire signal by majority voting. skip and bn are the “switches”

representing whether the network adds skip connections and batch normalisation,

respectively, and are determined by the AutoNet algorithm according to the steps

outlined in the next section:
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Algorithm 2: Grow the model using AutoNet. This algorithm calls
algorithm 1 to build each LCN, then train the model until early stopping
criteria is met. It tracks the minimum training loss and the minimum
validation loss during training and compare them against the policy.

Input: m, nchannel, nclass, nrepeat, skip, bn, nmaxpool, X, Y ,
model averaging, fold = 10

Output: best model
1 batch size = 32, patience = 8, bn = False, skip = False
2 build baseline model using algorithm 1
3 train model
4 while train loss or validation loss declines do
5 nrepeat+=1
6 build LCN suing algorithm 1 train the resulting model
7 end
8 skip =True
9 while min train loss or min validation loss declines do

10 nrepeat+ = 1
11 build LCN using algorithm 1 train the resulting model
12 end
13 bn =True
14 while min train loss or min validation loss declines do
15 nrepeat+ = 1
16 build LCN using algorithm 1 train the resulting model
17 end
18 best model = model with min validation loss
19 if model average then
20 train the best model fold times
21 use mean class probability of the fold models to predict
22 end

6.4.2 Step Two: Grow the Model

• Start with the baseline model, without batch normalisation, nor skip connec-

tion, i.e. bn = FALSE, skip = FALSE. Batch size = 32. The early stopping

criterion is no reduction in validation loss for eight epochs. In the baseline

model, nrepeat = 1.

• Increase nrepeat by one each time, until neither the training loss nor the

validation loss decreases, then turn on skip connection and connect every

nmaxpool ≠ 1 layer by adding the post-convolution-before-activation tensors

with the output tensor of nmaxpool ≠ 1 convolutional layers later (figure 6.5).
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Figure 6.5: The positions of convolutional, activation, batch normalisation, max-pooling
layers, and the skip connection. The illustrated network has convolution-activation-BN
repeating structure, with nmaxpool = 9, nrepeat = 5. A max-pooling layer is added after
every nrepeat (5 in this example) batch normalisation layers. The element-wise addition
is applied to the output tensor of every nmaxpool ≠ 1 (8 in this example) convolutional
layers. For example, the output tensor of the first convolutional layer is element-wisely
added to the output tensor of the 9th convolutional layer, and the resulting tensor is the
input to the following activation layer and is also used in the element-wise addition with
the output tensor of the 17th convolutional layer.

• Increase nrepeat by one each time, until neither the training loss nor the

validation loss decreases, then add batch normalisation after every activation

and after the input layer.

• Increase nrepeat by one each time until neither the training loss nor the

validation loss decreases. The model which yielded minimum validation

loss is selected to be the “best” model.

6.4.3 Step Three: Model Averaging

Train the identified “best” model K times. At test time, calculate the average

probability predictions provided by the K models, then classify the test case to

the class with the highest mean probability, i.e.

î = argmax 1
K

Kÿ

j=1
pij (6.51)
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where pij is the class i probability predicted by the jth model, this step can be

omitted if one is not reporting the final results and only wishes to prototype quickly.

6.5 Benchmark with the State-of-the-Art Model

In the following sections of this chapter, we benchmark LCNs generated by the

AutoNet algorithm with the ResNet-based Hannun-Rajpurkar model (Hannun

et al. 2019; Rajpurkar et al. 2017) which has been demonstrated to exceed average

cardiologist performance in classifying 12 rhythm classes on 91,232 recordings

from 53,549 patients and is well regarded as the state-of-the-art end-to-end deep

learning model for ECG classification. We compare the results of Hannun-Rajpurkar

model and the LCN models on three datasets: ICBEB, PhysioNet, and CKB, the

description of which are given in Chapter 4.

6.5.1 Computational Environment

All experiments were done on Ubuntu 18.04, CPU with 32G RAM, single Nvidia

GeForce GTX 1080 GPU, with Python version 2.7.15, and Tensorflow version 1.8.0.

6.5.2 Two LCN Variants

The LCN theory is derived from the assumption that the activation functions are

strictly monotonic. While we hypothesise that the LCN theory can be extended

to non-strict monotonic activation functions such as ReLU, the strictness of

monotonicity may make a di�erence. Thus we study two variants of LCN: ReLU-

LCN and Leaky-LCN. As the names suggest, the hidden layer activations of ReLU-

LCN are all ReLU, while the hidden layer activations of Leaky-LCN are all leaky

ReLU with – = 0.3 (equation 6.52). It is easy to see that the selected leaky

ReLU function is strictly monotonically increasing, while the ReLU function is

non-decreasing but not strictly monotonic.

y =

Y
]

[
x if x > 0
–x if x Æ 0

(6.52)
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6.5.3 Model Training

All LCN models were trained using Adam with default hyperparameters (—1 =

0.9, —2 = 0.999) and the default learning rate (0.001). The Hannun-Rajpurkar

model, as a bench-marking approach, was trained using the authors’ original imple-

mentation (https://github.com/awni/ecg) to ensure identical implementation.

In brief, Hannun-Rajpurkar model used Adam with learning rate scheduler that

decreases learning rate after no improvement on the validation loss for two epochs.

All hyperparameters were kept the same as in their codes and as described in

Hannun et al. 2019.

All models were trained using early stopping with patience 8 epochs, for

a maximum of 100 epochs, which is the same as in Hannun’s codes and in

Hannun et al. 2019.

6.5.4 Power Analysis

To detect statistical significance, a power analysis was conducted for the two-tail

paired, t-test at e�ect size 0.8, – = 0.05, power = 0.8, and the required sample size

was found to be 14.30. Therefore we conducted five repeats for each of the ICBEB,

PhysioNet, and CKB experiments, producing a total of 15 experiments. In each

repeat, all models were trained and tested on the same training, validation, and

test sets. Note that the paired t-test only assumes the di�erences of the means,

rather than the samples themselves, follow a Gaussian distribution, and does not

assume equal variance of the samples (Jaynes 2003). Therefore the 15 experiments

created by five repeats on three di�erent datasets are appropriate for the two-tail

paired t-test, if the di�erences of the means pass normality tests.

6.5.5 ICBEB
Train-Validation-Test Split

We did not have access to the hidden test set, therefore we randomly took 50

samples from each class from the publicly available training set (n = 6, 877) to

build a balanced test set (n = 450) of the same size and class distribution as the
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training, n = 6, 292 test, n=450

publicly available dataset, n = 6, 877

validation,
n=135

Figure 6.6: Train-validation-test split for ICBEB

ICBEB Challenge, another 15 samples from each of the 9 classes to form a balanced

validation set of 15 ◊ 9 = 135 samples for early stopping and check-pointing, and

the rest is the training set for gradient calculation (figure 6.6).

The above approach was repeated five times to generate five repeats of the exper-

iments. In each repeat, all models share the same training, validation, and test sets.

Sample Weighting

The samples in the training set (not including the validation samples) were weighted

by the inverse of their class ratio in the training set. For example, if there are

ni class i samples in the training set, then each class i sample receives
q

i
ni

ni

weight during training.

Signal Padding

Since the pooling size is fixed in both LCN models and the Hannun-Rajpurkar

model during training, the model requires the input signal to have the same length.

Ideally, the target length should be the maximum signal length in the training set,

i.e. 61s. However, due to memory constraints, we could only feed in 37s signals.

Thus the target length for ICBEB is 37s. If the original signal was shorter than the

target length, 0s are padded to the end of the signal; if the signal is longer than

the target length, the end of the signal was truncated. At test time, no padding is

needed as the model generates a label every 512 time steps (1.024s).

Model Generation

In each repeat, the AutoNet algorithm identified the “best” ReLU-LCN model and

the “best” Leaky-LCN model separately. The hyperparameter nf is calculated
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Figure 6.7: The automatically generated ReLU-LCN architecture for ICBEB. nrepeat

= 5, nmaxpool = 9, meaning there are a total of 9 max-pooling layers, and there are five
convolutional layers stacked between every two max-pooling layers. The activation can be
ReLU or leaky ReLU, which follows every convolutional layer, not shown in the Figure to
declutter the diagram. Batch normalisation (green) is added after the input layer (blue)
and after each convolutional layer (yellow). The after-convolution tensor is added to every
8 subsequent after-convolutional tensors, which are labelled in the figure. See Figure 6.5
for magnified connection structure. The output layer is a time-distributed 10-unit softmax
layer, one unit for each of the nine classes and one unit to indicate noise/zero paddings.

according to equations 6.49 and 6.50 with m = 6, 292, thus nf = 20. nmaxpool is

calculated according to equation 6.48 with fs = 500Hz, · = 1s, p = 2, to be 9.

It took AutoNet 1h 25min (5,095s) on average to identify the best ReLU-LCN

model and 1h 55min (6,936s) to identify the best Leaky-LCN model. For ReLU-LCN,

three out of five repeats converged at nrepeat = 5 with both skip connection and

batch normalisation (figure 6.7), one experiment converged at nrepeat = 6, with both

skip connections and batch normalisation, one experiment converged at nrepeat = 4,

with both skip connection and batch normalisation (Table B.1); for Leaky-LCN,

four out of five repeats converged at nrepeat = 5, with both skip connections and

batch normalisation, while the other repeat converged at nrepeat = 7, with both
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Table 6.1: The architecture and training characteristics of ReLU-LCN, Leaky-LCN,
and the Hannun-Rajpurkar models on ICBEB. conv: convolutional layer; BN: batch
normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

Train size 6,427 6,427 6,427
Test size 450 450 450
Batch size 32 32 32
Signal padding (s) 35 35 35
N parametric lay-
ers

84 (41 conv, 42
BN, 1 TDS)

84 (41 conv, 42
BN, 1 TDS)

67 (33 conv, 33
BN, 1 TDS)

N parameters (%)* 239,596 (2.3) 239,596 (2.3) 10,473,322(100)
Speed (s/epoch) 36 41 91
Total epoch 27 30 21
Runtime (s, %)* 955 (50.0) 1,248 (65.3) 1,911 (100)

* % relative to the Hannun-Rajpurkar model.

Table 6.2: Mean and standard deviation of the test F1 on five experiments by ReLU-
LCN, Leaky-LCN, and Hannun-Rajpurkar models on PhysioNet. The highest F1 of each
category is in bold font. No model averaging was performed.

Training
size

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

N 868 64.1±3.8 64.8±6.0 69.8±4.4
AF 1,048 84.2±3.3 85.4±1.4 84.7±3.7
I-AVB 654 84.2±1.9 85.2±3.1 86.0±3.7
LBBB 1,57 89.1±1.7 88.7±2.4 88.0±2.0
RBBB 1,645 76.5±3.4 78.4±4.6 76.0±4.1
PAC 506 64.8±12.6 67.5±4.3 61.4±9.7
PVC 622 81.4±4.7 83.1±2.7 80.1±5.6
STD 775 68.1±6.9 76.2±5.1 78.9±4.7
STE 152 68.1±3.9 69.2±2.8 58.3±7.7
9-class
F1

75.6±3.6 77.6±2.0 75.9±2.9

FAF 84.2±3.3 85.4±1.4 84.7±3.7
FBlock 83.3±2.1 84.1±2.1 83.0±2.3
FP C 72.0±9.3 75.0±3.1 70.7±7.1
FST 68.1±4.5 72.5±3.0 69.9±4.0

skip connection and batch normalisation.
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Results

The model architecture and training characteristics of ReLU-LCN, Leaky-LCN, and

the Hannun-Rajpurkar model are shown in Table 6.1. The number of parametric

layers are taken from the most frequently found architecture among the 5 exper-

iments, and the speed (s/epoch) and total epochs are the average value over the

five experiments. The runtime is calculated by equation 6.53. The identified “best”

architectures were identical for ReLU-LCN and Leaky-LCN, both have only 2.3%

parameters compared to the Hannun-Rajpurkar model. Both ReLU-LCN and Leaky-

LCN converged at deeper architectures than Hannun-Rajpurkar model, which agrees

with our hypothesis that the parsimony of LCN encourages the model to grow deeper.

runtime = 1
5

5ÿ

i=1
total epoch ◊ speed (6.53)

Both LCN models computed each epoch faster than Hannun-Rajpurkar model,

although the latter converged in fewer epochs (table 6.1). Both LCN models need

much less average runtime than the Hannun-Rajpurkar model. The training speed

not only depends on the architecture but also on the input signal length and the

batch size (the longer the signal, the smaller the batch size, the slower it is to train).

Thus the runtime comparison between the LCN models and the Hannun-Rajpurkar

model is less dramatic than the parameter comparison. On average, Leaky-LCN

needed more runtime as it tended to find deeper models than ReLU-LCN (Table B.1).

Table 6.2 shows the test F1 of the three models. We can see that Leaky-LCN

has the highest mean in most cases, while ReLU-LCN is comparable to Hannun-

Rajpurkar in most cases. For sub-abnormal groups and the 9-class F1, which the

Challenge used as the evaluation criteria, Leaky-LCN performed universally better

than the other two models. Surprisingly, all three models performed best in the

LBBB class, despite that LBBB is the second smallest class in the training set. It

may be explained by the fact that LBBB has clear clinical ECG diagnosis criterion

(Chapter 4). The model performances did not seem to correlate highly with the

training size: STE has the similar number of training examples as LBBB but is
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training, n = 8308 test, n = 120

publicly available dataset, n = 8528

validation,
n = 100

Figure 6.8: Train-validation-test split for PhysioNet

poorly classified. It suggests certain medical conditions are inherently di�cult

for CNN based architectures to classify from ECG, which agrees with the clinical

knowledge that some conditions do not have definite ECG characteristics.

To compare with the performance of the winning team, we took the ReLU-LCN

model found in the first experiment and preformed 10-fold model averaging. Our

model obtained 0.854 9-class F1 which outperformed the winning team (F1 = 0.837).

We chose to average ReLU-LCN model instead of the Leaky-LCN model because

there is no statistical di�erence between the F1 scores of the two models, but the

latter has significantly higher runtime cost (see 6.5.9 for more details).

Note that these results were higher than the winning team despite being trained

on fewer data. The winning team by Chen et al. used 6,877 training examples,

also tested on 450 test cases (exclusive from the 6,877 training cases), and padded

the signals to 144s, while ReLU-LCN was trained on 6,427 recordings, and the

signals are padded to only 35s. Although the winning team’s exact architecture

is unknown, their model is based on bidirectional GRU (a type of RNN), which is

known to be slow to train; their input signal length is about 4 times of the input to

the ReLU-LCN; and they needed to average over 130 models, while ReLU-LCN only

needed to average over 10 models to obtain the above results. These all suggest

that Chen et al.’s model is likely to have a higher runtime cost.

6.5.6 PhysioNet
Train-validation-test Split

We randomly selected 30 samples (roughly 10% of the smallest class) from each

class to build a balanced test set (n = 120), and another 25 samples (roughly 9% of

the smallest class) from each class to build a balanced validation set, and the rest
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of the dataset is the training set. The train-validation-test split process is shown

in Figure 6.8. The above approach was repeated five times to generate five sets of

training, validation, and test sets, and shared among all models in each repeat.

Sample Weighting

The samples were weighted using the same procedure as described in section 6.5.5.

Signal Padding

All signals were padded to the maximum length in the training set, i.e. 61s similarly

as described in section 6.5.5.

Model Generation

In each repeat, the AutoNet algorithm identified the “best” ReLU-LCN model and

the “best” Leaky-LCN model separately. The hyperparameter nf is calculated

according to equations 6.49 and 6.50 with m = 8, 308, thus nf = 20. nmaxpool is

calculated according to equation 6.48 with fs = 300Hz, · = 1s, p = 2, to be 8. It

took AutoNet 52 min (3,203s) on average to identify the best ReLU-LCN model

and 1h 30min (5,413s) to identify the best Leaky-LCN model.

For ReLU-LCN, 2 out of 5 repeats converged at nrepeat = 2 without skip con-

nection nor batch normalisation (table B.2); 1 experiment converged at nrepeat = 2,

with only skip connection and without batch normalisation; 1 experiment converged

at nrepeat = 3, with both skip connections and batch normalisation; and the other

repeat converged at nrepeat = 4 with only skip connection and without batch

normalisation. For Leaky-LCN, 4 out 5 repeats converged at nrepeat = 4, with

both skip connections and batch normalisation (figure 6.9), and the other repeat

converged at nrepeat = 5, with only skip connection and without batch normalisation.

Results

The model architecture and training characteristics of the three models are shown in

Table 6.3. The LCN models have no more than 2.2% of the parameters than those

of the Hannun-Rajpurkar model. The same conclusions regarding runtime, total
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Figure 6.9: The most commonly found Leaky-LCN architecture for PhysioNet. nrepeat =
4, nmaxpool = 8, c = k = 20. A batch normalisation layer (green) is added after the
input layer (green) and after every convolutional layer (yellow). The output is a 4-unit
time distributed softmax layer (purple). The network provides one prediction roughly
every second (256-time steps, 300Hz). The after-convolution tensor is added to every 7
subsequent after-convolution tensors.

epochs, and training speed as in ICBEB hold in PhysioNet experiments, suggesting

the LCNs behave consistently on di�erent datasets.

Table 6.4 shows the test F1 of the three models. We can see ReLU-LCN is

better at identifying atrial fibrillation and noise, while the Leaky-LCN model

gave the best normal and “other rhythms” classification among the three models.

Similarly, all three models are not biased towards large classes, suggesting the

sample weighting mechanism is e�ective. The three-class average F1 (F13) is lower

than what is reported in Chapter 4, which is likely because in this thesis we only

trained the models on part of the training data and tested on a balanced test
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Table 6.3: The architecture and training characteristics of ReLU-LCN, Leaky-LCN,
and the Hannun-Rajpurkar model on PhysioNet. conv: convolutional layer; BN: batch
normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

Training size 8,308 8,308 8,308
Test size 120 120 120
Batch size 32 32 32
Signal padding (s) 61 61 61
N parametric lay-
ers

16 (15 Conv, 1
TDS )

60 (29 conv, 30
BN, 1 TDS)

67 (33 conv, 33
BN, 1 TDS)

N parameters (%)* 112,784 (1.1) 226,226 (2.2) 104,661,48 (100)
Training speed
(s/epoch)

20.6 43.2 121

Total epoch 30 28 21
Runtime (s,%) 611 (23.6) 1,207 (46.6) 2,589 (100)

* % relative to the Hannun-Rajpurkar model.

Table 6.4: The mean and standard deviation of the test F1 in five experiments by
ReLU-LCN, Leaky-LCN, and Hannun-Rajpurkar models on PhysioNet. The highest F1
of each category is in bold font. No model averaging was performed.

Training
size

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

AF 708 88.8±2.8 80.4±2.3 87.9±4.2
Normal 5,020 80.3±3.6 86.4±4.3 77.0±2.0
Other rhythms 2,426 72.3±7.7 79.5±3.7 74.6±3.8
Noise 254 87.9±4.3 72.4±4.6 74.7±6.1
F14 82.3±3.1 83.3±5.2 78.5±3.3
F13 80.5±3.6 79.5±1.5 79.8±2.6

set, while the cited studies were trained using all publicly available training data

and tested on an imbalanced test set.

6.5.7 CKB
Train-Validation-Test Split

Due to memory constraints, we could not train on all the recordings. Therefore

we constructed the largest balanced set of normal, “arrhythmia”, “ischaemia”, and

“hypertrophy” classes by randomly sampling 1,868 (the size of the smallest class)

recordings from each of the four classes. The resulting set is then stratified at
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training, n = 6056 test, n = 744

largest balanced four-class dataset, n = 7472

validation,
n = 672

Figure 6.10: Train-validation-test split for CKB.

8.1:0.9:1 ratio into training, validation, and test sets, respectively (figure 6.10).

The sampling and split is repeated five times to generate five sets of the training,

validation, and test sets for five repeats of the experiment. In each repeat, the

training, validation, and test sets are shared among all models.

Sample Weighting

Since all classes are balanced in the training set in the CKB experiments, there

is no need for sample weighting.

Signal Padding

All signals in CKB have the same duration (10s, 500Hz), thus there is no need

for signal padding.

Model Generation

In each repeat, the AutoNet algorithm identifies the “best” ReLU-LCN model and

the “best” Leaky-LCN model separately. The hyperparameter nf is calculated

according to equations 6.49 and 6.50 with m = 6, 056, thus nf = 18. nmaxpool is

calculated according to equation 6.48 with fs = 500Hz, · = 1s, p = 2, to be 9.

It took AutoNet 7 min (427s) on average to identify the best ReLU-LCN

model and 11 min (693s) to identify the best Leaky-LCN model. For ReLU-

LCN, all five repeats converged at nrepeat = 1 without skip connection nor batch

normalisation (figure 6.11); for Leaky-LCN, three out of five repeats converged at

nrepeat = 1, without skip connection nor batch normalisation, while the other 2

repeats converged at nrepeat = 2, with only skip connection and without batch

normalisation (Table B.3).
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Figure 6.11: The automatically generated model architecture for CKB. nrepeat = 3,
nmaxpool = 9, nf = k = 18. No batch normalisation nor skip connection was needed.
The output (purple) is a 4-unit time distributed softmax layer. The model provides one
prediction roughly every second (512-time steps, 500Hz).

Table 6.5: The architecture and training characteristics of ReLU-LCN, Leaky-LCN, and
the Hannun-Rajpurkar model on CKB. The architecture and training characteristics of
ReLU-LCN, Leaky-LCN, and the Hannun-Rajpurkar model on CKB. conv: convolutional
layer; BN: batch normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

Training size 6,728 6,728 6,728
Test size 744 744 744
Batch size 32 32 32
Signal padding (s) 10 10 10
N parametric lay-
ers

10 (9 conv, 1
TDS)

10 (9 conv, 1
TDS)

67 (33 conv,
33BN, 1 TDS)

N parameters (%)* 50,782 (0.5) 50,7872 (0.5) 10,471,780 (100)
Speed (s/epoch) 4 5 34
Total epoch 24 20 13
Runtime (s, %)* 95 (21.5) 97 (22.0) 442 (100)

* % relative to the Hannun-Rajpurkar model.

Results

The model architecture and training characteristics of the three models are shown

in the Table 6.5. Both LCN models converged at nine convolutional layers without

the need for batch normalisation, with only 0.5% parameters and needed fives

times less runtime as the Hannun-Rajpurkar model.
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Table 6.6: Mean and standard deviation of the F1 on five experiments by ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar models on CKB. The highest F1 of each category is
in bold font. No model averaging was performed. A: “arrhythmia”, H: “hypertrophy”, I:
“ischaemia”, N: normal.

Training
size

ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

A 1,681 74.0±1.4 71.7±3.7 63.7±10.1
H 1,681 85.2±1.5 82.5±1.0 75.2±16.8
I 1,681 72.4±2.6 73.2±2.0 66.9±2.2
N 1,681 77.2±2.9 75.6±2.7 69.5±3.3
4-class F1 77.2±1.6 75.8±1.9 68.9±4.6

Table 6.2 shows the test set classification F1 of the three models. LCN models

outperformed the Hannun-Rajpurkar model universally, with 8-16% improvement

on performance depending on the category and model. ReLU-LCN performed

best in most categories, except “ischaemia”, but the di�erence with Leaky-LCN

and ReLU-LCN is insignificant. In this dataset, both training and test sets are

balanced, so the di�erence given by the same model comes solely from the nature

of the medical condition. “Arrhythmia” and “ischaemia” were more di�cult for

all three models, while “hypertrophy” was the easiest. This agrees with the result

in ICBEB (section 6.5.5) where LBBB was the best classified.

This is a classic case that a large model, even if well-regularised, may not

outperform a smaller model. In fact, as demonstrated in all three datasets in

this chapter, the smaller but carefully designed network can perform from slightly

better to markedly better than a larger network. Moreover, we have demonstrated

that the hyperparameters of such “careful” design of networks can indeed be

mathematically derived.

Recall in Chapter 5 the best performing traditional machine learning model

- stochastic gradient boosting - yielded 0.773 classification accuracy, using 84

handcrafted features. Of course, SGB needs feature extraction and cannot handle

raw ECG inputs, unlike the deep learning model. SGB is also a boosting method,

which is more comparable to LCN with model averaging. We conducted a 10-fold

model averaging on the first experiment using the identified “best” ReLU-LCN

and obtained 0.812 for both F1 and accuracy.
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Table 6.7: F1 of 15 experiments using the three models. In each experiment, the training
and test sets are shared among all models. In PhysioNet, the shown results are 4-class
average F1. The highest F1 of each experiment is shown in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

ICBEB 1 81.8 81.5 77.5
2 70.7 76.8 75.9
3 76.8 75.6 79.6
4 74.5 77.1 70.8
5 74.3 77.0 75.7

PhysioNet 1 82.5 78.5 80.9
2 87.4 80.1 73.7
3 77.8 81.5 76.1
4 82.4 84.3 82.9
5 81.5 77.7 79.0

CKB 1 77.2 78.0 73.2
2 76.4 75.1 61.7
3 74.7 77.6 72.1
4 78.7 75.5 65.3
5 78.9 72.7 72.0

6.5.8 Statistical Analysis

To test the applicability of a paired t-test on the F1 of 15 experiments (Table 6.7),

we performed Shapiro-Wilk test for normality (Shapiro and Wilk 1965) on the

di�erences between the F1 scores obtained by the Hannun-Rajpurkar model and the

ReLU-LCN model on 15 experiments (5 repeats on each of the three datasets), and

found p-value = 0.158 > 0.05. Similarly, we tested the normality of the di�erences

between Leaky-LCN and Hannun-Rajpurkar and found p-value = 0.832 > 0.05. Both

passed the normality test 4, meaning both di�erences do not deviate significantly

from a Gaussian distribution, thus appropriate for two-sided paired t-test 5.

We then did pair-wise two-tail paired t-test on the F1 scores of the three models,

and found p-value = 0.023 < 0.05 between ReLU-LCN and Hannun-Rajpurkar, and

p-value = 0.012 < 0.05 between Leaky-LCN and Hannun-Rajpurkar, and p-value
4The null hypothesis of Shapiro-Wilk test of normality is that the samples come from a

Gaussian distribution, thus p-value > the chosen significance level (– = 0.05) fails to reject the
null hypothesis, thus passing the Shapiro-Wilk test.

5As long as the sample di�erence does not deviate significantly from a Gaussian, it is appropriate
to use paired t-tests (Jaynes 2003)
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Table 6.8: The PC ratio, calculated as runtime(s)
F1

◊ 10000. The higher the value is, the
better. The highest value of each experiment is in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

ICBEB 1 7.1 3.8 5.0
2 7.7 7.4 4.0
3 8.3 9.7 4.2
4 8.2 6.3 3.9
5 8.6 6.2 3.5

PhysioNet 1 10.6 8.4 3.6
2 9.3 5.5 3.7
3 17.9 6.2 3.7
4 19.8 6.4 3.5
5 16.3 6.6 1.9

CKB 1 96.5 64.2 17.6
2 76.4 70.1 18.4
3 69.2 50.1 16.3
4 85.5 90.7 20.2
5 82.2 105.9 14.3

= 0.667 > 0.05 between ReLU-LCN and Leaky-LCN. We conclude that there is

a significant di�erence between ReLU-LCN and Hannun-Rajpurkar models, and

between Leaky-ReLU and Hannun-Rajpurkar models, but no significant di�erence

in F1 scores were found between ReLU-LCN and Leaky-LCN. However, we cannot

conclude from the above results that there are significant di�erences among the

three models, as that would require repeated measurement analysis of variance

(ANOVA), the assumption of which is that samples, i.e. the 15 F1 scores, come from

a single Gaussian distribution for each model. However, the 15 F1 scores of each

model failed the Shapiro-Wilk test for normality, thus not suitable for ANOVA.

6.5.9 Performance-to-Computational Cost (PC) Ratio

We propose an intuitive metric to evaluate the computational e�ciency of deep

learning models, called the Performance-to-Computational Cost (PC) ratio, to help

with the decision making as to which model to try and how to improve performance

from a study design perspective. The PC ratio is defined below:

DRAFT Printed on April 4, 2021



120 6.5. Benchmark with the State-of-the-Art Model

PC ratio = K ◊
(performance metric)p

(computational cost)q
(6.54)

where K is a scaling constant to scale the PC ratio to a convenient range. The

higher the PC ratio, the better. The performance metric and the computational cost

can be anything appropriate for the practitioner as long as it is consistent across all

models and datasets. p and q are constants reflecting the practitioners’ emphasis

on performance or computational cost. For example, here, we use p = q = 1,

representing an equal preference for the performance and the computational cost.

Practitioners more concerned with the performance may use p = 2, q = 1, for

example. Using runtime cost (s) as the metric for computational cost, and F1 as the

performance metric, and K = 10, 000, we can calculate the value for ReLU-LCN,

Leaky-LCN, and Hannun-Rajpurkar model as in Table 6.8.

The PC ratio can compare not only di�erent models on the same dataset but

also compare di�erent datasets using the same model. Take ReLU-LCN as an

example, we can see that the PC ratios of CKB are much higher than the other

two datasets, suggesting CKB is relatively easy to achieve good performance with

low computational cost, perhaps due to high signal quality and a large number of

training examples per class. However, in Table 6.6 the actual F1 in CKB is no higher

than those of the other two datasets (tables 6.2 and 6.4), suggesting improving upon

CKB performance from the model perspective is di�cult given the current dataset,

perhaps due to the short signal duration (10s) compared to ICBEB (35s) and

PhysioNet (61s). This gives us insights as to which direction to pursue if we want

to improve performance further: to improve the model, or to collect more data from

the same study participants, or to recruit more study participants. A high PC ratio,

such as in CKB, may suggest the number of training examples is abundant, while a

low PC ratio, such as in ICBEB, may suggest the curse of dimensionality, or in other

words, the number of training examples per class is insu�cient to train a model that

can take advantage of the high dimensional feature vector of each training example.

DRAFT Printed on April 4, 2021



6. Deep Learning ECG Classification 121

6.6 Discussion and Conclusion

Each dataset has unique di�culties: ICBEB has the most numerous classes and least

number of training examples per class; PhysioNet has the highest noise ratio, and

has only single lead; CKB has the shortest signal duration. Comparing the test F1

across three datasets (Table 6.7), it is encouraging to see that the lowest performance

was in fact from CKB, as it implies that the bottleneck of performance lies with

the amount of information contained in each training example. This suggests that

LCN can indeed make the most out of the training set. It is also encouraging to see

that LCN can perform well even if there are few training examples per class, which

is often the limiting factor for deep learning. Also, the simple sample weighting

method e�ectively addressed the class skewness, and the LCN models have almost

no bias towards the large classes. Table 6.7 shows that given the same experiment,

it is almost always one of the LCN models that yielded the best performance.

Although Hannun-Rajpurkar model seemed to be the least well-performing model

in this chapter, we shall not forget that it has been proven to exceed average human

cardiologists on 12 rhythm classes of 91,232 recordings from 53,549 participants

(Hannun et al. 2019). LCN models outperformed the Hannun-Rajpurkar model

slightly in ICBEB and PhysioNet, and markedly in CKB. The results suggest the

model complexity of the Hannun-Rajpurkar model may be appropriate for ICBEB

and PhysioNet but too high for CKB, which leads us to hypothesise that the model

complexity of AutoNet generated LCNs may be very close to the optimal model

complexity given the dataset, and their test loss is close to the Bayesian loss. From

this perspective, LCN may be used to estimate the real complexity of the problem.

In each train-validation-test split, the training set is di�erent. Thus the

AutoNet may converge at di�erent architectures. Leaky-LCN seemed to have

higher consistency than ReLU-LCN (tables B.1, B.2, and B.3). One modification

to the AutoNet algorithm to encourage model consistency would be to train each

architecture more than once and use the mean validation and training losses to

decide on the next step, but it will require more computation.
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We have proposed the PC ratio as a simple measure of computational e�ciency,

and we can see that ReLU-LCN has much higher PC ratio than the other two

models. Thus we recommend ReLU-LCN. Also, the PC ratio of each dataset may

be a measure of the di�culty of the classification task.

The current state-of-the-art neural network development is trial and error.

And the randomness inherent in neural network training due to random weight

initialisation, stochastic gradient estimation, and other sources of randomness

makes model development especially challenging, as we do not know if the change

in the performance is due to an intervention (such as adding layers and changing

hyperparameters) or due to the randomness in training. Traditionally, researchers

would train the model on the same set of hyperparameters for several times before

concluding the helpfulness or the harmfulness of an intervention. This is undesirable

when the model becomes very large, and training once would take days to months.

The AutoNet algorithm addresses this problem in 3 ways:

• It monitors both training and validation losses to decide on the next step.

• It avoided drop out entirely and did not add batch normalisation until the

last step when growing the model, as both dropout and batch normalisation

add much noise to the training process.

• By starting from a small model and grow the model to be just the right size for

the problem, the algorithm avoids wasting computational resource in solving

simple problems with huge models.

The earlier version of AutoNet algorithm included dropout, but we found that

LCN did not work well with dropout. Restricting the number of parameters per

layer is a strong regularisation in itself, and dropout would result in the model

not able to utilise the training set information fully. One improvement may be

replacing equation 6.50 with nf(1 ≠ d)[n2
f(1 ≠ d) + 1] Æ m, where d œ [0, 1] is the

dropout ratio, and the network might be able to learn a more robust model, but the

training would be noisier, and we might need to run each step in the model growth
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phase more than once and make decisions on the mean training and validation loss,

which will significantly increase computational cost of the AutoNet algorithm. The

current version of AutoNet-LCN without dropout already performs comparably,

if not better, than a large architecture with dropout, thus the potential benefit

introduced by dropout may not worth the increased computational cost.

The ease of optimising LCN may suggest the LCN having many nice properties.

Compared with traditional networks where the layers are overparameterised and

regularised, LCNs may be much easier to train. LCNs as deep as 16 layers can be

successfully trained without any skip connections nor batch normalisation. The

hidden layers are over-determined and have identical dimensions, which may make

the Hessian well-conditioned.

Although the final loss is not guaranteed to be convex with respect to the hidden

layer weights if the network is allowed to have negative hidden activations, such

as in Leaky-LCN, the LCN hidden layers are e�ectively over-determined systems

of monotonic equations. Over-determined systems of monotonic equations have

a unique solution that minimises the Euclidean distance, which is equivalent to

minimising the mean squared error (MSE), which is not only convex but quadratic.

Theoretically, we should use a loss which has MSE terms from each layer. In this

study, we used conventional cross-entropy loss as an approximation, and it has

been proven to work very well. Future work will include designing experiments to

study the properties of the loss surface of LCN and experiment with alternative loss

functions. LCN may also enable optimising the cross-entropy loss and the quadratic

loss layer-by-layer in alternating steps using second order methods, such as Newton’s

method, as it would only require less than O(m3) complexity, with m being the

number of training examples, which can be very desirable for small datasets.

In this study, we used Adam with all default hyperparameters as the optimiser,

without even tuning the learning rate. Our view is similar to I. J. Goodfellow, Warde-

Farley, et al. 2013: It is better to design architectures to facilitate optimisation, than

designing powerful optimisation algorithms. Our principle is to use as many default

hyperparameters as possible, including the learning rate, of a robust optimisation
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algorithm, such as Adam, and innovate in model architectures so that tuning

optimisation hyperparameters is unnecessary.

One of the major contributions of LCN is a novel paradigm to determine the

hyperparameters of CNN. Central to the LCN theorem is the choice of nf and k. In

the current version of LCN, the kernel size k is set to be equal to nf . Theoretically,

k should be independently optimised to maximise the total number of parameters

in each layer, subject to nf(nfk + 1) Æ m. However, for long single-lead signals,

such as those in PhysioNet, k would end up being unreasonably large (for example

k > 300). Thus we kept k to be the same as nf . This also implicitly expresses

our view that the parameters in the kernels and the parameters in the channel

dimension are not fundamentally di�erent.

The calculated k and nf are very unconventional choices compared to what is

often used in the literature. In CNN literature, k is typically a small odd number,

such as 3, 5, 7, and nf is typically powers of 2, such as 32, 64, 128, 256. There is no

particular reason for these choices except that CNN originated from computer vision

research, and odd-numbered k may help learn symmetrical features from images. We

forsook this convention entirely and have demonstrated that instead of heuristically

tuning the numerous CNN hyperparameters or performing hyperparameter search

at the price of high computational cost, we can build e�cient neural networks by

keeping most of the hyperparameters fixed and rationally calculate the rest of them.

The resulting LCN typically has no more than 2% of the parameters compared

to the state of the art model, which is very encouraging as this means at least O(n◊)

saving in memory and computational complexity. LCN may also make second-

order algorithms feasible, as many second-order methods need O(n2
◊
) (conjugate

gradient descent, BFGS) or O(n3
◊
) (Newton method) complexity. If we optimise the

parameters layer-by-layer, the computational complexity can be further reduced to

be less than O(m2), where m is the number of training examples. The hypothesised

Layer-Wise quadratic property suggests the second-order methods such as Newton’s

method may be very applicable. Future work may include designing experiments to

study the behaviour of convex optimisation in LCN networks. The 50-200 times
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fewer parameters may enable the algorithm to run on devices where it is otherwise

impossible to run deep learning models.

Although LCN approaches machine learning from the deterministic function

approximation perspective, the philosophy behind LCN is similar to the Bayesian

approach: we should determine the model complexity from the size of the training

set rather than the hypothesised complexity of the problem. Traditional CNN

design is “neuron-oriented”, which means most of the design considerations and

innovations (e.g. dropout and batch normalisation) apply to the neurons, while

LCN focuses on the parameters, which is also similar to the Bayesian view.

While developing the AutoNet algorithm, We found the following techniques

very helpful in boosting the model performance:

• Handle class imbalance by weighting the training samples by the inverse of

the class ratio in the training set. The key is to have a balanced validation

set for model check-pointing, even if the final test set is not balanced;

• Time-distributed softmax output for periodic time series signals;

• The batch size is also essential, even without batch normalisation. Although

a large batch is faster to train, it is also prone to overfitting. Therefore the

AutoNet algorithm keeps batch size to be 32 regardless of the training size

(as long as the training set has at least 32 samples);

• Model averaging.

One caveat in our study is that all three datasets have a few thousand training

examples. Therefore the hyperparameters nf calculated for di�erent datasets were

similar. Whether the AutoNet algorithm and the LCN theorem will have consistent

performance on datasets with very di�erent training sizes remains to be validated.

Another limitation is that in this chapter we used only F1 to evaluate the results.

Although F1 is a good choice for evaluating machine learning models in classification

tasks, in clinical setting, sensitivity and specificity are more important metrics.

Future work will include sensitivity and specificity along with F1.
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From the theoretical perspective of the neural network width and depth, this

chapter illustrates the surprising e�ect of rational choice of model sizes based on

the training set. Although practitioners generally use a small model when the

training data is scarce and a large model when the training data is abundant, it

is rare for deep learning practitioners to design the model architecture based on

the exact number of training examples. We looked at deep learning architecture

design from an unusual perspective: function approximation and equation solving.

Although this perspective is not entirely new, the conventional approach is to try

to reduce the loss rather than creating conditions to “force” the loss surface to be

almost convex or even quadratic. We reverse engineered the conditions to make the

“optimal solution” easy to be discovered in training, by mathematically determine

the architecture hyperparameters based on the characteristics of the training set.
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The Heart Age

7.1 Introduction

In the previous chapters, we have classified ECG using Mortara labels as the gold

standard. However, the Mortara labels di�er from human expert generated labels

as the Mortara device follows rule-based algorithms, which means in theory, that a

neural network can recover such algorithms with arbitrary precision. The lack of

human expert labelling is a common problem in machine learning. In this chapter,

we examine a novel paradigm in which we use neural networks to predict alternative

labels from unstructured data. We define alternative labels as labels that are

accurate and easy to acquire in addition to being relevant to clinical problems. The

goal is not to predict alternative labels, but to explore the potential knowledge

gainable from the learning process. In the present study, the participants’ age and

blood pressure are appropriate alternative labels. We provide a proof of concept for

this approach by predicting the age of participants from their raw ECG waveforms.

Our hypothesis is the AutoNet-LCN will under-predict age of healthy participants,

but over-predict the age of participants with cardiovascular diseases. It should also

provide a test for AutoNet-LCN’s performance in regression tasks.
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7.2 Training-Validation-Test Split

We used the 10-s 12-lead ECG waveforms from 24,959 participants, as described

in Chapter 4. We trained on 90% of the normal participants, and tested on the

remaining normal participants, in addition to all participants with any “arrhythmia”,

“ischaemia”, “hypertrophy” or “other” abnormalities. We constructed the “abnormal”

class by aggregating all “arrhythmia”, “ischaemia”, and “hypertrophy” classes, and

used it as an additional test set. The models were also conducted separately in males

and females. The numbers of participants in gender-specific and gender-agnostic

models are shown in table 7.1.

Table 7.1: The number of participants in the training, validation, and test sets for the
female, male, and gender-agnostic models.

Females Males Gender-Agnostic
Normal train 5,892 2,713 8,605

validation 655 302 957
test 727 334 1,061

Arrhythmia test 1,093 957 2,050
“Ischaemia” test 1,159 656 1,815
Hypertrophy test 1,652 1,998 3,650
Other test 3,882 2,363 6,245
Abnormal test 3,904 3,611 7,515

7.3 Methods

7.3.1 Computational Environment

All experiments were performed using Google Cloud Ubuntu 16.04 instance with

32v CPU (120G RAM), 2 Nvidia Tesla T4 GPUs, Python version 2.7.15, and

Tensorflow version 1.8.0.

7.3.2 Model Creation

After the baseline model was built, the model was grown as described in Chapter 6.

Appendix D shows the model evolution for the gender-agnostic, female, and male

models. Details of the converged models are shown in figures 7.1, 7.2, and 7.3.
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Figure 7.1: The automatically generated ReLU-LCN architecture for the gender-agnostic
model. nrepeat = 2, nmaxpool = 9, meaning there were a total of 9 max-pooling layers,
and there were two convolutional layers stacked between every two max-pooling layers.
The activation was ReLU, which followed every convolutional layer, albeit not shown
in the figure for simplicity. Batch normalization (green) and skip connection were not
needed. The output layer was a time-distributed single-unit linear layer used to make the
predictions.

7.3.3 Model Averaging

We performed a 10-fold model averaging using the same approach as described in

Chapter 6. The best model was trained for ten times, and the predictions were

averaged to make the final prediction, i.e.:

ŷ(average)
j = 1

10

10ÿ

i=1
ŷ(i)

j (7.1)

where ŷi is the prediction given by the ith model to the jth participant.

7.4 Results

7.4.1 Computational Cost

It took AutoNet 5,151s to find the best female model and 1,381s to find the best

male model, and 4,951s to find the best gender-agnostic model.
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Table 7.2: Summary statistics of the gender-agnostic model. MAE unit: years

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 1,061 2,050 1,815 3,650 6,245 7,515
MAE 5.7 7.5 6.6 6.5 6.3 6.8
Trivial MAE 7.9 9.0 8.4 8.4 8.3 8.6
MSE 51.4 84.7 66.6 65.4 60.5 71.0
Trivial MSE 92.0 115.7 101.5 103.4 100.7 107.4
R2 44.1% 26.8% 34.4% 36.7% 40.0% 33.9%
Trivial R2 0 0 0 0 0 0
µ̂ 56.3 60.3 59.6 60.3 58.2 60.1
µ 57.2 63.2 60.5 61.2 58.9 61.6
‡̂ 5.5 5.7 5.6 6.7 6.0 6.2
‡ 9.6 10.8 10.1 10.2 10.0 10.4
ŷmin 45.3 45.4 46.2 45.5 45.2 45.4
ymin 38 37 39 39 34 37
ŷmax 76.7 81.2 76.2 93.4 80.6 93.4
ymax 82 88 83 86 88 88

7.4.2 Results for the Gender-Agnostic Model

To benchmark, we used a simple model to predict every test case as the mean

of the test set, i.e.

ŷ(trivial)
i = 1

N

Nÿ

i=1
yi (7.2)

where yi is the chronological age of the sample, i indices each example, and N is

the total number of cases in the set. Mean absolute error (MAE) and mean squared

error (MSE) are calculated using equations 7.3 and 7.4.

MAE = 1
N

Nÿ

i=1
|ŷi ≠ yi| (7.3)

MSE = 1
N

Nÿ

i=1
(ŷi ≠ yi)2 (7.4)

R2 is the coe�cient of determination, which measures the fraction of variance

explained by a model in a dataset. It is defined as equation 7.5.

R2 = 1 ≠

q
i(ŷi ≠ yi)2

q
i(yi ≠ µ)2 (7.5)
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It is easy to see that the simple model’s R2 is 0, since ŷi = µ, R2 = 1 ≠
q

i
(µ≠yi)2

q
i
(yi≠µ)2 = 0.

µ̂ and µ represent the predicted and the mean chronological age in the set, and

similarly ‡̂ and ‡ represent the standard deviations of the predicted age and the

chronological age in the set, respectively; ŷmin and ŷmax represent the predicted

age range, while ymin and ymax represent the range of the chronological age. All

results were reported on the test set.

We can see that the AutoNet-LCN’s MAE was the lowest in the normal class

and highest in the “arrhythmia” class. The “other” class had the second-lowest

MAE, which is consistent with our conclusion in Chapter 5 that the “other” class

chiefly involves “sub-healthy” participants without overt symptoms of CVD. A

similar observation can be found in the AutoNet-LCN’s MSE. In all classes, the

results of the AutoNet-LCN MAE and MSE models were much lower than those

of the simple model. The AutoNet-LCN’s R2 explained 44.1% of the variance

of the normal class and 40.0% of the variance of the “other” class, while the R2

for all other classes were much lower.

The predicted mean age (µ̂) was slightly lower than that of the chronological

age (µ) in all classes, and the predicted standard deviation (‡̂) was much lower

than that of the chronological age (‡). This is mainly because the model was

trained on the normal class, in which high age was rare. Consequently, the model

learned a narrower distribution than the chronological age distribution, and is

centred around µ̂. Despite this, the model predicted lower mean and standard

deviation in the normal test set than any non-normal test sets. The minimum

predicted age was 45.2 in the “other” class, and the maximum predicted age was

76.2 in the “ischaemia” class, but the predicted minimum and maximum age were

also the lowest in normal individuals.

7.4.3 Female Model Results

We also performed gender-specific modelling by training and testing on female or

male participants only. In the female model, the AutoNet-LCN MAEs were lower
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Figure 7.2: The automatically generated ReLU-LCN architecture for the female model.
nrepeat = 6, nmaxpool = 9, meaning there were a total of 9 max-pooling layers, and there
were 6 convolutional layers stacked between every two max-pooling layers. The activation
was ReLU, which followed every convolutional layer, not shown in the figure for simplicity.
Batch normalisation (green) was not needed. The after-convolution tensors were added
to every eighth after-convolutional tensors, which were labelled in the figure. The output
layer was a time-distributed single-unit linear layer to make the prediction.

Table 7.3: Summary statistics of the female model. MAE unit: years.

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 727 1,093 1,159 1,652 3,882 3,904
MAE 5.6 7.8 6.5 7.3 6.1 7.8
Trivial MAE 8.0 8.7 8.1 8.2 8.1 8.3
MSE 50.6 94.5 66.4 83.9 59.7 81.7
Trivial MSE 92.6 110.0 96.9 98.7 97.2 102.4
R2 45.4% 14.1% 31.5% 14.9% 38.6% 20.2%
Trivial R2 0 0 0 0 0 0
µ̂ 56.8 59.4 59.9 64.0 58.9 61.5
µ 57.0 62.8 60.1 61.8 58.8 61.6
‡̂ 6.1 5.9 6.5 7.7 6.5 7.2
‡ 9.6 10.5 9.8 9.9 9.9 10.1
ŷmin 41.1 43.7 43.0 38.9 42.6 38.9
ymin 39 39 39 40 36 39
ŷmax 78.2 81.1 84.2 100.5 85.6 100.5
ymax 82 84 83 86 88 86
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than the trivial MAE in all classes, and the normal class had the lowest MAE. A

similar trend can be observed for MSE. The R2 increased from 44.1% to 45.4%

in the female normal test set compared to the gender-agnostic test set. The R2

for “arrhythmia” and “hypertrophy” were markedly lower than the normal and

the “other” classes, with abnormal aggregate class R2 only 20.2%. The female

model demonstrated a stronger trend for the model being able to explain a higher

proportion of variance in the normal class than the “arrhythmia” and “hypertrophy”

classes, which in turn indicated that “arrhythmia”, “ischaemia”, and “hypertrophy”

classes have distinct characteristics in their ECGs from the normal classes, which

are best captured by the “heart age.”

The predicted means in all classes were very close to the mean of the chronological

age (µ), except for the “arrhythmia” and “hypertrophy” classes. Interestingly, the

predicted mean age (µ̂) was over two years higher than the chronological mean in

the “hypertrophy” class. In comparison, the predicted mean age (µ̂) in “arrhythmia”

was 3.4 years lower than the mean chronological age (µ), suggesting that the model

under-predicted the “arrhythmia” class but over-predicted the “hypertrophy” class.

The predicted standard deviation (‡̂) was lower than the standard deviation

of the chronological age (‡) in all classes, and the “arrhythmia” class had the

lowest predicted standard deviation (‡̂), which was surprising as one would expect

the normal class to have the lowest predicted standard deviation (‡̂). However,

the normal class indeed had a lower predicted standard deviation (‡̂) than all

other classes except for “arrhythmia”.

The predicted range was again narrower than the chronological age range in

the normal and the “arrhythmia” classes. In contrast, the predicted minimum age

was very close to the minimal chronological age (ymin) in the “hypertrophy” and

the abnormal aggregate classes, which is encouraging considering the results of the

gender-agnostic model where the predicted minimum was higher than the minimum

chronological age (ymin) in all classes, suggesting the female model can learn a more

versatile distribution than the gender-agnostic model.
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Figure 7.3: The automatically generated ReLU-LCN architects for the male model.
nrepeat = 3, nmaxpool = 9, meaning there were a total of 9 max-pooling layers, and there
were three convolutional layers stacked between every two max-pooling layers. The
activation was ReLU, which followed every convolutional layer, not shown in the figure to
declutter the diagram. Batch normalization (green) and skip connections were not needed.
The output layer was a time-distributed single-unit linear layer to make the prediction.

The predicted maximum age (ŷmax) was higher than the maximum chronological

age (ymax) in “ischaemia”, “hypertrophy”, and abnormal classes, especially in the

“hypertrophy” and the abnormal classes, where the predicted maximum age can

be as high as 100.5 years old.

7.4.4 Male Model Results

The male model had fewer training examples (n = 3713). Thus, the trend in the

female model was less evident in the male model. The AutoNet-LCN MAE and

MSE were the smallest in the normal class, which are consistent with the conclusions

from the female model, but both were higher than their female counterparts. The

AutoNet-LCN R2 were the highest in the normal classes but were lower than its

female counterpart. The predicted mean was very close to the chronological mean

in the normal, “other”, and the abnormal aggregate classes, while the “arrhythmia”

class was again under-predicted, and “ischaemia” and “hypertrophy” classes were

again over-predicted. The predicted standard deviation (‡̂) was the lowest in

the normal and much lower than the standard deviation of the chronological age
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Table 7.4: Summary statistics of the male model. MAE unit: years.

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 334 957 656 1,998 2,363 3,611
MAE 6.2 7.6 7.2 6.9 6.9 7.1
Trivial MAE 7.7 9.4 8.8 8.6 8.6 8.9
MSE 59.3 85.6 77.3 72.4 72.1 76.7
Trivial MSE 90.7 121.9 108.9 106.6 106.4 112.8
R2 34.7% 29.8% 29.1% 32.1% 32.2% 31.9%
Trivial R2 0 0 0 0 0 0
µ̂ 57.7 61.8 62.2 61.1 59.7 61.5
µ 57.5 63.7 61.2 60.6 59.2 61.6
‡̂ 5.0 6.3 6.5 6.9 6.1 6.7
‡ 9.5 11.0 10.4 10.3 10.3 10.6
ŷmin 46.6 46.8 47.2 47.8 45.9 46.8
ymin 38 37 40 39 34 37
ŷmax 72.8 89.2 82.6 90.2 88.0 90.2
ymax 81 88 83 84 85 88

(‡), and also lower than their female counterpart, suggesting a smaller number of

training examples resulted in the male model learning a more “rigid” distribution

than the female and gender-agnostic models.

The predicted range was narrower than the chronological age range in all classes,

while the predicted maximum age was higher than the maximum chronological age

(ymax) in the “arrhythmia”, “hypertrophy”, “other”, and the abnormal aggregate

classes. However, we did not observe as extremely high predicted age as in the

gender-agnostic model and the female model, which may be due to the the smaller

male training set.

7.4.5 Over-predicted and Under-predicted Ratios

Figures 7.4 and 7.5 show the ratios of over-predicted and under-predicted participants

in each test class. Over-prediction was defined as ŷ < y ≠ 2, and under-prediction

was defined as ŷ > y + 2, and ŷ ≠ 2 Æ y Æ ŷ + 2 were considered correctly predicted.

In essence, we ignored the prediction errors of 2 years or less.

It is evident that in the female normal test set, the model tended to over-predict,

in contrast to our hypothesis. In “ischaemia”, “hypertrophy” and “other” classes,
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Figure 7.4: Over- and under-predicted ratios in each class (female). The corresponding
numbers are in appendix E.
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Figure 7.5: Over- and under-predicted ratios in each class (male). The corresponding
numbers are in appendix E.

the model tended to over-predict, which is consistent with our hypothesis. It is

surprising to find that in the “arrhythmia” class, the model tended to under-predict

rather than over-predict, and by a wide margin. This may suggest either the model

is not suitable to apply to “arrhythmia” patients, or the absolute prediction errors,

rather than the signed errors, may suggest underlying CVD abnormalities.

Similar results were observed in the male sets, with the contrast of “ischaemia”

over-and under-prediction being more extreme than their female counterparts. This
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may suggest that the male “ischaemia” participants in the CKB dataset have more

recognizable ECG abnormalities than their female counterparts.

We examined the top 10 over-predicted and under-predicted female and male

cases in each test set, and these results are presented below:

7.4.6 Top 10 Over- and Under-predicted Cases

We show the participants’ Mortara descriptions, and the “reasons”, if any, provided

by the Mortara device to support its descriptions given the ECG waveforms. The

top 10 cases were ranked by the prediction error, and the light-blue shaded cases

were flagged “abnormal ECG” by the Mortara device. We complement the Mortara

descriptions and reasons with the participants’ systolic blood pressure (SBP) and

diastolic blood pressure (DBP) which neither the Mortara algorithm nor the

AutoNet-LCN had access to. The last row of each table shows the averages

of the numerical variables.

Unsurprisingly, the over-predicted cases were in the middle-age group, while

the chronological ages of the under-predicted cases were over 70 years. We can

see that both top under-predicted and over-predicted cases have many ECG

abnormalities. “Arrhythmia” and “other” cases appeared in the under-predicted,

while “hypertrophy” cases dominated the over-predicted group. This, in turn,

rejects our hypothesis that under-predicted individuals were “healthier” than their

peers. The absolute prediction error may be an indicator of heart health, with the

under-prediction implying arrhythmic abnormalities and positive errors implying

hypertrophic abnormalities. Interestingly, the over-predicted cases also had higher

mean levels of SBP and DBP than the under-predicted cases. The mean SBP of

over-predicted cases were higher than the normal value (120 mm Hg) while the

mean DBP of the under-predicted cases is lower than the normal value (80 mmHg),

suggesting both under-prediction and over-prediction imply CVD abnormalities,

but in di�erent ways.
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142 7.5. Discussion and Conclusion

7.5 Discussion and Conclusion

Previous studies have reported heart age calculators (Bonner, Jansen, Newell, Irwig,

Teixeira-Pinto, et al. 2015; Lopez-Gonzalez et al. 2015; Lowensteyn et al. 1998).

For example, NHS uses JBS3 risk calculator, which takes account of established

CVD risk factors, including blood pressure, smoking, cholesterol, and diabetes 1.

The NHS heart age is estimated from the lifetime risk of CVD, relative to people of

the same age, sex, and ethnicity who have “optimal” risk factor levels (for example,

non-smoker, systolic blood pressure < 120mm Hg) (Patel et al. 2016). The NHS

heart age test gives a higher heart age if any of the risk factors were not in the

optimal range, and 78% of the 2 million users obtained higher heart age than their

chronological age 2 and thereby encouraged to visit their GP.

The intuitive interpretation of the heart age is that higher heart age than their

chronological age implies a higher CVD risk, while a lower heart age implies a

healthier heart compared with people of their chronological age group. The NHS

heart age test states that “having a heart age older than your chronological age

means that you are at a higher risk of having a heart attack or stroke.” while not

providing any interpretation when the heart age is lower than the chronological age.

Although heart age calculators are intuitive to use and raise CVD risk awareness

in the population (Wells et al. 2010), their results can be misleading to the public

and lead to over-diagnosis (Bonner, McKinn, et al. 2019). The relation between

the heart age and the CVD risk is not well calibrated nor well validated (Bonner,

McKinn, et al. 2019). Systematic reviews and randomised trials have concluded that

there is insu�cient evidence to recommend heart age in clinical practice (French

et al. 2017; Bize et al. 2012; Waldron et al. 2011; Kulendrarajah, Grey, and Nunan

2020; Bonner, Jansen, Newell, Irwig, Teixeira-Pinto, et al. 2015; Svendsen et al.

2020; Krogsbøll et al. 2012; Bonner, Jansen, Newell, Irwig, Glasziou, et al. 2014).

1https://www.nhs.uk/conditions/nhs-health-check/check-your-heart-age-tool/
2https://www.gov.uk/government/news/heart-age-test-gives-early-warning-of-heart-attack-

and-stroke. Accessed 30 April 2020
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7. The Heart Age 143

However, all previous studies assessed the e�ect of the heart age as a pre-

consultation screening tool in clinical practice, where the patient’s medical history

and co-morbidity are not taken into account, resulting in implausible estimates

of heart age that discredited the results (for example, older heart age in very fit

people, or younger heart age in people who are obese)(Bonner, Jansen, Newell,

Irwig, Glasziou, et al. 2014). The heart age has been found to motivate lifestyle

changes in clinical practice (Bonner, McKinn, et al. 2019). Our models calculate

the heart age from the standard 12-lead ECG, which can only be obtained in a

clinical setting. We do not recommend our model be used as a heart age calculator

as a pre-consultation screening tool, but potentially as a risk score associated with

the ECG waveforms for clinical risk assessment.

The results of the present study are consistent with previous studies: Attia

et al. 2019 trained a CNN on 10-s 12-lead standard ECG on 499,727 participants

and reported MAE 5.9 and R2 0.7. They also concluded that the absolute error,

rather than the signed error, may be useful as a heart health score. They did not

di�erentiate normality nor gender in their training and test sets. We performed

a detailed analysis of di�erent CVD disease groups separately in men and women

and found lower absolute errors in the healthy population than in the “arrhythmia”,

“ischaemia”, and “hypertrophy” populations. However, the findings contradict our

hypothesis that under-prediction would imply being healthier. In contrast, under-

prediction indicated a higher risk of arrhythmic abnormalities. Our models were

also automatically generated by the AutoNet-LCN algorithms and involved no

human e�ort in determining the model architecture.

The analyses presented in this chapter evaluated heart age using ECG waveforms.

Future work may include using the SBP and DBP as alternative labels and possibly

predict the blood pressure either alone or in combination with age, for example, by

using three linear output units. Predicting blood pressure may be informative for

cardiovascular medicine, as the relationship between ECG waveforms and blood

pressure have not been well established.
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8
Conclusions and Future Work

8.1 Summary of Results

8.1.1 SGB-F82 Model for 4-class Classification using Ex-
tracted Features

In Chapter 5, we demonstrated that machine learning models could classify ECG

with high accuracy without any knowledge of the diagnosis criteria; all they need is

relevant features. We examined 11 machine learning models (Logistic Regression,

Linear Discriminant Analysis, Naive Bayes, support vector machine, CART, KNN,

stochastic gradient boosting, bagging, random forest, AdaBoost, and extra trees)

representative of all major machine learning model families except neural networks,

and found stochastic gradient boosting performed best. The 77.3% four-class

classification accuracy achieved by SGB-F82 is encouraging. We extracted the

amplitudes of the P, Q, R, S, T waves, and the baseline levels, from each of the

12 leads, constructing a total of 72 new features. The addition of these 72 new

features lent significant improvement over the features provided by the Mortara

device. The top features identified by the SGB-F84 model were very di�erent from

the ones commonly used in clinic. Lead I did not appear in the top 10 features

at all, which may suggest many studies using only single lead, typically lead I or

II, even when the 12-lead ECG is available, have sub-optimal performances. Our
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146 8.1. Summary of Results

findings suggest using lead V5 instead of lead I when the single-lead analysis is

inevitable due to resource constraints.

8.1.2 End-to-end Deep Learning ECG Classification using
AutoNet-LCN

In Chapter 6, we proposed a novel theorem called the Layer-wise Convex Network

(LCN) and a heuristic neural architecture search algorithm - the AutoNet - to

directly analyse the raw ECG waveforms, without beat segmentation, denoising,

nor feature extraction. The AutoNet can generate LCNs end-to-end based on

the characteristics of the datasets and the machine learning task. The AutoNet

generated LCNs were benchmarked with the state-of-the-art model and evaluated

on three ECG classification datasets (PhysioNet 2017 Challenge, ICBEB 2018

Challenge, and China Kadoorie Biobank ECG dataset), and have outperformed the

state-of-the-art model on all three datasets by a wide margin (9-16% improvement

in terms of F1 score), with 1-2% of the parameters and no more than 2 hours of

architecture search time, in comparison to weeks to months of trial-and-error by

human researchers in the conventional deep learning model development process. It

is especially encouraging considering the state-of-the-art model has already been

demonstrated to exceed the average cardiologist ability to classify “arrhythmias”.

Also, we proposed the PC ratio as an intuitive measure of the computational

e�ciency and the di�culty of the machine learning task given a dataset. Given

the same model, the higher the PC ratio, the easier the machine learning task is,

which may be thanks to the high signal quality or abundant training examples

in the dataset; given the same dataset, the higher the PC ratio is, the more

computationally e�cient the model is. PC ratio may help researchers focus e�ort

on gathering more data from the same study participants, recruiting more study

participants, or improving the model.
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8. Conclusions and Future Work 147

8.1.3 Predicting the “Heart Age” from Raw ECG Wave-
forms

In Chapter 7, to address the issue that the training targets in CKB are provided

by the deterministic rule-based heuristics called the Minnesota Code, which in

theory can be approximated to arbitrary precision by a large enough neural network

with enough training examples and training time, we proposed a novel paradigm:

learning using alternative labels. We defined alternative labels as clinically relevant,

easy to acquire, and relatively accurate labels, such as people’s age, sex, and blood

pressure. We used AutoNet-LCN to automatically build heart age predictors by

training the neural networks on the healthy population, and test our hypothesis

that the model would predict lower-than-chronological age for a healthy individual,

and higher-than-chronological age for individuals with CVD abnormalities. Our

findings are surprising that under-prediction does not indicate the participant is

healthier than their peers, but has more tendency towards “arrhythmia”, while

over-prediction suggests a tendency towards “hypertrophy” and “ischaemia”. Under

prediction also correlates with low blood pressure and over-prediction correlates

hypertension. While our models need further calibration and validation with follow-

up longitudinal clinical outcomes, the findings may suggest some relation between

ECG-derived age, blood pressure, and CVD conditions in ways that are not yet

clear in medical research, which may merit further investigation.

8.2 Future Work

8.2.1 Validate Machine Learning Probabilistic Risk Scores
with Clinical Diagnosis

Although in Chapters 5 and 6, the results were reported as classification accuracy or

F1 scores, the actual outputs of the machine learning models are probabilities. Also,

“arrhythmia”, “ischaemia”, and “hypertrophy” are not mutually exclusive. Thus

future work may involve validating the probabilistic outputs of the machine learning

models with clinical diagnostics and prognosis in follow-up studies. The machine

learning probabilistic risk scores may be especially relevant to the participants in

DRAFT Printed on April 4, 2021



148 8.2. Future Work

the “other” class, who did not meet the criteria of “arrhythmia”, “ischaemia”, or

“hypertrophy”. It would be interesting to examine whether the machine learning

models can forecast the CVD onset by following up this group of participants.

A retrospective analysis may be conducted taking advantage of the occurrence

time of the diseases in the health insurance data available in the CKB database, to

illustrate how machine learning prediction improves as distant events from ECG

acquisition are removed, and further study the performance of machine learning

models as a function of time.

8.2.2 Epidemiology Analysis with Other Risk Factors

The 4-class probabilities provided by our machine learning models may be interpreted

as risk scores, which can be further integrated with the heart age, chronological

age, gender, body mass index (BMI), blood pressure, and genetic genome-wide

association study (GWAS) data available in the CKB to develop a comprehensive

deep learning heart disease diagnosis system, potentially for more disease types

than we have initially considered, such as cancer and stroke. The latter will involve

consideration of probabilistic models that permit the fusion of categorical data, and

which may include sparse techniques for handling the largely-incomplete records in

the dataset. The AutoNet LCN may be especially useful to fuse di�erent types of

features as it does not require human design of the networks or feature engineering.

8.2.3 Calibration of the Heart Age

In Chapter 7 our models have surprising findings that over-prediction correlates

with hypertension and “hypertrophy”, while under-prediction correlates with low

blood pressure and “arrhythmia”. Further investigation is needed to explain this

phenomenon. Also, the heart age model needs further statistical analysis of the

significance of the findings, and validation with longitudinal clinical outcomes to

see whether the predicted heart age has predictive value.
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8.2.4 Theoretical Study of the LCN Theorem

Although we have explained the rationale of the LCN theorem in Chapter 6, more

rigorous proof and study of its mathematical properties are needed to validate our

hypothesis. For example, is the loss indeed convex with respect to the parameters?

The idea behind LCN has similarities to (Bengio et al. 2006) in which the loss is

indeed proven to be convex with respect to the parameters, and a global minimum

can be proven to exist. Although the resulting networks have similarities, the

way such networks are found are di�erent. In this thesis, the LCNs are found by

mathematically calculating the number of required parameters per layer, while in

Bengio et al. 2006 the number of neurons per layer is found by inserting one neuron

at a time and use a linear classifier to minimise a weighted sum of loss. Secondly, is

the Hessian of the LCNs indeed better conditioned compared to alternative CNNs,

such as the ResNet? How does the loss surface evolve during training and in the

model growth step? Finally, in this thesis, we used conventional Adam optimizer

to optimize LCN, while LCN theorem is motivated by regarding the parameters

(w and b) and the layer outputs (a) as if their roles are reversed. Nevertheless, we

hypothesize that the optimization of LCN is mathematically and computationally

equivalent to conventional neural network optimization using backpropagation.

This hypothesis also needs more rigorous proof.

The AutoNet algorithm (algo. 2) and the LCN-generation algorithm (algo.

1) are equivalent to the controller-generator systems described in the seminal

paper by Zoph and Le 2016 in neural architecture search (NAS). Auto-Net LCN

is essentially a NAS algorithm, although the focus of this thesis is its application

on ECG classification. To fully establish the advantage of AutoNet-LCN, we need

to apply it to standard machine learning benchmarks such as the ImageNet and

study whether AutoNet-LCN can perform consistently well when the training size

is very di�erent from a few thousand.
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A
The Number of Participants in Each Class

and Age Group

Table A.1: The number of participants in each class and age group in the CKB dataset
(all participants). The numbers in the brackets are the percentage of the conditions in
the relevant age group. A: “arrhythmia”, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A I H O Total
<50 3,021

(54.4%)
300
(5.4%)

308
(5.6%)

573
(10.3%)

1,352
(24.3%)

5,554
(100%)

50-59 3,546
(46.0%)

582
(7.6%)

585
(7.6%)

987
(12.8%)

2,006
(26.0%)

7,706
(100%)

60-69 2,982
(40.6%)

732
(10.0%)

597
(8.1%)

1,114
(15.2%)

1,924
(26.2%)

7,349
(100%)

70+ 1,230
(28.6%)

858
(20.0%)

380
(8.8%)

749
(17.4%)

1,080
(25.1%)

4,297
(100%)

Total 10,779
(43.3%)

2,472
(9.9%)

1,870
(7.5%)

3,423
(13.7%)

6,362
(25.5%)

24,906
(100%)
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Table A.2: The number of participants in each class and age group in the CKB dataset
(female participants). The numbers in the brackets are the percentage of the conditions
in the relevant age group. A: arrhythmia, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A I H O Total
<50 2,161

(60.4%)
167
(4.7%)

199
(5.6%)

219
(6.1%)

834
(23.3%)

3,580
(100%)

50-59 446
(50.2%)

308
(6.3%)

387
(7.9%)

442
(9.1%)

1,289
(26.5%)

4,872
(100%)

60-69 2,006
(44.1%)

417
(9.2%)

382
(8.4%)

537
(11.8%)

1,204
(26.5%)

4,546
(100%)

70+ 761
(31.6%)

415
(17.3%)

225
(9.4%)

364
(15.1%)

641
(26.6%)

2,406
(100%)

Total 5,374
(34.9%)

1,307
(8.5%)

1,193
(7.7%)

1,562
(10.1%)

3,968
(25.8%)

15,404
(100%)

Table A.3: The number of participants in each class and age group in the CKB dataset
(male participants). The numbers in the brackets are the percentage of the conditions in
the relevant age group. A: arrhythmia, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A I H O Total
<50 860

(43.6%)
133
(6.7%)

100
(5.5%)

354
(17.9%)

518
(26.2%)

1,974
(100%)

50-59 1,100
(38.8%)

274
(9.7%)

198
(7.0%)

545
(19.2%)

717
(25.3%)

2,834
(100%)

60-69 976
(34.8%)

315
(11.2%)

215
(7.7%)

577
(20.6%)

720
(25.7%)

2,803
(100%)

70+ 469
(24.8%)

443
(23.4%)

155
(8.2%)

385
(8.2%)

439
(23.2%)

1,891
(100%)

Total 3,405
(35.8%)

1,165
(12.3%)

677
(7.1%)

1,861
(19.6%)

2,394
(25.2%)

9,502
(100%)
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B
Architectures Found in the Five Repeats

on the Three Datasets

Table B.1: The hyperparameters of the models found on the five ICBEB experiments.
The most common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN
nrepeat skip bn nrepeat skip bn

1 5 + + 7 + +
2 6 + + 5 + +
3 4 + + 5 + +
4 5 + + 5 + +
5 5 + + 5 + +

Table B.2: The hyperparameters of the models found on the five PhysioNet experiments.
The most common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN
nrepeat skip bn nrepeat skip bn

1 3 + + 4 + +
2 4 + - 5 + -
3 2 + - 4 + +
4 2 - - 4 + +
5 2 - - 4 + +
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Table B.3: The hyperparameters of the models found on the five CKB experiments.
The most common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN
nrepeat skip bn nrepeat skip bn

1 1 - - 2 + -
2 1 - - 1 - -
3 1 - - 2 + -
4 1 - - 1 - -
5 1 - - 1 - -
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C
Runtime Costs

Table C.1: Runtime (s) of the 15 experiments using the three models. The lowest
runtime of each experiment is shown in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-
Rajpurkar

ICBEB 1 1,152 2,050 1,638
2 920 1,025 1,911
3 930 819 1,820
4 910 1,131 2,002
5 864 1,216 2,184

PhysioNet 1 780 966 2,178
2 936 1,350 2,178
3 435 1,230 2,178
4 416 1,302 2,420
5 500 1,189 3,993

CKB 1 80 114 442
2 100 88 408
3 108 144 476
4 92 72 374
5 96 68 510

The runtime is calculated by equation 6.53. The runtime cost in weight

initialisation step, which typically took a few seconds, is omitted. ReLU-LCN

runtime is significantly lower than Leaky-LCN, which is significantly lower than

the Hannun-Rajpurkar model.
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D
Evolution of the Heart Age Models

Table D.1: Gender-agnostic model evolution. Training: 8605, validation: 957, maximum
parameters per layer: 8020, c = 20. ncnov: number of convolutional layers. n◊: total
parameters. lv: validation loss. lt: training loss. lúv: minimal validation loss so far. lút :
minimal training loss so far. The shaded setting was the best model discovered by the
AutoNet.

nconv Repeat Skip BN n◊ lv lt Decision
9 1 0 F 69,001 57.01 43.71 repeat+=1
17 2 0 F 133,161 56.48 50.62 lv < lú

v, repeat+=1
25 3 0 F 197,321 57.42 53.57 lv > lú

v, lt > lú

t , skip=8
25 3 8 F 197,321 56.95 53.05 lv > lú

v, lt > lú

t , BN=True
25 3 8 T 198,345 70.23 75.52 lv > lú

v, lt > lú

t , converge
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Table D.2: Female model evolution. Training: 5892, validation: 655, maximum
parameters per layer: 2210, c = 18. ncov: number of convolutional layers. n◊: total
parameters. lv: validation loss. lt: training loss. lúv: minimal validation loss so far. lút :
minimal training loss so far. The shaded setting was the best model discovered by the
AutoNet.

nconv Repeat Skip BN n◊ lv lt Decision
9 1 0 F 50,725 59.03 6.25 repeat+=1
17 2 0 F 97,525 53.91 5.99 lv < lú

v, lt < lú

t , repeat+=1
25 3 0 F 144,325 52.31 5.73 lv < lú

v, lt < lú

t , repeat+=1
33 4 0 F 191,125 51.69 5.76 lv < lú

v, lt < lú

t , repeat+=1
41 5 0 F 237,925 55.60 6.03 lv > lú

v, lt > lú

t , skip=8
41 5 8 F 237,925 53.74 5.60 lt < lú

t , repeat=repeat+=1
49 6 8 F 284,725 51.67 5.66 lv < lú

v, repeat=repeat+=1
57 7 8 F 331,525 52.95 5.80 lv > lú

v, lt > lú

t , BN=True
57 7 8 T 333,601 83.33 7.64 lv > lú

v, lt > lú

t , converge

Table D.3: Male model evolution. Training: 2713, validation: 302, maximum parameters
per layer: 2210. c = 13. n◊: total parameters. lv: validation loss. lt: training loss. lúv:
minimal validation loss so far. lút : minimal training loss so far. The shaded setting was
the best model discovered by the AutoNet.

ncov Repeat Skip BN n◊ lv lt Decision
9 1 0 F 19,735 73.23 69.79 repeat+=1
17 2 0 F 37,415 71.48 66.59 lv < lú

v, repeat+=1
25 3 0 F 55,095 63.93 57.25 lv < lú

v, repeat+=1
33 4 0 F 72,775 92.99 100.57 lv > lú

v, lt > lú

t , skip=8
33 4 8 F 72,775 66.65 67.75 lv > lú

v, lt > lú

t , BN=True
33 4 8 T 73,657 80.23 80.17 lv > lú

v, lt > lú

t , converge
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E
Over- and Under-predicted Ratios and

Numbers

Table E.1: The over-predicted and under-predicted numbers and ratios in each class
(female model)

Class Test
Size

Over-Predicted
(%)

Under-Predicted
(%)

Correctly Predicted
(%)

Normal 727 291 (40.03) 270 (37.14) 166 (22.83)
Arrhythmia 1,093 313 (28.64) 595 (54.44) 185 (16.93)
Ischaemia 1,159 473 (40.81) 467 (40.29) 219 (18.90)
Hypertrophy 1,652 853 (51.63) 524 (31.72) 275 (16.65)
Other 3,882 1,627 (41.91) 1,449 (37.33) 806 (20.76)
Abnormal 3,904 1,639 (41.98) 1,586 (40.63) 679 (17.39)

Table E.2: The over-predicted and under-predicted numbers and ratios in each class
(male model)

Class Test
Size

Over-Predicted
(%)

Under-Predicted
(%)

Correctly Predicted
(%)

Normal 334 140 (41.92) 124 (37.13) 70 (20.96)
Arrhythmia 957 319 (33.33) 475 (49.63) 163 (17.03)
Ischaemia 656 319 (48.63) 253 (38.57) 84 (12.80)
Hypertrophy 1998 892 (44.64) 767 (38.39) 339 (16.97)
Other 2363 1044 (44.18) 916 (38.76) 403 (17.05)
Abnormal 3611 1530 (42.37) 1495 (41.40) 586 (16.23)
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F
Mapping from the Mortara Labels to the

Four Classes

ECG description Label
***ACUTE MI*** “ischaemia”
..PEDIATRIC ECG INTERPRETATION unclassified
ABNORMAL ECG unclassified
ABNORMAL QRS-T ANGLE unclassified
ABNORMAL RHYTHM ECG “arrhythmia”
ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDETERMINATE
AGE

“ischaemia”

ANTEROLATERAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
ANTEROLATERAL MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
ANTEROSEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE
AGE

“ischaemia”

ANTEROSEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
ANTEROSEPTAL MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
ARM LEADS REVERSED unclassified
ATRIAL FIBRILLATION “arrhythmia”
ATRIAL FIBRILLATION WITH ABERRANT CONDUCTION OR VEN-
TRICULAR PREMATURE COMPLEXES

“arrhythmia”

ATRIAL FIBRILLATION WITH RAPID VENTRICULAR RESPONSE “arrhythmia”
ATRIAL FIBRILLATION WITH RAPID VENTRICULAR RESPONSE WITH
ABERRANT

“arrhythmia”

CONDUCTION OR VENTRICULAR PREMATURE COMPLEXES “arrhythmia”
ATRIAL FIBRILLATION WITH SLOW VENTRICULAR RESPONSE “arrhythmia”
ATRIAL FIBRILLATION WITH SLOW VENTRICULAR RESPONSE WITH
ABERRANT CONDUCTION OR VENTRICULAR PREMATURE COM-
PLEXES

“arrhythmia”

ATRIAL FLUTTER/TACHYCARDIA “arrhythmia”
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ATRIAL FLUTTER/TACHYCARDIA WITH RAPID VENTRICULAR RE-
SPONSE

“arrhythmia”

ATRIAL FLUTTER/TACHYCARDIA WITH SLOW VENTRICULAR RE-
SPONSE WITH ABERRANT

“arrhythmia”

CONDUCTION OR VENTRICULAR PREMATURE COMPLEXES “arrhythmia”
ATYPICAL ECG unclassified
BORDERLINE ECG unclassified
BORDERLINE LEFT AXIS DEVIATION unclassified
BORDERLINE RIGHT AXIS DEVIATION unclassified
DEXTROCARDIA unclassified
EARLY REPOLARIZATION “arrhythmia”
ECTOPIC ATRIAL BRADYCARDIA “arrhythmia”
ECTOPIC ATRIAL RHYTHM “arrhythmia”
ECTOPIC ATRIAL RHYTHM WITH FREQUENT VENTRICULAR PRE-
MATURE COMPLEXES IN A BIGEMINAL PATTERN

“arrhythmia”

ECTOPIC ATRIAL RHYTHM WITH OCCASIONAL SUPRAVENTRICU-
LAR PREMATURE COMPLEXES

“arrhythmia”

ECTOPIC ATRIAL RHYTHM WITH OCCASIONAL VENTRICULAR PRE-
MATURE COMPLEXES

“arrhythmia”

ECTOPIC ATRIAL RHYTHM WITH PROLONGED PR INTERVAL “arrhythmia”
ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL “arrhythmia”
ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL WITH FRE-
QUENT SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL WITH FRE-
QUENT VENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

ECTOPIC ATRIAL TACHYCARDIA “arrhythmia”
ECTOPIC ATRIAL TACHYCARDIA, POSSIBLE ATRIAL FLUTTER “arrhythmia”
ELECTRONIC ATRIAL PACEMAKER unclassified
ELECTRONIC VENTRICULAR PACEMAKER unclassified
ELECTRONIC VENTRICULAR PACEMAKER – CONTOUR ANALYSIS
BASED ON INTRINSIC RHYTHM

unclassified

INCOMPLETE RIGHT BUNDLE BRANCH BLOCK “arrhythmia”
INDETERMINATE AXIS unclassified
INFERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE “ischaemia”
INFERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]

“ischaemia”

INFERIOR MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD WITH POS-
TERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]

“ischaemia”

INFERIOR MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
INTERMITTENT VENTRICULAR PREEXCITATION/WPW “arrhythmia”
INTERPRETATION BASED ON A DEFAULT AGE OF 40 YEARS unclassified
INTRAVENTRICULAR CONDUCTION DELAY “arrhythmia”
JUNCTIONAL BRADYCARDIA “arrhythmia”
JUNCTIONAL RHYTHM “arrhythmia”
JUNCTIONAL RHYTHM WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES

“arrhythmia”

JUNCTIONAL RHYTHM WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES

“arrhythmia”

JUNCTIONAL ST DEPRESSION, CONSIDER NORMAL VARIANT unclassified
JUNCTIONAL TACHYCARDIA “arrhythmia”
LATERAL MYOCARDIAL INFARCTION , OF INDETERMINATE AGE “ischaemia”
LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
LATERAL MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
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LEFT ANTERIOR FASCICULAR BLOCK “arrhythmia”
LEFT ATRIAL ENLARGEMENT “hypertrophy”
LEFT AXIS DEVIATION unclassified
LEFT BUNDLE BRANCH BLOCK “arrhythmia”
LEFT POSTERIOR FASCICULAR BLOCK “arrhythmia”
LEFT VENTRICULAR “hypertrophy” AND ST-T CHANGE “hypertrophy”
LOW QRS VOLTAGE unclassified
LOW QRS VOLTAGE IN EXTREMITY LEADS unclassified
LOW QRS VOLTAGE IN PRECORDIAL LEADS unclassified
MARKED LEFT AXIS DEVIATION unclassified
MARKED RIGHT AXIS DEVIATION unclassified
MARKED ST DEPRESSION, CONSIDER SUBENDOCARDIAL INJURY “ischaemia”
MARKED ST ELEVATION, CONSIDER ANTERIOR INJURY “ischaemia”
MARKED ST ELEVATION, CONSIDER ANTEROLATERAL INJURY “ischaemia”
MARKED ST ELEVATION, CONSIDER INFERIOR INJURY “ischaemia”
MARKED ST ELEVATION, CONSIDER LATERAL INJURY “ischaemia”
MARKED ST ELEVATION, CONSIDER SEPTAL INJURY “ischaemia”
MARKED T-WAVE ABNORMALITY, CONSIDER ANTERIOR “ischaemia” “ischaemia”
MARKED T-WAVE ABNORMALITY, CONSIDER ANTEROLATERAL
“ischaemia”

“ischaemia”

MARKED T-WAVE ABNORMALITY, CONSIDER INFERIOR “ischaemia” “ischaemia”
MARKED T-WAVE ABNORMALITY, CONSIDER LATERAL “ischaemia” “ischaemia”
MINIMAL ST DEPRESSION unclassified
MINIMAL VOLTAGE CRITERIA FOR LVH, CONSIDER NORMAL VARI-
ANT

unclassified

MODERATE INTRAVENTRICULAR CONDUCTION DELAY “arrhythmia”
MODERATE ST DEPRESSION “ischaemia”
MODERATE T-WAVE ABNORMALITY, CONSIDER ANTERIOR “is-
chaemia”

“ischaemia”

MODERATE T-WAVE ABNORMALITY, CONSIDER ANTEROLATERAL
“ischaemia”

“ischaemia”

MODERATE T-WAVE ABNORMALITY, CONSIDER INFERIOR “ischaemia” “ischaemia”
MODERATE T-WAVE ABNORMALITY, CONSIDER LATERAL “ischaemia” “ischaemia”
MODERATE VOLTAGE CRITERIA FOR LVH, CONSIDER NORMAL
VARIANT

unclassified

NO FURTHER INTERPRETATION POSSIBLE unclassified
NONSPECIFIC ST & T-WAVE ABNORMALITY “ischaemia”
NONSPECIFIC ST ELEVATION “ischaemia”
NONSPECIFIC T-WAVE ABNORMALITY “ischaemia”
NORMAL ECG normal
PATTERN CONSISTENT WITH PULMONARY DISEASE unclassified
POSSIBLE ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

POSSIBLE ANTERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
POSSIBLE ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

“ischaemia”

POSSIBLE ANTEROSEPTAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

“ischaemia”

POSSIBLE ANTEROSEPTAL MYOCARDIAL INFARCTION , POSSIBLY
ACUTE

“ischaemia”

POSSIBLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

POSSIBLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN
V1/V2]

“ischaemia”
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POSSIBLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
POSSIBLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]

“ischaemia”

POSSIBLE LATERAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

POSSIBLE LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
POSSIBLE LEFT ATRIAL ENLARGEMENT “hypertrophy”
POSSIBLE LEFT VENTRICULAR “hypertrophy” “hypertrophy”
POSSIBLE RIGHT ATRIAL ENLARGEMENT “hypertrophy”
POSSIBLE RIGHT VENTRICULAR CONDUCTION DELAY “arrhythmia”
POSSIBLE RIGHT VENTRICULAR “hypertrophy” “hypertrophy”
POSSIBLE SEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE
AGE

“ischaemia”

POSSIBLE SEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
POSSIBLE SEPTAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
PROBABLE ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

PROBABLE ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

“ischaemia”

PROBABLE ANTEROSEPTAL MYOCARDIAL INFARCTION , PROBABLY
RECENT

“ischaemia”

PROBABLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

PROBABLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN
V1/V2]

“ischaemia”

PROBABLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
PROBABLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]

“ischaemia”

PROBABLE LATERAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

PROBABLE LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
PROBABLE RIGHT VENTRICULAR “hypertrophy” “hypertrophy”
PROBABLE SEPTAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

“ischaemia”

PROLONGED QT INTERVAL unclassified
RIGHT ATRIAL ENLARGEMENT “hypertrophy”
RIGHT BUNDLE BRANCH BLOCK arrythmia
RIGHT BUNDLE BRANCH BLOCK AND POSSIBLE RIGHT VENTRICU-
LAR “hypertrophy”

“hypertrophy”

RIGHT VENTRICULAR “hypertrophy” hypertropjy
RIGHT VENTRICULAR “hypertrophy” AND ST-T CHANGE “hypertrophy”
S1-S2-S3 PATTERN, CONSISTENT WITH PULMONARY DISEASE, RVH,
OR NORMAL VARIANT
unclassified
SEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE AGE “ischaemia”
SEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
SEPTAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
SEPTAL MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
SINUS BRADYCARDIA unclassified
SINUS BRADYCARDIA WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE
II

arrythmia

SINUS BRADYCARDIA WITH FREQUENT SUPRAVENTRICULAR PRE-
MATURE COMPLEXES

arrythmia
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SINUS BRADYCARDIA WITH MARKED RHYTHM IRREGULARITY,
POSSIBLE NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS
PAUSE

arrythmia

SINUS BRADYCARDIA WITH MARKED SINUS “arrhythmia” arrythmia
SINUS BRADYCARDIA WITH OCCASIONAL ECTOPIC PREMATURE
COMPLEXES

arrythmia

SINUS BRADYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES

arrythmia

SINUS BRADYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES IN A BIGEMINAL PATTERN

arrythmia

SINUS BRADYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES

arrythmia

SINUS BRADYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

arrythmia

SINUS BRADYCARDIA WITH PROLONGED PR INTERVAL arrythmia
SINUS BRADYCARDIA WITH PROLONGED PR INTERVAL WITH OC-
CASIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

arrythmia

SINUS BRADYCARDIA WITH SHORT PR INTERVAL arrythmia
SINUS BRADYCARDIA WITH SINUS “arrhythmia” arrythmia
SINUS BRADYCARDIA WITH SINUS “arrhythmia” WITH PROLONGED
PR INTERVAL

arrythmia

SINUS BRADYCARDIA WITH SINUS “arrhythmia” WITH SHORT PR
INTERVAL

arrythmia

SINUS RHYTHM unclassified
SINUS RHYTHM WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE I
(WENCKEBACH)

arrythmia

SINUS RHYTHM WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE II arrythmia
SINUS RHYTHM WITH FREQUENT ECTOPIC PREMATURE COM-
PLEXES

arrythmia

SINUS RHYTHM WITH FREQUENT ECTOPIC PREMATURE COM-
PLEXES IN A BIGEMINAL PATTERN

arrythmia

SINUS RHYTHM WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

arrythmia

SINUS RHYTHM WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES IN A BIGEMINAL PATTERN

arrythmia

SINUS RHYTHM WITH FREQUENT VENTRICULAR PREMATURE COM-
PLEXES

arrythmia

SINUS RHYTHM WITH FREQUENT VENTRICULAR PREMATURE COM-
PLEXES IN A BIGEMINAL PATTERN

arrythmia

SINUS RHYTHM WITH HIGH GRADE AV BLOCK arrythmia
SINUS RHYTHM WITH MARKED RHYTHM IRREGULARITY, POSSIBLE
NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS PAUSE

arrythmia

SINUS RHYTHM WITH MARKED SINUS “arrhythmia” arrythmia
SINUS RHYTHM WITH MARKED SINUS “arrhythmia” WITH PRO-
LONGED PR INTERVAL

arrythmia

SINUS RHYTHM WITH MARKED SINUS “arrhythmia” WITH SHORT PR
INTERVAL

arrythmia

SINUS RHYTHM WITH OCCASIONAL ECTOPIC PREMATURE COM-
PLEXES

arrythmia

SINUS RHYTHM WITH OCCASIONAL SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

arrythmia

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE
COMPLEXES

arrythmia
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SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE
COMPLEXES WITH FREQUENT SUPRAVENTRICULAR PREMATURE
COMPLEXES

arrythmia

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE
COMPLEXES WITH MARKED RHYTHM IRREGULARITY, POSSIBLE
NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS PAUSE

arrythmia

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE
COMPLEXES WITH OCCASIONAL SUPRAVENTRICULAR PREMATURE
COMPLEXES

arrythnia

SINUS RHYTHM WITH PROLONGED PR INTERVAL unclassified
SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT
VENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT
VENTRICULAR PREMATURE COMPLEXES IN A BIGEMINAL PATTERN

“arrhythmia”

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCASIONAL
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCASIONAL
VENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCA-
SIONAL VENTRICULAR PREMATURE COMPLEXES WITH OCCA-
SIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL unclassified
SINUS RHYTHM WITH SHORT PR INTERVAL WITH FREQUENT
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL WITH FREQUENT VEN-
TRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL
ECTOPIC PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL
VENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL VEN-
TRICULAR PREMATURE COMPLEXES WITH OCCASIONAL SUPRAVEN-
TRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS RHYTHM WITH SINUS “arrhythmia” “arrhythmia”
SINUS RHYTHM WITH SINUS “arrhythmia” WITH PROLONGED PR
INTERVAL

“arrhythmia”

SINUS RHYTHM WITH SINUS “arrhythmia” WITH SHORT PR INTERVAL “arrhythmia”
SINUS TACHYCARDIA unclassified
SINUS TACHYCARDIA WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE
II

“arrhythmia”

SINUS TACHYCARDIA WITH FREQUENT ECTOPIC PREMATURE
COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH FREQUENT SUPRAVENTRICULAR PRE-
MATURE COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH FREQUENT VENTRICULAR PREMATURE
COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH OCCASIONAL ECTOPIC PREMATURE
COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES

“arrhythmia”
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SINUS TACHYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES WITH OCCASIONAL SUPRAVENTRICULAR PRE-
MATURE COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH PROLONGED PR INTERVAL unclassified
SINUS TACHYCARDIA WITH PROLONGED PR INTERVAL WITH OC-
CASIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH SHORT PR INTERVAL “arrhythmia”
SINUS TACHYCARDIA WITH SHORT PR INTERVAL WITH FREQUENT
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

SINUS TACHYCARDIA WITH SHORT PR INTERVAL WITH OCCASIONAL
SUPRAVENTRICULAR PREMATURE COMPLEXES

“arrhythmia”

ST DEPRESSION, CONSIDER SUBENDOCARDIAL INJURY “ischaemia”
ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER
ANTERIOR “ischaemia”

“ischaemia”

ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER
ANTEROLATERAL “ischaemia”

“ischaemia”

ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER
LATERAL “ischaemia”

“ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER
ANTERIOR “ischaemia”

“ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER
ANTEROLATERAL “ischaemia”

“ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER
INFERIOR “ischaemia”

“ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER
LATERAL “ischaemia”

“ischaemia”

ST ELEVATION CONSISTENT WITH INJURY, PERICARDITIS, OR
EARLY REPOLARIZATION

unclassified

ST ELEVATION, CONSIDER ANTERIOR INJURY “ischaemia”
ST ELEVATION, CONSIDER ANTEROSEPTAL INJURY “ischaemia”
ST ELEVATION, CONSIDER INFERIOR INJURY “ischaemia”
ST ELEVATION, CONSIDER LATERAL INJURY “ischaemia”
ST ELEVATION, CONSIDER SEPTAL INJURY “ischaemia”
ST ELEVATION, PROBABLY EARLY REPOLARIZATION “arrhythmia”
SUPRAVENTRICULAR BRADYCARDIA “arrhythmia”
SUPRAVENTRICULAR RHYTHM “arrhythmia”
SUPRAVENTRICULAR TACHYCARDIA “arrhythmia”
TALL T-WAVES, SUGGESTS HYPERKALEMIA unclassified
TYPE 2 BRUGADA PATTERN (NON-DIAGNOSTIC) unclassified
TYPE 3 BRUGADA PATTERN (NON-DIAGNOSTIC) unclassified
UNCERTAIN IRREGULAR RHYTHM “ischaemia”
UNCERTAIN REGULAR RHYTHM unclassified
UNCONFIRMED REPORT unclassified
VENTRICULAR PREEXCITATION/WPW “arrhythmia”
VOLTAGE CRITERIA FOR LVH “hypertrophy”
WARNING: DATA QUALITY MAY AFFECT INTERPRETATION unclassified

Table F.1: Mapping from Mortara labels to normal, ““arrhythmia””, “ischaemia”, and
“hypertrophy” classes
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Übeyli, Elif Derya (2008a). “Support vector machines for detection of
electrocardiographic changes in partial epileptic patients”. In: Engineering
Applications of Artificial Intelligence 21.8, pp. 1196–1203.
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