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Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality
worldwide. Electrocardiogram (ECG) is an important clinical measurement of
cardiac activity. The major challenge in incorporating ECG time-series into
CVD risk metrics is extracting features and classifying the ECG time-series into
appropriate ECG abnormality groups. Therefore we set out to use machine learning
to address this challenge.

We used machine learning to analyse 12-lead, 500Hz, 10-s electrocardiogram
(ECG) data provided by the Mortara device to perform ECG signal classification in
a large cohort study of 25,019 participants in the China Kadoorie Biobank (CKB).
We compared the performance of 11 representative traditional machine learning
algorithms for four-class classification of normal, “arrhythmia”, “ischemia”, and
“hypertrophy”. We extracted 72 novel features and improved the 4-class classification
accuracy from 53.5% using only Mortara features to 77.3%. We demonstrated
that machine learning models could classify ECG with high accuracy without any
knowledge of the diagnosis criteria, and the top features identified by the best model
(SGB-F84) were very different from the ones commonly used in clinic.

We further proposed a novel neural network architecture family - the Layer-wise
Convex Network (LCN), and a neural architecture search algorithm - the AutoNet,
to classify the ECG raw signals end-to-end without signal denoising, preprocessing,
nor feature extraction. We benchmarked the AutoNet-LCN with the state-of-the-
art ResNet-based model on three datasets: CKB, PhysioNet, and ICBEB. The
AutoNet generated LCNs has no more than 2% of the parameters compared to
the state-of-the-art architectures, outperformed the latter on all three datasets
by a wide margin (9-16% improvement in terms of F1 score) within 2 hours of
architecture search time, in comparison to weeks to months of trial-and-error by
human researchers in the conventional deep learning model development process.
The neural networks found by AutoNet-LCN are robust to varying noise levels,
ECG signal length, sampling frequency, number of leads, amplitude scale, ECG
abnormality types, and cohort sizes of the study populations.

Finally, to address the issue that the labels in the CKB were provided by the
deterministic rule-based Minnesota code, which in theory can be approximated to
arbitrary precision by a neural network, we proposed a novel paradigm: learning from



alternative labels. We provided proof-of-concept by predicting the participants’ age
from the 10-s ECG waveforms in the CKB dataset using AutoNet-LCN. We trained
the AutoNet-LCN on the normal population and tested on the normal, “arrhythmia”,
“ischemia”, and “hypertrophy” classes. We developed the gender-agnostic model
as well as the gender-stratified mode, achieving mean absolute error of 5.7 years
(R? = 44.1%), 5.6 years (R* = 45.4%), and 6.2 years (R* = 34.7%) for gender
agnostic, female, and male models in the normal class, respectively. The absolute
deviation of the predicted “heart age” from one’s chronological age suggests higher
CVD risks, and a high “heart age” was associated with “hypertrophy”, “ischemia”,
and “hypertension”, while a low “heart age” was associated with “arrhythmia” and
“hypotension”. The “heart age” may be considered as an intuitive risk score for
cardiovascular health and warrants further study of its associations with different

CVD outcomes.
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Introduction

1.1 Clinical Need

Cardiovascular diseases (CVDs), including coronary heart disease, cerebrovascular
disease, peripheral arterial disease, rheumatic heart disease, congenital heart
disease, deep vein thrombosis, and pulmonary embolism, are the leading causes of
mortality worldwide and also in China. There are large geographical differences
in CVD mortality rates in China, suggesting appropriate measures may be taken
to prevent and effectively treat the disease. Identifying risk factors for CVD in
the Chinese population could help in providing advice on lifestyle changes and
enable clinicians to discover appropriate treatments for specific CVD outcomes
to reduce mortality and healthcare expenditure. Many risk factors have been
identified by long-term prospective studies, such as obesity (Arsanjani, Dey, et al.
2015), diabetes (Association et al. 2007), metabolic syndrome (Dekker et al. 2005),
smoking (Tracy et al. 1997), hypertension (Colombet et al. 2000), and genetic risk
factors (Gamberger, Lavra¢, and Krstaci¢ 2003).

Electrocardiogram (ECG) is a widely used screening and diagnostic tool for
CVD, and ECG findings are additional CVD risk factors included in large cohort
studies. For example, in the Framingham study, Kannel et al. reported that left

ventricular hypertrophy on ECG tracings in asymptomatic adults was a strong



2 1.1. Clinical Need

predictor of cardiac morbidity and mortality (Kannel, Gordon, and Offutt 1969);
in another study of 12,142 patients with symptoms of cardiac ischaemia at rest
and signs of myocardial ischaemia confirmed by ECG within 12 hours of admission,
22% had T wave inversion, 28% had ST-segment elevation, 35% had ST-segment
depression, and 15% had a combination of ST-elevation and depression (Kannel,
Anderson, et al. 1987). Savonitto demonstrated the use of ECG at presentation
allowed immediate risk stratification of patients across the spectrum of the acute
coronary syndrome (Kannel, Anderson, et al. 1987). Individual markers on ECG,
such as spatial QRS angle has also been shown to be a stronger predictor of
cardiac mortality than the conventional CVD risk factors in older population and
provides additional value for prediction of fatal cardiac events (Kannel, Anderson,
et al. 1987; Savonitto et al. 1999).

However, the interpretation of ECG requires clinical knowledge, which is subject
to substantial inter-personal variation and human error. Computerised ECG has
been developed to aid this process and is typically based on rule-based coding
schemes such as the Minnesota Code (Prineas, Crow, and Z.-M. Zhang 2009),
which was first developed in the 1960s, and few modifications were made since
then. Minnesota Codes use common heuristics and fixed voltage and duration
thresholds for diagnosis. For example, the Minnesota Code for high left R amplitude
patterns is “if any of the following criteria are present: R amplitude > 26 mm
in either lead V5 or V6; R amplitude > 20mm in any of leads I, II, III, have
(see figure confirmation report 6.2); R amplitude > 12mm in lead aVL” (Prineas,
Crow, and Z.-M. Zhang 2009). This approach has a limited accuracy as it does
not take interpersonal variation and signal quality into consideration. However, it
can be normal for lean individuals as the electrodes are closer to the heart, and
tall QRS may not be observed on the ECG of obese patients. An absolute voltage
threshold would result in false-positive indications of sudden death for the lean
individual and false-negative for the obese individual. In clinical practice, the ECG
is not used as a standalone diagnosis tool but is combined with other medical data,

such as age, gender, physical symptoms, CT, MRI scan, blood pressure, medical
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1. Introduction 3

history, genetics, and lifestyle information, which are available in electronic health
records. While incorporating all this information can improve the computer-aided
diagnosis, it is a cumbersome process to develop heuristic rules to include all the
above data into the diagnosis criteria.

Risk stratification in large cohort studies typically uses statistical tests and
simple regression models to study the significance and effect of risk factors on
clinical outcomes. Cox proportional hazards regression model (Syed et al. 2011),
the x? test (Vapnik 2013), logistic regression (Consortium 2009), Fisher’s exact
test (Kubo et al. 2007; Wasan et al. 2013), the t-test (Kubo et al. 2007), and
linear regression (J. M. Hill et al. 2003) are among the most familiar methods to
the medical community. Scoring systems involving multiple risk factors (blood
pressure, total cholesterol, high-density lipoprotein cholesterol, smoking, glucose
intolerance, and left ventricular hypertrophy) have been evaluated to predict the
risks of myocardial infarction, coronary heart disease, stroke, and death from these
diseases. A limitation of conventional statistical methods is that when the feature
dimension increases, commensurately larger sample sizes are required (McKinney
et al. 2006). With an increasing number of risk factors being identified, and especially
with abundant genetic and lifestyle data now available, it can be expected that
statistical approach will face difficulty as the “healthy” range of the newly-identified
factors are hard to obtain or quantify.

Machine learning has the advantage of estimating the associations between risk
factors and disease without prior knowledge of accurate reference values of the risk
factors. Such approaches have been widely used for risk evaluation and diagnosis of
chronic diseases (Oresko et al. 2010; Rajkumar and Reena 2010; Katritsis et al. 2013).
In CVD, Knuiman et al. have predicted coronary mortality in the Busselton cohort
using a discriminative decision tree (Knuiman and Vu 1997); Lapuerta et al. used a
neural network for prediction of coronary disease risk using serum and lipid profiles
(Lapuerta, Azen, and LaBree 1995); Gamberger et al. used logistic regression and
multilayer perceptrons to predict CVD risks from the INDIANA (Individual Data

Analysis of Antihypertensive Intervention Trials) cohort (Gamberger, Lavra¢, and
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4 1.2. ECG Risk Analysis using Machine Learning: Existing Methods

Krstaci¢ 2003); and Das et al. performed heart disease diagnosis using ensembles
of neural networks (Das, Turkoglu, and Sengur 2009). ECG information may be
incorporated through categorised software findings (Rajkumar and Reena 2010;
Berikol, Yildiz, and Ozcan 2016) or heuristically extracted features (Alickovic and
Subasi 2015; Arsanjani, Dey, et al. 2015; Mitra and Samanta 2013; Homaeinezhad
et al. 2012). A classic example is to discover novel patterns in time series (Syed
et al. 2011), where Syed et al. improved risk stratification after acute coronary
syndrome by 7-13% using three computational ECG biomarkers: morphologic
variability, symbolic mismatch, and heart rate motifs (Syed et al. 2011). These
features, however, are all unintuitive to human inspection but were shown to be

useful indicators of ECG risks.

1.2 ECG Risk Analysis using Machine Learning:
Existing Methods

The typical 3-step framework for risk assessment using traditional machine learning
on ECG data is feature extraction, classification, and model evaluation (Gamberger,
Lavra¢, and Krstaci¢ 2003). The performance of the risk models is usually evaluated
by how accurately the model predicts the labels that are regarded as the “gold
standard” such as the clinical diagnosis. The aim is to improve clinically relevant
evaluation metrics such as classification accuracy, sensitivity, and specificity with
respect to the “gold standard”.

In the classification step, the most commonly used classifiers include support
vector machine (SVM) (Berikol, Yildiz, and Ozcan 2016; Ubeyli 2008a; Ozdemir
and Barshan 2014; Kim et al. 2009; Q. Li, Rajagopalan, and Clifford 2013;
Karpagachelvi, Arthanari, and Sivakumar 2011; C. Yu et al. 2006; Khandoker,
Gubbi, and Palaniswami 2009; Kampouraki, Manis, and Nikou 2008; Bsoul, Minn,
and Tamil 2010; Monte-Moreno 2011), neural networks (Ozdemir and Barshan 2014;
Kim et al. 2009; Mitra and Samanta 2013; Monte-Moreno 2011; Tantimongcolwat
et al. 2008; Y. Sun and A. C. Cheng 2012), the extreme learning machine (ELM)
(Zavar et al. 2011; Kim et al. 2009; Karpagachelvi, Arthanari, and Sivakumar 2011),
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1. Introduction 5

random forest (Monte-Moreno 2011; Hsich et al. 2011), k-nearest neighbour (KNN)
(Ozdemir and Barshan 2014; Karpagachelvi, Arthanari, and Sivakumar 2011),
Bayesian decision making (BDM) (Ozdemir and Barshan 2014; Luz et al. 2013),
ensembles (Arsanjani, Xu, et al. 2013), fussy finite state machines (Pantelopoulos
and Bourbakis 2010), stochastic Petro nets (Pantelopoulos and Bourbakis 2010),
evolution algorithms (Zavar et al. 2011), self-organizing maps (Tantimongcolwat
et al. 2008), radial basis function networks (Kim et al. 2009), and linear regression
(Monte-Moreno 2011), and decision trees (Arsanjani, Dey, et al. 2015; Hsich et al.
2011; Kurz et al. 2009).

For feature extraction and selection, the most commonly used methods include
the wavelet transform (El-Dahshan 2011; Zavar et al. 2011; Ubeyli 2008b), genetic
algorithms (El-Dahshan 2011), dynamic time warping (DTW, Syed et al. 2011;
Ozdemir and Barshan 2014), principle component analysis (PCA, Kim et al. 2009),
symbolic aggregate approximation (SAX, Syed et al. 2011), correlation-based feature
selection (Mitra and Samanta 2013), linear forward selection (Mitra and Samanta
2013), power-spectrum methods (Kim et al. 2009), Lyapunov exponents (Zavar
et al. 2011) among many others.

Traditional machine learning models depend heavily on feature engineering;
handcrafting salient features requires human time and effort as well as domain
knowledge. For example, expertise in signal processing is required to obtain a good
set of ECG features. The handcrafted features are often not transferable, and
redesigning feature sets is required for different tasks. In contrast to traditional
machine learning approaches, deep learning-based approaches can self-learn useful
features from the ECG signals. Numerous deep learning models have been proposed
for CVD detection in ECG. A comprehensive review is provided in Chapter 3.

Since the major challenge in incorporating ECG time-series into CVD risk
metrics is extracting features and classifying the signals into appropriate ECG
abnormality groups, this thesis looks at ECG-associated risk evaluation for CVD
from the perspective of ECG time-series classification. There is a large body of

literature concerning ECG classification, which reports high classification accuracy,
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6 1.8. Structure of the Thesis

especially concerning arrhythmia beat classification. However, existing studies are
mostly limited to small sample size in terms of recruited study participants. Also,
most studies only concern the classification of normal vs abnormal beats from
a single CVD group, such as normal vs different types of arrhythmia beats, or
normal vs ischemic beats, while rarely study a dataset where ECG abnormalities
associated with a broad range of CVD conditions such as arrhythmia, ischaemia,
and hypertrophy co-exist. In comparison, the significant challenges of the main
dataset this thesis studies - the China Kadoorie Biobank dataset (described in detail
in Chapter 4) - has a large sample size (n = 25,019), short ECG recording length
(t = 10s), noisy labels due to a lack of human expert labelling, and unbalanced
classes with a large number of data points in the “middle ground” between different

classes. This thesis aims to address these unique challenges.

1.3 Structure of the Thesis

The structure of this thesis is as follows: Chapter 2 provides an overview of the
medical background of the CVD physiology and pathology, and an introduction
to the ECG; Chapter 3 provides a comprehensive review of ECG classification
using deep learning; Chapter 4 describes the data stricture of the three datasets
studied in this thesis and provides descriptive statistical analysis of the CKB
data. The next chapter studies a range of classical machine learning methods
except for neural networks and uses extracted features from the “typical cycle”,
provided by the Mortara device, and analyse which features the machine learning
models consider important; Chapter 6 analyses the raw ECG signals directly, in
which we introduce a novel theorem, called the Layer-wise Convex Network, and
a heuristic network architecture search algorithm - the AutoNet algorithm, which
can design LCNs automatically end to end given any dataset and machine learning
task. In Chapter 7, we address the issue that the targets in the CKB dataset are
provided by the deterministic rule based Minnesota Code, and proposes a novel
paradigm of learning using alternative labels, and built models using AutoNet-LCN

to predict the ECG-derived age and analyse its association with CVD outcomes

DRAFT Printed on April 4, 2021



1. Introduction 7

and with blood pressure. Chapter 8 summarises the above work and outlines

potential directions for the future work.
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Medical Background

2.1 The Physiology of Human Heart
2.1.1 Anatomy of the Heart

The human heart has four chambers: right atrium, right ventricle, left atrium, and
left ventricle. The right atrium receives venous blood from the superior vena cava,
inferior vena cava, coronary sinus, and anterior cardiac veins. The right ventricle
pumps blood into the pulmonary artery and is connected to the right atrium via
the tricuspid valve and connected to the pulmonary trunk by the pulmonary valve.
The left atrium receives oxygenated blood from the four pulmonary veins. The
left ventricle pumps oxygenated blood into the aorta through the pulmonary valve

and receives blood from the left atrium through the mitral valve.

2.1.2 Cardiac Myocytes

The heart muscle cells are known as cardiac myocytes. The electrical changes
occurring during the activation phase of an excitable cell (nerve cells and muscle cells)
are called “depolarisation”, and those during relaxation are called “repolarisation”.
During depolarisation, a small amount of calcium cations (Ca®") enters the cell
through the L-type voltage-gated Ca®* channels, which increases the concentration

of Ca?" in the gap between the sarcolemma and the sarcoplasmic reticulum (SR),



10 2.2. Introduction to FElectrocardiogram

which activates the Ca?* sensitive Ca**-release channels in the SR to release a large
amount of Ca?* to enable the myocyte to contract. When the Ca?t concentration
exceeds the resting level, Ca?t-ATPase pumps Ca?* from the cytosol back to
the SR, which reduces the concentration of Ca?* to the resting level, leading to

the relaxation of the myocyte.

2.1.3 The Cardiac Conduction System

The conduction sequence of a normal cardiac cycle begins with sinoatrial (SA)
node depolarisation and progressively results in atrial contraction, atrioventricular
(AV) node depolarisation, bundle of His depolarisation, left and right bundle
branches of His depolarisation, Purkinje fibre depolarisation, and ventricular
contraction, respectively.

The SA node is the pacemaker of the heart and is located at the junction of
the superior vena cava and the right atrium. The AV node lies in the interatrial
septum immediately above the opening of the coronary sinus. The normal heart

beats at 60-100 beats per minute (bpm).

2.2 Introduction to Electrocardiogram

The electrical signals created by the cardiac myocytes can be detected by the
electrodes placed on the body surface. An electrocardiogram (ECG) is a graphical
interpretation of the electrical activity of the heart. The wave of depolarisation
travelling towards an electrode produces a positive deflection and the wave of
depolarisation travelling away from an electrode produces a negative deflection. A
typical electrocardiograph (ECG) cycle is shown in figure 2.1. In clinical practice,
the ECG is usually printed on standard ECG grids, as shown in figure 4.1. The
smallest squares are 1 mm by 1 mm, and the horizontal 1 mm represents 0.04s,

and the vertical 1 mm represents 0.1 mV.
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Figure 2.1: Schematic plot of an ECG cycle. (reproduced from Vaswani et al. 2015)

Table 2.1: The positions of the ten electrodes in a standard 12-lead ECG.

Electrode Position

RA right arm

LA left arm

LL left leg

RL right leg (ground)

V1 right sternal edge, fourth intercostal space
V2 left sternal edge, fourth intercostal space

V3 midway between V2 and V4

V4 left mid clavicular line, fifth intercostal space
Vb midway between V4 and V6

V6 left mid-axillary line

2.2.1 The Standard 12-Lead ECG

The standard 12-lead ECG includes 10 electrodes: the 4 electrodes on the extremities
of each limb yielding 6 limb leads (I, II, III, aVF, aVL, aVR), and the 6 electrodes
on the precordium generate 6 precordial leads (V1, V2, V3, V4, V5, V6). The
placement of the electrodes is shown in table 2.2. The 12 ECG leads are simply
the voltage differences between the 10 electrodes. When calculating the augmented
limb leads (aVR, aVL, and aVF), the average potential of the left arm (LA) and the
right arm (RA) is used as the negative pole; when calculating the precordial leads,

BALLATLL) jg ysed as the negative pole. Because

Wilson’s central terminal (Vi =
only nine electrodes are used to calculate the 12 leads, the 12 leads are not linearly

independent - knowing any 9 of the 12 allowing calculations on the other 3 leads.
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12 2.2. Introduction to FElectrocardiogram

Table 2.2: The calculation of the 12 ECG leads. Note that to distinguish precordial
leads and precordial nodes, the leads are capitalised while the nodes are not.

Lead Corresponding Origin
Electrodes

I LA - RA lateral wall

II LL — RA inferior wall

I11 LL—-LA inferior wall

aVR  RA— $(LA+LL)

aVL LA — J(RA+LL) lateral wall

aVF  LL — ;(RA+ LA) inferior wall

V1 vl—3(RA+LA+LL) anterior wall of right ventricle and the
posterior wall

V2 v2—3:(RA+LA+LL) anterior wall of right ventricle and the
posterior wall

V3 v3—3(RA+LA+LL) anteroseptal and anterior walls of the
left ventricle

V4 vd—3(RA+LA+LL) anteroseptal and anterior walls of the
left ventricle

V5 vb—:(RA+LA+LL) lateral wall

V6 v6—3(RA+LA+LL) lateral wall

2.2.2 Waves, Segments, and Intervals

The cardiac cycle starts with the sinoatrial (SA) node on the wall of the right atrium,
which sends depolarisation wave to the right and left atria, causing them to contract,
represented as the P wave on the ECG (figure 2.1). Then the depolarisation wave
reaches the atrioventricular (AV) node which delays for 100ms, represented as the
PR interval, then causes a contraction in both ventricles. Meanwhile, the atria
repolarise and relax, represented as the QRS wave. Finally, the ventricles repolarise
and relax, represented as the T wave. Sometimes a U wave is also visible following
a T wave, but the origin of U wave is uncertain.

An ECG segment is the period between the end of one wave and the beginning
of the next wave. An interval contains at least one segment and at least one wave
(figure 2.1). The PR segment is the segment between the end of P wave and the
beginning of ) wave, and is usually flat and isoelectric. The ST segment is the
interval between the end of S wave and the beginning of T wave, and represents

ventricular repolarisation and should be isoelectric with the PR segment in healthy
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2. Medical Background 13

individuals. The PR interval is the interval between the start of the P wave and
the beginning of QRS complex, and represents the wave of depolarisation spreading
from the SA node to the ventricles. The QT interval is the interval between the
beginning of the QRS complex and the end of T wave and represents the time
for ventricles to depolarise and subsequently repolarise.

The origins, normal morphology, and abnormal indications of the ECG waves,

segments, and intervals are summarised in table 2.3.
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16 2.2. Introduction to FElectrocardiogram
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Figure 2.2: Cardiac axis. If the depolarization propagates towards the positive pole, it
will yield the maximum positive amplitude on the relevant ECG lead. If the depolarization
propagates more than 90° away from the positive pole, the deflect will be negative on the
relevant lead.

Table 2.4: Rules to determine axis deviation

I II aVF
Normal + + +
Right axis deviation — + +

Left axis deviation —+ — —

2.2.3 Cardiac Axes

The cardiac axes are the directions in which the depolarisation wave propagates
(figure 2.2), and are influenced by the size of the muscles in different parts of the
heart. Therefore, the cardiac axes indicate chamber enlargement and hypertrophy.
Typically, the cardiac axes are evaluated on leads I, II, and aVF', shown in table
2.4. For example, in right ventricular hypertrophy, increased muscle thickness
causes the wave of depolarisation to deviate to the right. Hence the QRS complex
is negative in lead I and positive in II and aVF. In left ventricular hypertrophy,
the wave of depolarisation deviates to the left, hence QRS is negative in lead II

and aVF and positive in lead I.

2.2.4 ECG Interpretation

It is recommended in clinical practice to follow a systematic approach to interpret

ECG (Vaswani et al. 2015), especially for the interpretation of ECG abnormalities
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Figure 2.3: Taxonomy of arrhythmia

associated with arrhythmias. Generally, a medical practitioner examines the ECG
for information including the heart rate, rhythm, cardiac axis, and wave morphology.
The heart rate is usually taken by counting the heartbeats for 10s then multiplying
by 6. The rhythm refers to whether the waves are in the P-QRS-T order (which is

known as the sinus rhythm) and whether it is regular, regularly irregular, or

irregularly irregular.
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18 2.8. Major Cardiovascular Disease Types

2.3 Major Cardiovascular Disease Types

2.3.1 Arrhythmias

Arrhythmias are the disorders in the cardiac rhythm, which are the most common
cardiac abnormalities. The majority of cardiac arrhythmias are benign, but some
arrhythmias are life-threatening, including ventricular fibrillation and ventricular
tachycardia. A 12-lead ECG is routinely performed in all patients with suspected
arrhythmias (Vaswani et al. 2015). The first line investigations of patients with
suspected arrhythmias are 12-lead standard ECG, cardiac enzymes and selected
cases have additional investigations including ambulatory 24-hour Holter recording,
echocardiography, and electrophysiology studies. The taxonomy of arrhythmias is

illustrated in figure 2.3 and introduced in the following sections.

Bradycardia

In bradycardia, the heart rate is below 50 bpm and it affects 20-25% of the people
under 25 years old (Vaswani et al. 2015). Treatment is usually not required for
asymptomatic patients. Heart block is a sub-type of bradycardia, which refers to
the disorder in the cardiac conduction system. Heart block can be further divided
according to its origin:

Atrioventricular Block

Atrioventricular (AV) block refers to abnormal conduction between the atria and

the ventricles. Typically, AV block is classified into four categories:

o First-degree AV block (I-AVB): delayed atrioventricular conduction resulting
in a constant prolonged PR interval (>0.2s) on ECG.

« Second-degree AV block (II-AVB) Mobitz type I (Wenckebach): an atrioven-
tricular conduction disorder resulting in progressive prolongation of the PR

interval until a beat is dropped.

o Second-degree AV block Mobitz type II (non-Wenckebach): an atrioventricular
conduction disorder resulting in intermittently dropped beats without changes

in the PR interval.
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o Third-degree AV block (also known as complete heart block): the complete
failure of AV conduction resulting in loss of communication between the atria

and the ventricles, causing them to beat independently.

Bundle Branch Block (BBB)
The bundle of His splits into the left and right bundle branches. Bundle branch
block refers to a disorder in the conduction pathways along the His-Purkinje system

and results in asynchronous activation of the ventricles. BBB has two types:

 Right bundle branch block (RBBB): A conduction disorder in the right bundle
branch of His resulting in a delay in right ventricular depolarisation. The
ECG features are broad QRS complexes (> 0.12s), RSR pattern in V1-V3

(M pattern), long S wave duration in leads V6 and I.

« Left bundle branch block (LBBB): a conduction disorder in the left bundle
branch of His resulting in a delay in left ventricular depolarisation. Its ECG
features are broad QRS complex (> 0.12s), deep S wave in V1 and M-shaped
R wave in V6, and R wave progression in chest leads. A new onset LBBB
on ECG associated with chest pain should raise clinical suspicion of acute

myocardial infarction (Vaswani et al. 2015).

Tachycardia

In tachycardia the heart rate is above 100 bpm. It can be further classified into
narrow complex tachycardia, in which the QRS complex is less than 0.12s, and

broad complex tachycardia, in which QRS complex is no less than 0.12s.

Narrow Complex Tachycardia
The majority of tachycardias are narrow complex in nature. All narrow complex
tachycardias are supraventricular in origin and are benign. The sub-types of narrow

complex tachycardia include:
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o Atrial fibrillation: it is characterised by irregularly irregular heart rhythm
and absent P waves on ECG and affects 1% of the population and has male
dominance. The common causes of atrial fibrillation include ischemic heart

disease, hypertension, and mitral pathologies.

o Atrial flutter: it is characterised by regular, rapid atrial rate. It should always
be suspected in tachycardias with fixed atrioventricular conduction ratio (2:1).
Atrial flutter typically has an atrial rate of approximately 300 bpm and a
ventricular rate of 150 bpm. It can be caused by ischemic heart disease or
can be a normal variant in tall males. Its ECG features “sawtooth” pattern

of flutter waves.

Broad Complex Tachycardia

Broad complex tachycardia should be considered ventricular tachycardia (VT) or
ventricular fibrillation (VF) until proven otherwise, as these two conditions are the
most dangerous cardiac arrhythmias. Wide complex tachycardia is often ventricular
in origin, but may also be supraventricular with aberrant conduction (usually a
bundle branch block). They may be regular (monomorphic ventricular tachycardia)
or irregular (Torsades de Pointes, or polymorphic ventricular tachycardia) in nature.

Its subtypes include:

 Ventricular tachycardia (VT) is the tachyarrhythmia that originates from the
ventricles producing three or more successive broad QRS complexes at a rate
over 100bpm. Ventricular tachycardia and ventricular fibrillation account for
the most common causes of sudden cardiac death. Common causes of VT
are ischaemic heart disease (post-MI scarring), structural heart disease, and

electrolyte disturbances (hyper-/hypokalaemia, hyper-/hypomagnesaemia).

o Ventricular fibrillation (VF) is a rapid, uncoordinated and life-threatening
ventricular arrhythmia resulting in weak myocardial contraction, eventually
leading to cardiac death. Ventricular fibrillation is usually a progression

from ventricular tachycardias. Common causes include ischemic heart disease,
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typically following an acute MI and electrolyte abnormalities (particularly
hyperkalaemia). Its ECG demonstrates chaotic waveforms with varying

amplitudes, unidentifiable P-waves, QRS complexes, or T waves.

2.3.2 Ischaemia

Ischaemia, or ischemic heart disease (IHD), refers to a group of diseases where there
is an imbalance between myocardial oxygen demand and oxygen supply resulting in
tissue hypoxia, which may progress to myocardial infarction. The discrepancy in
supply and demand of oxygenated blood is most commonly caused by atherosclerotic
diseases of the coronary arteries (Vaswani et al. 2015). Ischaemia on ECG is typically
more common in men than in women. The first line investigations for ischaemia
include ECG and blood tests for cardiac enzymes. The National Institute for Health
and Care Excellence (NICE) recommends stratifying patients into risk categories

and conduct further investigations accordingly:

risk score <10%: consider an alternative diagnosis

risk score 10-29%: CT calcium scoring

risk score 30-60%: functional testing

risk score 61-90%: coronary angiography /functional testing.

The acute coronary syndrome (ACS) is a sub-type of ischaemia in which a sudden
disruption in the coronary blood supply to the heart happens after myocardial
infarction. ACS ranges from the progression of tissue ischaemia to the development
of infarction and necrosis, and is the most common cause of death in western
countries (Vaswani et al. 2015). The majority of the affected individuals are
male and mostly caused by atherosclerosis. The risk factors of ACS include old
age, family history of coronary heart disease, diabetes mellitus, hypertension,
smoking, obesity, male, ethnicity, and previous myocardial infarction (Vaswani
et al. 2015). Blood tests, including cardiac troponin, and ECG are the first-line

investigations for diagnosis of ACS.
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In the ECG of ACS patients, ST-elevations typically appear for a few hours,
T wave inversion appears for days, and pathological QQ waves appears for days to
months. Clinically, ACS is classified according to the changes in the ECG and
biochemical markers of myocardial necrosis into unstable angina, non-ST elevation
myocardial infarction (NSTEMI) and ST-elevation myocardial infarction (STEMI).
STEMI is defined as ST-elevation >1mm in at least two adjacent limb leads or
> 2mm in 2 contiguous precordial leads or new-onset left bundle branch block.
NSTEMI and unstable angina feature ST depression, and T wave inversion (T wave

inversion is typical in aVR, III, and V2) on the ECG waveforms.

2.3.3 Hypertrophy

Hypertrophy is a compensatory enlargement of the heart muscles due to failure in
other parts of the heart. It is frequently a symptom, rather than an underlying cause
itself. Hypertrophy can be identified by studying the cardiac axis deviation on ECG.

A special case is hypertrophic cardiomyopathy, which is an autosomal dominant
genetic disorder characterised by asymmetrical left ventricular hypertrophy with
impaired diastolic filling. It is the most common cause of sudden death under
35 years, which is usually caused by arrhythmias or severe ventricular outflow
tract obstruction (Vaswani et al. 2015). It occurs in 0.2% of the population and
has male dominance (Ashish Vaswani et al. 2017). The majority of hypertrophic
cardiomyopathy are asymptomatic, and sudden death may be the first presentation.
The ECG features of hypertrophic cardiomyopathy include jerky pulses and/or

double impulses at the apex, left ventricular hypertrophy, and T wave inversion.
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A literature search was conducted using the key words such as “deep learning”,
“neural network”, “ECG”, “EKG”, “electrocardiogram”, “electrocardiograph” “elec-
trocardiography” of the past 10 years on human subjects and in English language,
on the PubMed database on 28 May 2019, and 250 entries were obtained. Manual
screening was performed to exclude studies that were unrelated to machine learning
(e.g. “neural network” as a physiology term), unrelated to cardiovascular diseases
(e.g. using ECG for biometric identification), or non-ECG classification studies
(e.g. studies on ECG denoising). In the end, 70 publications remained and they are
summarised in table 3.1. The works are organized by the datasets they studied and
ordered chronically. The sample size refers to the number of recordings or beats in
the training and test sets on which classification was performed. In other words, the
sample size is the number to be considered when evaluating the statistical power
of the study. These samples, however, typically come from much fewer human
subjects. The asterisk next to the author-year means it is a signal classification
(see section 3.4) study. The rest are beat classification.

Note that in this thesis the ECG abnormalities typically associated with arrhyth-
mia, ischemia, and hypertrophy, and ischemia are frequently referred to “arritmia”,

“iscemia”; and “hypertrophy” (inside double quotation marks), respectively, where

23
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ambiguous, and not to be confused with the actual clinical diagnosis of arrhythmia,

ischemia, and hypertrophy.
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3.1 Types of Cardiovascular Diseases

Many studies used standard ECG databases such as the MIT-BIH database (Moody
and Mark 2001), the MIT-BIH long-term ST database (Goldberger et al. 2000), the
PhysioNet Atrial Fibrillation (AF) Detection Challenge (Clifford et al. 2017), and
the Physikalisch-Technische Bundesanstalt (PTB) database (Bousseljot, Kreiseler,
and Schnabel 1995; Goldberger et al. 2000). Each database focuses on different
cardiovascular diseases or conditions, including “arrhythmias”, ST changes, atrial
fibrillation, and myocardial infarction (MI), respectively. As a result, few studies
attempted to classify ECG abnormalities associated with diverse cardiovascular
diseases, such as co-existence of arrhythmia, ischaemia, and hypertrophy in the
same database using a single model. Most studies construct a dataset consisting
of the normal class and an abnormal class, such as MI, and perform binary
classification (Chudacek et al. 2009; Leite et al. 2010; Yaghouby et al. 2010).
However, in a real-world application, the dataset typically contains many more

types of medical conditions.

3.2 Number of ECG leads

Most studies only used one or two ECG leads, even when more leads are available
in the dataset (Masetic and Subasi 2016; Kora 2017). Different ECG leads represent
different parts of the heart, thus using single or few leads may not be sufficient when
various cardiac conditions coexist in the same dataset. For example, a Q wave with
more than 0.04s in duration and deeper than 0.2mV in amplitude is only considered
pathological when it occurs in more than one lead, which is commonly a sign of
previous myocardial infarction (Vaswani et al. 2015); R wave progression is the
phenomenon that the amplitude of R wave increases gradually across chest leads
V1-V4 and decreases gradually in leads V5-V6, which can only be observed when all
six chest leads are present; T wave inversion is considered normal in leads aVR, III,

and V1, but indicates ischaemia, infarction or bundle branch block when widespread
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in the leads; QRS axis deviation can only be assessed by taking consideration of

I, II, and aVF leads together (Vaswani et al. 2015).

3.3 Model Evaluation

Accuracy, sensitivity, specificity, area-under-receiver-operating-curve (AUROC),
and F; are common model evaluation metrics for ECG classification. However,
accuracy can be misleading when classes are highly unbalanced. For example, in a
classification problem where 99% of the test set samples belong to class i, a trivial
solution which classifies all samples to class ¢ would yield 99% accuracy. AUC is
more robust towards class skewness; however, it can only evaluate binary classifiers.
Sensitivity, together with specificity, is a fair metric for skewed classification, yet
two numbers are not as convenient as one number for model comparison. F}
is a single-number metric that is robust to class skewness, therefore it is the
evaluation criterion of many machine learning competitions, including PhysioNet
AF Detection Challenge, and International Conference on Biomedical Engineering
and Biotechnology (ICBEB) Physiological Signal Classification Challenge!. Fj is
almost always lower than accuracy, sensitivity, and specificity values on the same
confusion matrix (the matrix whose element C;; represents the number of samples
known to be in class ¢ being classified to class j). For example, in Luo et al. 2017,
the authors reported an accuracy of 97.5% for 4-class classification; however, the

equivalent I} value on the same confusion matrix was only 45.3%.

3.4 Beat Classification vs Signal Classification

In this thesis, we distinguish beat classification from signal classification in the
literature. Beat classification aims to classify an ECG beat, while signal classification
aims to classify a signal that consists of many ECG beats. Beat classification is
useful for real-time monitoring, while signal classification is appropriate for screening

and medical investigation. Beat classification often yields high accuracy, sensitivity,

http://www.icbeb.org/CPSC2018 Awards.html
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and specificity, while signal classification renders much lower performance, due to

the following difficulties faced by signal classification uniquely:

« Smaller labelled datasets: for example, a 30-s ECG signal typically has over
30 beats, which means it has 30 labelled examples for beat classification, but

one labelled example for signal classification;

e Decision rules: It is difficult to decide whether a signal with majority normal

beats and occasional abnormal beats should be classified as normal.

e Curse of dimensionality: while the number of labelled examples is much
scarcer for signal classification than for beat classification, the dimensionality
of each training example is much higher than that in beat classification; thus,
the sample to dimension ratio for signal classification is more challenging to

handle.

Comparing with signal classification, beat classification requires one label per
beat, which is labour-intensive for human experts to provide in datasets containing
hundreds of thousands of beats. Many studies approach signal classification problems
by labelling all beats within a signal to be of the same class as the entire signal
(Masetic and Subasi 2016; Kora 2017; W. Liu et al. 2018). For example, if a human
expert labelled a 30-s segment as an atrial flutter episode, then the study would
label all beats within the 30-s signal as atrial flutter beats. Beat classification also
requires beat segmentation, which can be a challenging task in itself if the signal
quality is low. Beat classification circumvents the challenges in beat segmentation
by reporting post-segmentation classification results, which is another reason beat
classification studies seem to have higher performance than signal classification
studies. However, in real-world application, the beats are not readily segmented,
thus signal classification is more relevant to the real-world medical problem. Signal
classification is understudied in comparison to beat classification, as shown in table

3.1, where only 9 (studies with asterisk) out of 70 studies were signal classification.

DRAFT Printed on April 4, 2021



32 3.5. Methods of ECG Classification

3.5 Methods of ECG Classification

Before the era of deep learning, the typical workflow of ECG classification is
signal quality analysis, involving discarding low-quality signals, denoising and
removing baseline wander and artefacts, then a QRS detection is performed for beat
segmentation. Furthermore, phase alignment and normalization are required to
align the R peaks for feature extraction. Prior to classification, feature selection is
performed. Although neural network was first applied to ECG classification in 1998
(Yao et al. 1998), most early studies tend to rely on handcrafted heuristic features
(Chudécek et al. 2009; Kim et al. 2009; Leite et al. 2010); researchers gradually lean
towards more principled feature extraction schemes, from using discrete wavelet
transform coefficients as the input features to the classifier (Kostka and Tkacz
2011; Martis et al. 2012; Javadi 2013), to using a neural network to extract features
automatically (Jin and Dong 2016; Sayantan, Kien, and Kadambari 2018).
From table 3.1 we can see that convolutional neural network (CNN), recurrent
neural network (RNN), deep belief network (DBN), and auto-encoders are the most
popular deep learning models for ECG classification. Regarding the inputs to the
neural networks, very few studies use raw ECG time-series signals. In particular,
time-frequency transform of the raw ECG waveforms is considered as an input
which often yields good results. For example, Isin and Ozdalili 2017 used AlexNet
to extract features from the time-frequency domain of ECG beats. Xiao et al. 2018
used a novel approach of overlaying raw ECG signals on standard ECG grid sheets
and saved them as images, to mimic the same format as commonly interpreted by
cardiologists. The authors then used the trained Google Inception v3 (Szegedy et al.
2015) as a feature extractor to detect sudden ST changes in an ambulatory setting.
End-to-end deep learning refers to the approach to use a single neural network
to perform the full pipeline from feature extraction to ECG classification. The first
end-to-end deep learning study was performed by Rajpurkar et al. 2017 who used
a 34-layer ResNet-like CNN (K. He et al. 2016) to classify 14 rhythm classes, and
outperformed average cardiologists. This work was the precursor of the model by

Hannun et al. 2019, which is considered the state-of-the-art of ECG classification
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nowadays. Hannun et al. 2019 reported cardiologist-level performance of their
model on 12 “arrhythmia” classes that were trained on 91,232 signals from 53,549
patients and tested on 336 recordings and benchmarked against six cardiologists
using 30s single-lead ECGs. The authors also tested their model post-hoc on the
PhysioNet AF Detection Challenge and reported F; = 0.83, which is among the
highest performances on the Challenge. Although none of the four official winners
(Fy = 0.83) of the PhysioNet AF Detection Challenge used end-to-end deep learning
(Clifford et al. 2017), Kamaleswaran, Mahajan, and Akbilgic 2018 recently developed
a 13-layer end-to-end CNN to obtain F} = 0.83 on the hidden test set, demonstrating
again that an end-to-end CNN can perform as well as using handcrafted features
and ensemble classifiers (Kamaleswaran, Mahajan, and Akbilgic 2018).

In the latest ECG classification competition held by ICBEB, the winning team
Chen et al.? also used deep end-to-end learning. The power of deep learning is
proven by all three state-of-the-art models (Chen’s model, Rajpurkar-Hannun model,
and Kamaleswaran’s model), but all these models are computationally intensive:
Rajpurkar-Hannun model has over 10 million parameters, while Kamaleswaran’s
model has 3 million parameters.

In the following chapters of this thesis, we study ECG classification on the
Chinese population. We first look at the statistical characteristics of the CKB,
then study ECG classification using traditional machine learning with handcrafted
features. We then propose a novel neural network architecture family for time-series
classification, called layer-wise convex networks, which characterises in parameter
parsimony, and benchmark our results with Rajpurkar-Hannun model on 3 databases:
the CKB, the PhysioNet AF Detection Challenge, and the ICBEB Physiological
Signal Classification Challenge.

2Tsai-Min Chen, Chih-Han Huang, Edward S. C. Shih, Ming-Jing Hwang
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Data Description

4.1 China Kadoorie Biobank

The China Kadoorie Biobank (CKB) is a prospective cohort study of 521,891 adults
recruited from 10 areas in China during the years 2004 - 2008 (Z. Chen et al. 2011).
Data were collected using questionnaires, and clinical measurements were recorded
at baseline. After every five years, approximately 25,000 surviving participants were
resurveyed using further questionnaires and clinical measurements. The second
resurvey in 2013-2014 included a 12-lead ECG on 24,959 participants. Ethics
approval was obtained from all relevant local and national committees. Public
access to the CKB can be found at http://www.ckbiobank.org/site/Data+Access.
The ECG data used for this thesis are described below:

4.1.1 ECG Time-Series

A standard 12-lead ECG (each with 10-s duration, sampled at 500Hz) was recorded
on 24,959 participants using a Mortara ELIx50 device during the years 2013 -
2014. An ECG cycle template, representing a “typical” cycle, for an individual
lead, was also generated by the Mortara device using the proprietary VERITAS™™
algorithm. The raw ECG time-series are overlaid on the standard ECG grids

and are shown in figure 4.1.
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Table 4.1: The Mortara features and the blood pressure features

Independent Features

Explanation

Age

Average RR interval
QRS offset

P wave duration
PR interval

QRS duration

QT interval

Average distance between two R peaks
The end of the QRS complex

P onset to QRS offset

Q onset to T offset

P axis Determined by P deflect in I, II, aVF
QRS axis Determined by QRS deflect in I, II, aVF
T axis Determined by T deflect in I, II, aVF
Dependent Features Explanation

ventricular rate = average %g%ommml

R peak = 500 ms

P wave onset
P wave offset
QRS onset

T wave offset
QT, duration

= Q offset — PR interval — QRS duration
= P onset + P duration

= PR interval+P onset

= Q onset + QT interval

= QT interval +154(1 — — 00— )

ventricular rate

Q7. duration QT interval
(average RR interval)?2

QTCF duration — QT interval ,
(average RR interval)3

Blood Pressure Explanation

SBP
DBP

Systolic blood pressure
Diastolic blood pressure

4.1.2 ECG Features

A total of 19 unique features were provided for each participant by the Mortara device
(table 4.1). Ten features that could not be expressed as functions of the other features
are collectively referred to as “independent features”, and the remaining nine features
which can be expressed as functions of the ten independent features or is constant

for the duration of the typical cycle is referred to as the “dependent features”.

4.1.3 Mortara Labels

For each participant, up to 10 textual descriptions describing the ECG were provided,

” “

such as “atrial fibrillation”, “acute myocardial infarction”, and “normal ECG”, by

the Mortara device using a propriety algorithm according to the Minnesota Code
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Table 4.2: Grouping criteria and the number of participants in each group in the CKB

Class N (%) Inclusion Criterion
Normal 10,779 (43%)  Normal ECG
“Arrhythmia” 2,472 (10%) Abnormal rhythm
Atrial fibrillation
Early repolarization
Pre-excitation
Premature ectopic beats
Ectopic conditions

Blocks

Uncertain rhythm
“Ischaemia” 1,870 (8%) Explicitly stated “ischaemia”
“Hypertrophy” 3,423 (14%) “Hypertrophy” or enlargement
“Others” 6,362 (26%) None of the above

All 24,906 (100%)

(Prineas, Crow, and Z.-M. Zhang 2009). Each textual label is chosen from 236
possible values. We grouped the 236 Mortara labels into “normal”, “arrhythmia”,
“ischaemia”, “hypertrophy”, and “others”, according to (Ramrakha and J. Hill 2012).
After removing 113 participants with incomplete records, the remaining 24,906
participants were grouped in the the five classes, shown in table 4.2. The complete

mapping from the 236 Mortara labels to the 5 groups are shown in appendix F.

4.1.4 Blood Pressure Data

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded
twice on each participant after resting for at least 5 minutes using an Omron UA-779
digital sphygmomanometer. If the difference between the two measurements was
more than 10mmHg, a third measurement was performed, and only the last two
readings were recorded. Sphygmomanometers were supplied centrally, calibrated
daily and only used by trained field workers. We use the average of the two

blood pressure readings in our study.

4.1.5 Signal Quality

A signal quality index (SQI) was evaluated for all 12-lead ECG signals using

in-house software. The SQI € [0, 1], depending on the agreement of two peak
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detectors on the positions of the R peaks. High agreement yields a high SQI, which
corresponds to high signal quality. 97% of all 12-lead waveforms were found to
have high signal quality (SQI>0.9). The signal quality of the data was deemed
sufficient to classify the 24,906 participants.

4.1.6 Descriptive Statistics of CKB

Age Group, Gender, and Class Distribution

The percentage of the participants in each age group and class is shown in figure
4.2. The exact numbers are provided in appendix A. The percentage is calculated
relative to the total number of male or female participants in each age group.
For example, there were 1,974 men aged under 50, and 133 of them had ECG
abnormalities associated with arrhythmias, thus the percentage of males under
50 having “arrhythmia” is {25 = 7%.

We can see a higher percentage of males have “arrhythmia” and “hypertrophy”
in their relevant age groups than their female counterparts, but the percentage
of “ischaemia” is similar for men and women. In both men and women, as the
age increases, the percentage of normal participants declines, and the percentage

7 also

of “arrhythmia” increases. The percentage of women having “hypertrophy
increases steadily with age. The percentage of men and women having “ischaemia”,
as well as men having “hypertrophy”, are relatively stable across age groups. These
observations are consistent with available evidence from epidemiology studies of
heart disease, although the male dominance in “ischaemia” was not observed in
the CKB dataset, perhaps because there were relatively few people (n = 1,870)
having “ischaemia”.

Blood Pressure Distribution

We performed Gaussian kernel density fitting (D. W. Scott 2015) using the Scipy
package on the systolic and diastolic blood pressure to obtain the distribution of
the blood pressure in the four classes, as shown in figure 4.3. For all participants,
the mode of systolic blood pressure (SBP) of the normal class is lower than those of

W

“arrhythmia”, “ischaemia”, and “hypertrophy” classes, meaning the abnormal classes

DRAFT Printed on April 4, 2021



4. Data Description 39

Table 4.3: Class size in ICBEB.

Class Index Class Number of Recordings
1 Normal (N) 918
2 Atrial Fibrillation (AF) 1,098
3 First-degree atrioventricular block (I-AVB) 704
4 Left bundle branch block (LBBB) 207
5 Right bundle branch block (RBBB) 1,695
6 Premature atrial contraction (PAC) 556
7 Premature ventricular contraction (PVC) 672
8 ST-segment depression (STD) 825
9 ST segment elevation (STE) 202

Total 6,877

tend to have higher SBP. In female participants, the mode of SBP has the ascending
order of normal < “arrhythmia” < “ischemic” < “hypertrophy”, which agrees with
medical knowledge. A similar trend can be observed in female diastolic blood
pressure (DBP), but less obvious in male DBP. The reference values for normal

SBP and DBP are 120 mmHg and 80 mmHg, respectively (B. Zhou et al. 2017).

4.2 The ICBEB Dataset

The publicly available training set of International Conference on Biomedical
Engineering and Biotechnology (ICBEB) 2018 challenge ! includes 12-lead 500Hz
5-143s 2 ECG time-series waveform from 6,877 participants (3,178 female and 3,699
male) obtained from 11 hospitals. The dataset has nine classes and the number
of recordings in each class is shown in the table 4.3.

The hidden test set contains 2,964 ECG recordings of similar duration. The
final evaluation is based on a balanced test set comprised of 50 samples randomly
selected from each of the nine classes from the hidden test set. The training and
test sets are mutually exclusive.

The primary evaluation criterion of the Challenge is the 9-class average F},
calculated as equation 4.1 The secondary evaluation criteria are F scores of sub-

abnormal classes: Far, Fock, Frc, Fsr calculated as equations 4.2, 4.3, 4.4 and

Thttp://2018.icbeb.org/Challenge.html
2The website states 6-60s duration, however the actual signal duration in the dataset is 5-143s.
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Table 4.4: The number of recording in each class in the PhysioNet dataset.

4.8. The PhysioNet Dataset

Class Number of recordings
normal 5,050

atrial fibrillation (AF) 738

other rhythms 2,456

noise 284

total 8,528

4.5. The winning team was Chen et al.®> who achieved 9-class average F; of 0.837, as

well as the highest Fur (0.933), Fpe (0.847), Fsr (0.779), and the 5th highest Fgoer

(0.899). They used bidirectional GRU and attention mechanism, and trained a

different model for each lead as well as a 12-lead joint model, then performed 10-fold

model averaging of each of the 13 models. Thus the final prediction was based on the

average probability given by 10 x (12 single-lead models + the 12-lead joint model)

= 130 models. The second place in terms of 9-class F; was Cai et al.*, who also

achieved the highest Fjoer (0.912). They used Long Short-Term Memory (LSTM).

12 2N;;
R=g2 s N N,
i=1 ijl( ij + Nji)
2N3o
Fam—
A 51 (Noj + Njp)
- 25, Ny
Block —
> 0s > 5—1(Nij + Nji)
F _ 2 21'7:6 Nii
PO ST (Ny + Nji)
2 Z?:g Nii
Fsr

a Z?:S Z?:l(Nij + Nji)
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4.3 The PhysioNet Dataset

The publicly available training set of the PhysioNet 2017 Atrial Fibrillation Detection
Challenge (Clifford et al. 2017) has 8,528 recordings, 9-60s in duration, 300Hz,
single-lead ECG acquired using AliveCor. The dataset has four classes: normal,
atrial fibrillation, “other rhythms”, and noise. The number of recordings in each
class is shown in table 4.4°.

The hidden test set of the challenge had 3,658 recordings of similar duration. The
final results were evaluated by the 3-class average Fj of atrial fibrillation, normal,
and “other rhythms” classes. The winning teams achieved 3-class average F| = 0.83
(Clifford et al. 2017). There are a few post-hoc studies including Hannun et al. 2019
and Kamaleswaran, Mahajan, and Akbilgic 2018, trained on the entire publicly
available training set and achieved 0.83 three-class F; on the hidden test set as well.

Both Kamaleswaran and Hannun used CNN-based architectures for their analysis.

3Tsai-Min Chen, Chih-Han Huang, Edward S. C. Shih, Ming-Jing Hwang

4Wenjie Cai, Jing Ma, Li Yang, Dangin Hu, Yanan Liu

5The numbers are counted from the downloaded dataset, which is very different from what is
stated on the website.
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Figure 4.2: The percentage of participants in each age group and class
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Figure 4.3: Distribution of SBP and DBP among the four classes
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ECG Classification using Traditional
Machine Learning Methods

5.1 Introduction

In this chapter, we present results of analysis of ECG data using traditional (i.e.
non-deep) machine learning to classify the ECG signals into normal, “arrhythmia”,
“ischaemia”, and “hypertrophy” classes. We start with a brief introduction to
the principles of machine learning and the methods to be used. These methods
are representative of all major machine learning model families except neural
networks. As neural networks, or known by their legacy names artificial neural
networks (ANN) or multilayer perceptron (MLP), are a very flexible model family
and have now evolved into the regime of deep learning, they are not included
in this chapter but will be the focus of Chapters 6 and 7. We will continue the
chapter with data preprocessing and feature extraction, which are necessary for
all the traditional machine learning models evaluated in this chapter. We then
compare the performance of these methods on different combinations of the Mortara
features, introduced in the previous chapter, and our new features, and finally
perform feature ranking and conclude with comparative analysis of the Mortara

features and the new features.

45



46 5.2. Introduction to Machine Learning
5.2 Introduction to Machine Learning

Mitchell et al. 1997 defined machine learning as “learning from experience FE
concerning some tasks 7" and performance measure P, if its performance at tasks
T, as measured by P, improves with experience E”. In this thesis we focus on
supervised learning whose goal is to discover the data generating process f : X — Y,

where X and Y represent the features and the labels, respectively.

5.2.1 Linear Models

Linear Discriminant Analysis

Linear discriminant analysis (LDA) assumes the likelihood p(x|C) is Gaussian, and

all classes share the same covariance matrix. Formally, for K-class classification:

§lC) = ——rep{—@—w) S @ -pm)} ()

(2m) % |22
for k = 1,..., K, where x is the feature vector of a single training example, Cj
represents the true class membership of the training example, p;, and ¥ are the
mean and covariance of the multivariate Gaussian distribution for class k. Since
linear discriminate analysis assumes all classes have the same covariance, the class
index for ¥ is omitted. At the decision boundary between two classes k and

7, p(Cklz) = p(Cjlz), we have

—_

p(Ck)

p(Cj)

(\]

S
exp{3 2 (22" p; — 22"y + i — 1 1)}
(5.2)

We can see that the decision boundary is linear with respect to . The parameters
and X can be estimated by the training set sample mean and covariance, respectively,

and the class prior p(C)) can be estimated by the class ratios in the training set.
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Logistic Regression

From Bayes theorem:

p(x|C)p(Ch) p(x|C1)p(Ch)
p(Cilx) = = 5.3
T T (AT (ARRTEIA A N
use p(x|Ch)p(Cy) to divide the nominator and denominator, we have
1
p(cl‘a}) - 1+ p(z|C2)p(C2) (54)
p(z|C1)p(Ch)

p(@|C1)p(C1)

o(@|C2)p(Ca) and substitute it into equation 5.4, we obtain

If we denote a = In

1

ola) =p(Cile) =

(5.5)

a is also called log odds. If a is linear with respect to the input features, we

obtain the formulation of logistic regression:

HCilg (@) = 0w (&) +) = Ty (5.6)

where w is the weight vector, and ¢(x) is called the basis function of x. ¢(x) is
a fixed function that transforms the original data point @ into a “feature space”,
thus can be seen as the feature extraction step. Logistic regression is said to be
a linear classifier because the decision surface is linear with respect to the input
feature vector . We can use a maximum likelihood approach to estimate w and
b. If we use t; € {0, 1} to denote the labels, with ¢; = 1 denoting samples in class
(', then the likelihood of the class membership of the entire training set T' = {¢;}

given the design matrix X and the model parameters w and b can be written as

p(TIX,w,b) = [[oi'(1 — o) ™" (5.7)
i=1

E=—-Inp(T| X, w,b)=—-> t;lno;+ (1 —t;) In(1 — oy) (5.8)
i=1

Take the first and second derivatives of E with respect to w and obtain

i=1
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PE a:iTa:iewai”’
S0t = L (L r e 2 0 (5.10)

i=1
we can see that the second derivative is non-negative, and only equals 0 when
x = 0. This means the loss is convex but not quadratic, as % depends on w,
which means we can use iterative convex optimization to find the optimal w, but
there is no analytical solution for w.

The multi-class logistic regression is similar to the binary logistic regression,
except that we use softmax function (equation 5.11) instead of equation 5.5 to
model P(Cglz). The maximum likelihood approach is similar.

et
ola); = ——— 5.11
(@)= sk (511)

for i =1,..,K and a = {2;} € RX. The output of softmax is a K-element vector.

5.2.2 Naive Bayes

Naive Bayes assumes that the distribution of the input features is conditionally
independent, given the class. Suppose we are performing K class classification on

data points with D features for each data point, we have

p(x|Cy) = p(x1, ..., xp|Ck) = Up(xZ]C'k) (5.12)

where x1, ..., xp are the input features of a training example 2. To make predictions,

we can calculate the posterior by

p(1, ..., p|Cr)p(Ck)
p(z1,...,xp)
12, p@lCp(C)
p(1, ..., D)
Hlpzl p(xi|Cr)p(Cy.)
S play, ., zp]Ch)p(C))
_ 12, (i Ci)p(Cy)
> TLL p(:C)p(Cy)

We can obtain p(Cy) by calculating the class ratio in the training set, and fit p(z;|C})

p(Cylxy, ..., zp) =

(5.13)

by maximum likelihood. Naive Bayes is suitable when the feature dimension is high

and is an excellent way to link models trained on different features.
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5.2.3 Kernel Methods
Support Vector Machine

Support vector machine (SVM, Taylor and Cristianini 2000; Miiller et al. 2001;
Schoélkopf and Smola 2002; Herbrich 2001) aims to find the solution that separates
the two classes with the largest “margin”, defined as the minimum distance between
the data points and the decision boundary. Suppose a binary classification where

the decision boundary is expressed as
y=w'p(x)+b=0 (5.14)

The distance between a data point & and the decision boundary is

wTé(@) + 1)
]

d (5.15)

Because the SVM is a “large margin” classifier, the convention of class mem-
bership notation is different. In SVM, the class labels are usually denoted as

t, € {—1,1}, then for correctly classified data points, we have:
toin = to(w’ @(x,) +b) >0 (5.16)

SVM maximises the margin. Thus the optimisation problem can be written as

w, b = argmin min

(5.17)
wh [[wl|

where ¢ indexes the training examples. Because the distance does not change if
we scale w and b by a factor, we can set t;(w” ¢(x;) +b) = 1 for the data points

closest to the decision boundary, and the optimisation problem can be written as
w = argmax —— (5.18)
w o |lwl]
subject to

ti(wlé(x;) +b) > 1 (5.19)

for i = 1,2,...,m. The margin boundaries can be expressed as y = w' ¢(x,) + b =

+1.
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Because maximising ”wi” is equivalent to minimising||w||”, we obtain the canonical

optimisation representation of SVM:

1
w = argmin §HwH2 (5.20)

subject to equation 5.19, and % is for convenience of derivation. This is a constrained

optimisation problem, corresponding to minimising
L(w,b,a) = f||'w|| - Zal{t o(x;) +b) — 1} (5.21)

with Karush-Kuhn-Tucker (KKT) conditions:

a; >0 (5.22)
ti(wr(x) +b—1)>1 (5.23)
a;(ti(w p(x) +b) —1) =0 (5.24)

where a,, are called Lagrange multipliers. Setting derivative of L(w,b,a) w.r.t

w and b to 0, we obtain

w = iaitiqﬁ(m) (5.25)

and substitute into equation 5.21, we obtain the dual representation of the op-

timisation problem:

;ZZantt k(zi, x;) +Zaltb+2al

i=1j=1 i=1 i=1

1
“Ya— 3 Y aattk(e.a,)
; 2
i=1 i=1j=1
subject to
a; > 0,vn (5.28)
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where k(z;, z;) = ¢(x;) ¢p(x;) is called the kernel function. The benefit of dual
representation is that we do not need to represent ¢(x) explicitly. Also, if the
dimension of feature space is larger than the number of training examples, optimizing
the dual representation 5.27 is computationally more efficient than optimising the
canonical representation 5.21. We can also represent y using dual formulation by

substituting equation 5.25 into equation 5.14, and obtain

y(x) = i a;tk(x,xz;) +b (5.30)

=1

From equation 5.30 we can see that either a, = 0 or t,y, — 1 = 0, which
means only points on the margin contribute to the prediction. These points are
called “support vectors” hence the name of the model. For datasets that are not
linearly separable in the feature space (¢ space), we introduce a slack parameter

&, and replace constraint 5.19 by equation 5.31:

ti(w'é(x) >1-& (5.31)

& = 0 for points on the margin or on the correct side of the margin, 0 < & <1 for
points within the margin but on the correct side of the decision boundary, and & > 1

for points on the wrong side of the decision boundary. Therefore we try to minimise:
O3 6+ ¢ (532
i=1

Subject to equation 5.31, where C' > 0 is a hyperparameter controlling the trade-off
between training error and model complexity. This is called “soft-margin” SVM. We
can see that both the canonical representation and the dual representation losses
are quadratic with respect to the parameters, thus SVM loss is quadratic.

The original SVM does not make probabilistic predictions, but makes classi-
fications by the sign of y. Platt, Cristianini, and Shawe-Taylor 2000 proposed
probabilistic SVM by “squashing” y in equation 5.14 by a logistic function, i.e.
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52 5.2. Introduction to Machine Learning

equation 5.33, and the parameters A and B are learned from minimising the cross-
entropy loss using data not used when training the SVM. Because this two-step
approach does not jointly optimise the SVM parameters and A and B, it may
give sub-optimal posteriors (Tipping 2001).

1

SVM does not readily extend to K > 2 classification scenarios, and one common
approach is constructing K separate one-vs-rest classifiers. SVM can also be
extended to regression. e-insensitive SVM replaces the mean squared loss used

in linear regression by

0 if |y —t] <
Eyt) =14 iy —t] < (5.34)
g —yl—¢ if|g—yl>e
and minimises
N . 1 )
C > Eelyir i) + 5 lwl| (5.35)

i=1
5.2.4 K-Nearest Neighbours

K nearest neighbours (KNN) comes from density estimation, where the density

of a class in a small region R is

K

P=—
NV

(5.36)

Where K is the number of data points of class K in the region, N is the total
number of data points, and V' is the volume of the small region. KNN partitions
the entire feature space into hyperspheres each having exactly K data points and
the class membership of the region is assigned to the class that is most represented,
i.e. to the class with the most number of data points within the region, and
ties are broken at random. KNN is quick to train but slow to predict, because
given a new test data point, it needs to calculate the distances of the new test

point to every training data point.
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5.2.5 Decision Trees

Tree-based models, also known as decision trees, partitions the input space into
axis-aligned regions and assigns a simple model to each region. The process of
selecting the region given an input data point @ can be described as traversal of
a binary tree. Classification and regression trees (CART Breiman et al. 1984) is
a widely used framework of decision trees. Variations of CART including ID3,
and C4.5 (J. Quinlan 1993; J. Ross Quinlan 1986). The training procedure of
CART involves growing the tree by exhaustive search of the input variables and the
solution thresholds that minimise the residual loss, typically mean squared error
for regression and cross-entropy for classification. Decision trees are popular in
medical diagnosis as it is intuitive to interpret and similar to the typical medical
diagnosis process. However, the split of the tree is very sensitive to the input data:
small changes in the training data can result in a very different split of the tree
(Hastie, Tibshirani, and J. Friedman 2001). Another drawback of decision trees is
that the region boundaries are aligned to the feature axis. Thus the performance

of decision trees relies heavily on the input features.

5.2.6 Ensembles
Bagging

Bagging (Breiman et al. 1984), also called bootstrap aggregation, trains a different
model on M bootstrapped datasets X; from the original dataset X, then average

the predictions of the N models:

Ybag (X)) = ;Zyz-(Xi) (5.37)

Averaging the predictions from independently trained models is called committee,

and boosting is a type of committee.

Random Forest

Random forest is an ensemble of decision trees. Because a single decision tree is

sensitive to the feature split, the random forest is an ensemble of decision trees
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that introduces variations among the models by bootstrapping the dataset and
constructing a different tree on each bootstrapped subset, then use majority voting
to predict the class. In a random forest, the optimal feature selection is made on a

randomly selected feature set, and the threshold is chosen to be the optimal split.

Extra Trees

Extra trees, short for “extremely random trees”, is similar to random forest, except
that 1) it is trained on datasets drawn from the original training sets without
replacements, 2) it chooses both the features and the split thresholds at random

(Geurts, Ernst, and Wehenkel 2006).

AdaBoost

Boosting differs from committee methods by training a sequence of classifiers
each minimising a weighted loss function, instead of training the base classifiers
independently. Data points misclassified by the previous classifiers will be given
a higher weight in the subsequent classifier. Boosting can give good results even
if the base classifiers are weak classifiers, i.e. they are only slightly better than
random. Originally designed for classification, boosting can also be extended for
regression (J. H. Friedman 2001). AdaBoost (Freund, Schapire, et al. 1996), short
for “adaptive boosting”, is the most widely used form of boosting (Bishop 2006).
Suppose we train a binary AdaBoost classifier containing N base classifiers on a
dataset containing m data points. The weight w§°) for each data point is initialised
as % For j =1,..., N, we train a base classifier to minimise the loss function
m
By =Y wI(5(@) # v) (5.38)
=
where @ represents a single data point, I is the indicator function. I(g;(x;) #
yi) = 1 and I(g;(x;) = v;) = 1.

We then calculate ¢; and a;:

m oD (5 (s ,
6]’ — i=1 wl (y] (wl) ?é yl) (539)

m (9)
i=1 W;
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1—€j

a; =In (5.40)
€
and update the weights for each data point:
wi™ = w? exp{a;l(§;(x) # vi)} (5.41)
and finally make predictions:
N
Y ;(X) = sign(}_ a;y;(X)) (5.42)

j=1
J. Friedman, Hastie, Tibshirani, et al. 2000 interpreted binary AdaBoost classifier

as sequential minimisation of the exponential loss:

E = ﬁ:exp{—tifj(wi)} (5.43)

The exponential loss is exponential with respect to —t;f;(z;), which means it
penalises large negative ¢;f;(x;) heavily, thus sensitive to outliers or mislabeled
data points. Another drawback of exponential loss is that it cannot extend to
K > 2 classification scenarios, nor has negative-log likelihood interpretation of

any probability distribution.
Stochastic Gradient Boosting

Stochastic gradient boosting (SGB, J. H. Friedman 2002) is analogous to stochastic
gradient descent, but in the function space. It initialises with a base learner, typically
a decision tree, and in each iteration, uses another learner trained on a bootstrapped
subset of the original dataset to minimise the residual error. Formally, assume the
ground truth is F(x, @), the base learner is initialised to minimise the loss E as
m

Fy(x,0) = arg;nin ; E(y;, 0) (5.44)

where @ are the parameters of the base learner Fjy, m is the number of data points

in the bootstrapped subset. For j = 1,.., N,

Fi(z) = Fj_1(x) + argmini L(y;, Fi—1(x;) + hj(x;)) (5.45)

hjeH =1

where h; € H is a base learner.
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Figure 5.1: Feature extraction. The 12-lead amplitudes of P, Q, R, S, T waves and the
baseline level (approximated as the voltage level at the QRS offset) were extracted for
each participant from the “typical cycles”. The timestamps of onsets and offsets of these
waves were given by the Mortara device and are shown by the blue arrows.

5.3 Methods
5.3.1 Feature Extraction

Six additional features were extracted from a “typical cycle” from each of the 12
leads, forming a total of 72 new features for each participant (figure 5.1). They are
the P, Q, R, S, T wave amplitudes in the 12 ECG leads and the baseline levels,
which are approximated as the voltage level at QRS offset. The positions of the

onset and offset of the waves were provided by the Mortara device.

5.3.2 The 11 Machine Learning Models

We selected 11 representative machine learning models from the major machine
learning families except neural networks which we will study in the next chapter.
They are linear models (Logistic Regression, Linear Discriminant Analysis (LDA)),
Naive Bayes, kernel models (SVM), decision trees (CART), neighbours models
(KNN), and ensembles (SGB, Bagging, Random Forest, AdaBoost, Extra Trees).
Section 5.2 provided a detailed summary of the models used in the analysis. All
hyperparameters were left as default as used in the sklearn package (version 0.19.1).

We studied the effects of different combinations of the Mortara features, blood
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pressure features, and the 72 new ECG features on the classification accuracy,

and denote the following feature sets:

F10: The 10 independent Mortara features described in table 4.1.

F12: F10, SBP and DBP

F19: All features described in table 4.1

F82: F10 and the 72 new features (P, Q, R, S, T, baseline level (see section

5.3.1) x 12 leads)

F84: F82, SBP, and DBP

5.3.3 Five-Fold Cross-Validation

We used a standard machine learning approach K-fold cross-validation to separate
the training and test sets. In brief, the dataset was divided into K equal portions,
and each portion becomes the test set once and only once, while the rest of the
dataset becomes the training set. The model was trained on the training set and
evaluated on the test set. The mean and standard deviation of the K accuracy
values on K test sets were reported as the final results of K-fold cross-validation.

We used 5-fold cross-validation in this study.

5.3.4 Normalisation

Machine learning models are sensitive to the scale of the input features. Therefore,
we normalised the features according to the mean and standard deviation (SD) of

the training set, according to equations 5.46 and 5.47.

Ltrain — Mirain
Tiain = (5.46)
train
Lest — K 3
Bpogy 1= (5.47)
Otrain
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5.3.5 Four-Class Classification

We constructed balanced four-class classification dataset by sampling n samples
from each of the “normal”, “arrhythmia”, “ischaemia”, and “hypertrophy” classes
1. with n being the size of the smallest class, i.e. 1,870 (table 4.2), to build a
balanced four-class dataset of 7,480 individuals for five-fold cross-validation. The
down-sampling and five fold-cross validation were repeated 100 times, and the
means and standard deviations of the 100 repeats of the 5-fold cross-validation

mean accuracy were reported. In other words, the final result mean p, and standard

deviation o were calculated as follows:

a; = ;gaij (5.48)
1 100
= ﬁ;@ (5.49)
] loo -
= (g 2~ )’ (5.50)

where a;; is the accuracy of ith fold cross-validation accuracy in jth repeat. The
above process was repeated for the 11 machine learning models on the five feature
sets to find out the best combination of the machine learning model and the feature

set for the subsequent analysis.

5.3.6 One-vs-Rest Classification

To study the performance of the identified best machine learning model and feature
set to identify normal, “arrhythmia”, “ischaemia”, and “hypertrophy” from a
general population containing “borderline” participants, we performed one-vs-rest
classification. The “rest” class included participants from the “other” class (table
4.2). We sampled participants randomly from the class of interest and the “rest” class,
with n being the size of the smaller of the two. Then mean and standard deviation of

the 100 repeats of the sampling and 5-fold cross-validation accuracy were reported.

!Note that here the “arrhythmia”, “ischaemia”, and “hypertrophy” classes refer to the ECG
abnormality groups that are typically associated with the clinical CVD conditions of “arrhythmia”,
“ischaemia”, and “hypertrophy”, not to be confused with actual clinical diagnosis, hence the
quotation marks.
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Table 5.1: Four class classification results.. Results are shown as the mean and std of
100 repeats of 5-fold cross-validation mean accuracy.

Rank Model F19 F10 F12 F82 Fg84

1 SGB 53.5+0.4 53.1+0.4 54.0+0.4 77.3+0.4 77.3+0.4
2 SVM 51.44+0.4 51.8404 52.64+0.4 73.3+0.3 73.1+0.3
3 Bagging 48.0+0.6 47.9+0.5 48.5+0.5 71.94+0.5 71.8404
4 Random Forest — 47.440.5 47.8+0.5 48.240.5 70.0£0.5 69.9+0.5
5 AdaBoost 50.6+£0.6 50.54+0.6 51.3£0.6 69.840.5 69.7£0.6
6 Logistic Regres- 43.9+0.4 42.440.4 43.3+0.4 66.4+0.3 66.3+0.4

sion

7 LDA 44.440.4 42.2+0.4 43.3+0.4 65.6+0.4 65.5+04
8 Extra Trees 45.240.6 46.2+0.5 46.1+0.5 64.94+0.5 64.7+0.6
9 CART 41.240.6 41.9+£0.6 41.3+0.5 63.24+0.6 63.0+0.6
10 KNN 43.9£0.5 43.5+0.5 43.9£0.5 58.7+0.5 58.440.5
11 Naive Bayes 46.940.4 46.5+0.4 47.54+04 58.3+1.0 58.4+1.0

5.3.7 Feature Ranking

To find out which features the identified best model considered as the most important,
we ranked the features in descending order of the average weights of 100 repeats

of the 4-class classification and one-vs-rest classification

5.4 Results
5.4.1 Accuracy of Four-Class Classification

Table 5.1 ranked the 11 models in descending order of the average accuracy of the
100 repeats of the 5-fold cross-validation using the F82 set. Of the machine learning
models, stochastic gradient boosting (SGB) performed consistently better than
other algorithms. SVM and ensembles (bagging, random forest, AdaBoost) generally
performed well. F82 with SGB yielded the highest mean accuracy, although no
significant difference was found between SGB-F82 and SGB-F84 models (p-value
= 0.75 > 0.05, unpaired two-tail t-test, n = 200). Comparing F19 and F10, removal
of the nine dependent Mortara features did not influence classification accuracy
significantly (p = 0.29 > 0.05, Wilcoxon signed-rank test on means, n = 22).
Comparing F10 and F82, the addition of 72 new features significantly improved

classification accuracy (p-value = 0.0017 < 0.05, one-sided Wilcoxon ranked test
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Table 5.2: One-vs-rest classification, including the borderline participants. Results are
shown as the mean and STD of 100 repeats of five-fold cross-validation mean accuracy.

Class Sample Size Accuracy (%)
Normal 21,446 83.340.2
“Arrhythmia” 4,294 84.1+0.4
“Ischaemia” 3,616 95.340.2
“Hypertrophy” 6,680 95.740.2

on means, n = 22). Similarly, comparing F82 and F84, the addition of SGB
significantly lowered classification accuracy, although by a slight margin (Wilcoxon
ranked test in means, n = 22, p-value = 0.002 < 0.05), suggesting blood pressure

data is a confounder at the presence of the 72 additional features.

5.4.2 One-vs-Rest Classification

We used the SGB-F82 model to perform one-vs-rest classification. The purpose of
this experiment was to see how well the model identified the four classes from a
general population that includes participants in the “borderline” area that cannot
be categorised into any of the four categories.

Table 5.2 shows that the SGB-F82 model performed well for all one-vs-rest
classification, achieving over 80% mean accuracy for all experiments. “Hypertrophy”
was reliably detected, followed by “ischaemia”, “arrhythmia”, and normal. The
relatively low performance on the normal class may reflect the fact that borderline
participants belong to the “sub-healthy” group, and are therefore, closer to the
“normal” class than the “arrhythmia”, “ischaemia”, and “hypertrophy” classes in
the latent space. To test this hypothesis, we performed one-vs-rest classification
excluding the borderline participants, and the results are shown in table 5.3.
Comparing table 5.2 with 5.3, the removal of the borderline participants from
the “rest” class indeed boosted normal class classification, but also made the other
three disease classification more complicated because it is hard to distinguish them
from each other. This led to another question: which of the three disease classes

(arrhythmia, “ischaemia”, and “hypertrophy”) are more likely to be confused with

another disease class by the SGB-F82 model?
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Table 5.3: One-vs-rest classification excluding the borderline participants. Results are
shown as the mean and std of 100 repeats of five-fold cross-validation mean accuracy.

Class Sample Size Accuracy (%)
Normal 13590 89.1+£0.1
“Arrhythmia” 4294 79.5£0.4
“Ischaemia” 3616 86.6+£0.4
“Hypertrophy” 6680 92.1+0.2

Table 5.4: 2- and 3-class classification, excluding the borderline participants. Results
are meantstd of 5-fold cross-validation.

Experiments n Accuracy
(%)

2-class Normal vs “Hypertrophy” 6680  94.1£0.7
“Ischaemia” vs “Hypertrophy” 3616  91.5£1.3
Normal vs “Ischaemia” 3616  91.0£0.6
“Arrhythmia” vs “Hypertrophy” 4294 88.9£1.2
Normal vs “Arrhythmia” 4294 85.8£0.5
“Arrhythmia” vs “Ischaemia” 3616  83.1£0.5

3-class Normal vs “Ischaemia” vs “Hypertrophy” 5424  86.6%0.8

Normal vs “Arrhythmia” vs “Hypertrophy” 6441  83.3+0.7
“Arrhythmia” vs “Ischaemia” vs “Hypertro- 5425  81.3+1.0

phy77

Normal vs “Arrhythmia” vs “Ischaemia” 9425 78.941.1
4-class  Normal vs “Arrhythmia” vs “Ischaemia” vs 7232  77.540.8

“Hypertrophy”

5.4.3 Two- and Three- Class Classification

To answer this question, we conducted 2- and 3- class balanced classification. An
equal number of samples were selected from the larger classes to match the smallest
class in order to construct balanced datasets for five-fold cross-validation. Results are
shown in table 5.4 as the mean and standard deviation of the 5-fold cross-validation
accuracy and ranked in descending order of the means in each of the 2- and 3-class
categories. In 2-class classification, classification of “arrhythmia” and “ischaemia”
yielded the lowest accuracy, suggesting SGB-F82 has difficulty in distinguishing
“arrhythmia” and “ischaemia”. It is validated in 3-class classification results where

the absence of either “arrhythmia” or “ischaemia” produced better performance.
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5.4.4 Feature Ranking

Although SGB-F82 yielded the highest mean accuracy in section 5.4.1, there is very
little difference between SGB-F82 and SGB-F84, and we wish to see the ranking
of blood pressure in feature ranking analysis. Therefore, we included SBP and
DBP, using SGB-F84 for feature ranking.

We listed the top 10 features from each of the one-vs-rest classifications, and
the four-class classification in descending order of the mean weights in 100 repeats.
The 72 new features are shown in bold font on table 5.5.

Table 5.5 shows that the Mortara features are most important for distinguishing
individuals with normal, “arrhythmia” or “ischaemia”, while the new features are
particularly important for “hypertrophy” classification.

Of all the 84 features, QRS duration appeared most frequently (5 times), followed
by QRS axis (4 times), average RR (4 times), PR duration (4 times), R amplitude in
V5 (4 times), S amplitude (V1, 4 times), and age (3 times). Blood pressure features
only appeared once in top 10 features, ranking 10th in “ischaemia” classification.
Lead V5 appeared most frequently among the 12 leads, for 5 times, followed by
leads V1 (4 times), and (3 times), IT (twice), III (twice), aVF (twice), and V6
(twice). Lead I did not appear at all. In terms of the amplitude of the waves, T
wave amplitude appeared most frequently, for 9 times, followed by Q (7 times),
S (5 times), and R (4 times). P wave amplitude did not appear at all. While
R and S wave amplitudes concentrate in lead V5 and V1, respectively, Q and T
wave amplitudes spread to many leads.

These features are quite different from the clinical criteria. For example, the
three most common clinical criteria for left ventricular hypertrophy - Sokolow-Lyon
index (Sokolow and Lyon 1949), Cornell voltage criterion (Casale et al. 1987), and
Rombhilt-Lyon point score system (Romhilt and Estes Jr 1968) - all consider S and R
amplitudes exclusively, while SGB-F84 model identified mostly Q and T amplitudes
in the top 10 features to detect “hypertrophy”, suggesting our model may have

discovered different patterns than those already identified in clinic.
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5.5 Discussion and Conclusion

In this chapter, we demonstrated that machine learning models could indeed classify
ECG features with high accuracy without any knowledge of the diagnosis criteria
- all they need are relevant features. The 77.3% four-class classification accuracy
by SGB-F84 and SGB-F82 is encouraging, especially considering the “arrhythmia”,
“ischaemia”, and “hypertrophy” classes are not mutually exclusive. In fact, they may
be the underlying causes of one another. For example, a subclass of arrhythmia,
ventricular fibrillation, is often caused by ischemic heart disease (Vaswani et al.
2015). Although for the ease of presentation, the results given in this chapter are
classification accuracy, but in fact, the machine learning models give a probability
score for each of the target class. We can further validate the models by comparing
the probabilities for the four classes with the actual clinical diagnosis for each patient.

The dependent features in table 4.1 can be all expressed as transformations of the
independent features, thus contain no additional information beyond the independent
features. The comparison between F10 and F19 in table 5.1 validates that there are
no improvements in classification accuracy by introducing the dependent features
models, and the addition of dependent features may serve as a confounder when
there are limited training examples.

The significant improvement using the 72 additional features compared to
the Mortara features and the blood pressure features is especially encouraging,
considering the naive feature extraction scheme we used in this chapter. We did not
perform any denoising nor advanced signal processing. However, all features were
extracted from the “typical cycle” thus did not include much rhythmic information,
which may explain the relatively low accuracy in classification of “arrhythmia”
(table 5.4). In the next chapter, we will use deep learning to analyse the raw
10-s ECG signals directly.

This chapter has several surprising observations. The top features identified by
SGB-F84 are quite different from those that are commonly used in clinical practice.
We discovered that lead I was not selected in the top features at all, which may

suggest many studies that used only single lead, typically lead I or II, even when the
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12-lead ECG is available, have sub-optimal performances and our findings suggest
using lead V5 instead of lead I when the single-lead analysis is inevitable due to
resource constraints. This can also be understood by looking at table 2.2, which
shows lead I is solely determined by the voltages of the left and right arm electrodes,
which also contribute to aVR, aVL, aVF, and V1-V6 leads. In other words, the
information contained in lead I is already contained in aVR, aVL, aVF, and V1-V6
leads, while V1-V5 contain information from the precordial electrodes (v1-v6) which
are not shared with another lead. Thus it makes sense for a machine learning
model to exclude redundant information and include independent information (i.e.,
information that cannot be obtained from other sources).

On further analysis of the features provided by the Mortara device (table 4.1)
and compare with the features commonly used in clinical ECG interpretation (table
2.3), we can see that, similarly, Mortara device included many “redundant” features
(i.e. features that could be expressed as functions of other features, such as P wave
onset) and did not include clinically-relevant features such as ST-segment, which is
likely due to the difficulty in detecting the onset of T waves in ECG. This is a general
problem in ECG classification using the traditional machine learning pipeline of beat-
and-wave segmentation — feature extraction — classification, as the difficulties in
beat-and-wave segmentation would prevent accurate information to flow to the next
step of the pipeline. For example, ST-segment feature may be left out because of the
challenges in T wave onset detection, and even if the researchers detected T wave
onset and extracted the ST segment feature, the error in T wave detection might
propagate to the downstream steps via the ST segment feature. This motivates
the need to apply machine learning methods to unsegmented signals, essentially
learning the feature extraction step and classification step jointly. Deep learning is
most powerful in this respect, which will be the focus of our next two chapters.

The analysis in this chapter has several limitations. For example, we used a
point estimate of the voltage level of Q offset as the baseline level, while in theory,

we should have used the average level of P offset to Q onset segment and Q offset
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to T onset segment. This is also due to the difficulty in T wave segmentation and
will be addressed in the next chapter using deep learning.

Another limitation of this chapter is that our labels were provided by the Mortara
machine, which is based on the deterministic rule-based Minnesota Code (Prineas,
Crow, and Z.-M. Zhang 2009). In theory, machine learning models can discover the
rules given enough training data and training time. To address this issue, in the next
chapter, we will perform classification using machine learning models on additional
datasets (ICBEB and PhysioNet) where the labels were provided by the cardiologists.

Another limitation of our study is that we did not build gender-stratified models,
nor did we include gender as a feature. As introduced in section 2.3, men and women
have different risks in many cardiac diseases. For example, men have predominance
in ischemic heart disease, we can expect that a gender-stratified model would
perform better and be of higher clinical relevance than the unstratified model. We

will look at gender-stratified models in Chapter 7.
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6.1 Introduction

In the previous chapter, we studied 11 representative traditional machine learning
models, although some of them obtained good ECG classification, their performance
is sensitive to the choice of the features. Also, these methods need feature extraction
from the raw ECG signals. In this chapter, we use end-to-end deep learning to classify
ECG signals, taking the raw ECG signals as input, without preprocessing or feature
extraction steps. We start with an overview of the core principles of deep learning,
followed by a proposal to use a novel deep learning architecture family, called
Layer-Wise Convex Networks (LCNs), and a theorem by the same name. Then we
introduce a heuristic algorithm - the AutoNet - designed to automatically generate
LCNs based on the characteristics of the training set. Finally, we demonstrate the
performance of AutoNet-generated LCNs compared to the state-of-the-art end-to-
end deep learning model for ECG classification on three datasets: (i) International
Conference on Biomedical Engineering and Biotechnology (ICBEB)! Physiological
Signal Challenge 2018, (ii) the PhysioNet Atrial Fibrillation Detection Challenge
2017 (Clifford et al. 2017), and (iii) the China Kadoorie Biobank (CKB)?. The data

description for the three datasets are provided in Chapter 4.

Thttp://2018.icbeb.org/Challenge.html
Zhttps:/ /www.ckbiobank.org/site/

67



68 6.2. Introduction to Deep Learning

6.2 Introduction to Deep Learning

A comprehensive introduction to deep learning merits a textbook in itself. This
section summarises the core principles of deep learning to enable the readers to
understand this thesis. Interested readers are encouraged to refer to I. Goodfellow,
Bengio, and Courville 2016 for further details.

The name “deep learning” was given to neural networks after the rediscovery
of their power in pattern recognition since 2012, thanks to the growing amount of
training data, increasing computational capacity, and theoretical and algorithmic
advances which have enabled successful training of much deeper neural networks
than what was previously possible. In this thesis, we use the term “deep learning”

and “neural networks” interchangeably.

6.2.1 Basic Formulation

Let us use supervised K-class classification as an example, and denote the design
matrix with X € RP*™_ where D is the dimension of the feature vector, m is the
number of training examples, Y € R¥*™ represents the one-hot-encoded training
targets (in unsupervised learning, Y may be equal to X or some function of X),
where K is the number of classes. Let ¥ represent, the prediction of Y given by

an L-layer neural network, then each layer of the network computes:

z = wlAl=1 4 pll (6.1)

Al = gl (ZIy (6.2)

for [ =0,1,..., L. Layer 0 and layer L represent the input and the output layers,
respectively; in other words, A” = X, and AM =y. All € R™>m is called the
activation or output of layer [; gl is (usually) the non-linear activation function of
layer I; Z1 e R™"">m i5 the affine transformation of the activations of layer [ — 1;

wll e Rnn1 g the weight matrix pointing from layer [ — 1 to layer [ in the
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forward pass; nl"1 and nl! are the number of neurons in layer [ — 1 and layer [,

respectively. b € R"" is the bias vector of layer .
Loss Functions and Output Activations

The choice of the loss functions and the output activation functions are closely linked
to the machine learning problem. For binary classification, the default choice is the
binary cross-entropy loss (equation 6.3) with a sigmoid output; for K-class (K > 2)
classification, the default choice is the multi-class cross-entropy loss (equation 6.4)
with a softmax output; and for regression problems, the default choice is the mean
squared error (equation 7.4), and linear output (identify mapping). These choices

correspond to the maximum likelihood approach.

1 & N -
E = - > lyilog 9; + (1 — y;) log(1 — 9;)] (63)
i=1

1E &
— Z Z Yik 10g i (64)

m i=1 k

1 & "2
E=—3% (yi— ) (6:5)
i=1

To see this, we first look at binary classification and assume we have m training
examples and denote the two classes as class 0 and class 1, and the training target
for the ith training example as y; € {0, 1}. We interpret the output of the neural
network as the estimate of the posterior for class 1, i.e. §; = p(y; = 1|x;), then

we can write down the posterior for each training example x; as:

p(yilz:, 8) = 9.7 (1 = 9:)' ™% (6.6)
where §; = 9;(x;,0). Assume the training examples are identically and independently

distributed (i.i.d.), using the Bayes rule, we can write down the likelihood of

the entire training set as

s p(yi’miv R 1 p(iL’)
p(X|Y,06) Hpa:,yz, ) =11 || vi(] — vill% g7
| | Pale p(yz ( 6.7
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Taking the negative logarithm of equation 6.7, we have

—logp(X|Y,0) = = [y; log §i+(1—y;) log(1—3;)] —>_log p(x;) +mlog C' (6.8)
=1 =1

Because the logarithm function is monotonically increasing, maximising the
likelihood (equation 6.7) is equivalent to minimising the negative log-likelihood
(equation 6.8); and because the term — Y1 log p(x,) + mlog C' in equation 6.8
is invariant to 8, maximising the likelihood is equivalent to minimising the first
term on the right-hand side of equation 6.8, which is equivalent to minimising
the binary cross-entropy loss (equation 6.3).

One justification for using the sigmoid output for binary classification is that
the output of the sigmoid function lies in the open interval of (0,1). Another
justification is that we can rearrange the posterior p(y = 1|z) into a sigmoid
function, the proof of which has been given in Chapter 5.

The similar argument applies to softmax output layers with multi-class cross-
entropy loss for multi-class classification, as the sigmoid function can be seen as a
particular case of softmax when K = 2. Similarly, the mean squared error loss with
linear output can be derived from taking the negative log of Gaussian likelihood
172, N(9;, 871), where 57! is the precision and is invariant to 8. We can see that
these choices mean that the loss is non-convex with respect to the parameters if

the network has at least one non-linear hidden layer.
Hidden Layer Activation

In principle, the aforementioned activation functions - sigmoid, softmax, and linear
- can also be used in hidden layers, although now the use of sigmoidal activations
is discouraged in feed-forward hidden layers. Hidden layers with linear activations
have the effect of dimension reduction, and two consecutive linear layers are not
equivalent to a single linear layer with the same number of parameters, as the
former approach requires the resulting weight matrix to be decomposable into two
real matrices, while the latter approach has no such constraint.

Rectified linear unit (ReLU, Jarrett et al. 2009; Nair and G. E. Hinton 2010;

Glorot, Bordes, and Bengio 2011, equation 6.9) remains the default choice when
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building neural networks. The drawback of ReLU is that it has large regions with 0
gradient, therefore researchers have come up with piece-wise linear activations that
have gradients everywhere, such as leaky ReLU (Maas, Hannun, and A. Y. Ng 2013),
parametric ReLLU (K. He et al. 2015) and maxout (I. J. Goodfellow, Warde-Farley,
et al. 2013), where the domain of the function is divided into K regions, with
each region having increasingly larger positive gradient than the previous region,

and the gradient can be learned or fixed.

y = maz{x,0} (6.9)

It was once believed that only the everywhere-differentiable functions could be
valid hidden layer activations, and sigmoidal functions were the most popular choices.
However, sigmoidal functions have large regions of saturation, where the gradient
is very small, which hindered the training of deep neural networks. Nowadays,
it is found that functions with defined left and right gradients everywhere are
sufficient to act as the hidden activations, while everywhere-differentiability is not
necessary. Now the choice of hidden layer activation has the trend of having mostly
piece-wise linear regions. This is because piece-wise linear activation functions
do not introduce second-order effects. Also, almost all commonly used activation
functions are monotonic. 1. Goodfellow, Bengio, and Courville 2016 observed that
non-monotonic activation functions make training extremely difficult. The switch
from sigmoidal functions to piece-wise linear functions as hidden activation is one
of the key factors contributing to the recent advancements in deep learning. Jarrett
et al. 2009 observed that in small datasets, using piece-wise linear hidden units is
more important than actually learning the appropriate weights: ReLLU nets with
random weights are sufficient to propagate useful information.

Although the use of sigmoidal activations are discouraged in feed-forward hidden
layers, they are useful in specialised architectures. For example, tanh and sigmoid
can act as “gates” in gated architectures such as the long sort-term memory (LSTM)

and the gated recurrent units (GRU).
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Width and Depth

The primary neural network architecture design consideration, after deciding on
the model family (e.g. feed-forward, recurrent, or convolutional neural networks), is
the width and depth of the network. The width refers to the number of neurons
in each layer of the network, and the depth refers to how many layers the network
contains. There is no consensus as to how to count the layers: some authors count
only one of the output and input layers, while others count both; some authors
only count layers with learnable parameters, while others also count layers without
learnable parameters, such as pooling layers; some authors count the convolutional
layers and activation layers separately, while others consider the convolutional and
activation a single layer and call it convolutional layer. There is also no consensus
as to how many layers qualify as deep.

There is also little theoretical guidance on the choices of the width and depth of
the network. A narrow and deep network is generally believed to generalise better
than a broad and shallow network, given a fixed total number of parameters. A deep
network, compared to a shallower one, also encodes the practitioners’ preference
for learning hierarchical factors of variations over independent factors of variations,
meaning more complicated factors of variations may be built upon simpler factors
of variations. However, a deep network can also be more challenging to train, due
to vanishing and exploding gradients, and the worsening of Hessian conditioning (in
more detail in section 6.2.2) as the depth increases. Another intuition that depth
may not always help is that the human brain only has six layers of neurons (Marieb
and Hoehn 2007), although there is an abundance of interconnections and feedback
loops. Hanin 2018 et al. proved that for ReLU nets, given a fixed total number of
parameters, the network with all identical width layers is the least susceptible to
vanishing and exploding gradients, suggesting deep networks with the same number
of neurons in each layer may have desirable properties.

The choice of depth and width of an neural network is mostly designed by trial
and error. In this thesis, we attempt to determine them, based on principles of

information theory. We regard each training example as one piece of information,
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and our goal is to create a model that makes the most use of the training set while
also facilitate optimisation. We determine the depth using principles of reinforcement

learning and adapt the model size according to training and validation losses.

6.2.2 Optimisation

From section 6.2.1 we learned that the common choices of loss functions are no
longer quadratic with respect to the parameters to be optimised if the network has
at least one non-linear hidden layer. Also, neural networks have the property of
weight space symmetry, which means swapping two neurons of the same layer and
their input and output weights, we can obtain an equivalent neural network with
different parameters. Thus we cannot solve for the parameters that minimise the

loss. Instead, we must resort to iterative numerical optimisation to reduce the loss.

Gradient Descent

Let 0 denote the vector collecting all parameters of a neural network (including
weights and biases), the directional gradient of loss F with respect to any unit
vector w is V,E(#). To minimise E£(0), we follow the direction that decreases

E the fastest, i.e.

u* = argmin V, F(0) (6.10)
from vector calculus, we have
u* = —VeE(9) (6.11)

which means the direction that minimises E the most is the negative gradient. The
iterative optimisation following the negative gradient of the loss is called steepest
descent, gradient descent, full-batch gradient descent, or batch gradient descent.

Formally, it updates the parameters by

0=0—aVeE(0)=06— %Z VoE;(6) (6.12)
i=1
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where « is the learning rate. Since the loss term is usually a sum over all training
examples, one update step of steepest descent would require O(m) computation
just for the summation operation. Deep learning typically handles millions of
training examples, thus O(m) complexity is undesirable. Researchers realised the
loss term could be interpreted as an expectation over the training set. Therefore
the expectation can be estimated with much fewer training examples, leading to
stochastic gradient descent. There is some inconsistency in the literature regarding
the use of the term “batch”. Here we follow the convention by I. Goodfellow, Bengio,

and Courville 2016 and define the following concepts:

¢ Batch size: the number of training examples used to make an update of the

parameters, demoted as my,.

o Batch gradient descent: same as steepest gradient descent, using all training

examples to make one update of the parameters, i.e. m, = m.

« Stochastic gradient descent: using less than all training examples to make one

update of the parameters, i.e. 1 < m, < m.

¢ Mini-batch gradient descent: using less than all and more than one training

examples to make one update of the parameters, i.e. 1 < my < m.

e Online learning: using only one training example to make one update of the

parameters, i.e. my, = 1.

Almost all modern deep learning is powered by stochastic gradient descent (I.
Goodfellow, Bengio, and Courville 2016). A full pass through the entire training set
is called an epoch. The batch size influences generalisation error and training speed:
a small batch size has a regularisation effect to reduce overfitting, but it takes longer
than a large batch size to go through all training examples. The batch size is often

set as powers of 2 to take computational advantage of multi-core hardware.
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Figure 6.1: Back-propagation expressed as propagation of 4. Blue arrow: forward pass;
red arrow: backward pass. Reproduced from Bishop 2006.

Backpropagation

In the last section, we can see that gradient descent requires the evaluation of
VeE(60). This is implemented in deep learning using backpropagation, or backprop
for short. Backprop is not an optimisation algorithm, but a way to calculate the
gradient iteratively using the chain rule of calculus and smart representation of
recursive entities, and can be used outside the deep learning context.

The mechanism of backprop is shown in Figure 6.1. Let us denote the weight
pointing from unit ¢ to unit j in forward propagation as w;;, then the gradient of

the nth training example with respect to w;; can be obtained by the chain rule:

aE . 8E BZJ‘

= 1
0wij 8zj 8wij (6 3)

We aim to find an entity that can be expressed recursively from the output
layer to the input layer, much like z and a in forwarding propagation, but in

reverse. If we use J; to denote %, we have
J

§; = ngJ = zk: gigz = zk:ék(gzZZj) = zk:(h(wjkg;) = g; zk:wjkék (6.14)
where k denotes the neurons of the layer above, and we have made use of
equations 6.1 and 6.2 and the fact that any changes in neuron j of layer [ will
influence the loss £ via all neurons of the layer above (layer [ +1). We can see that

0 is indeed expressed as a weighted sum over the same entity of the layer above.

Finally, we substitute equation 6.14 into equation 6.13 and obtain
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oF

0wij

Comparing equations 6.14 and 6.15 with equations 6.1 and 6.2, we can see that
backprop is analogous to propagating the “differential” information (¢) from the
output to the input layer, and § is calculated as the weighted sum of § of the layer
above, multiplied by the derivative of the activation function of the current layer.

The most common implementation of backpropagation updates all parameters
together in each iteration. Block optimisation updates a subset of the parameters

in each iteration, for example, layer-by-layer.
Challenges Faced by Gradient Descent

Almost all deep learning is powered by stochastic gradient descent and its variations
(I. Goodfellow, Bengio, and Courville 2016). Gradient descent, including stochastic

gradient descent, faces several challenges, presented as follows:

Learning Rate

The learning rate («) is arguably the most critical hyperparameter to tune (I.
Goodfellow, Bengio, and Courville 2016). If the learning rate is too high, the
training can miss the minimum or even diverge, but if the learning rate is too low,
training is prolonged or can get stuck at local minima or plateaus. The choice of
the learning rate is highly associated with the conditioning of Hessian, as to be
discussed shortly. The most common practice is to have an initial learning rate aq

and reduce it as the training progresses. There are several protocols: exponential

decay (o = ag x 0.95¢Poch numbery & — 1+decay,ratei(;poch number> & = m’
step decay, and manual decay. Ng recommends prioritising tuning ag over the other
hyperparameters in the learning rate schedule (A. Ng 2015). I. Goodfellow, Bengio,
and Courville 2016 suggests training the model for a few epochs with different
learning rates, then initialise the learning rate to be slightly higher than the best-

performing learning rate. Learning rate can also increase as training progresses:

cyclic learning rate scheduling (Smith and Topin 2017; Smith 2017) periodically
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increases and decreases the learning rate, aiming to escape poorly-conditioned areas

and local minima.

Poor Conditioning of the Hessian

The Hessian matrix is the second derivative matrix of the loss with respect to the
parameters. The conditioning of Hessian is quantified by the condition number
of the matrix, calculated as max; |f\‘—;|, where A = {)\;} are the eigenvalues of the
Hessian matrix. Since the second derivative of any continuous function is permutable,
and we rarely use non-continuous activation functions, if at all, the Hessian we
encounter in deep learning is real symmetric. Any real symmetric matrix has real
eigendecomposition, so the condition number is defined unless the Hessian is singular.

The conditioning of Hessian describes the “curvature” of the loss surface. If
the condition number is large, the gradient in the directions corresponding to
large-magnitude eigenvalues changes fast, while the gradient in the directions with
small eigenvalues changes slowly. Gradient descent has no information regarding the
second-order behaviour of the loss surface, thus will take a long time “zigzagging”
along the fast-changing directions and make little progress in the slow-changing
directions. Training can waste much time if the direction leading to a minimum
has a slow-changing gradient. Poor conditioning can also make choosing learning
rate difficult, as some directions require a high learning rate, while other directions
require a low learning rate.

The Hessian can even be singular, meaning its determinant is 0. Singular Hessian
completely degenerates along one or more dimensions, which may be caused by
redundancies in the training data (meaning some of the training data are co-linear of
each other). In practice, the Hessian can also be singular due to numerical rounding
errors and underflow. Singular Hessian’s condition number is effectively infinite.
The above problems will cause numerical instability and often result in errors in

the program.

Critical Points other than Global Minima
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Critical points are the points at which all derivatives are 0. In addition, if the
Hessian is positive definite, the critical point is a minimum; if the Hessian is
negative definite, the critical point is a maximum; if the determinant of the Hessian
is negative, meaning the Hessian has both positive and negative eigenvalues, the
point is a saddle point. Finally, if at least one eigenvalue is 0 while other eigenvalues
have the same sign, then the point is inconclusive.

For a long time, researchers attributed the difficulty in training deep neural
networks to the presence of local minima. This is now found not the case, especially
when the parameter space is of high dimension: the probability of encountering
minima and maxima are exponentially lower than encountering saddle points.
I. Goodfellow, Bengio, and Courville 2016 concluded that local minima typically
have low loss rather than high cost; critical points with high loss are typically saddle
points, while critical points with very high loss are typically local maxima.

Local maxima rarely cause problems in neural network training using first-order
methods, as gradient descent follows the negative gradient downhill, rather than
solving for a critical point, where the gradient is 0. Saddle points may cause
problems because training can get stuck at the saddle points where the gradient is O,
but the loss is still high, as saddle points are maxima in the directions with negative
eigenvalues. 1. J. Goodfellow, Vinyals, and Saxe 2014 observed that stochastic
gradient descent can escape saddle points relatively quickly, perhaps thanks to
the noisy gradient estimation introduced by the mini-batches, resulting in the
estimated gradient not precisely 0 even at saddle points, thus training can follow
the negative gradient to reduce the loss further.

Plateaus are more problematic. At plateaus, gradients of all orders are O;
training no longer has a guide as to which direction to travel in order to reduce loss

further.

Exploding and Vanishing Gradients
Another problem plaguing deep neural network training is the vanishing and

exploding gradient problem, especially in architectures that reuse the weight
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matrices over may layers (equivalent to unrolling recurrent neural networks along
the time axis).

Suppose an architecture reuses W for ¢ layers (or time steps in RNN case), then
W' term will exist in the function it represents. Using eigendecomposition of W
(equation 6.16), we see that if the diagonal matrix formed by the eigenvalues A of W
deviate slightly from the identity matrix, the resulting A’ will have very large or very
small values for large ¢, causing numerical overflow or underflow. This is the reason

that learning long-term dependencies is difficult for recurrent neural networks.

W' = (Vdiag AV = Vdiag(X\)'V ! (6.16)

Even if these values can be represented in a computer, they will result in very
small or very large gradients (equation 6.14 and 6.15), causing the training to make
infinitesimal steps or “jump off cliffs”. Researchers realised that it is the direction,
rather than the magnitude of the gradient, that matters, and proposed gradient
clipping heuristic to mitigate the exploding gradient problem, by capping the
magnitude of the gradient to a predefined value. A similar idea inspired optimisation
algorithms that adapt the learning rate or re-scale the gradient according to the

local gradient magnitude, presented next.

Adaptive Learning Rate Algorithms

In this section, we present algorithms using adaptive learning rates adjusted for
local gradient or curvature. They are primarily designed to mitigate the poor
conditioning of the Hessian and the vanishing and exploding gradient problems,

and to facilitates the choice of learning rate.

Momentum

The intuition of momentum (Polyak 1964) is that we can avoid oscillation along
the direction with large Hessian eigenvalues by using an exponentially weighted
moving average of the gradient, rather than the gradient in situ, to make parameter

updates. The momentum update rule is as follows:
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Initialise v = 0. In each iteration,

v =P+ (1—B)VeE(H) (6.17)

0t+1 = 015 — Qv (618)

where VgF is calculated on the current mini-batch. The default choice of
is 0.9. Bias correction is usually not implemented. Momentum is named after
the analogy of Newtonian motion in physics. v is analogous to velocity, VgFE is
analogous to acceleration, 8 is analogous to the position, and « is analogous to
the time interval. In physics, momentum equals mass times velocity, and here we
assume unit mass. Therefore v is also the value of momentum. Momentum can

work with full batch gradient descent or stochastic gradient descent.

RMSprop

Hinton proposed Root Mean Squared Propagation (RMSprop) in the Coursera
course Neural Networks and Machine Learning (G. Hinton, Nitsh Srivastava, and
Swersky 2012). RMSprop rescales the gradient by its magnitude, which is calculated
as the square root of an exponentially weighted moving average of the element-wise

square of the gradient. The update rule of RMSprop is as follows:

Initialise S = 0. in each iteration,
So¢ = pSe+ (1 - B)(VeE)’ (6.19)
«
0,1 =0, ——VoFE 6.20
=0 (6:20)

where € is a small positive value, typically 1078, to avoid division by 0. RMSprop
can work with both full-batch or stochastic gradient descent. RMSprop is an

excellent go-to optimisation algorithm to try.

Adam

Adaptive momentum estimation (Adam, Kingma and Ba 2014) combines momentum
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and RMSprop. Initialise vg to 0. In each iteration, compute g—]g using the current

mini-batch, then calculate:

Vg = 51’1)9 + (1 — BOV@E (6.21)
corr __ V9
So = 250 + (1 — 35)(VoE)? (6.23)
So
corr _ 94
Y (6:24)
v;o'r”r'

9t+1 = Gt — (625)

Typically bias correction is implemented in Adam, unlike in momentum and
RMSprop. The default choice for 1 (the first moment) and S, (second moment)
are 0.9 and 0.999, respectively. « still needs to be tuned. Adam is also an

excellent go-to algorithm to try.
Batch Normalisation

Another approach to mitigate poor conditioning of Hessian and the vanishing and
exploding gradient problems is to look at the neural networks layer by layer. If
we fix all other layers, layer [ can only “see” the activations coming out of layer
[ — 1, which means that the Hessian with respect to the parameters of layer [ is
determined by A" Thus a hidden layer cannot tell whether the input is from
the training data or a hidden layer. We can normalise the hidden layers just as
we can normalise the input data. Batch normalisation (loffe and Szegedy 2015)
works by addressing the so-called covariance shift. In machine learning, we usually
normalise the input features to a standard distribution A/ (0, 1). Covariance shift
refers to the phenomenon that as training progresses, the hidden layer activations

gradually deviate from the standard distribution, causing the Hessian to be poorly
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conditioned. The authors also commented that batch normalisation might make
the deep layers more robust to small perturbations in the shallower layers. The
update rule of batch normalisation is as follows:

Within a mini-batch, calculate

1 n
p=_ >z (6.26)
i=1
| nll

o = - Z(Zi —p)? (6.27)
pem = SR (6.28)

(02 +¢€)2
zi =777+ By (6.29)
a; = g(z}) (6.30)

where 7 indices each neuron in the layer. f,, «, are learnable parameters with
each element corresponding to each neuron of the layer. So the parameters of
the network are Wl e R”[Z]X"[H], ~ e ]R"m, Bl e R bl is “absorbed” by
BY. so no longer needed. (B is not to be confused with the hyperparameters of
momentum). v and B[l] have the same dimension as bl". B and ~ are updated
similarly as W using backprop.

Batch normalisation is one of the most exciting recent innovations in deep
learning. As the Hessian becomes better conditioned, the learning rate can be
increased, thus dramatically accelerate training, especially when adaptive learning
rate algorithms such as RMSprop and Adam are used, where the impact of improved
Hessian conditioning will reflect in the increased magnitude of update steps. Also,
by normalising A or Z, batch normalisation can prevent Vy E to be extremely large
or small (equation 6.14 and 6.15), ameliorating exploding and vanishing gradient

problems. There is some debate as to whether to normalise Z or A. Ng recommends
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normalising Z, but the original paper normalised A, and we also find normalising
A works slightly better for Layer-Wise-Convex networks in the experiments.
Batch normalisation with small batch size (32, 64, or 128) also has a slight
regularisation effect, as the mean and variance are calculated from mini-batches,
hence contain noise. Batch normalisation can sometimes render dropout unnec-
essary, although batch normalisation is not recommended to be used as the only
regularisation method (I. Goodfellow, Bengio, and Courville 2016). If the batch
size is 1, for example, when testing one case at a time, the mean and variance can
no longer be evaluated using equations 6.26 and 6.27. An exponentially weighted

running average of mean and variance obtained during training may be used instead.

Second-Order Methods

Optimisation algorithms using only the first-order derivative is called first-order
methods, and algorithms using the second-order derivative is called second-order

methods, presented below:

Newton’s Method
Newton’s method is the most commonly-used second-order method (I. J. Goodfellow,
Warde-Farley, et al. 2013). It is derived from the second order Taylor expansion
of the loss at any point 8:
1

E(6) = E(60) + (0 — 60)"VoE(6)) + 5(9 —80)TH (0 — 80) +O((0 —6o)°) (6.31)
where H is the Hessian evaluated at 6. Ignoring O((6 — 6y)?), at a critical point
0", VoE(6") = 0, we obtain the update rule for Newton’s method:

0" =6, H 'VeE(0,) (6.32)

If the loss is a quadratic function, Newton’s method can jump to the global
minimum in one step. If the loss is locally convex, then Newton method can be
applied iteratively and converges faster than gradient descent. However, if the

Hessian is not locally positive definite, as is often encountered in deep learning,
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Newton’s method can update in the wrong direction and be attracted to saddle points
and maxima. The Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt
1963) improves upon Newton’s method by introducing a hyperparameter o which
is added to the diagonal of the Hessian, but it works only when the negative
eigenvalues do not have large magnitude, in which case a would need to be so large
that the Hessian is dominated by the diagonal and behaves similar to gradient
descent but at a low convergence rate (the rate of convergence is roughly linear
to |ﬁ|, and in this case, roughly [1]).

Newton’s method also requires inverting H, which has cubic complexity of the
number of parameters. Thus Newton’s method is only applicable to networks with

few parameters.

Conjugate Gradient Descent

One way to utilise H without inversion is conjugate gradient descent. It is developed
from analysing the drawbacks of gradient descent with line search. Line search
is the method of jumping to the minimum of the direction corresponding to the
negative gradient in each iteration. The next iteration will start at the critical
point of the previous gradient-direction, thus in steepest descent with line search,
the two consecutive updates are along orthogonal directions. It is easy to see that
this certainly is not the shortest path towards a minimum. Conjugate gradient
descent makes training follow the “conjugate directions” in two consecutive steps,
defined as d]Hd;_; = 0, where d; and d;_, are the directions to descent in step
t and step t — 1, respectively. It can be shown that conjugate gradient descent
will take at most ngy steps to converge to a minimum for quadratic surfaces, with
ng being the number of parameters.

Traditionally conjugate gradient descent was developed for convex loss functions
and as a batch approach. Non-convex conjugate gradient descent has been developed
with occasionally resets using steepest descent with line search, and 1. Goodfellow,
Bengio, and Courville 2016 commented that it is beneficial to initialise conjugate

gradient descent with stochastic gradient descent, possibly to arrive at a location
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where the surface is approximately quadratic.

BFGS

Algorithms that approximate Newton methods are called quasi-Newton methods,
of which the Broyden-Fletcher-Goldfarb-Shanno (BFGS, (Head and Zerner 1985))
algorithm is the most prominent, which approximates H ' by iterative low-rank
updates of a matrix M of the same dimension. As the update is of lower-rank, the
computational complexity is less than O(nj), but it requires storage of the matrix
M, which requires O(n3) memory. The limited memory BFGS (L-BFGS) initialises
the M to be identity matrix for each step, and stores the vectors used to update

M instead of M itself, which only requires O(ng) memory.

Parameter Initialisation

Finally, we discuss issues in parameter initialisation. As deep learning uses iterative
numerical optimisation, and the loss surface is non-convex, the optimisation is
sensitive to the initial parameter values. The initialisation can determine whether
the training will converge at all. Weights and biases are usually initialised differently.
Weights are usually initialised to be small random values, rather than 0, as the latter
will not be able to learn anything due to weight space symmetry. Bias is allowed to
be initialised to be 0, although it is advisable to be initialised to be small positive
values in ReLU nets to allow gradients to propagate at the beginning of training.

There are several heuristics for weight initialisation: we take note that ZU is

1-1]

a weighted sum of Al , o the larger the dimension (number of neurons) of the

previous layer, the smaller we want the activation to be. One way is to initialise the

weights of layer [ to be a uniform distribution of U (—\/ b \/ 6 where

Nin+Nout Nin+Nout

Nin and Ny, are the number of input and output units, respectively (Glorot and
Bengio 2010). This is known as the Xavier initialisation. Moreover, if the layer
[ activation function is ReLU, then initialising the weights to be N (0, nl) works

better (K. He et al. 2015). This is known as He Initialisation.
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6.2.3 Regularisation
Weight Norm Penalty

Just like traditional machine learning, we can add a regularisation term to discourage
the network from learning exceedingly large parameters in order to reduce overfitting.
Weight norm penalty is simply adding a regularisation term > |w;|,, where n,,
is the number of weights in the network. L1 loss is the p = 1 case and encourages
the network to be sparse, while L2 regulation, also called weight decay, in which
p = 2, encourages weights to shrink to small magnitude. I. Goodfellow, Bengio,
and Courville 2016 commented that training may be stuck at a local minimum
corresponding to small weight norms, because weight norm penalty will also shrink

the magnitude of the gradients (equation 6.14 and 6.15).

Dropout

Dropout (Nitish Srivastava et al. 2014) is one of the most popular regularisation
techniques in deep learning thanks to its simplicity. In the layers with dropout,
each neuron has the probability d of being multiplied by 0, in other words, being
“turned off”. d is called the dropout rate. The output of these layers are then
divided by 1 — d to keep the expectation of the output unchanged. Dropout
could be interpreted as an implicit ensemble of many sub-networks of the original
network, thus reaping many benefits of ensemble methods. However, dropout can
introduce much noise and make hyperparameter tuning difficult, as we would be
less sure whether the loss reduction is due to an intervention or the noise in training.
Dropout can also limit the model capacity, and when the training set is large,
under-fitting rather than overfitting is the primary concern. Thus in large training

sets, dropout’s harm outweighs its benefit.
Early Stopping

Early stopping is perhaps the most popular regularisation technique in deep learning,
thanks to its simplicity and saving of computational resources. It works by tracking

the loss on the validation set then terminate training when the validation loss
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stops improving for a preset number of epochs or is below a preset value. After
the training is completed, the set of parameters with the minimum validation
loss is used to make final predictions on the test set. I. Goodfellow, Bengio, and
Courville 2016 proved that early stopping is equivalent to L.2 weight decay for linear
nets. A. Ng 2015 recommends the “orthogonalisation” principle in training neural
nets: separating techniques that reduce the training loss (i.e. reduce under-fitting)
and techniques that reduce the gap between the training and validation losses
(i.e. reduce overfitting), and first apply techniques to lower the training loss to
satisfactory values, then use techniques to reduce the gap between the training and
validation losses. Early stopping impacts both overfitting and under-fitting thus
does not fit into the orthogonalisation principle. Nonetheless, modern practitioners
use early stopping almost universally.

Besides the techniques mentioned above, there are many other approaches to
improve generalisation, including data augmentation, adversarial training, using
small batches, weight sharing/tying, using narrow-and-deep networks instead of
wide-and-shallow networks, and as mentioned before, batch normalisation with
small batches also has regularisation effects. Usually, if a technique is broadly
applicable to different application domains, such as dropout and early stopping,
it is considered a regularisation technique, while approaches highly specific to an
application domain, such as flipping images, are considered data preprocessing.
I. Goodfellow, Bengio, and Courville 2016 recommends when the training loss is
acceptably low and the gap between training and test losses are large, gathering more
data is almost always the most desirable way to reduce overfitting. When collecting
more training data is infeasible, invasive, risky, or costly, which is typical in medical

applications, innovation in algorithmic regularisation is especially important.

6.2.4 Specialised Architectures

In this section, we introduce neural network architectures that are especially suitable
to process input data with specific structures, namely convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). Note that although CNNs and
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RNNs were initially proposed to process image data and sequential data, respectively,
they have also been successfully applied to many other types of data, thus although
the type of neural networks may hint what kind of data they are most adept at, they
are not limited to those data structures. The underlying mathematical operations
and computational costs, and the practitioners’ familiarity with the architecture
(for ease of hyperparameter tuning) should be the primary considerations when

deciding which type of neural network to employ.
Convolutional Neural Networks

Convolutional neural networks (CNN) are networks with at least one layer of
convolutional operation, illustrated in Figure 6.2, equations 6.33 and 6.34, and
formally defined by equation 6.35. It is an example of weight sharing mechanism.
The “small patch” (yellow) in Figure 6.2 is called a kernel or filter, which acts as a
feature detector. The motivation for CNN is that we want to reuse the “feature
detectors” at multiple locations of the input data. For example, we might want
to detect eyes anywhere in the image. CNN is not restricted to applications in
image processing. Instead, it applies to any data that has distributed features, such
as the ECG time-series waveform. Another motivation is that we want to share
the weights within the same layer in order to reduce the number of parameters,

effectively reducing overfitting and lower computational cost.

Z11 = W111T111 + W121%121 + ... + W333T333 (633)

Z12 = W1112121 + W121T131 + W131T141 + ... + W333T343 (6.34)
fc fh fw

Zigr = b4 D DY Wi k()5 (- 1)sik (6.35)
k=1i=1j=1

Figure 6.2 and equations 6.33 and 6.34 show the convolution operation in deep

learning, which is slightly different than what is defined in mathematics, where
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211 Z12

W111 W121 Wi34

W211 W221 Wy3q

W311 W31 W31

Figure 6.2: The convolution operation of a filter

typically a kernel flipping operation is involved. In deep learning, kernel flipping is
usually not implemented. The convolution operation in deep learning is formally
defined by equation 6.35, where b is the bias parameter, by convention one bias
per filter; ¢ is the number of input channels; f, and f,, are the kernel height and
width respectively; w is the kernel weights; x is the element in the input tensor;
s is the stride. The input tensor and the filters must have the same number of
channels. Let fy,, f., and f. denote the height, width, and the number of channels
of the filter, then the filter has f, x f, x f. weight parameters. The resulting
tensor from the convolution operation Z = {z; ;} is called a feature map. If we
have n; filters, then we will have ny feature maps. If we use the convention of
having one bias parameter per filter, a convolutional layer with n; filters will have
ng X fu X fn X fo weights and n; bias parameters. The filters in CNN is equivalent
to the neurons in feed-forward neural networks.

The number of pixels shifted each time is the stride hyperparameter, denoted
s, and Figure 6.2 and equations 6.33 and 6.34 show the case when s = 1. We can
see that the resulting feature map’s dimension is 5 x 5, which is smaller than the
input tensor. If we perform this convolution operation for many layers, the resulting
tensor will be smaller and smaller. We can “pad” arbitrary values, typically Os,
around the edges of the input tensor, and the number of rows or columns added
is another hyperparameter, called padding. If there is no row nor column added,
it is called “valid padding”, and if the resulting feature map has the same width
and height as the input tensor, it is called “same padding”. The “same padding” is

often used to preserve the dimensions of the layers to facilitate skip connections.
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In summary, if the input tensor dimension to a convolutional layer is ny, X 1., X n.,
the kernel dimension is f x f,, X f., and there are n filters, and we use the convention
of one bias per filter, and pad p rows or columns on all edges, with stride s, then
by convention f. = n., then the output shape of such a convolutional layer is
1+ WJ x |1+ %J x ny, and the number of parameters (weights
and biases) are ny x (fy X fn X fo+1).

The convolutional operation is linear and is often followed by a non-linear
activation layer, such as ReLU. Another operation often applied in CNN is pooling,
which calculates a value from every k input values, typically the max value or
the mean value, in effect reduces the dimension of the resulting tensor. Pooling
layers do not have parameters to learn. If the input tensor has n. channels, the
output of max-pooling also has n, channels. The pooling is done on each channel
independently. Average pooling is less often used than max-pooling, perhaps
because the averaging operation is linear, which can be learned at the convolutional
layer, while maxing operation cannot be learned from other layers. Maxpooling
usually does not use any padding.

There is very little theoretical guidance on the choice of the CNN hyperparam-
eters - kernel size fj, f., stride s, number of filters in each layer, the number of
layers, etc. The following notable CNN architectures have played essential roles
in the renaissance of deep learning, and mostly drew attention when they won
the ImageNet Large Scale Visual Recognition Competition (ILSVRC) held each
year. As will be introduced shortly, they all made some attempts to choose the

hyperparameters in a principled way.

Notable Architectures

The first CNN, LeNet-5, was proposed by LeCun et al. 1998 to read handwritten
digits. LeNet-5 started using repeating structures comprised of one or more
convolutional layers, followed by a pooling layer. These repeating structures were
then followed by a flatten layer to concatenate the last output tensor into one long

vector, then connect to several densely connected layers for classification. LeNet-5
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also popularised the heuristic of reducing f;, and f,, and increasing f. as the layers
go deeper. The convolution-pooling blocks served as feature extraction layers,
and the fully-connected layers, typically having a decreasing number of neurons,
reduced dimensions gradually, and the final layer served as the classifier. LeNet-5
was trained on grey-scale images and had 7 layers and about 60,000 parameters.
Modern CNNs typically have millions of parameters.

AlexNet was proposed by and named after Alexander Krizhevsky (Krizhevsky,
Sutskever, and G. E. Hinton 2012) and was the first neural network to win ILSVRC,
which has a profound impact on deep learning history as it convinced the computer
vision community of the power of deep learning. AlexNet has a similar architecture as
LeNet-5 but is a much larger network, with 8 layers and over 62 million parameters.
AlexNet was trained on RGB images.

AlexNet has many arbitrary choices of the hyperparameters, especially the kernel
size and the stride. Google Inception (Szegedy et al. 2015) forsook the choice of
kernel size, and whether or not to use max-pooling, instead, it stacks the outputs
of 64 1 x 1, 128 3 x 3, 32 5 x 5 convolutional layers, and one maxpooling layer to
form an “inception module”, then stack the inception modules to form the whole
inception network. Inception has 22 layers and over 6 million parameters. It won
ILSVRC in 2013. The computational cost of inception is very high. It used 1 x 1
convolution (M. Lin, Q. Chen, and Yan 2013) to reduce the computational cost.
Inception network has a few side branches with softmax outputs to make sure
that hidden layers are indeed learning useful features for the final classification.
Inception is also named “GoogLeNet” to pay homage to Yann LeCun and LeNet-5.

Simonyan and Zisserman 2014 took the “principled” hyperparameter selection to
another level to build VGG-16. They used an increasing number of neurons as the
layers go deeper, resulting in a total of 16 layers and 138 million parameters. The
relatively rational choice of hyperparameters makes it attractive to the developers.

VGG-16 won ILSVRC in 2014.

3The name “inception” comes from the internet meme “we need to go deeper” from the movie
Inception (2010).
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Residual connections (K. He et al. 2016) are also called skip connections. It
is one way to address the vanishing gradient problem in training deep networks
and works by copying the activations of a faraway layer to the current layer,
and the addition is performed originally before activation and after the affine
transformation (equation 6.36, where the residual connection connects layer [ and
layer [ — 0), although there are many variations. K. He et al. 2016 developed
the “ResNet” featuring residual connections and won ILSVRC in 2015. ResNet

has 152 layers and 60 million parameters.
Al = gowll Al - pll - A0 (6.36)

We can see that the development of the state-of-the-art CNNs has the trend of

increasing depth, but the number of parameters does not necessarily increase.

1-D CNN

The convolution operation can also be performed on sequential data, such as ECG
time-series waveform, which can be single-lead or multi-lead, and the ECG leads
correspond to the RGB channels of images. The only difference is that n, = f, = 1.
Note that 1-D CNN does not treat multi-channel sequential data as an image. In
other words, using 1-D CNN on multi-channel sequential data is not equivalent to
stacking the channels together and form a 2-D “image” then feed into a 2-D CNN,
as the former approach would require the kernels of the first convolutional layer to
have precisely n. channels, while the latter approach allows for free choice of the

kernel size along the n; dimension as long as f, < n., while f. = 1.

Recurrent Neural Networks

Recurrent neural networks (RNN), illustrated in Figure 6.3, is designed to use the
same model parameters to process long sequences of data, by reusing the weight
matrices over many time-steps. RNN is also a weight sharing mechanism, and

instead of sharing the weights within the same layer, as CNN does, RNN shares
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Figure 6.3: Recurrent neural network unrolled through time

weights over depth. If we use X< and Y <~"to denote the value of X and Y

at time step t, then the network can be expressed as

AT = g (W0 AT 4 W, X2 4 b,) = g1(W,[A™7 X <] 4 b,) (6.37)

A <t>

Y T =gp(W,AY +b,) (6.38)

where A< is initialised as 0. [A; B] means vertically stacking matrices A and
B, and [A, B] means horizontally stacking matrices A and B. W, = [W ., W ,.].
Backpropagation in RNN along the time axis is called backprop through time.
The activation function g; in RNN is usually tanh, and less commonly ReLLU. The
output activation g is usually sigmoid.

Sometimes not only the information before the query is informative but also
the information following the query, such as in the blank-filling task of “They are
taking the to Isengard.” This gives rise to bidirectional RNN (Schuster

and Paliwal 1997).

Because of the weight sharing mechanism, RNN typically has few parameters,
but reusing the weight matrices over depth makes RNN especially susceptible to the
vanishing and exploding gradient problem. As a result, it is difficult to train RNN
over long sequences. Similar to skip connections in CNN, researchers come up with

addition operations to help gradient to propagate to distant time-steps. Moreover,
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unlike the number of skipped layers being fixed hyperparameters in the ResNet,
researchers make the network learn the appropriate time-steps to skip, using “gates”.
At each time-step, the “state” of the network has a probability of being forgotten,
kept the same, or updated. This idea gives rise to gated architectures, with Gated
Recurrent Units (GRU, Cho et al. 2014) and Long Short-Term Memory (LSTM,
Hochreiter and Schmidhuber 1997) as the most prominent examples. Despite
these advances, an RNN still struggles to retrieve information from very distant
sequences. The attention mechanism (Ashish Vaswani et al. 2017) makes significant
contribution in this respect. It was developed as an encoder-decoder RNN network.
The encoder RNN is typically a bidirectional LSTM, and the decoder network is
another RNN. The encoder and decoder networks are linked by learnable parameters
which represent how much weight the decoder RNN should place on the different
time-steps of the encoder RNN outputs.

RNNSs can also be stacked together, although the computational cost of a 3-layer
RNN is already intensive, so deep RNN is relatively rare.

6.3 Layer-Wise Convex Networks

6.3.1 Motivation

The Layer-Wise convex network (LCN) theorem is motivated by the aim to design
neural networks rationally and to make the most out of the training set. A feed-
forward neural network is essentially a computational graph where each layer can
only “see” the layers directly connected to it, and has no way to tell whether its
upstream layer is an input layer or a hidden layer. This “layer-unawareness” idea
is similar to what is acknowledged in the development of batch normalisation and
is central to the LCN theorem. LCN approaches machine learning from function

approximation and information theory perspectives, detailed below:

6.3.2 Derivation

Suppose we have a training set of X € R”*™ and training labels Y € R™, and there

exists a deterministic data generating process f : X — Y. We aim to approximate
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the data generating process f using a neural network. The universal approximation
theorem (Hornik, Stinchcombe, and White 1989; Cybenko 1989) states that a feed-
forward neural networks with linear output and at least one sufficiently-wide hidden
activation layer with a broad class of activation functions, including sigmoidal and
piece-wise linear functions (Leshno et al. 1993, can approximate any continuous
function and its derivative (Hornik, Stinchcombe, and White 1990)) defined on a
closed and bounded subset of R™ to arbitrary precision. But how wide should
the hidden layer be?

According to universal approximation theorem, there exists a set of neural

network parameters @ such that

If = f(0)] <e (6.39)

Ve > 0. As the neural network computes a chain of functions, if we can find @, then

Ve > 0 and [ € [0, L], it must satisfies the following equations:

LT G Wy L (6.40)
AV = x (6.41)
AL — v | <€ (6.42)

where A" e RO"Dxm and it differs from A as it has one dummy row of 1s
to include b into §. In other words, A = [1; A]

To estimate 0: Recall an over-determined system of linear equations Ax =y
has a unique set of solutions that minimises the Euclidean distance |Ax — y|s.
Can this property be extended to nonlinear equations? The answer is yes, as long
as the nonlinear activation ¢! is strictly monotonic and its reverse function is

Lipschitz continuous. A real function h is said to be Lipschitz continuous if one

can find a positive real constant K such that
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|h(z1) — h(z2)| < K|y — 29| (6.43)

for any real x; and x5 on the domain of h. Any function with bounded gradient on
its domain is Lipschitz continuous. As the inverse function of strictly monotonic
function is defined and unique, we can write the equivalent form of inequality

6.40 and take reverse function of both sides:

LIy G L G RS I (6.44)

Using Lipschitz continuity of g~'¥, we can find a positive real constant K such that

g*”l](ﬁm) CKe< g*”l](ﬁm —e) < G[z]A[lfl} < gq[z](ﬁ[l] te) < g—l[l](A[l]]) + Ke

(6.45)

Ve, which implies
9mA" g1 (A" < Ke (6.46)
lim A" = g-1(A") (6.47)

e—0

We have conveniently transformed the nonlinear inequations 6.40 into a set of
linear equations (equation 6.47), and all we need to do is to make sure equation 6.47
is over-determined, i.e. we have more equations than the number of variables, as
we have m training examples, each contributing to one equation, thus the sufficient
and necessary condition for equation 6.47 to have a unique solution that minimises
the Euclidean distance [@ A= — g=1( A])|, is ng < m, and it is easy to see that
when ng = m we can find the unique solution to make the Euclidean distance

arbitrarily close to 0. The formal theory is given in the next section.
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6.3.3 The Layer-Wise Convex Theorem

Theorem 1 For an L-layer feed-forward neural network, the sufficient conditions

for there to exist a unique set of parameters WU and b that minimises the

Euclidean distance |AW — gll(Wl A=Y gy, vi e [1, L] are:

. ng‘], —i—nl[,”

n[vl‘}, and ”1[)” are the number of weights and biases in layer I, respectively.

<m, VI € [0, L], where m is the number of training examples, and

e The network does not have skip connections;

o All activation functions of the network are strictly monotonic, but different
layers may have different monotonicity. For erxample, some layers can be

strictly increasing, while other layers can be strictly decreasing.

o All reverse functions of the activation functions are Lipschitz continuous.

Definition 6.3.1 Layer-Wise Convex Network: Any network fulfilling theorem 1
is called a Layer-Wise Convex Network (LCN).

Intuitively, the LCN theorem states that if a network fulfills the above conditions,
then there exists a unique set of W and bl that minimises the distance between
Al and g[l](WmAm +b1). One may wonder: isn’t the distance suppose to be 0 all
the time, as defined by equations 6.1 and 6.27 The key difference is that in each
backpropagation iteration, LCN views the activations as fixed and already have
the appropriate values corresponding to the “optimal” model that can approximate
the data generating process with minimum possible error from the information
available in the training set, and our goal is to “reverse-engineer” the appropriate
values for W and b. During forward pass, the values of A are updated with the
new W and b using equations 6.1 and 6.2, and our hypothesis is that in this
way the network will converge to the “optimal model”. In some sense, the LCN
reverses the role of A and 6, and regards A being the ones that are initialised at
the beginning of training (which is equivalent to initialising the W and b), and

training should in theory start with backward pass rather than the forward pass.
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However, so far we still use conventional optimizers such as Adam, mainly due to
limitations in programming skills to build robust customised optimizer for LCN.
As will be shown in the later sections, optimizing LCN with Adam works very
well, which validates our hypothesis that training starting from backward pass or
forward pass are computationally equivalent, but may have different interpretations
depending on the perspectives to view the network.

The name “Layer-Wise convex network” comes from a related legacy hypothesis
which states that for a network (@) fulfilling conditions in theorem 1, any convex
loss E(9(0),y) with respect to ¢ is also convex with respect to the hidden layer
parameters, provided all parameters of the other layers are fixed. This is later
proven not true for networks allowing negative activations, such as leaky ReLU nets,
and we would not want to restrict the network to have only positive activations,
thus we proposed the current version of the LCN theorem. It is easy to see that
minimising the Euclidean distance is equivalent to minimising the mean squared
error (MSE), which is not only convex but quadratic, thus a more accurate name
should be “Over-Determined Layer-Wise Quadratic Networks (OLQN)”, but it
is a mouthful and does not have a nice ring like “Layer-Wise Convex Network

(LCN)”, thus we continue naming it LCN theorem.

6.3.4 The Timescale Hyperparameter for Periodic Sequen-
tial Inputs

In our pilot experiments, we found that for signals with clear periodicity, informing
the model with the timescale of the period can be very helpful. The estimation of
the period need not be precise. For example, in the ECG data, we only need to
let the model know that the input data period is in the order of seconds, so the
model is designed to create a prediction roughly every second. As one can see, the
timescale information given to the model is very rough, as the average heart rate is
70-100 beats per minute, meaning the period is, in fact, less than 1s, and irregular
heartbeats may be even more off the 1s estimation. Still, as will be demonstrated

shortly, the model can learn well with this simple information.
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We call this rough estimation of the input data period the timescale hyperpa-
rameter and denote it as 7. The number of max-pooling layers is determined by the
timescale hyperparameter 7, sampling frequency f,, and pooling size p according
to the equation 6.48. For example, if the input is 500Hz ECG time-series, and we
set the timescale 7 = 1s, and use default p = 2, then we can calculate the number

of max-pooling layers to be [1slog,(500Hz2)] = 9.

Nmazpool = ﬂng(fsT)—‘ (648)

If the input signal is not apparently periodic, then one only needs to set f;7 = D,
i.e., assume the entire input time-series represents one period, and the model will

output only one prediction for the entire signal.

6.3.5 Building Layer-Wise Convex Networks: a Worked
Example

Let us look at a concrete example of applying LCN theorem to design model
architecture for the CKB dataset. The CKB problem can be cast into a four-class
classification problem. The balanced dataset has 7,472 examples. If we separate it
into training, validation, and test sets at 8.1:0.9:1 ratio, then we have 6,056 training
examples, 672 validation examples, and 744 test examples. Each training example
is 12-lead, 10s, 500Hz ECG time-series, which means the input dimension D of
each training example is 5,000 x 12 = 60,000. According to the LCN theorem, the
number of parameters per layer should not exceed 6,065. Because D > m, if we
use a feed-forward network, the first layer will have at least D parameters, thus we
must use weight-sharing mechanisms, and CNN is a natural choice.

Because we are analysing time-series data, 1-D CNN is a natural choice. In
1-D CNN, one of n,, and n;, equals 1, and n. equals the number of input channels.
In this thesis we use the convention n, = 1, f, is also constrained to be 1. We
use the letter k to denote fy.

To simplify the design process, we use repeating structures and make sure all

layers have the same output shape until the output layer. The repeating structure
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not only reduces the number of hyperparameters, but also is the least susceptible to
vanishing and exploding gradient problems (Hanin 2018). It is also easy to see that
between the last convolutional layer and the output layer we should not add fully
connected layers, because in order not to exceed the upper bound, the dimension
of densely-connected layers has to be very small, which means that it will become
“bottlenecks” of the flow of information. Therefore we should only use convolutional,
pooling (for dimension reduction because of 5,000 x 12 x 4 +4 > 6,056), and
softmax output layers. If we use CNN layers with kernel size k, stride s, padding

p, and the number of filters ny, the output shape of such convolutional layer is

(Linput dimeniion—k+2p+1J

,nys), and the number of parameters of this convolutional
layer is ny(knyg+1) (assuming we are stacking several convolutional layers together).
Since stride s > 1 will result in dimension reduction, and empirically, it is not
performing as well as max-pooling, we keep s = 1. To keep output shape identical to

the input shape, we use “same” padding, then we calculate k£ and n; by equation 6.50.

k = ny = argmaxny(n} + 1) (6.49)

subject to
ng(nf+1)<m (6.50)

We constrain k& = ny to avoid k being unreasonably large for long signals
with few channels.

Since the CKB problem is a four-class classification problem, the output layer
will be a four-unit softmax layer. Finally, to determine the number of max-pooling
layers, we recommend using as small a pooling kernel as possible , so we can build
as deep networks as possible. The smallest pooling size is 2. Since the CKB input
data contains highly periodic ECG, with the duration of a heartbeat roughly once
a second, we therefore set the timescale hyperparameter 7 = 1s, and make the
model produce one prediction roughly every second. The number of max-pooling

layers is thus [log,(fs7)] = [logy(500Hz x 1s)] = 9.
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Figure 6.4: Baseline model architecture. The number of max-pooling layers is calculated
by equation 6.48. Before each max-pooling layer, the baseline model has one convolutional
layer and one activation layer, which can be ReLU or leaky ReLU. When adding skip
connections, the post-convolution (before activation) tensor is added to every nmazpoot — 1
post-convolution tensor (see figures 6.5). When necessary, the batch normalisation layers
are added after the input layer, and after every activation layer.

Now we have the baseline model (figure 6.4), and to improve results, we only
need to stack convolutional layers between max-pooling layers. The number of
convolutional layers stacked between 2 maxpooling layers is a hyperparameter called
Nyepeat- Unfortunately, there are no guidelines to calculate the optimal depth, but the
principle is that adding layers should not harm performance, although the training
may become more difficult. In the next section, we introduce a heuristic algorithm

that is inspired by the principle of reinforcement learning, called the AutoNet.

6.4 The AutoNet Algorithm

The AutoNet algorithm is designed to generate a Layer-Wise convex network
given a dataset automatically. The algorithm is outlined in algorithms 1 and

2 and described as follows:

6.4.1 Step One: Generate the Baseline Model

The LCN model for ECG classification has only five hyperparameters: n,¢peqr € N,

Nmazpool € N, ny € N, skip € B (Boolean domain), and bn € B, which can all
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Algorithm 1: Build LCN. See Figure 6.5 for the positions of convolutional,
activation, batch normalisation, and maxpooling layers.

Input: My, Nechannels Melasss Trepeats Skip; bn7 Nmazpool
Output: model
ny = argmax, ny(n} + 1) subject to ng(n} +1) <m

[y

add the input layer
if bn then

‘ add a batch normalisation layer
end
add a convolutional layer, kernel size = n¢, nfipers = 1y
if bn then

‘ add a batch normalisation layer
end
add a maxpooling layer, pooling size= 2
for _ in range Nmazpooi-1 do
for _ in range Nyepeqr do
add a convolutional layer, kernel size = ng, e, = ny
if skip then

connect the before-activation output of every Nmazpool — 1
convolutional layers by addition

© W N O oph WN

[ T = o
[< B N VO

16 end

17 add an activation (ReLU or leaky ReLU) layer
18 if bn then

19 ‘ add a batchnorm layer

20 end

21 end
22 add a maxpooling layer

23 end
24 add a time distributed softmax layer

be determined from the training set or by the AutoNet algorithm. nj is the
number of filters of each convolutional layer, calculated according to equations
6.49 and 6.50. The number of max-pooling is determined according to equation
6.48. The output layer is a time-distributed softmax layer for classification and
classifies the entire signal by majority voting. skip and bn are the “switches”
representing whether the network adds skip connections and batch normalisation,
respectively, and are determined by the AutoNet algorithm according to the steps

outlined in the next section:
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Algorithm 2: Grow the model using AutoNet. This algorithm calls
algorithm 1 to build each LCN, then train the model until early stopping
criteria is met. It tracks the minimum training loss and the minimum
validation loss during training and compare them against the policy.

1 batch size = 32, patience = 8, bn = False, skip = False

2 build baseline model using algorithm 1

3 train model

4 while train loss or validation loss declines do

5 nrepeat+:1

6 build LCN suing algorithm 1 train the resulting model
7 end

8 skip =True

9 while min train loss or min validation loss declines do

10 nrepeat+ =1

11 build LCN using algorithm 1 train the resulting model
12 end

13 bn =True

14 while min train loss or min validation loss declines do

15 nrepeat+ =1

16 build LCN using algorithm 1 train the resulting model
17 end

18 best_model = model with min validation loss

19 if model_average then

20 train the best model fold times

21 use mean class probability of the fold models to predict
22 end

Input: My, Nechannels Melasss Trepeats Skipa bn, Nmazpool » X7 Y7
model_averaging, fold = 10
Output: best model

6.4.2 Step Two: Grow the Model

e Start with the baseline model, without batch normalisation, nor skip connec-
tion, i.e. bn = FALSFE, skip = FALSE. Batch size = 32. The early stopping
criterion is no reduction in validation loss for eight epochs. In the baseline

model, Nyepeqr = 1.

o Increase NMyepeqt by one each time, until neither the training loss nor the
validation loss decreases, then turn on skip connection and connect every
Nmazpool — 1 layer by adding the post-convolution-before-activation tensors

with the output tensor of 7,,44p00 — 1 convolutional layers later (figure 6.5).
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Figure 6.5: The positions of convolutional, activation, batch normalisation, max-pooling
layers, and the skip connection. The illustrated network has convolution-activation-BN
repeating structure, with nmazpool = 9, Nrepeat = 5. A max-pooling layer is added after
every Npepeat (D in this example) batch normalisation layers. The element-wise addition
is applied to the output tensor of every nmazpoot — 1 (8 in this example) convolutional
layers. For example, the output tensor of the first convolutional layer is element-wisely
added to the output tensor of the 9th convolutional layer, and the resulting tensor is the
input to the following activation layer and is also used in the element-wise addition with
the output tensor of the 17th convolutional layer.

o Increase Myepeqt by one each time, until neither the training loss nor the
validation loss decreases, then add batch normalisation after every activation

and after the input layer.

o Increase nNyepeqr by one each time until neither the training loss nor the
validation loss decreases. The model which yielded minimum validation

loss is selected to be the “best” model.

6.4.3 Step Three: Model Averaging

Train the identified “best” model K times. At test time, calculate the average
probability predictions provided by the K models, then classify the test case to

the class with the highest mean probability, i.e.

K

N 1
i = argmax 7 > pij (6.51)

Jj=1
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where p;; is the class ¢ probability predicted by the jth model, this step can be

omitted if one is not reporting the final results and only wishes to prototype quickly.

6.5 Benchmark with the State-of-the-Art Model

In the following sections of this chapter, we benchmark LCNs generated by the
AutoNet algorithm with the ResNet-based Hannun-Rajpurkar model (Hannun
et al. 2019; Rajpurkar et al. 2017) which has been demonstrated to exceed average
cardiologist performance in classifying 12 rhythm classes on 91,232 recordings
from 53,549 patients and is well regarded as the state-of-the-art end-to-end deep
learning model for ECG classification. We compare the results of Hannun-Rajpurkar
model and the LCN models on three datasets: ICBEB, PhysioNet, and CKB, the

description of which are given in Chapter 4.

6.5.1 Computational Environment

All experiments were done on Ubuntu 18.04, CPU with 32G RAM, single Nvidia
GeForce GTX 1080 GPU, with Python version 2.7.15, and Tensorflow version 1.8.0.

6.5.2 Two LCN Variants

The LCN theory is derived from the assumption that the activation functions are
strictly monotonic. While we hypothesise that the LCN theory can be extended
to non-strict monotonic activation functions such as ReLU, the strictness of
monotonicity may make a difference. Thus we study two variants of LCN: ReLLU-
LCN and Leaky-LCN. As the names suggest, the hidden layer activations of ReLU-
LCN are all ReLU, while the hidden layer activations of Leaky-LCN are all leaky
ReLU with o« = 0.3 (equation 6.52). It is easy to see that the selected leaky
ReLU function is strictly monotonically increasing, while the ReLU function is

non-decreasing but not strictly monotonic.

(6.52)

T ifz>0
ar ifx<0
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6.5.3 Model Training

All LCN models were trained using Adam with default hyperparameters (5, =
0.9, 5> = 0.999) and the default learning rate (0.001). The Hannun-Rajpurkar
model, as a bench-marking approach, was trained using the authors’ original imple-
mentation (https://github.com/awni/ecg) to ensure identical implementation.
In brief, Hannun-Rajpurkar model used Adam with learning rate scheduler that
decreases learning rate after no improvement on the validation loss for two epochs.
All hyperparameters were kept the same as in their codes and as described in
Hannun et al. 2019.

All models were trained using early stopping with patience 8 epochs, for
a maximum of 100 epochs, which is the same as in Hannun’s codes and in

Hannun et al. 2019.

6.5.4 Power Analysis

To detect statistical significance, a power analysis was conducted for the two-tail
paired, t-test at effect size 0.8, a = 0.05, power = 0.8, and the required sample size
was found to be 14.30. Therefore we conducted five repeats for each of the ICBEB,
PhysioNet, and CKB experiments, producing a total of 15 experiments. In each
repeat, all models were trained and tested on the same training, validation, and
test sets. Note that the paired t-test only assumes the differences of the means,
rather than the samples themselves, follow a Gaussian distribution, and does not
assume equal variance of the samples (Jaynes 2003). Therefore the 15 experiments
created by five repeats on three different datasets are appropriate for the two-tail

paired t-test, if the differences of the means pass normality tests.

6.5.5 ICBEB
Train-Validation-Test Split

We did not have access to the hidden test set, therefore we randomly took 50
samples from each class from the publicly available training set (n = 6,877) to

build a balanced test set (n = 450) of the same size and class distribution as the
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publicly available dataset, n = 6,877
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Figure 6.6: Train-validation-test split for ICBEB

ICBEB Challenge, another 15 samples from each of the 9 classes to form a balanced
validation set of 15 x 9 = 135 samples for early stopping and check-pointing, and
the rest is the training set for gradient calculation (figure 6.6).

The above approach was repeated five times to generate five repeats of the exper-

iments. In each repeat, all models share the same training, validation, and test sets.

Sample Weighting

The samples in the training set (not including the validation samples) were weighted

by the inverse of their class ratio in the training set. For example, if there are

.My
2imi
U

n; class ¢ samples in the training set, then each class i sample receives

weight during training.
Signal Padding

Since the pooling size is fixed in both LCN models and the Hannun-Rajpurkar
model during training, the model requires the input signal to have the same length.
Ideally, the target length should be the maximum signal length in the training set,
i.e. 61s. However, due to memory constraints, we could only feed in 37s signals.
Thus the target length for ICBEB is 37s. If the original signal was shorter than the
target length, Os are padded to the end of the signal; if the signal is longer than
the target length, the end of the signal was truncated. At test time, no padding is

needed as the model generates a label every 512 time steps (1.024s).

Model Generation

In each repeat, the AutoNet algorithm identified the “best” ReLU-LCN model and

the “best” Leaky-LCN model separately. The hyperparameter n; is calculated
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Figure 6.7: The automatically generated ReLU-LCN architecture for ICBEB. n;epeat
= 5, Nymazpool = 9, Meaning there are a total of 9 max-pooling layers, and there are five
convolutional layers stacked between every two max-pooling layers. The activation can be
ReLU or leaky ReLLU, which follows every convolutional layer, not shown in the Figure to
declutter the diagram. Batch normalisation (green) is added after the input layer (blue)
and after each convolutional layer (yellow). The after-convolution tensor is added to every
8 subsequent after-convolutional tensors, which are labelled in the figure. See Figure 6.5
for magnified connection structure. The output layer is a time-distributed 10-unit softmax
layer, one unit for each of the nine classes and one unit to indicate noise/zero paddings.

according to equations 6.49 and 6.50 with m = 6,292, thus ny = 20. nNpagpoor 15
calculated according to equation 6.48 with f, = 500Hz, 7 = 1s, p = 2, to be 9.
It took AutoNet 1h 25min (5,095s) on average to identify the best ReLU-LCN
model and 1h 55min (6,936s) to identify the best Leaky-LCN model. For ReL.U-LCN,
three out of five repeats converged at 7n,epeqr = 5 With both skip connection and
batch normalisation (figure 6.7), one experiment converged at nepeqt = 6, With both
skip connections and batch normalisation, one experiment converged at nyepeqr = 4,
with both skip connection and batch normalisation (Table B.1); for Leaky-LCN,
four out of five repeats converged at n,epeqr = 9, With both skip connections and

batch normalisation, while the other repeat converged at n,cpeqss = 7, with both
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Table 6.1: The architecture and training characteristics of ReLU-LCN, Leaky-LCN,
and the Hannun-Rajpurkar models on ICBEB. conv: convolutional layer; BN: batch
normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
Train size 6,427 6,427 6,427
Test size 450 450 450
Batch size 32 32 32
Signal padding (s) 35 35 35
N parametric lay- 84 (41 conv, 42 84 (41 conv, 42 67 (33 conv, 33
ers BN, 1 TDS) BN, 1 TDS) BN, 1 TDS)
N parameters (%)° 239,506 (2.3) 230,596 (2.3) 10,473,322(100)
Speed (s/epoch) 36 41 91
Total epoch 27 30 21
Runtime (s, %)° 955 (50.0) 1,248 (65.3) 1,911 (100)

* % relative to the Hannun-Rajpurkar model.

Table 6.2: Mean and standard deviation of the test F; on five experiments by ReLLU-
LCN, Leaky-LCN, and Hannun-Rajpurkar models on PhysioNet. The highest F} of each
category is in bold font. No model averaging was performed.

Training ReLU-LCN Leaky-LCN Hannun-

size Rajpurkar

N 868 64.1+3.8 64.8+6.0 69.8+4.4
AF 1,048 84.2+3.3 85.4+1.4 84.7+3.7
I-AVB 654 84.2+1.9 85.2+3.1 86.0+3.7
LBBB 1,57 89.1+1.7 88.7+2.4 88.0+2.0
RBBB 1,645 76.5+3.4 78.41+4.6 76.0+4.1
PAC 506 64.8+£12.6 67.5+4.3 61.4+9.7
PVC 622 81.4+4.7 83.1+2.7 80.1+5.6
STD 775 68.1£6.9 76.24+5.1 78.9+4.7
STE 152 68.1£3.9 69.2+2.8 58.3+7.7
9-class 75.6£3.6 77.6+2.0 75.9+2.9
F

Fur 84.243.3 85.4+1.4 84.7+3.7
Fgiock 83.3+2.1 84.1+2.1 83.0+2.3
Fpe 72.0+9.3 75.0+3.1 70.7+7.1
Fsr 68.1+4.5 72.5+3.0 69.9+4.0

skip connection and batch normalisation.
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Results

The model architecture and training characteristics of ReLU-LCN, Leaky-LCN, and
the Hannun-Rajpurkar model are shown in Table 6.1. The number of parametric
layers are taken from the most frequently found architecture among the 5 exper-
iments, and the speed (s/epoch) and total epochs are the average value over the
five experiments. The runtime is calculated by equation 6.53. The identified “best”
architectures were identical for ReLU-LCN and Leaky-LCN, both have only 2.3%
parameters compared to the Hannun-Rajpurkar model. Both ReLU-LCN and Leaky-
LCN converged at deeper architectures than Hannun-Rajpurkar model, which agrees

with our hypothesis that the parsimony of LCN encourages the model to grow deeper.

1 5
runtime = £ E total epoch x speed (6.53)
i=1

Both LCN models computed each epoch faster than Hannun-Rajpurkar model,
although the latter converged in fewer epochs (table 6.1). Both LCN models need
much less average runtime than the Hannun-Rajpurkar model. The training speed
not only depends on the architecture but also on the input signal length and the
batch size (the longer the signal, the smaller the batch size, the slower it is to train).
Thus the runtime comparison between the LCN models and the Hannun-Rajpurkar
model is less dramatic than the parameter comparison. On average, Leaky-LCN
needed more runtime as it tended to find deeper models than ReLU-LCN (Table B.1).

Table 6.2 shows the test F} of the three models. We can see that Leaky-LCN
has the highest mean in most cases, while ReLU-LCN is comparable to Hannun-
Rajpurkar in most cases. For sub-abnormal groups and the 9-class Fj, which the
Challenge used as the evaluation criteria, Leaky-LCN performed universally better
than the other two models. Surprisingly, all three models performed best in the
LBBB class, despite that LBBB is the second smallest class in the training set. It
may be explained by the fact that LBBB has clear clinical ECG diagnosis criterion
(Chapter 4). The model performances did not seem to correlate highly with the

training size: STE has the similar number of training examples as LBBB but is
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publicly available dataset, n = 8528

N
r A

validation, test, n = 120

training, n = 8308 n — 100

Figure 6.8: Train-validation-test split for PhysioNet

poorly classified. It suggests certain medical conditions are inherently difficult
for CNN based architectures to classify from ECG, which agrees with the clinical
knowledge that some conditions do not have definite ECG characteristics.

To compare with the performance of the winning team, we took the ReLU-LCN
model found in the first experiment and preformed 10-fold model averaging. Our
model obtained 0.854 9-class F} which outperformed the winning team (F; = 0.837).
We chose to average ReLU-LCN model instead of the Leaky-LCN model because
there is no statistical difference between the Fj scores of the two models, but the
latter has significantly higher runtime cost (see 6.5.9 for more details).

Note that these results were higher than the winning team despite being trained
on fewer data. The winning team by Chen et al. used 6,877 training examples,
also tested on 450 test cases (exclusive from the 6,877 training cases), and padded
the signals to 144s, while ReLU-LCN was trained on 6,427 recordings, and the
signals are padded to only 35s. Although the winning team’s exact architecture
is unknown, their model is based on bidirectional GRU (a type of RNN), which is
known to be slow to train; their input signal length is about 4 times of the input to
the ReLU-LCN; and they needed to average over 130 models, while ReLU-LCN only
needed to average over 10 models to obtain the above results. These all suggest

that Chen et al’s model is likely to have a higher runtime cost.

6.5.6 PhysioNet
Train-validation-test Split

We randomly selected 30 samples (roughly 10% of the smallest class) from each
class to build a balanced test set (n = 120), and another 25 samples (roughly 9% of

the smallest class) from each class to build a balanced validation set, and the rest
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of the dataset is the training set. The train-validation-test split process is shown
in Figure 6.8. The above approach was repeated five times to generate five sets of

training, validation, and test sets, and shared among all models in each repeat.
Sample Weighting
The samples were weighted using the same procedure as described in section 6.5.5.

Signal Padding

All signals were padded to the maximum length in the training set, i.e. 61s similarly

as described in section 6.5.5.

Model Generation

In each repeat, the AutoNet algorithm identified the “best” ReLU-LCN model and
the “best” Leaky-LCN model separately. The hyperparameter ny is calculated
according to equations 6.49 and 6.50 with m = 8,308, thus ny = 20. npazpoor 18
calculated according to equation 6.48 with f; = 300Hz, 7 = 1s, p = 2, to be 8. It
took AutoNet 52 min (3,203s) on average to identify the best ReLU-LCN model
and 1h 30min (5,413s) to identify the best Leaky-LCN model.

For ReLU-LCN, 2 out of 5 repeats converged at n,epeqt = 2 without skip con-
nection nor batch normalisation (table B.2); 1 experiment converged at nyepeat = 2,
with only skip connection and without batch normalisation; 1 experiment converged
at Nyepeat = 3, With both skip connections and batch normalisation; and the other
repeat converged at Nyepeqt = 4 with only skip connection and without batch
normalisation. For Leaky-LCN, 4 out 5 repeats converged at n,epeqt = 4, with
both skip connections and batch normalisation (figure 6.9), and the other repeat

converged at Nyepeqr = 9, With only skip connection and without batch normalisation.

Results

The model architecture and training characteristics of the three models are shown in
Table 6.3. The LCN models have no more than 2.2% of the parameters than those

of the Hannun-Rajpurkar model. The same conclusions regarding runtime, total
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Figure 6.9: The most commonly found Leaky-LCN architecture for PhysioNet. n,epeqat =
4, Nazpool = 8, ¢ = k = 20. A batch normalisation layer (green) is added after the
input layer (green) and after every convolutional layer (yellow). The output is a 4-unit
time distributed softmax layer (purple). The network provides one prediction roughly
every second (256-time steps, 300Hz). The after-convolution tensor is added to every 7
subsequent after-convolution tensors.

epochs, and training speed as in ICBEB hold in PhysioNet experiments, suggesting
the LCNs behave consistently on different datasets.

Table 6.4 shows the test F} of the three models. We can see ReLU-LCN is
better at identifying atrial fibrillation and noise, while the Leaky-LCN model
gave the best normal and “other rhythms” classification among the three models.
Similarly, all three models are not biased towards large classes, suggesting the
sample weighting mechanism is effective. The three-class average Fy (F3) is lower
than what is reported in Chapter 4, which is likely because in this thesis we only

trained the models on part of the training data and tested on a balanced test
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Table 6.3: The architecture and training characteristics of ReLU-LCN, Leaky-LCN,
and the Hannun-Rajpurkar model on PhysioNet. conv: convolutional layer; BN: batch
normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
Training size 8,308 8,308 8,308
Test size 120 120 120
Batch size 32 32 32
Signal padding (s) 61 61 61
N parametric lay- 16 (15 Conv, 1 60 (29 conv, 30 67 (33 conv, 33
ers TDS ) BN, 1 TDS) BN, 1 TDS)
N parameters (%)" 112,784 (1.1) 226,226 (2.2) 104,661,48 (100)
Training speed 20.6 43.2 121
(s/epoch)
Total epoch 30 28 21
Runtime (s,%) 611 (23.6) 1,207 (46.6) 2,589 (100)

* % relative to the Hannun-Rajpurkar model.

Table 6.4: The mean and standard deviation of the test F} in five experiments by
ReLU-LCN, Leaky-LCN, and Hannun-Rajpurkar models on PhysioNet. The highest F}
of each category is in bold font. No model averaging was performed.

Training ReLU-LCN Leaky-LCN Hannun-

size Rajpurkar
AF 708 88.8+2.8 80.442.3 87.94+4.2
Normal 5,020 80.3£3.6 86.4+4.3 77.0£2.0
Other rhythms 2,426 72.3+7.7 79.5+3.7 74.6+3.8
Noise 254 87.9+4.3 72.4£4.6 74.746.1
Fyy 82.3£3.1 83.3£5.2 78.5£3.3
Fis 80.5+3.6 79.5£1.5 79.8£2.6

set, while the cited studies were trained using all publicly available training data

and tested on an imbalanced test set.

6.5.7 CKB
Train-Validation-Test Split

Due to memory constraints, we could not train on all the recordings. Therefore
we constructed the largest balanced set of normal, “arrhythmia”, “ischaemia”, and
“hypertrophy” classes by randomly sampling 1,868 (the size of the smallest class)

recordings from each of the four classes. The resulting set is then stratified at
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Figure 6.10: Train-validation-test split for CKB.

8.1:0.9:1 ratio into training, validation, and test sets, respectively (figure 6.10).
The sampling and split is repeated five times to generate five sets of the training,
validation, and test sets for five repeats of the experiment. In each repeat, the

training, validation, and test sets are shared among all models.

Sample Weighting

Since all classes are balanced in the training set in the CKB experiments, there

is no need for sample weighting.

Signal Padding

All signals in CKB have the same duration (10s, 500Hz), thus there is no need

for signal padding.
Model Generation

In each repeat, the AutoNet algorithm identifies the “best” ReLU-LCN model and
the “best” Leaky-LCN model separately. The hyperparameter n; is calculated
according to equations 6.49 and 6.50 with m = 6,056, thus ny = 18. Nmazpoor iS
calculated according to equation 6.48 with f, = 500Hz, 7 = 1s, p = 2, to be 9.
It took AutoNet 7 min (427s) on average to identify the best ReLU-LCN
model and 11 min (693s) to identify the best Leaky-LCN model. For ReLU-
LCN, all five repeats converged at 7n,epeqt = 1 without skip connection nor batch
normalisation (figure 6.11); for Leaky-LCN, three out of five repeats converged at
Nyepeat = 1, Without skip connection nor batch normalisation, while the other 2
repeats converged at nyepeqs = 2, with only skip connection and without batch

normalisation (Table B.3).
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output

Figure 6.11: The automatically generated model architecture for CKB. nyepeat = 3,
Nazpool = 9, ny = k = 18. No batch normalisation nor skip connection was needed.
The output (purple) is a 4-unit time distributed softmax layer. The model provides one
prediction roughly every second (512-time steps, 500Hz).

Table 6.5: The architecture and training characteristics of ReLU-LCN, Leaky-LCN, and
the Hannun-Rajpurkar model on CKB. The architecture and training characteristics of
ReLU-LCN, Leaky-LCN, and the Hannun-Rajpurkar model on CKB. conv: convolutional
layer; BN: batch normalisation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
Training size 6,728 6,728 6,728
Test size 744 744 744
Batch size 32 32 32
Signal padding (s) 10 10 10
N parametric lay- 10 (9 conv, 1 10 (9 conv, 1 67 (33 conv,
ers TDS) TDS) 33BN, 1 TDS)
N parameters (%)" 50,782 (0.5) 50,7872 (0.5) 10,471,780 (100)
Speed (s/epoch) 4 5 34
Total epoch 24 20 13
Runtime (s, %)" 95 (21.5) 97 (22.0) 442 (100)

* % relative to the Hannun-Rajpurkar model.

Results

The model architecture and training characteristics of the three models are shown
in the Table 6.5. Both LCN models converged at nine convolutional layers without
the need for batch normalisation, with only 0.5% parameters and needed fives

times less runtime as the Hannun-Rajpurkar model.

DRAFT Printed on April 4, 2021



6. Deep Learning ECG Classification 117

Table 6.6: Mean and standard deviation of the F; on five experiments by ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar models on CKB. The highest F; of each category is
in bold font. No model averaging was performed. A: “arrhythmia”, H: “hypertrophy”, I:
“ischaemia”, N: normal.

Training ReLU-LCN Leaky-LCN Hannun-

size Rajpurkar
A 1,681 74.0+1.4 71.7+3.7 63.7+10.1
H 1,681 85.2+1.5 82.5+1.0 75.2+16.8
1 1,681 72.4+2.6 73.2+2.0 66.9+2.2
N 1,681 77.2+2.9 75.6£2.7 69.5+3.3
4-class F} 77.2+1.6 75.84+1.9 68.9+4.6

Table 6.2 shows the test set classification Fj of the three models. LCN models
outperformed the Hannun-Rajpurkar model universally, with 8-16% improvement
on performance depending on the category and model. ReLU-LCN performed
best in most categories, except “ischaemia”, but the difference with Leaky-LCN
and ReLU-LCN is insignificant. In this dataset, both training and test sets are
balanced, so the difference given by the same model comes solely from the nature
of the medical condition. “Arrhythmia” and “ischaemia” were more difficult for
all three models, while “hypertrophy” was the easiest. This agrees with the result
in ICBEB (section 6.5.5) where LBBB was the best classified.

This is a classic case that a large model, even if well-regularised, may not
outperform a smaller model. In fact, as demonstrated in all three datasets in
this chapter, the smaller but carefully designed network can perform from slightly
better to markedly better than a larger network. Moreover, we have demonstrated
that the hyperparameters of such “careful” design of networks can indeed be
mathematically derived.

Recall in Chapter 5 the best performing traditional machine learning model
- stochastic gradient boosting - yielded 0.773 classification accuracy, using 84
handcrafted features. Of course, SGB needs feature extraction and cannot handle
raw ECG inputs, unlike the deep learning model. SGB is also a boosting method,
which is more comparable to LCN with model averaging. We conducted a 10-fold
model averaging on the first experiment using the identified “best” ReLU-LCN
and obtained 0.812 for both Fj; and accuracy.
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Table 6.7: F) of 15 experiments using the three models. In each experiment, the training
and test sets are shared among all models. In PhysioNet, the shown results are 4-class
average F1. The highest I} of each experiment is shown in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
ICBEB 1 81.8 81.5 77.5
2 70.7 76.8 75.9
3 76.8 75.6 79.6
4 74.5 77.1 70.8
5 74.3 77.0 75.7
PhysioNet 1 82.5 78.5 80.9
2 87.4 80.1 73.7
3 7.8 81.5 76.1
4 82.4 84.3 82.9
5 81.5 e 79.0
CKB 1 77.2 78.0 73.2
2 76.4 75.1 61.7
3 4.7 77.6 72.1
4 78.7 75.5 65.3
5 78.9 2.7 72.0

6.5.8 Statistical Analysis

To test the applicability of a paired t-test on the Fy of 15 experiments (Table 6.7),
we performed Shapiro-Wilk test for normality (Shapiro and Wilk 1965) on the
differences between the F) scores obtained by the Hannun-Rajpurkar model and the
ReLU-LCN model on 15 experiments (5 repeats on each of the three datasets), and
found p-value = 0.158 > 0.05. Similarly, we tested the normality of the differences
between Leaky-LCN and Hannun-Rajpurkar and found p-value = 0.832 > 0.05. Both
passed the normality test *, meaning both differences do not deviate significantly
from a Gaussian distribution, thus appropriate for two-sided paired t-test °.

We then did pair-wise two-tail paired t-test on the Fj scores of the three models,
and found p-value = 0.023 < 0.05 between ReLLU-LCN and Hannun-Rajpurkar, and

p-value = 0.012 < 0.05 between Leaky-LCN and Hannun-Rajpurkar, and p-value

4The null hypothesis of Shapiro-Wilk test of normality is that the samples come from a
Gaussian distribution, thus p-value > the chosen significance level (o = 0.05) fails to reject the
null hypothesis, thus passing the Shapiro-Wilk test.

5As long as the sample difference does not deviate significantly from a Gaussian, it is appropriate
to use paired t-tests (Jaynes 2003)
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Table 6.8: The PC ratio, calculated as %ﬁw(s) x 10000. The higher the value is, the
better. The highest value of each experiment is in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
ICBEB 1 7.1 3.8 5.0
2 7.7 7.4 4.0
3 8.3 9.7 4.2
4 8.2 6.3 3.9
5 8.6 6.2 3.5
PhysioNet 1 10.6 8.4 3.6
2 9.3 5.5 3.7
3 17.9 6.2 3.7
4 19.8 6.4 3.5
5 16.3 6.6 1.9
CKB 1 96.5 64.2 17.6
2 76.4 70.1 18.4
3 69.2 50.1 16.3
4 85.5 90.7 20.2
5 82.2 105.9 14.3

= (0.667 > 0.05 between ReLU-LCN and Leaky-LCN. We conclude that there is
a significant difference between ReLU-LCN and Hannun-Rajpurkar models, and
between Leaky-ReLLU and Hannun-Rajpurkar models, but no significant difference
in Fy scores were found between ReLU-LCN and Leaky-LCN. However, we cannot
conclude from the above results that there are significant differences among the
three models, as that would require repeated measurement analysis of variance
(ANOVA), the assumption of which is that samples, i.e. the 15 Fj scores, come from
a single Gaussian distribution for each model. However, the 15 F} scores of each

model failed the Shapiro-Wilk test for normality, thus not suitable for ANOVA.

6.5.9 Performance-to-Computational Cost (PC) Ratio

We propose an intuitive metric to evaluate the computational efficiency of deep
learning models, called the Performance-to-Computational Cost (PC) ratio, to help
with the decision making as to which model to try and how to improve performance

from a study design perspective. The PC ratio is defined below:
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er formance metric)?
PC ratio= K x (per f )

6.54
(computational cost)? (6:54)

where K is a scaling constant to scale the PC ratio to a convenient range. The
higher the PC ratio, the better. The performance metric and the computational cost
can be anything appropriate for the practitioner as long as it is consistent across all
models and datasets. p and ¢ are constants reflecting the practitioners’ emphasis
on performance or computational cost. For example, here, we use p = ¢ = 1,
representing an equal preference for the performance and the computational cost.
Practitioners more concerned with the performance may use p = 2, ¢ = 1, for
example. Using runtime cost (s) as the metric for computational cost, and F as the
performance metric, and K = 10,000, we can calculate the value for ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar model as in Table 6.8.

The PC ratio can compare not only different models on the same dataset but
also compare different datasets using the same model. Take ReLU-LCN as an
example, we can see that the PC ratios of CKB are much higher than the other
two datasets, suggesting CKB is relatively easy to achieve good performance with
low computational cost, perhaps due to high signal quality and a large number of
training examples per class. However, in Table 6.6 the actual F} in CKB is no higher
than those of the other two datasets (tables 6.2 and 6.4), suggesting improving upon
CKB performance from the model perspective is difficult given the current dataset,
perhaps due to the short signal duration (10s) compared to ICBEB (35s) and
PhysioNet (61s). This gives us insights as to which direction to pursue if we want
to improve performance further: to improve the model, or to collect more data from
the same study participants, or to recruit more study participants. A high PC ratio,
such as in CKB, may suggest the number of training examples is abundant, while a
low PC ratio, such as in ICBEB, may suggest the curse of dimensionality, or in other
words, the number of training examples per class is insufficient to train a model that

can take advantage of the high dimensional feature vector of each training example.
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6.6 Discussion and Conclusion

Each dataset has unique difficulties: ICBEB has the most numerous classes and least
number of training examples per class; PhysioNet has the highest noise ratio, and
has only single lead; CKB has the shortest signal duration. Comparing the test F}
across three datasets (Table 6.7), it is encouraging to see that the lowest performance
was in fact from CKB, as it implies that the bottleneck of performance lies with
the amount of information contained in each training example. This suggests that
LCN can indeed make the most out of the training set. It is also encouraging to see
that LCN can perform well even if there are few training examples per class, which
is often the limiting factor for deep learning. Also, the simple sample weighting
method effectively addressed the class skewness, and the LCN models have almost
no bias towards the large classes. Table 6.7 shows that given the same experiment,
it is almost always one of the LCN models that yielded the best performance.
Although Hannun-Rajpurkar model seemed to be the least well-performing model
in this chapter, we shall not forget that it has been proven to exceed average human
cardiologists on 12 rhythm classes of 91,232 recordings from 53,549 participants
(Hannun et al. 2019). LCN models outperformed the Hannun-Rajpurkar model
slightly in ICBEB and PhysioNet, and markedly in CKB. The results suggest the
model complexity of the Hannun-Rajpurkar model may be appropriate for ICBEB
and PhysioNet but too high for CKB, which leads us to hypothesise that the model
complexity of AutoNet generated LCNs may be very close to the optimal model
complexity given the dataset, and their test loss is close to the Bayesian loss. From
this perspective, LCN may be used to estimate the real complexity of the problem.

In each train-validation-test split, the training set is different. Thus the
AutoNet may converge at different architectures. Leaky-LCN seemed to have
higher consistency than ReLU-LCN (tables B.1, B.2, and B.3). One modification
to the AutoNet algorithm to encourage model consistency would be to train each
architecture more than once and use the mean validation and training losses to

decide on the next step, but it will require more computation.
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We have proposed the PC ratio as a simple measure of computational efficiency,
and we can see that ReLU-LCN has much higher PC ratio than the other two
models. Thus we recommend ReLU-LCN. Also, the PC ratio of each dataset may
be a measure of the difficulty of the classification task.

The current state-of-the-art neural network development is trial and error.
And the randomness inherent in neural network training due to random weight
initialisation, stochastic gradient estimation, and other sources of randomness
makes model development especially challenging, as we do not know if the change
in the performance is due to an intervention (such as adding layers and changing
hyperparameters) or due to the randomness in training. Traditionally, researchers
would train the model on the same set of hyperparameters for several times before
concluding the helpfulness or the harmfulness of an intervention. This is undesirable
when the model becomes very large, and training once would take days to months.

The AutoNet algorithm addresses this problem in 3 ways:

o It monitors both training and validation losses to decide on the next step.

¢ It avoided drop out entirely and did not add batch normalisation until the
last step when growing the model, as both dropout and batch normalisation

add much noise to the training process.

¢ By starting from a small model and grow the model to be just the right size for
the problem, the algorithm avoids wasting computational resource in solving

simple problems with huge models.

The earlier version of AutoNet algorithm included dropout, but we found that
LCN did not work well with dropout. Restricting the number of parameters per
layer is a strong regularisation in itself, and dropout would result in the model
not able to utilise the training set information fully. One improvement may be
replacing equation 6.50 with ny(1 — d)[n}(1 — d) 4 1] < m, where d € [0, 1] is the
dropout ratio, and the network might be able to learn a more robust model, but the

training would be noisier, and we might need to run each step in the model growth
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phase more than once and make decisions on the mean training and validation loss,
which will significantly increase computational cost of the AutoNet algorithm. The
current version of AutoNet-LCN without dropout already performs comparably,
if not better, than a large architecture with dropout, thus the potential benefit
introduced by dropout may not worth the increased computational cost.

The ease of optimising LCN may suggest the LCN having many nice properties.
Compared with traditional networks where the layers are overparameterised and
regularised, LCNs may be much easier to train. LCNs as deep as 16 layers can be
successfully trained without any skip connections nor batch normalisation. The
hidden layers are over-determined and have identical dimensions, which may make
the Hessian well-conditioned.

Although the final loss is not guaranteed to be convex with respect to the hidden
layer weights if the network is allowed to have negative hidden activations, such
as in Leaky-LCN, the LCN hidden layers are effectively over-determined systems
of monotonic equations. Over-determined systems of monotonic equations have
a unique solution that minimises the Euclidean distance, which is equivalent to
minimising the mean squared error (MSE), which is not only convex but quadratic.
Theoretically, we should use a loss which has MSE terms from each layer. In this
study, we used conventional cross-entropy loss as an approximation, and it has
been proven to work very well. Future work will include designing experiments to
study the properties of the loss surface of LCN and experiment with alternative loss
functions. LCN may also enable optimising the cross-entropy loss and the quadratic
loss layer-by-layer in alternating steps using second order methods, such as Newton’s
method, as it would only require less than O(m?) complexity, with m being the
number of training examples, which can be very desirable for small datasets.

In this study, we used Adam with all default hyperparameters as the optimiser,
without even tuning the learning rate. Our view is similar to I. J. Goodfellow, Warde-
Farley, et al. 2013: It is better to design architectures to facilitate optimisation, than
designing powerful optimisation algorithms. Our principle is to use as many default

hyperparameters as possible, including the learning rate, of a robust optimisation
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algorithm, such as Adam, and innovate in model architectures so that tuning
optimisation hyperparameters is unnecessary.

One of the major contributions of LCN is a novel paradigm to determine the
hyperparameters of CNN. Central to the LCN theorem is the choice of ny and k. In
the current version of LCN, the kernel size k is set to be equal to ny. Theoretically,
k should be independently optimised to maximise the total number of parameters
in each layer, subject to nys(nsk 4+ 1) < m. However, for long single-lead signals,
such as those in PhysioNet, k& would end up being unreasonably large (for example
k > 300). Thus we kept k to be the same as ny. This also implicitly expresses
our view that the parameters in the kernels and the parameters in the channel
dimension are not fundamentally different.

The calculated k and ny are very unconventional choices compared to what is
often used in the literature. In CNN literature, k is typically a small odd number,
such as 3, 5, 7, and ny is typically powers of 2, such as 32, 64, 128, 256. There is no
particular reason for these choices except that CNN originated from computer vision
research, and odd-numbered k& may help learn symmetrical features from images. We
forsook this convention entirely and have demonstrated that instead of heuristically
tuning the numerous CNN hyperparameters or performing hyperparameter search
at the price of high computational cost, we can build efficient neural networks by
keeping most of the hyperparameters fixed and rationally calculate the rest of them.

The resulting LCN typically has no more than 2% of the parameters compared
to the state of the art model, which is very encouraging as this means at least O(ng)
saving in memory and computational complexity. LCN may also make second-
order algorithms feasible, as many second-order methods need O(n3) (conjugate
gradient descent, BFGS) or O(nj) (Newton method) complexity. If we optimise the
parameters layer-by-layer, the computational complexity can be further reduced to
be less than O(m?), where m is the number of training examples. The hypothesised
Layer-Wise quadratic property suggests the second-order methods such as Newton’s
method may be very applicable. Future work may include designing experiments to

study the behaviour of convex optimisation in LCN networks. The 50-200 times
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fewer parameters may enable the algorithm to run on devices where it is otherwise
impossible to run deep learning models.

Although LCN approaches machine learning from the deterministic function
approximation perspective, the philosophy behind LCN is similar to the Bayesian
approach: we should determine the model complexity from the size of the training
set rather than the hypothesised complexity of the problem. Traditional CNN
design is “neuron-oriented”, which means most of the design considerations and
innovations (e.g. dropout and batch normalisation) apply to the neurons, while
LCN focuses on the parameters, which is also similar to the Bayesian view.

While developing the AutoNet algorithm, We found the following techniques

very helpful in boosting the model performance:

« Handle class imbalance by weighting the training samples by the inverse of
the class ratio in the training set. The key is to have a balanced validation

set for model check-pointing, even if the final test set is not balanced;
o Time-distributed softmax output for periodic time series signals;

e The batch size is also essential, even without batch normalisation. Although
a large batch is faster to train, it is also prone to overfitting. Therefore the
AutoNet algorithm keeps batch size to be 32 regardless of the training size

(as long as the training set has at least 32 samples);

Model averaging.

One caveat in our study is that all three datasets have a few thousand training
examples. Therefore the hyperparameters ny calculated for different datasets were
similar. Whether the AutoNet algorithm and the LCN theorem will have consistent
performance on datasets with very different training sizes remains to be validated.

Another limitation is that in this chapter we used only F1 to evaluate the results.
Although F1 is a good choice for evaluating machine learning models in classification
tasks, in clinical setting, sensitivity and specificity are more important metrics.

Future work will include sensitivity and specificity along with F1.
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From the theoretical perspective of the neural network width and depth, this
chapter illustrates the surprising effect of rational choice of model sizes based on
the training set. Although practitioners generally use a small model when the
training data is scarce and a large model when the training data is abundant, it
is rare for deep learning practitioners to design the model architecture based on
the exact number of training examples. We looked at deep learning architecture
design from an unusual perspective: function approximation and equation solving.
Although this perspective is not entirely new, the conventional approach is to try
to reduce the loss rather than creating conditions to “force” the loss surface to be
almost convex or even quadratic. We reverse engineered the conditions to make the
“optimal solution” easy to be discovered in training, by mathematically determine

the architecture hyperparameters based on the characteristics of the training set.
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7.1 Introduction

In the previous chapters, we have classified ECG using Mortara labels as the gold
standard. However, the Mortara labels differ from human expert generated labels
as the Mortara device follows rule-based algorithms, which means in theory, that a
neural network can recover such algorithms with arbitrary precision. The lack of
human expert labelling is a common problem in machine learning. In this chapter,
we examine a novel paradigm in which we use neural networks to predict alternative
labels from unstructured data. We define alternative labels as labels that are
accurate and easy to acquire in addition to being relevant to clinical problems. The
goal is not to predict alternative labels, but to explore the potential knowledge
gainable from the learning process. In the present study, the participants’ age and
blood pressure are appropriate alternative labels. We provide a proof of concept for
this approach by predicting the age of participants from their raw ECG waveforms.
Our hypothesis is the AutoNet-LCN will under-predict age of healthy participants,
but over-predict the age of participants with cardiovascular diseases. It should also

provide a test for AutoNet-LCN’s performance in regression tasks.
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7.2 'Training-Validation-Test Split

We used the 10-s 12-lead ECG waveforms from 24,959 participants, as described
in Chapter 4. We trained on 90% of the normal participants, and tested on the
remaining normal participants, in addition to all participants with any “arrhythmia”,
“ischaemia”, “hypertrophy” or “other” abnormalities. We constructed the “abnormal”
class by aggregating all “arrhythmia”, “ischaemia”, and “hypertrophy” classes, and
used it as an additional test set. The models were also conducted separately in males
and females. The numbers of participants in gender-specific and gender-agnostic

models are shown in table 7.1.

Table 7.1: The number of participants in the training, validation, and test sets for the
female, male, and gender-agnostic models.

Females Males Gender-Agnostic

Normal train 5,892 2,713 8,605
validation 655 302 957
test 727 334 1,061
Arrhythmia  test 1,093 957 2,050
“Ischaemia”  test 1,159 656 1,815
Hypertrophy test 1,652 1,998 3,650
Other test 3,882 2,363 6,245
Abnormal test 3,904 3,611 7,515

7.3 Methods
7.3.1 Computational Environment

All experiments were performed using Google Cloud Ubuntu 16.04 instance with
32v CPU (120G RAM), 2 Nvidia Tesla T4 GPUs, Python version 2.7.15, and

Tensorflow version 1.8.0.

7.3.2 Model Creation

After the baseline model was built, the model was grown as described in Chapter 6.
Appendix D shows the model evolution for the gender-agnostic, female, and male

models. Details of the converged models are shown in figures 7.1, 7.2, and 7.3.
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Figure 7.1: The automatically generated ReLU-LCN architecture for the gender-agnostic
model. Nyepeat = 2, Mmazpool = 9, Meaning there were a total of 9 max-pooling layers,
and there were two convolutional layers stacked between every two max-pooling layers.
The activation was ReLU, which followed every convolutional layer, albeit not shown
in the figure for simplicity. Batch normalization (green) and skip connection were not
needed. The output layer was a time-distributed single-unit linear layer used to make the
predictions.

7.3.3 Model Averaging

We performed a 10-fold model averaging using the same approach as described in
Chapter 6. The best model was trained for ten times, and the predictions were

averaged to make the final prediction, i.e.:

10

~(average) 1 ~(7)
Y, 99 = TO Zyj (7‘1)

i=1

where g; is the prediction given by the ¢th model to the jth participant.

7.4 Results

7.4.1 Computational Cost

It took AutoNet 5,151s to find the best female model and 1,381s to find the best

male model, and 4,951s to find the best gender-agnostic model.
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7.4. Results

Table 7.2: Summary statistics of the gender-agnostic model. MAE unit: years

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 1,061 2,050 1,815 3,650 6,245 7,515
MAE 5.7 7.5 6.6 6.5 6.3 6.8
Trivial MAE 7.9 9.0 8.4 8.4 8.3 8.6
MSE 51.4 84.7 66.6 65.4 60.5 71.0
Trivial MSE 92.0 115.7 101.5 103.4 100.7 107.4
R? 44.1% 26.8% 34.4% 36.7% 40.0% 33.9%
Trivial R? 0 0 0 0 0 0

il 56.3 60.3 59.6 60.3 58.2 60.1
1 57.2 63.2 60.5 61.2 58.9 61.6
o) 5.5 5.7 5.6 6.7 6.0 6.2
o 9.6 10.8 10.1 10.2 10.0 10.4
Omin 45.3 45.4 46.2 45.5 45.2 45.4
Ymin 38 37 39 39 34 37
Umaz 76.7 81.2 76.2 93.4 80.6 93.4
Ymaz 82 88 83 86 88 88

7.4.2 Results for the Gender-Agnostic Model

To benchmark, we used a simple model to predict every test case as the mean

of the test set, i.e.

A(trwzal

Zyl

(7.2)

where y; is the chronological age of the sample, 7 indices each example, and N is

the total number of cases in the set. Mean absolute error (MAE) and mean squared

error (MSE) are calculated using equations 7.3 and 7.4.

MAFE = —

Z!yz vil

N

R e VPR
MSE_NZ(yl yz)

=1

(7.3)

(7.4)

R? is the coefficient of determination, which measures the fraction of variance

explained by a model in a dataset. It is defined as equation 7.5.
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It is easy to see that the simple model’'s R? is 0, since §; = pu, R?> = 1 —

Zi(#_yi)z _ O
Doyi-w? T

it and p represent the predicted and the mean chronological age in the set, and
similarly & and o represent the standard deviations of the predicted age and the
chronological age in the set, respectively; #min and .. represent the predicted
age range, while 9,,,;, and ¥y,,.. represent the range of the chronological age. All
results were reported on the test set.

We can see that the AutoNet-LCN’s MAE was the lowest in the normal class
and highest in the “arrhythmia” class. The “other” class had the second-lowest
MAE, which is consistent with our conclusion in Chapter 5 that the “other” class
chiefly involves “sub-healthy” participants without overt symptoms of CVD. A
similar observation can be found in the AutoNet-LCN’s MSE. In all classes, the
results of the AutoNet-LCN MAE and MSE models were much lower than those
of the simple model. The AutoNet-LCN’s R? explained 44.1% of the variance
of the normal class and 40.0% of the variance of the “other” class, while the R?
for all other classes were much lower.

The predicted mean age (i) was slightly lower than that of the chronological
age () in all classes, and the predicted standard deviation () was much lower
than that of the chronological age (). This is mainly because the model was
trained on the normal class, in which high age was rare. Consequently, the model
learned a narrower distribution than the chronological age distribution, and is
centred around [i. Despite this, the model predicted lower mean and standard
deviation in the normal test set than any non-normal test sets. The minimum
predicted age was 45.2 in the “other” class, and the maximum predicted age was
76.2 in the “ischaemia” class, but the predicted minimum and maximum age were

also the lowest in normal individuals.

7.4.3 Female Model Results

We also performed gender-specific modelling by training and testing on female or

male participants only. In the female model, the AutoNet-LCN MAEs were lower
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&

Figure 7.2: The automatically generated ReLU-LCN architecture for the female model.
Nrepeat = 05 Mmazpool = 9, Meaning there were a total of 9 max-pooling layers, and there
were 6 convolutional layers stacked between every two max-pooling layers. The activation
was ReLU, which followed every convolutional layer, not shown in the figure for simplicity.
Batch normalisation (green) was not needed. The after-convolution tensors were added
to every eighth after-convolutional tensors, which were labelled in the figure. The output
layer was a time-distributed single-unit linear layer to make the prediction.

Table 7.3: Summary statistics of the female model. MAE unit: years.

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 727 1,093 1,159 1,652 3,882 3,904
MAE 5.6 7.8 6.5 7.3 6.1 7.8
Trivial MAE 8.0 8.7 8.1 8.2 8.1 8.3
MSE 50.6 94.5 66.4 83.9 59.7 81.7
Trivial MSE 92.6 110.0 96.9 98.7 97.2 102.4
R? 45.4% 14.1% 31.5% 14.9% 38.6% 20.2%
Trivial R? 0 0 0 0 0 0

i 56.8 59.4 59.9 64.0 58.9 61.5
1 57.0 62.8 60.1 61.8 58.8 61.6
o 6.1 5.9 6.5 7.7 6.5 7.2
o 9.6 10.5 9.8 9.9 9.9 10.1
Umin 41.1 43.7 43.0 38.9 42.6 38.9
Ymin 39 39 39 40 36 39
Ymaz 78.2 81.1 84.2 100.5 85.6 100.5
Ymaz 82 84 83 86 88 86
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than the trivial MAE in all classes, and the normal class had the lowest MAE. A
similar trend can be observed for MSE. The R? increased from 44.1% to 45.4%
in the female normal test set compared to the gender-agnostic test set. The R?
for “arrhythmia” and “hypertrophy” were markedly lower than the normal and
the “other” classes, with abnormal aggregate class R? only 20.2%. The female
model demonstrated a stronger trend for the model being able to explain a higher
proportion of variance in the normal class than the “arrhythmia” and “hypertrophy”
classes, which in turn indicated that “arrhythmia”, “ischaemia”, and “hypertrophy”
classes have distinct characteristics in their ECGs from the normal classes, which
are best captured by the “heart age.”

The predicted means in all classes were very close to the mean of the chronological
age (), except for the “arrhythmia” and “hypertrophy” classes. Interestingly, the
predicted mean age (i) was over two years higher than the chronological mean in
the “hypertrophy” class. In comparison, the predicted mean age (/1) in “arrhythmia”
was 3.4 years lower than the mean chronological age (1), suggesting that the model
under-predicted the “arrhythmia” class but over-predicted the “hypertrophy” class.

The predicted standard deviation (6) was lower than the standard deviation
of the chronological age (o) in all classes, and the “arrhythmia” class had the
lowest predicted standard deviation (¢), which was surprising as one would expect
the normal class to have the lowest predicted standard deviation (6). However,
the normal class indeed had a lower predicted standard deviation (&) than all
other classes except for “arrhythmia”.

The predicted range was again narrower than the chronological age range in
the normal and the “arrhythmia” classes. In contrast, the predicted minimum age
was very close to the minimal chronological age (ym:,) in the “hypertrophy” and
the abnormal aggregate classes, which is encouraging considering the results of the
gender-agnostic model where the predicted minimum was higher than the minimum
chronological age (ymin) in all classes, suggesting the female model can learn a more

versatile distribution than the gender-agnostic model.
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Figure 7.3: The automatically generated ReLU-LCN architects for the male model.
Nrepeat = 35 Mmazpool = 9, Meaning there were a total of 9 max-pooling layers, and there
were three convolutional layers stacked between every two max-pooling layers. The
activation was ReLU, which followed every convolutional layer, not shown in the figure to
declutter the diagram. Batch normalization (green) and skip connections were not needed.
The output layer was a time-distributed single-unit linear layer to make the prediction.

The predicted maximum age (Jmaq,) was higher than the maximum chronological
age (Ymae) in “ischaemia”, “hypertrophy”, and abnormal classes, especially in the
“hypertrophy” and the abnormal classes, where the predicted maximum age can

be as high as 100.5 years old.

7.4.4 Male Model Results

The male model had fewer training examples (n = 3713). Thus, the trend in the
female model was less evident in the male model. The AutoNet-LCN MAE and
MSE were the smallest in the normal class, which are consistent with the conclusions
from the female model, but both were higher than their female counterparts. The
AutoNet-LCN R? were the highest in the normal classes but were lower than its
female counterpart. The predicted mean was very close to the chronological mean
in the normal, “other”, and the abnormal aggregate classes, while the “arrhythmia”
class was again under-predicted, and “ischaemia” and “hypertrophy” classes were
again over-predicted. The predicted standard deviation (6) was the lowest in

the normal and much lower than the standard deviation of the chronological age
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Table 7.4: Summary statistics of the male model. MAE unit: years.

Class Normal “Arrhythmia” “Ischaemia” “Hypertrophy” Other Abnormal
Test size 334 957 656 1,998 2,363 3,611
MAE 6.2 7.6 7.2 6.9 6.9 7.1
Trivial MAE 7.7 9.4 8.8 8.6 8.6 8.9
MSE 59.3 85.6 77.3 72.4 72.1 76.7
Trivial MSE 90.7 121.9 108.9 106.6 106.4 112.8
R? 34.7% 29.8% 29.1% 32.1% 32.2%  31.9%
Trivial R? 0 0 0 0 0 0

il 57.7 61.8 62.2 61.1 59.7 61.5
1 57.5 63.7 61.2 60.6 59.2 61.6
o] 5.0 6.3 6.5 6.9 6.1 6.7
o 9.5 11.0 10.4 10.3 10.3 10.6
Omin 46.6 46.8 47.2 47.8 45.9 46.8
Ymin 38 37 40 39 34 37
Umaa 72.8 89.2 82.6 90.2 88.0 90.2
Ymazx 81 88 83 84 85 88

(0), and also lower than their female counterpart, suggesting a smaller number of
training examples resulted in the male model learning a more “rigid” distribution
than the female and gender-agnostic models.

The predicted range was narrower than the chronological age range in all classes,
while the predicted maximum age was higher than the maximum chronological age
(Ymaz) in the “arrhythmia”, “hypertrophy”, “other”, and the abnormal aggregate
classes. However, we did not observe as extremely high predicted age as in the

gender-agnostic model and the female model, which may be due to the the smaller

male training set.

7.4.5 Over-predicted and Under-predicted Ratios

Figures 7.4 and 7.5 show the ratios of over-predicted and under-predicted participants
in each test class. Over-prediction was defined as § < y — 2, and under-prediction
was defined as § > y+ 2, and § — 2 < y < ¢+ 2 were considered correctly predicted.
In essence, we ignored the prediction errors of 2 years or less.

It is evident that in the female normal test set, the model tended to over-predict,

in contrast to our hypothesis. In “ischaemia”, “hypertrophy” and “other” classes,
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over- and under- predicted ratios in each class (Female)

W over-predicted [ undepredicted correctly predicted
60.00%
40.00%
- JI II “
0.00%
normal arrythmia ischemia hypertrophy other abnormal

Figure 7.4: Over- and under-predicted ratios in each class (female). The corresponding
numbers are in appendix E.

over- and under- predicted ratios in each class (male)

B over-predicted [ undepredicted correctly predicted
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
normal arrythmia ischemia hypertrophy other abnormal

Figure 7.5: Over- and under-predicted ratios in each class (male). The corresponding
numbers are in appendix E.

the model tended to over-predict, which is consistent with our hypothesis. It is
surprising to find that in the “arrhythmia” class, the model tended to under-predict
rather than over-predict, and by a wide margin. This may suggest either the model
is not suitable to apply to “arrhythmia” patients, or the absolute prediction errors,
rather than the signed errors, may suggest underlying CVD abnormalities.
Similar results were observed in the male sets, with the contrast of “ischaemia”

over-and under-prediction being more extreme than their female counterparts. This
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may suggest that the male “ischaemia” participants in the CKB dataset have more
recognizable ECG abnormalities than their female counterparts.
We examined the top 10 over-predicted and under-predicted female and male

cases in each test set, and these results are presented below:

7.4.6 Top 10 Over- and Under-predicted Cases

We show the participants’” Mortara descriptions, and the “reasons”, if any, provided
by the Mortara device to support its descriptions given the ECG waveforms. The
top 10 cases were ranked by the prediction error, and the light-blue shaded cases
were flagged “abnormal ECG” by the Mortara device. We complement the Mortara
descriptions and reasons with the participants’ systolic blood pressure (SBP) and
diastolic blood pressure (DBP) which neither the Mortara algorithm nor the
AutoNet-LCN had access to. The last row of each table shows the averages
of the numerical variables.

Unsurprisingly, the over-predicted cases were in the middle-age group, while
the chronological ages of the under-predicted cases were over 70 years. We can
see that both top under-predicted and over-predicted cases have many ECG
abnormalities. “Arrhythmia” and “other” cases appeared in the under-predicted,
while “hypertrophy” cases dominated the over-predicted group. This, in turn,
rejects our hypothesis that under-predicted individuals were “healthier” than their
peers. The absolute prediction error may be an indicator of heart health, with the
under-prediction implying arrhythmic abnormalities and positive errors implying
hypertrophic abnormalities. Interestingly, the over-predicted cases also had higher
mean levels of SBP and DBP than the under-predicted cases. The mean SBP of
over-predicted cases were higher than the normal value (120 mm Hg) while the
mean DBP of the under-predicted cases is lower than the normal value (80 mmHg),
suggesting both under-prediction and over-prediction imply CVD abnormalities,

but in different ways.
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142 7.5. Discussion and Conclusion

7.5 Discussion and Conclusion

Previous studies have reported heart age calculators (Bonner, Jansen, Newell, Irwig,
Teixeira-Pinto, et al. 2015; Lopez-Gonzalez et al. 2015; Lowensteyn et al. 1998).
For example, NHS uses JBS3 risk calculator, which takes account of established
CVD risk factors, including blood pressure, smoking, cholesterol, and diabetes !.
The NHS heart age is estimated from the lifetime risk of CVD, relative to people of
the same age, sex, and ethnicity who have “optimal” risk factor levels (for example,
non-smoker, systolic blood pressure < 120mm Hg) (Patel et al. 2016). The NHS
heart age test gives a higher heart age if any of the risk factors were not in the
optimal range, and 78% of the 2 million users obtained higher heart age than their
chronological age 2 and thereby encouraged to visit their GP.

The intuitive interpretation of the heart age is that higher heart age than their
chronological age implies a higher CVD risk, while a lower heart age implies a
healthier heart compared with people of their chronological age group. The NHS
heart age test states that “having a heart age older than your chronological age
means that you are at a higher risk of having a heart attack or stroke.” while not
providing any interpretation when the heart age is lower than the chronological age.
Although heart age calculators are intuitive to use and raise CVD risk awareness
in the population (Wells et al. 2010), their results can be misleading to the public
and lead to over-diagnosis (Bonner, McKinn, et al. 2019). The relation between
the heart age and the CVD risk is not well calibrated nor well validated (Bonner,
McKinn, et al. 2019). Systematic reviews and randomised trials have concluded that
there is insufficient evidence to recommend heart age in clinical practice (French
et al. 2017; Bize et al. 2012; Waldron et al. 2011; Kulendrarajah, Grey, and Nunan
2020; Bonner, Jansen, Newell, Irwig, Teixeira-Pinto, et al. 2015; Svendsen et al.

2020; Krogsbgll et al. 2012; Bonner, Jansen, Newell, Irwig, Glasziou, et al. 2014).

thttps:/ /www.nhs.uk/conditions/nhs-health-check/check-your-heart-age-tool /
2https:/ /www.gov.uk/government /news/heart-age-test-gives-early-warning-of-heart-attack-
and-stroke. Accessed 30 April 2020
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However, all previous studies assessed the effect of the heart age as a pre-
consultation screening tool in clinical practice, where the patient’s medical history
and co-morbidity are not taken into account, resulting in implausible estimates
of heart age that discredited the results (for example, older heart age in very fit
people, or younger heart age in people who are obese)(Bonner, Jansen, Newell,
Irwig, Glasziou, et al. 2014). The heart age has been found to motivate lifestyle
changes in clinical practice (Bonner, McKinn, et al. 2019). Our models calculate
the heart age from the standard 12-lead ECG, which can only be obtained in a
clinical setting. We do not recommend our model be used as a heart age calculator
as a pre-consultation screening tool, but potentially as a risk score associated with
the ECG waveforms for clinical risk assessment.

The results of the present study are consistent with previous studies: Attia
et al. 2019 trained a CNN on 10-s 12-lead standard ECG on 499,727 participants
and reported MAE 5.9 and R? 0.7. They also concluded that the absolute error,
rather than the signed error, may be useful as a heart health score. They did not
differentiate normality nor gender in their training and test sets. We performed
a detailed analysis of different CVD disease groups separately in men and women
and found lower absolute errors in the healthy population than in the “arrhythmia”,
“ischaemia”, and “hypertrophy” populations. However, the findings contradict our
hypothesis that under-prediction would imply being healthier. In contrast, under-
prediction indicated a higher risk of arrhythmic abnormalities. Our models were
also automatically generated by the AutoNet-LCN algorithms and involved no
human effort in determining the model architecture.

The analyses presented in this chapter evaluated heart age using ECG waveforms.
Future work may include using the SBP and DBP as alternative labels and possibly
predict the blood pressure either alone or in combination with age, for example, by
using three linear output units. Predicting blood pressure may be informative for
cardiovascular medicine, as the relationship between ECG waveforms and blood

pressure have not been well established.
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Conclusions and Future Work

8.1 Summary of Results

8.1.1 SGB-F82 Model for 4-class Classification using Ex-
tracted Features

In Chapter 5, we demonstrated that machine learning models could classify ECG
with high accuracy without any knowledge of the diagnosis criteria; all they need is
relevant features. We examined 11 machine learning models (Logistic Regression,
Linear Discriminant Analysis, Naive Bayes, support vector machine, CART, KNN|,
stochastic gradient boosting, bagging, random forest, AdaBoost, and extra trees)
representative of all major machine learning model families except neural networks,
and found stochastic gradient boosting performed best. The 77.3% four-class
classification accuracy achieved by SGB-F82 is encouraging. We extracted the
amplitudes of the P, Q, R, S, T waves, and the baseline levels, from each of the
12 leads, constructing a total of 72 new features. The addition of these 72 new
features lent significant improvement over the features provided by the Mortara
device. The top features identified by the SGB-F84 model were very different from
the ones commonly used in clinic. Lead I did not appear in the top 10 features
at all, which may suggest many studies using only single lead, typically lead I or

II, even when the 12-lead ECG is available, have sub-optimal performances. Our
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findings suggest using lead V5 instead of lead I when the single-lead analysis is

inevitable due to resource constraints.

8.1.2 End-to-end Deep Learning ECG Classification using
AutoNet-LCN

In Chapter 6, we proposed a novel theorem called the Layer-wise Convex Network
(LCN) and a heuristic neural architecture search algorithm - the AutoNet - to
directly analyse the raw ECG waveforms, without beat segmentation, denoising,
nor feature extraction. The AutoNet can generate LCNs end-to-end based on
the characteristics of the datasets and the machine learning task. The AutoNet
generated LCNs were benchmarked with the state-of-the-art model and evaluated
on three ECG classification datasets (PhysioNet 2017 Challenge, ICBEB 2018
Challenge, and China Kadoorie Biobank ECG dataset), and have outperformed the
state-of-the-art model on all three datasets by a wide margin (9-16% improvement
in terms of F1 score), with 1-2% of the parameters and no more than 2 hours of
architecture search time, in comparison to weeks to months of trial-and-error by
human researchers in the conventional deep learning model development process. It
is especially encouraging considering the state-of-the-art model has already been
demonstrated to exceed the average cardiologist ability to classify “arrhythmias”.

Also, we proposed the PC ratio as an intuitive measure of the computational
efficiency and the difficulty of the machine learning task given a dataset. Given
the same model, the higher the PC ratio, the easier the machine learning task is,
which may be thanks to the high signal quality or abundant training examples
in the dataset; given the same dataset, the higher the PC ratio is, the more
computationally efficient the model is. PC ratio may help researchers focus effort
on gathering more data from the same study participants, recruiting more study

participants, or improving the model.
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8.1.3 Predicting the “Heart Age” from Raw ECG Wave-
forms

In Chapter 7, to address the issue that the training targets in CKB are provided
by the deterministic rule-based heuristics called the Minnesota Code, which in
theory can be approximated to arbitrary precision by a large enough neural network
with enough training examples and training time, we proposed a novel paradigm:
learning using alternative labels. We defined alternative labels as clinically relevant,
easy to acquire, and relatively accurate labels, such as people’s age, sex, and blood
pressure. We used AutoNet-LCN to automatically build heart age predictors by
training the neural networks on the healthy population, and test our hypothesis
that the model would predict lower-than-chronological age for a healthy individual,
and higher-than-chronological age for individuals with CVD abnormalities. Our
findings are surprising that under-prediction does not indicate the participant is
healthier than their peers, but has more tendency towards “arrhythmia”, while
over-prediction suggests a tendency towards “hypertrophy” and “ischaemia”. Under
prediction also correlates with low blood pressure and over-prediction correlates
hypertension. While our models need further calibration and validation with follow-
up longitudinal clinical outcomes, the findings may suggest some relation between
ECG-derived age, blood pressure, and CVD conditions in ways that are not yet

clear in medical research, which may merit further investigation.

8.2 Future Work

8.2.1 Validate Machine Learning Probabilistic Risk Scores
with Clinical Diagnosis

Although in Chapters 5 and 6, the results were reported as classification accuracy or
F1 scores, the actual outputs of the machine learning models are probabilities. Also,
“arrhythmia”, “ischaemia”, and “hypertrophy” are not mutually exclusive. Thus
future work may involve validating the probabilistic outputs of the machine learning

models with clinical diagnostics and prognosis in follow-up studies. The machine

learning probabilistic risk scores may be especially relevant to the participants in
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7w

the “other” class, who did not meet the criteria of “arrhythmia”, “ischaemia”, or
“hypertrophy”. It would be interesting to examine whether the machine learning
models can forecast the CVD onset by following up this group of participants.
A retrospective analysis may be conducted taking advantage of the occurrence
time of the diseases in the health insurance data available in the CKB database, to
illustrate how machine learning prediction improves as distant events from ECG
acquisition are removed, and further study the performance of machine learning

models as a function of time.

8.2.2 Epidemiology Analysis with Other Risk Factors

The 4-class probabilities provided by our machine learning models may be interpreted
as risk scores, which can be further integrated with the heart age, chronological
age, gender, body mass index (BMI), blood pressure, and genetic genome-wide
association study (GWAS) data available in the CKB to develop a comprehensive
deep learning heart disease diagnosis system, potentially for more disease types
than we have initially considered, such as cancer and stroke. The latter will involve
consideration of probabilistic models that permit the fusion of categorical data, and
which may include sparse techniques for handling the largely-incomplete records in
the dataset. The AutoNet LCN may be especially useful to fuse different types of

features as it does not require human design of the networks or feature engineering.

8.2.3 Calibration of the Heart Age

In Chapter 7 our models have surprising findings that over-prediction correlates
with hypertension and “hypertrophy”, while under-prediction correlates with low
blood pressure and “arrhythmia”. Further investigation is needed to explain this
phenomenon. Also, the heart age model needs further statistical analysis of the
significance of the findings, and validation with longitudinal clinical outcomes to

see whether the predicted heart age has predictive value.
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8.2.4 Theoretical Study of the LCN Theorem

Although we have explained the rationale of the LCN theorem in Chapter 6, more
rigorous proof and study of its mathematical properties are needed to validate our
hypothesis. For example, is the loss indeed convex with respect to the parameters?
The idea behind LCN has similarities to (Bengio et al. 2006) in which the loss is
indeed proven to be convex with respect to the parameters, and a global minimum
can be proven to exist. Although the resulting networks have similarities, the
way such networks are found are different. In this thesis, the LCNs are found by
mathematically calculating the number of required parameters per layer, while in
Bengio et al. 2006 the number of neurons per layer is found by inserting one neuron
at a time and use a linear classifier to minimise a weighted sum of loss. Secondly, is
the Hessian of the LCNs indeed better conditioned compared to alternative CNNs,
such as the ResNet? How does the loss surface evolve during training and in the
model growth step? Finally, in this thesis, we used conventional Adam optimizer
to optimize LCN, while LCN theorem is motivated by regarding the parameters
(w and b) and the layer outputs (a) as if their roles are reversed. Nevertheless, we
hypothesize that the optimization of LCN is mathematically and computationally
equivalent to conventional neural network optimization using backpropagation.
This hypothesis also needs more rigorous proof.

The AutoNet algorithm (algo. 2) and the LCN-generation algorithm (algo.
1) are equivalent to the controller-generator systems described in the seminal
paper by Zoph and Le 2016 in neural architecture search (NAS). Auto-Net LCN
is essentially a NAS algorithm, although the focus of this thesis is its application
on ECG classification. To fully establish the advantage of AutoNet-LCN, we need
to apply it to standard machine learning benchmarks such as the ImageNet and
study whether AutoNet-LCN can perform consistently well when the training size

is very different from a few thousand.
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The Number of Participants in Each Class
and Age Group

Table A.1: The number of participants in each class and age group in the CKB dataset
(all participants). The numbers in the brackets are the percentage of the conditions in
the relevant age group. A: “arrhythmia”, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A 1 H O Total
<50 3,021 300 308 573 1,352 5,554
(54.4%) (5.4%) (5.6%) (10.3%) (24.3%) (100%)
50-59 3,546 582 585 987 2,006 7,706
(46.0%) (7.6%) (7.6%) (12.8%) (26.0%) (100%)
60-69 2,982 732 597 1,114 1,924 7,349
(40.6%) (10.0%) (8.1%) (15.2%) (26.2%) (100%)
70+ 1,230 858 380 749 1,080 4,297
(28.6%) (20.0%) (8.8%) (17.4%) (25.1%) (100%)
Total 10,779 2,472 1,870 3,423 6,362 24,906

(43.3%)  (9.9%)  (75%)  (13.7%)  (25.5%)  (100%)
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Table A.2: The number of participants in each class and age group in the CKB dataset
(female participants). The numbers in the brackets are the percentage of the conditions
in the relevant age group. A: arrhythmia, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A 1 H O Total
<50 2,161 167 199 219 834 3,580
(60.4%) (4.7%) (5.6%) (6.1%) (23.3%) (100%)
50-59 446 308 387 442 1,289 4 872
(50.2%) (6.3%) (7.9%) (9.1%) (26.5%) (100%)
60-69 2,006 417 382 537 1,204 4,546
(44.1%) (9.2%) (8.4%) (11.8%) (26.5%) (100%)
70+ 761 415 225 364 641 2,406
(31.6%) (17.3%) (9.4%) (15.1%) (26.6%) (100%)
Total 5,374 1,307 1,193 1,562 3,968 15,404

(34.9%)  (85%)  (7.7%)  (10.1%)  (25.8%)  (100%)

Table A.3: The number of participants in each class and age group in the CKB dataset
(male participants). The numbers in the brackets are the percentage of the conditions in
the relevant age group. A: arrhythmia, I: “ischaemia”, H: “hypertrophy”, O: other.

Age N A I H 0) Total
<50 860 133 100 354 518 1,974
(43.6%) (6.7%) (5.5%) (17.9%) (26.2%) (100%)
50-59 1,100 274 198 545 717 2,834
(38.8%) (9.7%) (7.0%) (19.2%) (25.3%) (100%)
60-69 976 315 215 577 720 2,803
(34.8%) (11.2%) (7.7%) (20.6%) (25.7%) (100%)
70+ 469 443 155 385 439 1,891
(24.8%) (23.4%) (8.2%) (8.2%) (23.2%) (100%)
Total 3,405 1,165 677 1,861 2,394 9,502

(35.8%)  (12.3%)  (7.1%)  (19.6%)  (25.2%)  (100%)
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Architectures Found in the Five Repeats
on the Three Datasets

Table B.1: The hyperparameters of the models found on the five ICBEB experiments.
The most common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN
Nyepeat skip bn Nyepeat skip bn
1 5 + + 7 + +
2 6 + + 5 + +
3 4 + + 5 + +
4 5 + + 5 + +
S 5 + + 5 + +

Table B.2: The hyperparameters of the models found on the five PhysioNet experiments.
The most common architectures are in bold font.

Repeat ReLLU-LCN Leaky-LLCN
nrepeat Sk;lp bn nrepeat Sklp bn
1 3 + + 4 + +
2 4 + -5 + -
3 2 + -4 + +
4 2 - - 4 + +
5 2 - - 4 + +
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Table B.3: The hyperparameters of the models found on the five CKB experiments.
The most common architectures are in bold font.

Repeat ReLU-LCN Leaky-LLCN
nrepeat Skw bn nrepeat Sklp bn
1 1 - - 2 + -
2 1 - - 1 - -
3 1 - - 2 + -
4 1 - - 1 - -
5 1 - - 1 - -
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Runtime Costs

Table C.1: Runtime (s) of the 15 experiments using the three models. The lowest
runtime of each experiment is shown in bold font.

Dataset Experiment ReLU-LCN Leaky-LCN Hannun-

Rajpurkar
ICBEB 1 1,152 2,050 1,638
2 920 1,025 1,911
3 930 819 1,820
4 910 1,131 2,002
5 864 1,216 2,184
PhysioNet 1 780 966 2,178
2 936 1,350 2,178
3 435 1,230 2,178
4 416 1,302 2,420
5 500 1,189 3,993
CKB 1 80 114 442
2 100 88 408
3 108 144 476
4 92 72 374
5 96 68 510

The runtime is calculated by equation 6.53. The runtime cost in weight
initialisation step, which typically took a few seconds, is omitted. ReLLU-LCN
runtime is significantly lower than Leaky-LCN, which is significantly lower than

the Hannun-Rajpurkar model.
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Evolution of the Heart Age Models

Table D.1: Gender-agnostic model evolution. Training: 8605, validation: 957, maximum
parameters per layer: 8020, ¢ = 20. nyo,: number of convolutional layers. ng: total
parameters. l,: validation loss. l;: training loss. [}: minimal validation loss so far. If:
minimal training loss so far. The shaded setting was the best model discovered by the
AutoNet.

Neonw  Repeat Skip BN ng ly I Decision

9 1 0 F 69,001 57.01 43.71 repeat+=1

17 2 0 F 133,161 56.48 50.62 [, <[}, repeat+=1

25 3 0 F197,321 5742 5357 [, >, 1, > I}, skip=8
25 3 8 F 197,321 56.95 53.05 [, >}, l; > [}, BN=True
25 3 8§ T 198,345 70.23 75.52 [, > 1}, 1, > I}, converge
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160 D. Evolution of the Heart Age Models

Table D.2: Female model evolution. Training: 5892, validation: 655, maximum
parameters per layer: 2210, ¢ = 18. ngyp: number of convolutional layers. ng: total
parameters. l,: validation loss. /;: training loss. [}: minimal validation loss so far. If:
minimal training loss so far. The shaded setting was the best model discovered by the
AutoNet.

Neons  Repeat Skip BN ng ly l; Decision

9 1 0 F 50,725 59.03 6.25  repeat+=1

17 2 0 F 97,525 5391 599 [, <[}l <}, repeat+=1
25 3 0 F 144,325 5231 573 [, <[}l <}, repeat+=1
33 4 0 F 191,125 51.69 576 [, <l 1, <lj, repeat+=1
41 5 0 F 237925 55.60 6.03 [, >10;1; > [}, skip=8

41 5 8 F 237925 53.74 560 [ <}, repeat=repeat+=1
49 6 8 F 284,725 51.67 5.66 [, <l repeat=repeat+=1
57 7 8 F 331,525 5295 580 [, >0 1, > I}, BN=True
57 7 8 T 333,601 8333 7.64 [,>1; 1, > [, converge

Table D.3: Male model evolution. Training: 2713, validation: 302, maximum parameters
per layer: 2210. ¢ = 13. ng: total parameters. [,: validation loss. l;: training loss. [}:
minimal validation loss so far. [: minimal training loss so far. The shaded setting was
the best model discovered by the AutoNet.

Teov Repeat Skip BN ny ly I Decision

9 1 0 F 19,735 73.23  69.79 repeat+=1

17 2 0 F 37,415 71.48 66.59 [, <[}, repeat+=1

25 3 0 F 55,095 63.93 57.25 [, <}, repeat+=1

33 4 0 F 72,775 92.99 100.57 1, > 3,1, > Iy, skip=8
33 4 8 F 72,775 66.65 67.75 1, >}, 1, > Iy, BN=True
33 4 8 T 73,657 80.23 80.17 I, > I}, 1; > Iy, converge
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Over- and Under-predicted Ratios and
Numbers

Table E.1: The over-predicted and under-predicted numbers and ratios in each class
(female model)

Class Test  Over-Predicted  Under-Predicted Correctly Predicted
Size (%) (%) (%)
Normal 727 291 (40.03) 270 (37.14) 166 (22.83)
Arrhythmia 1,093 313 (28.64) 595 (54.44) 185 (16.93)
Ischaemia 1,159 473 (40.81) 467 (40.29) 219 (18.90)
Hypertrophy 1,652 853 (51.63) 524 (31.72) 275 (16.65)
Other 3,882 1,627 (41.91) 1,449 (37.33) 806 (20.76)
Abnormal 3,904 1,639 (41.98) 1,586 (40.63) 679 (17.39)

Table E.2: The over-predicted and under-predicted numbers and ratios in each class
(male model)

Class Test  Over-Predicted  Under-Predicted Correctly Predicted
Size (%) (%) (%)

Normal 334 140 (41.92) 124 (37.13) 70 (20.96)
Arrhythmia 957 319 (33.33) 475 (49.63) 163 (17.03)

Ischaemia 656 319 (48.63) 253 (38.57) 84 (12.80)
Hypertrophy 1998 892 (44.64) 767 (38.39) 339 (16.97)

Other 2363 1044 (44.18) 916 (38.76) 403 (17.05)

Abnormal 3611 1530 (42.37) 1495 (41.40) 586 (16.23)
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Mapping from the Mortara Labels to the
Four Classes

ECG description Label

¥R ACUTE MI**+* “ischaemia”
.PEDIATRIC ECG INTERPRETATION unclassified
ABNORMAL ECG unclassified
ABNORMAL QRS-T ANGLE unclassified
ABNORMAL RHYTHM ECG “arrhythmia”
ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE  “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”
ANTERIOR MYOCARDIAL INFARCTION , PROBABLY RECENT “ischaemia”
ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDETERMINATE “ischaemia”
AGE

ANTEROLATERAL MYOCARDIAL INFARCTION , PROBABLY OLD “ischaemia”

ANTEROLATERAL MYOCARDIAL INFARCTION , PROBABLY RECENT  “ischaemia”
ANTEROSEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE  “ischaemia”
AGE

ANTEROSEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE “ischaemia”
ANTEROSEPTAL MYOCARDIAL INFARCTION , PROBABLY RECENT  “ischaemia”
ARM LEADS REVERSED unclassified
ATRIAL FIBRILLATION “arrhythmia”

ATRIAL FIBRILLATION WITH ABERRANT CONDUCTION OR VEN- “arrhythmia”
TRICULAR PREMATURE COMPLEXES

ATRIAL FIBRILLATION WITH RAPID VENTRICULAR RESPONSE “arrhythmia”
ATRIAL FIBRILLATION WITH RAPID VENTRICULAR RESPONSE WITH  “arrhythmia”
ABERRANT

CONDUCTION OR VENTRICULAR PREMATURE COMPLEXES “arrhythmia”
ATRIAL FIBRILLATION WITH SLOW VENTRICULAR RESPONSE “arrhythmia”
ATRIAL FIBRILLATION WITH SLOW VENTRICULAR RESPONSE WITH  “arrhythmia”
ABERRANT CONDUCTION OR VENTRICULAR PREMATURE COM-

PLEXES

ATRIAL FLUTTER/TACHYCARDIA “arrhythmia”
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ATRIAL FLUTTER/TACHYCARDIA WITH RAPID VENTRICULAR RE-
SPONSE

ATRIAL FLUTTER/TACHYCARDIA WITH SLOW VENTRICULAR RE-
SPONSE WITH ABERRANT

CONDUCTION OR VENTRICULAR PREMATURE COMPLEXES
ATYPICAL ECG

BORDERLINE ECG

BORDERLINE LEFT AXIS DEVIATION

BORDERLINE RIGHT AXIS DEVIATION

DEXTROCARDIA

EARLY REPOLARIZATION

ECTOPIC ATRIAL BRADYCARDIA

ECTOPIC ATRIAL RHYTHM

ECTOPIC ATRIAL RHYTHM WITH FREQUENT VENTRICULAR PRE-
MATURE COMPLEXES IN A BIGEMINAL PATTERN

ECTOPIC ATRIAL RHYTHM WITH OCCASIONAL SUPRAVENTRICU-
LAR PREMATURE COMPLEXES

ECTOPIC ATRIAL RHYTHM WITH OCCASIONAL VENTRICULAR PRE-
MATURE COMPLEXES

ECTOPIC ATRIAL RHYTHM WITH PROLONGED PR INTERVAL
ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL

ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL WITH FRE-
QUENT SUPRAVENTRICULAR PREMATURE COMPLEXES

ECTOPIC ATRIAL RHYTHM WITH SHORT PR INTERVAL WITH FRE-
QUENT VENTRICULAR PREMATURE COMPLEXES

ECTOPIC ATRIAL TACHYCARDIA

ECTOPIC ATRIAL TACHYCARDIA, POSSIBLE ATRIAL FLUTTER
ELECTRONIC ATRIAL PACEMAKER

ELECTRONIC VENTRICULAR PACEMAKER

ELECTRONIC VENTRICULAR PACEMAKER - CONTOUR ANALYSIS
BASED ON INTRINSIC RHYTHM

INCOMPLETE RIGHT BUNDLE BRANCH BLOCK

INDETERMINATE AXIS

INFERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE
INFERIOR MYOCARDIAL INFARCTION , OF INDETERMINATE AGE
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]
INFERIOR MYOCARDIAL INFARCTION , POSSIBLY ACUTE
INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD

INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD WITH POS-
TERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]

INFERIOR MYOCARDIAL INFARCTION , PROBABLY RECENT
INTERMITTENT VENTRICULAR PREEXCITATION/WPW
INTERPRETATION BASED ON A DEFAULT AGE OF 40 YEARS
INTRAVENTRICULAR CONDUCTION DELAY

JUNCTIONAL BRADYCARDIA

JUNCTIONAL RHYTHM

JUNCTIONAL RHYTHM WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES

JUNCTIONAL RHYTHM WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES

JUNCTIONAL ST DEPRESSION, CONSIDER NORMAL VARIANT
JUNCTIONAL TACHYCARDIA

LATERAL MYOCARDIAL INFARCTION , OF INDETERMINATE AGE
LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD

LATERAL MYOCARDIAL INFARCTION , PROBABLY RECENT
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F. Mapping from the Mortara Labels to the Four Classes

LEFT ANTERIOR FASCICULAR BLOCK

LEFT ATRIAL ENLARGEMENT

LEFT AXIS DEVIATION

LEFT BUNDLE BRANCH BLOCK

LEFT POSTERIOR FASCICULAR BLOCK

LEFT VENTRICULAR “hypertrophy” AND ST-T CHANGE

LOW QRS VOLTAGE

LOW QRS VOLTAGE IN EXTREMITY LEADS

LOW QRS VOLTAGE IN PRECORDIAL LEADS

MARKED LEFT AXIS DEVIATION

MARKED RIGHT AXIS DEVIATION

MARKED ST DEPRESSION, CONSIDER SUBENDOCARDIAL INJURY
MARKED ST ELEVATION, CONSIDER ANTERIOR INJURY

MARKED ST ELEVATION, CONSIDER ANTEROLATERAL INJURY
MARKED ST ELEVATION, CONSIDER INFERIOR INJURY

MARKED ST ELEVATION, CONSIDER LATERAL INJURY

MARKED ST ELEVATION, CONSIDER SEPTAL INJURY

MARKED T-WAVE ABNORMALITY, CONSIDER ANTERIOR “ischaemia”
MARKED T-WAVE ABNORMALITY, CONSIDER ANTEROLATERAL
“ischaemia”

MARKED T-WAVE ABNORMALITY, CONSIDER INFERIOR “ischaemia”
MARKED T-WAVE ABNORMALITY, CONSIDER LATERAL “ischaemia”
MINIMAL ST DEPRESSION

MINIMAL VOLTAGE CRITERIA FOR LVH, CONSIDER NORMAL VARI-
ANT

MODERATE INTRAVENTRICULAR CONDUCTION DELAY
MODERATE ST DEPRESSION

MODERATE T-WAVE ABNORMALITY, CONSIDER ANTERIOR “is-
chaemia”

MODERATE T-WAVE ABNORMALITY, CONSIDER ANTEROLATERAL
“ischaemia”

MODERATE T-WAVE ABNORMALITY, CONSIDER INFERIOR “ischaemia”
MODERATE T-WAVE ABNORMALITY, CONSIDER LATERAL “ischaemia”
MODERATE VOLTAGE CRITERIA FOR LVH, CONSIDER NORMAL
VARIANT

NO FURTHER INTERPRETATION POSSIBLE

NONSPECIFIC ST & T-WAVE ABNORMALITY

NONSPECIFIC ST ELEVATION

NONSPECIFIC T-WAVE ABNORMALITY

NORMAL ECG

PATTERN CONSISTENT WITH PULMONARY DISEASE

POSSIBLE ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

POSSIBLE ANTERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
POSSIBLE ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

POSSIBLE ANTEROSEPTAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

POSSIBLE ANTEROSEPTAL MYOCARDIAL INFARCTION , POSSIBLY
ACUTE

POSSIBLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

POSSIBLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN
V1/V2]
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POSSIBLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
POSSIBLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]
POSSIBLE LATERAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

POSSIBLE LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD
POSSIBLE LEFT ATRIAL ENLARGEMENT

POSSIBLE LEFT VENTRICULAR “hypertrophy”

POSSIBLE RIGHT ATRIAL ENLARGEMENT

POSSIBLE RIGHT VENTRICULAR CONDUCTION DELAY

POSSIBLE RIGHT VENTRICULAR “hypertrophy”

POSSIBLE SEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE
AGE

POSSIBLE SEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE
POSSIBLE SEPTAL MYOCARDIAL INFARCTION , PROBABLY OLD
PROBABLE ANTERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

PROBABLE ANTEROLATERAL MYOCARDIAL INFARCTION , OF INDE-
TERMINATE AGE

PROBABLE ANTEROSEPTAL MYOCARDIAL INFARCTION , PROBABLY
RECENT

PROBABLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

PROBABLE INFERIOR MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN
V1/V2]

PROBABLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
PROBABLE INFERIOR MYOCARDIAL INFARCTION , PROBABLY OLD
WITH POSTERIOR EXTENSION [PROMINENT R WAVE IN V1/V2]
PROBABLE LATERAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

PROBABLE LATERAL MYOCARDIAL INFARCTION , PROBABLY OLD
PROBABLE RIGHT VENTRICULAR “hypertrophy”

PROBABLE SEPTAL MYOCARDIAL INFARCTION , OF INDETERMI-
NATE AGE

PROLONGED QT INTERVAL

RIGHT ATRIAL ENLARGEMENT

RIGHT BUNDLE BRANCH BLOCK

RIGHT BUNDLE BRANCH BLOCK AND POSSIBLE RIGHT VENTRICU-
LAR “hypertrophy”

RIGHT VENTRICULAR “hypertrophy”

RIGHT VENTRICULAR “hypertrophy” AND ST-T CHANGE

S1-S2-S3 PATTERN, CONSISTENT WITH PULMONARY DISEASE; RVH,
OR NORMAL VARIANT

unclassified

SEPTAL MYOCARDIAL INFARCTION , OF INDETERMINATE AGE
SEPTAL MYOCARDIAL INFARCTION , POSSIBLY ACUTE

SEPTAL MYOCARDIAL INFARCTION ; PROBABLY OLD

SEPTAL MYOCARDIAL INFARCTION , PROBABLY RECENT

SINUS BRADYCARDIA

SINUS BRADYCARDIA WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE
I

SINUS BRADYCARDIA WITH FREQUENT SUPRAVENTRICULAR PRE-
MATURE COMPLEXES
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SINUS BRADYCARDIA WITH MARKED RHYTHM IRREGULARITY,
POSSIBLE NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS
PAUSE

SINUS BRADYCARDIA WITH MARKED SINUS “arrhythmia”

SINUS BRADYCARDIA WITH OCCASIONAL ECTOPIC PREMATURE
COMPLEXES

SINUS BRADYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES

SINUS BRADYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR
PREMATURE COMPLEXES IN A BIGEMINAL PATTERN

SINUS BRADYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES

SINUS BRADYCARDIA WITH OCCASIONAL VENTRICULAR PREMA-
TURE COMPLEXES WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

SINUS BRADYCARDIA WITH PROLONGED PR INTERVAL

SINUS BRADYCARDIA WITH PROLONGED PR INTERVAL WITH OC-
CASIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS BRADYCARDIA WITH SHORT PR INTERVAL

SINUS BRADYCARDIA WITH SINUS “arrhythmia”

SINUS BRADYCARDIA WITH SINUS “arrhythmia” WITH PROLONGED
PR INTERVAL

SINUS BRADYCARDIA WITH SINUS “arrhythmia” WITH SHORT PR
INTERVAL

SINUS RHYTHM

SINUS RHYTHM WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE I
(WENCKEBACH)

SINUS RHYTHM WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE II
SINUS RHYTHM WITH FREQUENT ECTOPIC PREMATURE COM-
PLEXES

SINUS RHYTHM WITH FREQUENT ECTOPIC PREMATURE COM-
PLEXES IN A BIGEMINAL PATTERN

SINUS RHYTHM WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

SINUS RHYTHM WITH FREQUENT SUPRAVENTRICULAR PREMA-
TURE COMPLEXES IN A BIGEMINAL PATTERN

SINUS RHYTHM WITH FREQUENT VENTRICULAR PREMATURE COM-
PLEXES

SINUS RHYTHM WITH FREQUENT VENTRICULAR PREMATURE COM-
PLEXES IN A BIGEMINAL PATTERN

SINUS RHYTHM WITH HIGH GRADE AV BLOCK

SINUS RHYTHM WITH MARKED RHYTHM IRREGULARITY, POSSIBLE
NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS PAUSE
SINUS RHYTHM WITH MARKED SINUS “arrhythmia”

SINUS RHYTHM WITH MARKED SINUS “arrhythmia” WITH PRO-
LONGED PR INTERVAL

SINUS RHYTHM WITH MARKED SINUS “arrhythmia” WITH SHORT PR
INTERVAL

SINUS RHYTHM WITH OCCASIONAL ECTOPIC PREMATURE COM-
PLEXES

SINUS RHYTHM WITH OCCASIONAL SUPRAVENTRICULAR PREMA-
TURE COMPLEXES

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE
COMPLEXES
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SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE arrythmia
COMPLEXES WITH FREQUENT SUPRAVENTRICULAR PREMATURE

COMPLEXES

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE arrythmia
COMPLEXES WITH MARKED RHYTHM IRREGULARITY, POSSIBLE
NON-CONDUCTED PAC, SA BLOCK, AV BLOCK, OR SINUS PAUSE

SINUS RHYTHM WITH OCCASIONAL VENTRICULAR PREMATURE arrythnia
COMPLEXES WITH OCCASIONAL SUPRAVENTRICULAR PREMATURE

COMPLEXES

SINUS RHYTHM WITH PROLONGED PR INTERVAL unclassified
SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT  “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT  “arrhythmia”
VENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH FREQUENT  “arrhythmia”
VENTRICULAR PREMATURE COMPLEXES IN A BIGEMINAL PATTERN

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCASIONAL  “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCASIONAL  “arrhythmia”
VENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH PROLONGED PR INTERVAL WITH OCCA- “arrhythmia”
SIONAL VENTRICULAR PREMATURE COMPLEXES WITH OCCA-

SIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL unclassified
SINUS RHYTHM WITH SHORT PR INTERVAL WITH FREQUENT “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL WITH FREQUENT VEN- “arrhythmia”
TRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL “arrhythmia”
ECTOPIC PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL “arrhythmia”
VENTRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SHORT PR INTERVAL WITH OCCASIONAL VEN- “arrhythmia”
TRICULAR PREMATURE COMPLEXES WITH OCCASIONAL SUPRAVEN-

TRICULAR PREMATURE COMPLEXES

SINUS RHYTHM WITH SINUS “arrhythmia” “arrhythmia”
SINUS RHYTHM WITH SINUS “arrhythmia” WITH PROLONGED PR “arrhythmia”
INTERVAL

SINUS RHYTHM WITH SINUS “arrhythmia” WITH SHORT PR INTERVAL “arrhythmia”
SINUS TACHYCARDIA unclassified
SINUS TACHYCARDIA WITH 2ND DEGREE AV BLOCK, MOBITZ TYPE “arrhythmia”
II

SINUS TACHYCARDIA WITH FREQUENT ECTOPIC PREMATURE “arrhythmia”
COMPLEXES

SINUS TACHYCARDIA WITH FREQUENT SUPRAVENTRICULAR PRE- “arrhythmia”
MATURE COMPLEXES

SINUS TACHYCARDIA WITH FREQUENT VENTRICULAR PREMATURE “arrhythmia”
COMPLEXES

SINUS TACHYCARDIA WITH OCCASIONAL ECTOPIC PREMATURE “arrhythmia”
COMPLEXES

SINUS TACHYCARDIA WITH OCCASIONAL SUPRAVENTRICULAR “arrhythmia”
PREMATURE COMPLEXES
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SINUS TACHYCARDIA WITH OCCASIONAL VENTRICULAR PREMA- “arrhythmia”
TURE COMPLEXES

SINUS TACHYCARDIA WITH OCCASIONAL VENTRICULAR PREMA- “arrhythmia”
TURE COMPLEXES WITH OCCASIONAL SUPRAVENTRICULAR PRE-

MATURE COMPLEXES

SINUS TACHYCARDIA WITH PROLONGED PR INTERVAL unclassified
SINUS TACHYCARDIA WITH PROLONGED PR INTERVAL WITH OC- “arrhythmia”
CASIONAL SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS TACHYCARDIA WITH SHORT PR INTERVAL “arrhythmia”
SINUS TACHYCARDIA WITH SHORT PR INTERVAL WITH FREQUENT  “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

SINUS TACHYCARDIA WITH SHORT PR INTERVAL WITH OCCASIONAL  “arrhythmia”
SUPRAVENTRICULAR PREMATURE COMPLEXES

ST DEPRESSION, CONSIDER SUBENDOCARDIAL INJURY “ischaemia”
ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
ANTERIOR “ischaemia”

ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
ANTEROLATERAL “ischaemia”

ST DEVIATION AND MARKED T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
LATERAL “ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
ANTERIOR “ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
ANTEROLATERAL “ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
INFERIOR “ischaemia”

ST DEVIATION AND MODERATE T-WAVE ABNORMALITY, CONSIDER  “ischaemia”
LATERAL “ischaemia”

ST ELEVATION CONSISTENT WITH INJURY, PERICARDITIS, OR unclassified
EARLY REPOLARIZATION

ST ELEVATION, CONSIDER ANTERIOR INJURY “ischaemia”
ST ELEVATION, CONSIDER ANTEROSEPTAL INJURY “ischaemia”
ST ELEVATION, CONSIDER INFERIOR INJURY “ischaemia”
ST ELEVATION, CONSIDER LATERAL INJURY “ischaemia”
ST ELEVATION, CONSIDER SEPTAL INJURY “ischaemia”
ST ELEVATION, PROBABLY EARLY REPOLARIZATION “arrhythmia”
SUPRAVENTRICULAR BRADYCARDIA “arrhythmia”
SUPRAVENTRICULAR RHYTHM “arrhythmia”
SUPRAVENTRICULAR TACHYCARDIA “arrhythmia”
TALL T-WAVES, SUGGESTS HYPERKALEMIA unclassified
TYPE 2 BRUGADA PATTERN (NON-DIAGNOSTIC) unclassified
TYPE 3 BRUGADA PATTERN (NON-DIAGNOSTIC) unclassified
UNCERTAIN IRREGULAR RHYTHM “ischaemia”
UNCERTAIN REGULAR RHYTHM unclassified
UNCONFIRMED REPORT unclassified
VENTRICULAR PREEXCITATION/WPW “arrhythmia”
VOLTAGE CRITERIA FOR LVH “hypertrophy”
WARNING: DATA QUALITY MAY AFFECT INTERPRETATION unclassified
Table F.1: Mapping from Mortara labels to normal, ““arrhythmia””, “ischaemia”, and

“hypertrophy” classes
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