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Abstract

Patients discharged from the ICU will commonly be placed in intermediary care, such
as the step-down ward, where the nurse-to-patient ratio is reduced (compared to that
of the ICU). Although most of these patients will continue to recover and stabilise,
a significant portion will su�er cardiac arrest and/or other clinical emergencies,
and readmission into intensive care. Upon readmission, the risk of mortality is
significantly higher than that of the general ICU population. Evidence suggests
that early detection of deterioration may prevent or alleviate the severity of clinical
emergencies. Notable shortcomings of current practices are that they (i) involve
manual calculation of risk scores, (ii) depend on heuristic decision criteria, (iii) ignore
time-series dynamics of physiological measurements, and (iv) lack patient-specificity.

Gaussian process regression (GPR) models are proposed as a principled, proba-
bilistic method to address the clinical need to continuously monitor patient vital-sign
time-series with the flexibility to address the aforementioned weaknesses of current
methods. The proposed GPR models focus on the robust forecasting of patient
vital-sign time-series and early detection of patient deterioration.

The primary contributions of this thesis describe how:

1. Probabilistic models may be used to identify artefactual measurements from
continuously-acquired vital-sign monitoring devices.

2. GP covariance functions may be constructed and regularised for robust
modelling, suitable for both patient-cohorts and personalised care.

3. GPR-based methods may quantify erratic physiological time-series and provide
useful advanced warning of deterioration events.

Each of the above contributions use the time-series correlation of vital-sign
measurements for advantageous clinical inference.
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1
Clinical Need

This chapter begins by describing deterioration detection within the setting of

preventative care. Two definitions of deterioration detection are described with

a brief example. The role of the step-down unit is then described, followed by

a documentation of the risk associated with emergency readmission to intensive

care unit from the step-down unit. These risks motivate the use of deterioration

detection in the step-down unit.

Finally, an outline of the technical requirements of engineering approaches to

address the clinical need are described, along with a summary of how this thesis’

contributions meet those requirements.

1.1 Overview of Deterioration Detection

Patient deterioration detection is a broad group of medical methods tasked to

identify patients who are currently experiencing, or soon to experience, an adverse

clinical event. Deterioration detection may be considered a tool in preventative

care, since the time-period of early warning presents an opportunity to mitigate

or avoid the e�ects of the adverse event.

The term “deterioration detection” may be apt to conflate two distinct clin-

ical objectives:

1
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1. the detection of a patient who is currently deteriorating (towards an adverse

event), and

2. the detection of a patient who has deteriorated (i.e., has experienced the

adverse event, and is now su�ering the e�ects, and possibly deteriorating

further, towards secondary adverse outcomes.

The distinction between these two forms of deterioration detection is illustrated

in the following extended example.

Detection of a patient who is deteriorating It is common practice to monitor

older patient cohorts for key risk factors of stroke, such as high blood pressure,

smoking, and family history. The detection of deteriorating health (which may,

ultimately, lead to stroke) may result in a treatment protocol aimed to prevent

the stroke from occurring. This preventative care would benefit the patient by

preventing the adverse health outcome, as well as any secondary health outcomes

that may follow.

Detection of a patient who has deteriorated We may also consider the

goal to identify quickly any patient who is currently su�ering a stroke. Since

the primary adverse event (stroke) can no longer be prevented, the goal of early

detection is how to mitigate the risk or severity of further adverse outcomes (e.g.,

death or permanent disability).

It may be helpful then to consider both (i) early detection in advance of an

adverse outcome, and (ii) early detection upon the onset of an adverse outcome,

as two highly-related yet distinct facets of deterioration detection. Since these

two facets overlap in both goals and methods, the term “deterioration detection”

will be used to refer to either of these clinical goals (with additional clarifications

only given where necessary).

Deterioration detection is applied across a wide range of clinical settings including

critical care, sepsis detection, and the management of chronic illness such as

hypoglycaemia, irritable bowel syndrome [14], mental health, and chronic obstructive
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pulmonary disorder. Accordingly, the adverse events of interest may di�er between

clinical settings, as may the specific definition of the same adverse event. Typically,

deterioration detection involves inference on pertinent physiological signals as they

they relate to the clinical outcome (or adverse event) of interest.

This thesis addresses the need to detect deteriorating patients in hospital

step-down wards.

1.2 Overview of Step-down Units

A step-down unit1, or SDU, is “a hospital nursing unit providing care intermediate

between that of an intensive care unit and a normally-sta�ed in-patient division” [15].

The SDU manages the recovery of stabilised acutely-ill patients after discharge

from the intensive care unit (ICU) but with less sta�-intensive monitoring, in

accordance with patient condition. The SDU may also receive patients from the

general ward who require an escalation in care [16].

In essence, the goal of an SDU is to manage the recovery of patients after

discharge from the Intensive Care Unit (ICU) while reducing the sta�-intensive

burden of monitoring patients who are more stable than acutely-ill ICU entrants.

Although exact definitions of an SDU and ICU vary between countries [17] [18],

the ICU accounts for 1.2% [17] [19] of hospital beds in the UK, and 9% - 20% [17]

[20] of hospital beds in the US. SDU patients are of a more stable condition than

those of the ICU and therefore the SDU has a reduced nurse-to-patient ratio (1 nurse

to 4-6 patients) compared to the ICU (1 nurse to 1-2 patients) [21]. It is common

for SDUs to be sta�ed by nurses trained in critical care, just as in the ICU [22].

Critical-care wards in the US have been estimated to account for about 13.4% [23]

to 17.4%-39% [24] of total hospital care expenditures, and therefore it is important

to optimise the management of patients in such settings.

1Alternatively referred to as a step-down ward or high-dependency unit.



4 1.3. Clinical Deterioration and Readmission to ICUs

1.3 Clinical Deterioration and Readmission to ICUs

1.3.1 ICU Readmission Rates

It is common for patients who have been discharged from the ICU to require

readmission to the ICU. Readmission usually implies that the clinical episode, which

caused the initial admission to ICU, may have precipitated the readmission as well.

Readmissions within the same hospital stay are more readily documented than

readmissions that are separated by time and/or hospital.

Although SDU patients are physiologically stable in general, a significant portion

of SDU patients experience a clinical emergency event, or require emergency re-

admission to the ICU. Various studies across di�erent hospitals have estimated ICU

readmission rates (within the same hospital stay) to be 3.9%-9% (severity-adjusted

4.2% - 7.6%) [25], 8.8% [26], and 0%-18.3% [27].

Due to the varying definitions of an SDU, not all patients in studies [25], [26],

and [27] were transferred into an SDU. However, these patients were admitted to

other hospital wards intended for escalated care, and are suggestive of the severity

of illness of patients received by the SDU.

ICU readmission rates were 5.8% for postoperative (i.e., post-surgical) patients

and 6.4% for non-postoperative patients [25]. In light of a large number of

acknowledged, but controlled confounding factors, this left the postoperative-status

of a patient to be a positive, but somewhat ambiguous, risk factor.

Using similar criteria on the same SDU, [28] and [21] determined that 31% and

34% of SDU patients experienced cardiorespiratory instability during their stay

on ward. Mortality rates were 2% and 3% respectively. Neither study described

the relation between these outcomes and ICU readmission.

1.3.2 Mortality upon ICU Readmission

Readmission to the ICU has significant implications for patient outcomes: mortality

rates for ICU patients readmitted within the same hospital stay have been estimated

at 40.2% [26]. Another study estimated readmission mortality to be 24.7% [25]
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(in contrast to 4.0% mortality of patients who were not readmitted) and went on

to note, “Several studies conducted in single hospitals during the 1980s and early

1990s indicate that roughly 5% to 20% of ICU admissions represent readmission

during the same hospitalisation, and that patients readmitted to the ICU have

disproportionately high in-hospital mortality rates and lengths of stay.” These

high levels of mortality motivate the use of principled methods to identify and,

ideally, forewarn physiological deterioration.

1.3.3 Causes for ICU Readmission

There is significant heterogeneity within patients who are readmitted to the ICU

after discharge. A commonly-cited study [25] found that congestive heart failure

(7.6%) and sepsis (4.5%) were the most common causes of readmission. Over 20%

of the total number of readmissions were from cardiovascular-related causes. Fewer

than 20% of patients had identical reasons for initial admission and readmission

to the ICU. In contrast, another study calculated that 49% of ICU patients were

readmitted “for the same or related diagnosis” as the diagnosis of the original

ICU admission [26]. Cardiovascular-related causes were consistently mentioned

as risks for both admission and re-admission to the ICU. It is not surprising

that patients who were admitted to the hospital on the account of a (typically

chronic) cardiovascular condition would (i) exhibit subsequent cardiovascular events

in hospital, and (ii) require readmission due to a cardiovascular condition on a

subsequent hospital admission.

A confounding aspect in these studies is that a single “primary” cause for

readmission was required, which ignores the correlation across di�erent clinical

risks. Despite the absence of information about the correlation between risks, the

heterogeneity of causes is clear evidence that it is advantageous to incorporate

a variety of factors when deciding whether a patient requires urgent care or

readmission. Additionally, it is possible that cardiovascular signals are a bellwether

for physiological abnormalities that are otherwise di�cult to quantify. When

combined with the relative ease of acquiring cardiovascular measurements, it is
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unsurprising that cardiovascular signals are a key focus when assessing a patient’s

risk of readmission.

1.3.4 Time-Frame of Deterioration and ICU Readmission

Several studies suggest that there is su�cient time and precursor-physiology to

warrant deterioration detection for many SDU patients prior to ICU readmission.

In [25] (cited previously for examining the causes of ICU admission and read-

mission), ICU readmission was most common 24-48 hours after ICU discharge

(even more common than readmission within 24 hours of discharge). Over half of

readmitted patients were readmitted within 72 hours and 22% were readmitted

after a week or longer. From this, we way conclude that the time since the initial

ICU discharge (i.e., the time-from-admission into SDU) is a consideration when

assessing a patient’s risk of a clinical event or readmission.

SDU patients exhibit symptoms of deterioration well in advance of the response

of medical emergency teams (METs) where such teams of additional bedside support

are available (this does not include the UK). One study reported “a mean of 6.3

hours elapsed between the onset of a clinically apparent cardiorespiratory instability

and the activation of our rapid response system” [21]. This statistic advocates the

presence of an observable period of deterioration, prior to emergency readmission.

A confounding element to the presence of retrospectively-identified periods of

abnormal physiology is the presence of physiology that induces false alarms and,

subsequently, alarm fatigue among nursing sta�. These false alarms may be the

result of, for example, (i) poorly-set alarm parameters (e.g., an excessively-high

lower threshold on HR for a patient with athletic bradycardia), or (ii) technical

failure (e.g., partially-detached probes, or algorithmic failure of heartbeat detectors).

It is also plausible that many alarms that detect true physiological abnormality

are dismissed on the account of (i) being uninterpretable to clinical sta�, or (ii)

perennially ill patients providing a constant stream of warranted alarms.

These studies suggests that there is a time-window in advance of a verified

clinical event in which a clinical alarm would be justified as a “true positive” alarm.
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Any alarms outside such a window, but still preceding a clinical event, would

be considered more tenuous, as would alarms that did not precede a confirmed

clinical event. This has important implications to the design of several experiments

within this thesis.

1.4 Value of Early Deterioration Detection in Crit-
ical Care

Studies have also demonstrated that early warning (via deterioration detection)

reduces the risk and/or severity of adverse clinical events.

Not all deaths after release from the ICU are preventable [18, 26, 27] but there is

evidence that earlier response can reduce mortality rates [26, 29]. Further examples

include a study in which 5.2% (52 of 1000) of acute hospital deaths were determined

to be preventable [30]. Another study identified over 2000 preventable patient

deaths over 29 months [31]. Both [30] and [31] identified the primary cause of

most of the preventable deaths to be missed early warning signs and failure to

act on evidence of deterioration.

A recent retrospective study [20] by authors of the APACHE system [32] (a

multivariable threshold-based risk scoring system, originally proposed in 1981,

updated to APACHE II in 1985, APACHE III in 1991, and APACHE IV in 2006)

found that from 1988-2012 United States ICUs using the APACHE system saw a

drop in mortality rates from 17.3% to 12.4%, adjusting for severity. Notably, “[m]ost

of these dramatic relative decreases in hospital mortality rate occurred between

1988 to 1989 and 1993 to 1996.” The study did not relate the trend in mortality

rate to any confounding factors, such as new technologies or therapies, that would

also improve clinical outcomes. Furthermore, mortality improvements varied greatly

by diagnosis. These trends were mirrored by a 23% reduction in ICU length-of-stay

(LOS) and a 38% reduction in hospital LOS. Patients are increasingly placed into

other wards (including SDUs), which likely contributes to these trends. A reduction

in overall ICU mortality has been documented in the UK as well [33].
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Using the Visensia system (a multi-vital-sign kernel density estimate-based risk

score system), a single-site prospective study [34] found that the time of using the

early warning system resulted in statistically-significant decreases in the number

and duration of cardiorespiratory instabilities per admission, compared to the time

period prior to using the system. Mortality decreased from 2% (before Visensia)

to 1% (after using Visensia), but a statistical comparison was not made.

There is a notable interplay between earlier ICU readmission and improved

survival upon readmission. Patients who require readmission to ICU from other

wards are more likely to survive their hospital stay if readmitted earlier [26].

For particular clinical applications, the extent of early warning per se may not

matter. For example, a body of research has been dedicated to an early detection

of sepsis in critical care [35–37]. The work demonstrates a time period of abnormal

vital-signs may be identified prior to severe sepsis. Since the clinically accepted

physiological markers of sepsis occur in up to 90% of patients [37], it is ambiguous

whether these abnormal physiologies are particular to sepsis, or whether sepsis is

simply present in a large portion of deteriorating patients. More importantly, the

time scale of early warning in sepsis is of debatable value with opposing views arguing

that outcomes are best when (i) sepsis is detected as early as possible, or (ii) that

detection need only occur in advance of acute sepsis, which results in imminent organ

failure. The changing definition of sepsis (revised as recently as 2016 [38]) over the

last several decades may further complicate inference on the value of early detection.

It may be asked, “Why, if advanced warnings of deterioration are well-described

in retrospective studies, are these indicators not codified in new monitoring practice?”

While there are many reasons for slow change in clinical practice, there are several

clear reasons why the medical decision criteria of current practice is only adequate

to identify late-stage deterioration. These aspects of current clinical practice will

be discussed in the literature review chapter, which catalogs common shortcomings

of di�erent monitoring techniques. The operational constraints will be discussed

in the next section, as an aspect of clinical need.
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1.5 Addressing Clinical Need via Engineering

The remainder of this chapter will describe how the research contributions of this

thesis are amenable to the organisational and computational constraints in the

critical care setting. These considerations are essential to ensure that clinical

adoption of the engineering solutions developed in this thesis are possible. Several

essential requirements are described, followed by details on how the proposed

engineering approach meets these requirements and works within the confines

of current clinical practice.

Pantelopoulos [39] lists 16 features on which the feasibility of a sensor-based

health monitoring system should be assessed for clinical feasibility. Aside from

the economic and ergonomic features that were listed, many of the features

can be evaluated within the process of algorithm development. Such features

include computation and storage requirements, ease of use and interface, reliability

and robustness to faults, and interpretable context for decision support. Many

alternative engineering and non-engineering solutions, in fact, meet these operational

requirements as well, on some level. Compared to these alternatives, the advantages

of the proposed GP-based methods include improvements in reliability of forecasts

and deterioration detection, capacity for patient personalisation, and ability to detect

artefactual data. These aspects, which motivate clinical adoption, will not be covered

in this section but in Chapters 5, 6, 7, and 8, where adequate detail can be given.

1.5.1 Clinical Requirements of an Engineering Solution

Sta� and operational constraints prevent many patient monitoring solutions from

being used in practice, regardless of the clear and widely-accepted clinical need

described earlier. A non-trivial aspect of the clinical need is for a system that

complies with current operational practice on critical care wards.

The clinical need and state of current clinical practice has strong implications of

the types of solutions that are feasible to implement into new practice. Engineering

solutions must be built to address the needs and specifications of the clinical sta�

who will use those solutions in critical care.
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An engineering solution to deterioration detection in critical care should have,

at least, the following attributes:

1. The system must be simple to learn (with appropriate training of sta�) and

easy to integrate into current clinical practice.

2. The system must not increase the work burden of sta�. Ideally, the system

should reduce sta� burden (e.g., via automation of any time-intensive tasks)

where feasible.

3. The system must be transparent in its alarm criteria and, ideally, in the cause

or information that precipitated any particular alarm.

4. The system should be robust to worst case performance (e.g., with respect to

detecting the adverse event of interest, or minimising false-alarm rates).

5. The system’s computational requirements should not exceed the computational

resources of the ward.

6. The system should be responsive/adaptable to clinician input.

A more thorough coverage as to how machine learning technology in partic-

ular may be applied can be found in [40]. Further detail on these points may

be found below.

1.5.2 Compatibility of Research Contribution to Clinical
Requirements

This section describes how the proposed GP-based methods address the need to

work within the confines of current clinical practice. Each item will be discussed

in the order that it was listed above.

The advantages of using GPR-based monitoring systems (over current patient-

monitoring systems) will be discussed throughout the thesis, particularly in Chap-

ters 2, 6, and 8.
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The system must be simple to learn.

Sta� training is required at the introduction of any new technique and equipment

in critical care. Continuing eduction is accepted as a common and frequent aspect

of critical care work. The GP-based methods produce clinical inference in a manner

that can be easily translated into familiar terms, such as a risk score. In essence,

the clinical sta� may be presented with familiar information, it is merely the

background calculation of that information that has changed.

The system must not increase the work burden of sta�.

The required data collection will impose no additional burden to the clinical sta�.

It is already common practice for hospitals to electronically monitor each patient’s

vital-signs. An electronic system to process, analyse, and forecast vital-signs would

be a natural extension of this data acquisition without placing a further burden

on the patient and/or nursing sta�.

Furthermore, the automation of many of these tasks would reduce the sta�-

intensive burden, thereby freeing clinical sta� to address competing priorities.

Computational methods may also accomplish tasks that would be impossible at any

level of sta�ng, for example: computer-based methods can make use of the large

amount of continuous data being collected at bedside. Volume of such data would

be impossible for an intermittent human observer to synthesise. The exact vital-sign

time-series of thousands of previous patients (and their associated clinical outcomes)

can also be stored in a computer’s memory, giving a very unique approach to “clinical

experience”. Such methods would also be free from human transcription error and

human calculation error. In the absence of computational methods, the sta� required

to record, error-check and analyse the available data would be prohibitive.

A computer-based continuous monitoring system will alleviate some of the risks

associated with the reduced nurse-to-patient ratio. Continuous electronic monitoring

will provide attention to all patients between the intermittent observations of the

nursing sta� and obviate the resultant estimates of risk that only incorporate single

points in time. Continuous observation, which allows for clinical warnings in the
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absence of clinical sta�, will decrease the lag between a patient first exhibiting

abnormal physiology and the action undertaken by medical sta�. Earlier action

should, in turn, be associated with decreased mortality, and an improvement

in other clinical outcomes. Furthermore, the focus of the nursing sta� can be

directed towards those patients demonstrating the greatest risk of an adverse

clinical event (for example, those patients with vital-signs that have been forecasted

to be in a dangerous range). This would further optimise the use of a hospital’s

personnel and financial resources.

The system must be transparent in its alarm criteria.

A key component of alarm fatigue is that many devices in critical care (in the eyes

of the clinician) seem to generate alarms at random, or for no particular reason. In

part, this e�ect may be aided by (i) a poor understanding of preset factory settings

of many devices’ alarm parameters or (ii) an underestimation of the prevalence of

artefactual data acquired by a device recording critically ill physiology (many devices

are not validated on a wide range of critically ill patients, but instead on relatively

small set of healthy test subjects). Further confusion may arise when the device is

unclear as to the reason of the alarm. In contrast, the simplistic hand-calculated

EWS tables (such as the National Early Warning Score [41, 42]) are clear in the

cause of alarm, by displaying the thresholds at which a risk score is escalated.

Despite their further technological complexity, GP-based methods can clearly

elucidate their cause of alarm. As shown in Figure 1.1, an alarm from 1.1(a)

GP-based forecasting, 1.1(b) step-change detection, and 1.1(c) time-series matching

could each be accompanied with an intuitive display, to explain the cause of the

alarm. This would provide context by which clinical sta� may evaluate the merit of

the alarm. This transparency would reduce alarm fatigue by allowing both true

and false alarms to be better understood. Such transparency is also required by

regulatory bodies, when such alarms would influence clinical decisions.

In 1.1(a), this display is achieved by illustrating that the patient’s heart rate

drop from a “dangerous” 120 bpm to a more healthy 70 bpm likely portends heart
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Figure 1.1: Displays of GP-based clinical inference via (a) vital-sign forecasting, (b)
step-change detection, and (c) time-series matching. The GP provides three di�erent
forms of inference in the presence of unusually large change in the vital-sign time-series.
The onus is on the GPR method to demonstrate the validity of its alarm, since the
patient’s current vital-sign measurement does not suggest deterioration. In (a), the
patient’s heart rate measurements have recently decreased from 120 bpm to 70 bpm.
Since 70 bpm is closer to typical values of healthy patients, this may be mistaken as a
sign of improvement, however the GP illustrates that the decrease is rapid and the patient
is at risk of surpassing the 40 bpm emergency threshold. (The prior mean of this GP
forecast was set to the last observed measurement in the training window.) In (b) the
patient’s data from minutes 120 to 140 show a decrease from about 110 bpm to 80 bpm,
however the GP-based step-change detector shows that these values are highly unusual
with respect to the forecasted values at 120 minutes. In (c) a relative bradycardia event
has occurred current patient’s time-series. The unusual time-series segment is identified
by its dissimilarity to a reference set of healthy patient time-series segments.
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rate falling below 40 bpm. By showing how the patient’s earlier HR measurements

inform our current expectations (displayed by the confidence intervals) the GP

makes the case that an adjustment of alarm bounds (tailored to the current patient

at the current time) is more appropriate than a generic population-based threshold

(which would not alarm at a heart rate of 70 bpm).

In 1.1(b), a similar scenario has occurred, in which heart rate is shown to be

decreasing towards a more healthy range, from minutes 120 to 140. However, the

GPR can illustrate that (i) these dynamics were preceded by a drastic heart rate

jump at minute 120, and (ii) the current dynamics from minutes 120 to 140 are

highly unusual with respect to the forecasted values at 120 minutes.

In 1.1(c), the current patient’s time-series exhibits a period of relative bradycar-

dia, which may be identified by a comparison to a dictionary of healthy patients’

time-series. From this, the doctor may see, from previous examples, that while

healthy patients may have values similar in magnitude, they rarely have such radical

volatility, and instead tend to exhibit trends with relatively constant measurements

over short time periods.

Each display could be generated automatically so that a clinician (or regulator)

could intuit the added clinical value without a strong technical understanding of

the probabilistic GP model. We note that in (a,b,c) an alert would be unlikely

under current EWS-based protocols, since the vital-sign has not yet exceeded an

extreme threshold in any of the examples.

The system should be robust to worst case performance.

A typical misgiving of new technological solutions is the tendency to aim to improve

average or best-case performance. While this may prove useful in many circum-

stances, in many clinical applications, prevention of worst-case performance is more

important. This is because worst-case performance is typically associated with the

most severe adverse clinical outcomes. Examples of worst-case performance include

(i) late or missed warning on a deteriorating patient, or (ii) vital-sign measurements

that fall outside of pre-specified confident bounds on a vital-sign forecast.
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The GP-based methods described in this thesis, not only improve performance

for the average patients, but also generate significant improvements for patients

being completely missed by current methods. As will be described in Chapters 6,

7, and 8, these patients include (i) patients whose vital-signs are most di�cult to

forecast and (ii) patients with the least early warning in advance of deterioration

events. As described in the respective chapters, many of the proposed methods

can be tuned or regularised to avoid worst-case performance.

A concrete example of improving worst-case performance is provided in Figure

1.2. GP-based step-change detection (as illustrated in Figure 1.1(b) is compared to

a kernel density estimation-based method [43, 44] that was developed in another

doctoral thesis [45]. Each monitoring system is compared according to its trade-o�

between time of early warning (TEW) in advance of deterioration and the false

positive alarm rate (FPR).2 The three performance lines for each method show the

33rd, 50th, and 67th percentile of TEW across a group of patients who deteriorated.

The GP-based method shows superior median performance (middle line) compared

to the KDE-based method. However, it is more important that the 33rd percentile

(lower line) has better performance, since this relates to those patients who would

have the least amount of early warning in advance of deterioration. It is more

important that all patients have some early warning than it is to continue to improve

performance on patients who already had many hours of early warning.

The system’s computational requirements should not exceed the com-
putational resources of the ward.

A computational solution is unacceptable in settings that lack the computational

resources to implement such methods. In critical care, this may include the need to

make computations in the time-sensitive fashion required for clinical intervention.

While advances in high-performance and parallel computing have resolved such

roadblocks in many applications, the requirements of security, privacy, ownership,

and location mean that many wards still prefer, or are required by law, to use

local or in-house computing.
2These metrics will be discussed in greater detail in Chapters 3, 7, and 8.
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Figure 1.2: Early deterioration detection via GP-based step-change detection compared
to a KDE-based alternative. Lines represent the 33rd, 50th, and 67th percentile of TEW
(across a group of patients who deteriorated) at the given FPR. The increased TEW
creates greater opportunity for clinical intervention, but comes at the cost of higher
FPR, which induces alarm fatigue in clinical sta�. It is arguably more important for a
monitoring system to improve the 33rd percentile line than median performance, since
this would improve the worst-case performance.

All methods described in this thesis can run faster than real-time on multiple

patients from a single PC.

The system should be responsive/adaptable to clinician input.

The factory settings of many patient-monitoring devices are typically insu�cient for

the diverse needs of di�erent patients or patient cohorts. Accordingly, adjustments to

the device settings are frequently required to accommodate clinical need. The most

typical examples include switching o� alarm mechanisms or allowing a clinician

to adjust the alarm thresholds.

The proposed GP-based methods circumvent the need of many tailored thresh-

olds, for example, by generating alarms already personalised to the patient’s

physiology (e.g., step-change detection in Chapter 8). Furthermore, GP-based

methods can be tuned in direct reference to the number of anticipated alarms,

as shown in Chapter 6 and 8.
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1.6 Conclusion

This chapter described how advanced warning of deterioration is both necessary

and possible for patients in the SDU. Several practical considerations are described

of how engineering methods may contribute to addressing this clinical challenge.

Finally, a description is given of how the GP-based methods proposed in this

thesis can meet those requirements while addressing the clinical need for improved

deterioration detection.
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2
Literature Review

As described briefly in Chapter 1, the methods, frequency, and physiology of

interest in patient deterioration detection varies according to clinical context and

the clinical outcome of interest. This chapter will first describe the current literature

in critical care monitoring. We propose several useful distinctions between patient

monitoring systems based on whether they rely on (i) heuristic decision criteria, as

opposed to (ii) empirical decision criteria. The latter includes the technical state-of-

the-art. Within the empirical patient monitoring systems, we further distinguish

between (i) probabilistic and (ii) non-probabilistic methods. The penultimate

section describes current applications of GPR (which is a probabilistic empirical

method) to patient monitoring. The final section of the literature review gives a

brief overview of the current state-of-the-art in GP-based modelling, in particular,

those advancements that are most promising (although not necessarily used) in

patient monitoring applications.

2.1 Heuristic vs Empirical Approaches to Patient
Monitoring

A multitude of patient monitoring systems are used in ICU, SDU, and other

hospital wards. A useful distinction can be drawn between (i) heuristic methods

19
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and (ii) empirical methods which, broadly, describe the means by which clinical

decision criteria are derived.

Heuristic methods have been developed since the beginning of specialisation

in intensive care, but were not widely comparable between hospitals until the

1980’s [46]. Heuristic methods tend to stratify patients according to clinical risk

without recourse to explicit representation of the relation between risk factors

and the outcome of interest. Heuristic methods are typically concerned with the

development of decision rules (typically drawn a consensus of experts) by which

clinicians can score, rank, or stratify the current risk-status of a patient (i.e., the

current risk of a patient deteriorating or experiencing an adverse clinical event).

A useful illustration in medical literature is that it is common to examine (i) how

heuristic methods stratify patients according to clinical outcome, but it is rare to

see (ii) how the rules of heuristic methods are developed with explicit reference

to those same clinical outcomes.

Empirical methods, on the other hand, generally quantify the relationship

between a set of patient characteristics and various clinical outcomes. Typical exam-

ples are prognostic/diagnostic models, which attempt to regress/classify outcome

from a set of risk factors. Alternative empirical methods include novelty detection

(1-class classification) [47]. If the relation between the patient characteristics and

outcome is described in a probabilistic framework then the risk of a clinical event

can then be examined within the context of the probability distribution that the

model describes. Not all methods that describe the clinical outcome as a function of

predictive variables have an exclusively probabilistic interpretation: support vectors

machines, neural networks, and random forests have all been used in the critical care

setting to forecast clinical outcomes such as length-of-stay and in-hospital mortality.

Probabilistic and non-probabilistic approaches will be described in separate sections.

Empirical methods in literature have typically explicitly formalised several

of the following:

1. how data were used to derive the decision rule,
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2. inclusion/exclusion criteria of data,

3. experimental design,

4. performance metrics of interest, and

5. validation of model performance.

This review will focus on applications of heuristic and empirical methods in

critical care for the purpose of monitoring patients for clinical deterioration.

Distinct from the method of monitoring is the implementation of that method

into clinical practice. In general, heuristic methods tend to be implemented via

non-technical means (e.g., heuristic EWS are typically hand-calculated as part

of routine monitoring). Advantages to such methods include compatibility with

routine clinical practice and the direct involvement of clinical sta�’s discretion

when deciding to raise an alarm. Empirical methods, due to computational burdens

tend to be implemented via technical means. Advances in m-health and related

monitoring technology has helped bridge this gap in technical implementation,

particularly in tasks that are easy to achieve such as the automated recording of

medical information and electronic calculation of EWSs.

2.2 Heuristic Approaches to Patient Monitoring

2.2.1 Overview of Heuristic Patient Monitoring

The current practice of patient vital-sign monitoring is to observe a patient’s current

measurements and decide whether the patient’s health state is currently at-risk of

deterioration. Simplistic methods include rule-based thresholds, for example issuing

a warning if a vital-sign exceeds a pre-specified threshold. These thresholds are

usually set according to expert clinical experience about the global population of

stable patients. Univariate alarm thresholds may be factory-programmed into the

device generating the vital-sign measurements [48, 49]. Some literature denotes

these systems as “triggering systems” [50], in contrast to “scoring systems” (which

are multivariate and graduated, instead of univariate and binary). A review of these
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Figure 2.1: Scoring table and escalation table of the Nation Early Warning Score
(NEWS). NEWS assigns a warning score from 0-3 to each of 7 clinical parameters. A
higher aggregate warning score across all parameters requires an increased frequency of
patient monitoring. A patient’s level of consciousness is classified as alert, reacts to voice
(V), reacts to pain (P), and unresponsive (U).

single-parameter systems can be found in [51], and for multi-parameter systems

in its companion article [52].

Improvements have been made by considering the simultaneous abnormality

of multiple vital-signs in addition to abnormality of a single vital-sign [50, 53].

As shown in each of the EWS systems in Figures 2.1, 2.2, and 2.3 such methods

typically include (i) a scoring table, which assigns a warning score, (ii) a composite

early warning score, which is typically the sum the score assigned to each vital-sign,

and (iii) an action or escalation table, assigning an appropriate clinical response

to each possible EWS. An example of such a system is the manually-calculated

National Early Warning Score (NEWS) [41] in Figure 2.1, which is described along

with similar EWS in the next section.
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Figure 2.2: Scoring table and escalation table of a Modified Early Warning Score
(MEWS). MEWS assigns a warning score from 0-3 to each of 6 clinical parameters. A
higher aggregate warning score across all parameters requires an increased frequency of
patient monitoring and clinical supervision, culmination in an MET call. A patient’s level
of consciousness is classified as alert, reacts to voice, reacts to pain, and unresponsive
(U). Notably, this MEWS incorporates neither SpO2 nor supplemental oxygen into the
decision criterion.

2.2.2 Example Heuristic Methods in Deterioration Detec-
tion

Common threshold-based early warning scores include NEWS [41, 42] in Figure 2.1,

the Modified Early Warning Score (MEWS) [54] in Figure 2.2, and the Wellington

Score (NZEWS) [55, 56] in Figure 2.3. These scores were designed for a generic

population, however further modifications have been made to accommodate more

specific patient cohorts, such as the Paediatric Early Warning Score (PEWS) [57]

in Figure 2.4. With the exception of paediatric scoring systems, the (typical)
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Figure 2.3: Scoring table and escalation table of the Wellington Score (NZEWS).
NZEWS assigns a warning score from 0-3 to each of 7 clinical parameters. A parameters
that exceed the score of 3 require an immediate MET call. A higher aggregate warning
score across all parameters or a more extreme single parameter requires an increased
frequency of patient monitoring. A patient’s level of consciousness is classified as alert,
reacts to voice (V), reacts to pain (P), unresponsive (U), and fitting (F).

Figure 2.4: Scoring table and age-stratified healthy reference ranges of a Paediatric
Early Warning Score (PEWS). PEWS assigns a warning score from 0-3 to each of 3 clinical
parameters. Notably, the abnormality of heart rate and respiratory rate is stratified by
the patient’s age, however the normal ranges to not always change between age groups.
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di�erences between many of these EWSs are superficial changes to the vital-sign

thresholds [52]. This can be confirmed be examining the various vital-sign thresholds

in Figures 2.1, 2.2, and 2.3. Table 2.1 contains the year in which several of these

system were first designed and then subsequently updated, along with the number

parameters under consideration in the original version that particular EWS system.

Warning Score Parameters* Versions
NEWS 7 2012 [41], 2017 [42]
MEWS 5 1999 [54] (Multiple others from disparate sources)
ZNEWS 7 2011, 2015 [56]
PEWS 7 2005 [57] (Multiple others from disparate sources)

APACHE 34 1981 [58], 1985 [59], 1991 [60]úú, 2016 [32]úú

SAPS 14 1984 [61], 1993 [62]úú, 2007 [63]úú

Notes: * = Original EWS ** = Empirical EWS

Table 2.1: Common heuristic early warning score systems

NEWS literature has described many shortcomings, for example the need to

include further important information such as age [64], mobility [65], near-patient

testing [66], D-dimer levels [67], and laboratory results [68]. Despite this, few studies

have suggested alterations to the EWS based on specific data. Even those systems

that did alter the thresholds (e.g., changing from NEWS to PEWS, with graduated

vital-sign ranges by patient-age) did not specify the particular evidence for selecting

one threshold over another. Several studies suggested alterations by providing

data-driven thresholds for a single parameter of interest, but left thresholds for

other parameters unaltered and, therefore, heuristic.

Exceptions to this include the APACHE and SAPS scores, both of which

were originally determined via heuristic expert consensus but later changed to

empirical weightings. In particular, when transitioning from APACHE II [59] to

APACHE III [60], or from SAPS [61] to SAPS II [62], both scores transitioned

to the use of multiple logistic regression (trained on data of patients’ in-hospital

mortality) to determine weightings.

Since these systems are designed heuristically, explicit descriptions (beyond

“expert consensus”) of their design process is di�cult. However, the performance of
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these systems is described extensively in the literature. For example, various MEWS

scores have been assessed in a variety of clinical scenarios including for the general

ward [66, 69], emergency department [50, 67, 70], ICU, and post-surgical patients.

EWS have been evaluated for a range of clinical outcomes, including emergency

ICU (re)admission [50], in-hospital cardiac arrest [71], in-hospital mortality [52,

66, 68], n-day mortality [67, 68], and hospital length-of-stay [66]. Such systems

are present in the US [16], UK [41], and British Common Wealth countries [55,

68], as well as Western Europe [67, 72].

Instead of considering each threshold simultaneously, tree-based decisions con-

sider a sequence of thresholds. The sequence and type of decision made at each

point is usually derived from the clinical application, which adds a measure of

specificity. Since decision trees are usually tailored to specific clinical applications,

it is more di�cult to find instances in which the same decision tree is examined

across multiple studies. Decision trees are typically limited to a small number

of rules to minimise complexity.

A final example of heuristic monitoring is nurse intuition. Studies have described

the predictive value in nurse intuition for over 30 years [73]. For example, Clifton

et al [74] noted that nurse observations that incorrectly alert or fail to alert are

highly predictive of future alerting/non-alerting observations. This implies that

clinical sta� are prone to incorporate information that is not currently encoded

within EWSs. In [75], a two-fold approach was suggested to improve EWS: (i) to

incorporate “nurses’ worry or concern” into early scoring systems, and (ii) to identify

concrete factors for nurses’ worry which would provide further objective criteria in

EWSs. One example of nurse intuition that is di�cult to codify is their familiarity

with the patient. As described in [76], nurses were more capable of interrupting

preventable cardiac arrest if they were knowledgeable of the patient’s medical history.

Unfamiliarity with the patient’s medical history, removed that personalised inference

and therefore diminished the nurse’s ability to interrupt preventable adverse events.
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2.2.3 Discussion and Critiques of Heuristic Systems

Critiques of the heuristic early warning systems generally address either (i) the

implied the clinical inference or (ii) the clinical implementation of the heuristic

method. Heuristic early warning systems have well-established modes of failure

for both implementation and inference.

Modes of Failure in Implementation of Heuristic Systems

For implementation, modes of failure generally pertain to either the sta�-intensive

burden of calculating the risk scores, or human errors associated with hand calcula-

tion.

Due to the many time burdens on clinical sta�, the time spent hand-calculating

heuristic EWSs necessarily takes time from other aspects of care. Sta� who

are busy recording the vitals-signs and performing computation by hand for one

patient, may miss the earliest signs of deterioration in another patient, leaving

the deterioration undetected.

Human error is also a significant factor in implementing these heuristic EWSs.

The error-rate in manually versus electronically recorded vital-signs has been

estimated to be 18.75% versus 0% [77], and 10% versus 5% [78]. In the absence of

recording error of the vital-signs, there is also error in the calculation of the EWS. In

Smith et al [79], 21.9% of EWS calculations were incorrect. The proportion of scoring

errors by vital-sign were respiratory rate, 9.6%, heart rate 5.4%, systolic blood

pressure 4.3%, and temperature 3.9%. Presumably, some portion of the remaining

76.8% were due to incorrectly summing of the scores assigned to individual vital-

signs. Incorrect scoring was most likely when the true EWS values were higher and

those that should have triggered. Clifton et al [74] found that incomplete nurse

recordings were twice as likely (7.6% vs 15.1%) to contain vital-sign measurements

that should have led to an alerting score.

Both sta� burden and human error can be immediately remedied via simple

software solutions. The simplest examples are devices with pre-set factory setting

to alarm in the presence of extreme vital-sign values. Furthermore, numerous
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electronic health record systems automatically record vital-sign measurements from

the bedside monitor. These same systems can also automatically calculate correct

EWS. Several systems with proprietary EWSs display both their own score and a

more traditional score, such as NEWS or MEWS, for clinical comparison.

Modes of failure in clinical inference

Heuristic EWS leave much to be desired, even if the concern of implementation

were addressed.

To begin, these heuristic early warning systems are not designed (based on

evidence) to optimise a particular measure of clinical performance. Of the EWS

papers described, none made an explicit reference to patients’ vital-signs or clinical

outcome data to inform the creation of the score. In rare cases, a study will describe

the individual vital-sign parameters with data-driven thresholds. We can contrast

this to the empirical centile-based EWS (described later) for which each EWS

threshold is assigned according to the distribution of vital-sign measurements

from a patient cohort.

With the exception of the rarely-used trajectory methods [49], these heuristic

EWS look at vital-signs at single point in time and ignore time-series dynamics.

Steep trajectories or erratic volatilities are not formally implemented in the decision

process. Any such inference then, is left to the clinical intuition of nursing sta�.

Similarly, a patient might demonstrate significant variation, but remain entirely

within the pre-specified alarm bounds of the EWS. Furthermore, the described

EWSs do not assess whether vital-signs are jointly abnormal, they simply aggregate

signals of abnormality for each individual vital-sign.

In terms of patient-specificity, the described heuristic early warning systems are

tailored, at most, to a cohort of patients. This results in early warning systems

with wide ranges for “normal” vital-sign values where there ought to be precise

patient-specific ranges. As shown in Chapters 3, 5, 7, and 8, individual patients

tend to occupy a relatively small range of values, compared to the wide range

of variability across the population. Inter-patient variability remains even when
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patients are stratified by clinical outcome. An example of this will be shown in

Chapter 3, when patients have wide individual ranges, even when grouped according

to whether they experience cardiorespiratory instability. In this, alarm systems are

made highly insensitive to accommodate the range of values within a cohort.

Furthermore, patient-specificity or personalised-risk (as learned by nurses in [76])

may be di�cult to codify within the rigid confines of a NEWS-like system, empirical

approaches may implicitly codify patient-specific information via (i) comparability

to already-observed patients of a similar phenotype, and (ii) acquisition of patient-

specific data via continuous monitoring. The prior/likelihood paradigm of Bayesian

inference may naturally handle both (i) and (ii).

A further critique of heuristic EWSs is that they ignore the uncertainty in

vital-sign measurements (or other physiological parameters of interest). Decisions

regarding a measurement’s uncertainty are generally left to the nurse, instead of

being contained within the decision process. Furthermore, it is unclear how to

handle such systems in the presence of missing vital-sign measurements, other

than to forgo clinical inference. In contrast, the probabilistic empirical methods,

described next, parametrise the uncertainty in vital-sign measurements, when the

vital-sign is either missing or present.

A final critique of heuristic EWSs is that the score dichotomises a continuous

vital-sign measurement, thereby creating arbitrary delineations between nearly-

identical vital-sign values. For example, it makes little sense that two patients

with respective systolic blood pressures of 210 mmHg and 220 mmHg would have

respective EWSs of 0 and 3, under the Wellington EWS [55]. The troubles associated

with dichotomising a continuous entity are a well-described in medical literature

[80, 81] for diagnostic and prognostic models. It is worth noting that whereas the

dichotomisations described in medical informatics literature [80, 81] are generally

tuned to optimise metrics of clinical performance, the heuristic EWSs (which are

prognostic tools as well) fall into the trap of dichotomisation, but without reference

to a clinical goal. This represents a 2-fold failing.
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2.3 Probabilistic Empirical Approaches to Patient
Monitoring

2.3.1 Overview of Probabilistic Patient Monitoring

Empirical approaches to patient monitoring attempt to learn more explicit rela-

tionships between the patient’s predictive features (e.g., vital-signs) and clinical

outcomes of interest (e.g., mortality, emergency ICU readmission). Probabilistic

methods may incorporate the inherent uncertainty in the predictive features and/or

the clinical outcome when formalising this relationship.

There are no probabilistic methods that are not empirical, since probabilistic

methods are motivated by the properties of clinical data and estimated via clinical

data. The application of Gaussian processes (GPs) to patient monitoring is a

specific empirical probabilistic method that will be discussed in a separate section.

Methods that are still empirical but do not make considerations of uncertainty are

“non-probabilistic”, and are covered in the next section.

An advantage in assessing novel empirical models is that their empirical per-

formance compared against alternative methods is usually discussed in the paper

proposing the novel method. For example, it is typical to compare the performance

of a novel patient monitoring algorithm to (i) common clinical practice, and (ii)

more sophisticated alternatives. Performance is usually measured by area under

a receiver operating characteristic curve (AUROC) for accurate classification of a

deteriorating patient (defined by in-hospital mortality/cardiac arrest, emergency

transfer to ICU, etc.).

As described earlier, data-driven methods may add value by using the large

amount of available patient data (acquired in routine practice) in a more rigorous

fashion. Probabilistic methods are popular because they provide a familiar and

principled framework in which to handle uncertainties and correlation in relevant

physiological measurements and/or the clinical outcomes of interest.

Many methods that use some form of probability (or are amenable to prob-

abilistic interpretation) have been examined for patient monitoring. We define
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several broad methods for probabilistic deterioration detection: (i) regression-based

methods, (ii) one-class classification or novelty detection, and (iii) cluster-based

classification methods.

2.3.2 Regression-based Methods

Regression-based methods are the first of three broad categories of probabilistic meth-

ods.

Regression methods in deterioration detection specify a functional relationship

between the patient’s measured physiology and particular adverse events of interest.

The adverse event of interest can be general risks of the hospital population (e.g.,

in-hospital mortality) or specific to a ward or patient group (e.g., failure of a

particular organ). The scores from such systems are intended to be either (i)

static, characterising the patient’s status over the duration of stay, or (ii) transient,

necessitating subsequent remeasurment and recalculation. Finally, to accommodate

manual calculation of a risk score such methods are typically paired with additional

decision thresholds to inform clinical action. Although similar in concept to the

heuristic EWS described above, strengths of these empirical regression models

include (i) clinically-principled model selection, (ii) data selection and experimental

design, and (iii) diligent testing/validation on a held-out patient population. This

final element is crucial for clinical implementation.

The scoring tables for three logistic regression-based EWS are provided in

Figure 2.5 for APACHE II, Figure 2.6 for SAPS II, and Figure 2.7 for LODS. An

immediately apparent di�erence in these scoring tables and those of the heuristic

EWS of Figures 2.1, 2.2, 2.3, and 2.4 is that the empirical systems are not constrained

by the 0-1-2-3 scoring progression. Instead, the score assigned to di�erent ranges

reflects the increased risk of mortality. These methods, however are still subject to

the illogic of cut-o� thresholds to escalate risk score, described in [80, 81].

Regression methods are popular in clinical literature presumably due to their

familiarity and interpretability. Since these models abound in traditional epidemi-

ological, pharmaceutical, and medical research (see, e.g., [80, 82]), they are a
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Figure 2.5: The APACHE II scoring table. APACHE II is calculated upon entry to
ward and remains unchanged. APACHE II assigns a warning score from 0-4 to each of 12
clinical parameters (a selection of which is shown). A further score from 0-6 is assigned for
a patient’s age. A further score from 0-12 is assigned according to the patient’s Glasgow
Comma Score (GCS).

Figure 2.6: The SAPS II scoring table. SAPS II is calculated upon entry to ward
and remains unchanged. While SAPS II assigns a warning score to clinical parameters
according to thresholds, the score assignment is based on the risk calculated by a logistic
regression model, as opposed to an arbitrary score escalation from 0-3. A selection of the
SAPS II parameters is shown.

common feature in a clinician’s formal education. Such models are ubiquitous

in technical fields as well, allowing an easy interface between technical experts

and medical practitioners.

Two exemplar regression-based methods are described in turn: the Acute

Physiology And Chronic Health Evaluation (APACHE) Score and and the Sequential

Organ Failure Assessment (SOFA) Score1.

Acute Physiology And Chronic Health Evaluation (APACHE) Score

The APACHE score was first developed in 1981 [58], and subsequently updated

as APAPHE II in 1984 [59], APACHE III in 1991 [60]2, and APACHE IV in 2006

[32]. APACHE and APACHE II were heuristic systems, whereas the weightings of

the APACHE III and APACHE IV scores are derived empirically from a logistic

regressor. The APACHE score is static: it is intended for calculation upon admission
1Frequently called the sepsis-related organ failure assessment score, as well.
2APACHE III was updated in 1998 while retaining the same name [32]
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Figure 2.7: Logistic Organ Dysfunction Score (LODS) scoring table. LODS is calculated
upon entry to ward and recalculated throughout the stay on ward. While LODS assigns
a warning score of 0, 1, 3, or 5 to clinical parameters according to thresholds, the score
assignment is based on the risk calculated by a logistic regression model, as opposed to
an arbitrary score escalation. A selection of the LODS parameters is shown from three
di�erent physiological systems: neurolical, cardiovascular, and haematological.

to the ward (no later than the first 24 hours) and characterises patient-risk for

the duration of stay.

Since APACHE is a proprietary system, the weightings of APACHE IV are cur-

rently unpublished. However, the derivation of the APACHE IV system, described

in [32], would be familiar to those from a medical informatics or machine learning

background: The APACHE IV system was created to address the falling predictive

accuracy of APACHE III over the previous decade. The data comprised 110,558

patients (who met inclusion criteria) from 45 hospitals. Of these patients, 60% were

used to train a logistic regressor, and the remaining 40% as the validation set. The

validation set was further broken down to assess calibration and discrimination on

specific patient sub-populations. The predictive features were various physiological

measurements collected during the first 24-hours on ward, with the set of observations

for each patient being the “worst” value recorded within the first 24 hours. The

recorded clinical outcomes were (i) length of stay in ICU (in hours), (ii) length of

stay in hospital (in hours), (iii) mortality at ICU discharge, and (iv) mortality at

hospital discharge. The logistic regression itself was based on mortality at hospital

discharge. To avoid the inaccuracies induced via the assumption of linear coe�cients,

restricted cubic regression splines and restricted cubic spline transformations were

applied. However the method for selecting the number and locations of spline

knots was not disclosed.
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In addition to APACHE’s derivation as a probabilistic model, its calibration

is assessed probabilistically as well, by comparing the estimated probability of

mortality to the actual mortality rates within the patient cohort.

The APACHE score’s prediction is frequently compared to the Mortality Prob-

ability Model (MPM) and the Simplified Acute Physiology score (SAPS), since

each method (in its latest form) is (i) derived from logistic regression estimating

probability of mortality, (ii) static after being calculated in the first day of stay

on ward, and (iii) frequently considered applicable to stratify risk in non-ICU

patient cohorts. It should be noted that while the MPM is calculated at the time of

admission, there are further unique models for MPM to characterise the patient at

24, 48, and 72 hours. Like APACHE, these systems use the “worst” observation for

each predictive feature to describe the patient’s current status. Further information

on MPM, MPM II, and MPM III can be found in [83], [84], and [85], respectively.

Sequential Organ Failure Assessment (SOFA) Score

The Sequential Organ Failure Assessment score, also known as the Sepsis-related

Organ Failure Assessment score, was designed to monitor the changing patient

status due the deterioration of specific organ systems. In particular, SOFA monitors

organ failure due to a specific ailment: sepsis. Unlike APACHE, SAPS, or MPM,

SOFA is (i) intended for continuous recalculation, and (ii) not explicitly modelled

to predict mortality.

The SOFA score combines an assessment on several physiological systems,

including kidney, liver and brain function. Although proposed for predicting the

morbidity associated with organ failure, it has been further calibrated to correspond

to mortality rates [86, 87]. The sequential recalculation of SOFA serves to (i) update

the patient’s current status, and (ii) allow for trend-based clinical inference. A

SOFA score trend carries its own implications for clinical prognosis: regardless of

initial SOFA score, patients with a decreasing SOFA score have lower mortality

rates than patients with the same initial SOFA score but with stable or increasing

SOFA scores thereafter [87].
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To further aid manual calculation, the Quick SOFA (qSOFA) [88] uses three

simpler criteria, instead of six more complex criteria. For qSOFA, an emergency

is triggered if the patient meets two of the three criteria.

Similarities between the SOFA and Multiple Organ Dysfunction Score (MODS)

are apparent, including that (i) both use six similar criteria (focused on organ

function instead of generic vital-sign measurements), (ii) the scores are intended to

be recalculated frequently, and (iii) the scores have been applied to many patient

populations and many adverse events (due to their discriminative ability).

2.3.3 Novelty Detection-based Methods

Novelty detection-based methods are the second of three broad categories of

probabilistic methods.

It is fortunate for patients that adverse clinical outcomes are in the minority

of clinical observations. However, this creates a challenge for empirical modelling,

since there is little data on which to build a model to contrast patients with di�erent

outcomes. Novelty detection circumvents this problem by generating a specific

model only for the class for which there is ample available data. Abnormal cases

are then identified by their divergence from the well-defined class. An extensive

coverage of novelty detection is provided by Pimentel et al [47], who define novelty

detection as “the task of recognising that test data di�er in some respect from

the data that are available during training.” The value of such methods, it is

explained, come when the preponderance of training data is from the “normal” class,

thereby hindering the creation of a satisfactory explicit model for the “abnormal”

class. These methods model a single class of interest, but have no model for other

classes of interest. A patient is considered novel according to his divergence from

a model of normality, instead of his similarity to abnormal examples (which is

the case for regression and cluster-based methods). Novelty detection methods

that have been applied in the ward tend to focus on defining the distribution of

physiology in healthy patients, and alarming when observations are made that

fall into the extreme tails of those distributions.
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Examples, of such methods include (i) kernel density estimation, (ii) quantile

estimation, and (iii) extreme-value distributions.

Kernel Density Estimation

The kernel density estimate (initially proposed by Rosenblatt [44] and Parzen [43])

is a non-parametric approach to modelling the joint distribution of multiple random

variables. This method forms the basis for the current technical state-of-the-art,

as described in [45] and is described further in Chapters 3, 4, 7, and 8.

KDE-based novelty detection provided the basis for the first CE marked and

FDA-approved data-fusion algorithm for critical care patient monitoring. The

method has been associated with commercial names such as BIOSIGN™[89] and

Visensia™(OBS Medical) [34].

For patient monitoring, the KDE models the joint distribution of key vital-

signs, such as heart rate, respiratory rate, SpO2, and blood pressure from a cohort

of “healthy” patients. New patients’ vital-signs can then be compared to this

distribution, and alarm on low-likelihood values. The KDE method is classified as

novelty detection because the set of training data only includes patients who did

not experience cardiorespiratory instability for the duration of their stay on ward.

Typical KDE modelling choices (described further in Chapter 4) include selection

of the kernel’s bandwidth and the handling of finite-domain variables.

KDE-based novelty detection carries several advantages compared to the heuristic

EWS described earlier: Besides being empirical, the likelihood-based novelty score

allows for gradual escalation of a score, instead of a small number of stepwise

escalations. This means that the vital-sign deviations within any range will a�ect

the novelty score. Furthermore, the joint-distribution of the KDE allows for

consideration of the simultaneous abnormality of all vital-signs, instead of merely

summing univariate abnormalities, as in NEWS.

In essence, KDE methods replace an absolute threshold with a probabilistic

threshold that can account for the correlation between vital-signs. Patient risk,
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though, is still assessed at a single point in time, thereby losing information from

previous measurements, and making the unrealistic assumption of i.i.d. observations.

In addition to deterioration detection, KDE methods have been used to identify

artefactual anomalies in vital-sign data.

Centile-based Early Warning Scores (CEWS)

While the KDE method models the joint distribution of all vital-signs, centile-based

early warning scores (CEWS) model the univariate vital-sign distributions to inform

the familiar thresholds used in common EWS systems. The clinical applications

of CEWS methods have been described in [90] and [91].

Unlike the heuristic thresholds described earlier, CEWS’ threshold-selection was

both transparent and data-driven: A CEWS of 1, 2, and 3 were assigned to the

outermost 10, 5, and 1 percent in each tail. For example, a heart rate measurement

in either the lowest or highest 1% of heart rate measurements received a CEWS of 3.

The authors explained that optimising the thresholds according to the distribu-

tion of vitals is preferable to directly tuning the thresholds to optimise the AUROC.

The latter method would bias thresholds (i) in favour of identifying “salvageable”

patients who died under the current system, and (ii) against identifying “salvageable”

patients who did not die under the current system (since the system would not

reward identifying such patients). While this observation is clear in the case of

assessing a system’s sensitivity and specificity with regard to patients with in-

hospital mortality, it is less-clear in the case when “deteriorated” patients are

labelled as such due to their need for clinical action (without regard to a resultant

clinical action). This latter approach to patient-outcome labelling is used in this

thesis, as well as other studies, including [16, 21, 28, 34, 45].

Furthermore, CEWS moves towards an established rate of alarms on ward,

since each score is directly interpretable as a proportion of all vital-sign values.

This provides nurses with a greater understanding of the abnormality implied

by such an alarm.
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Further developments of CEWS-like methods include stratifying patients by

further characteristics, for example the Age- and Sex-Specific Early Warning Scores

(ASEWS). These methods take the same approach of using extreme quantiles of

patient data to define thresholds, however the data under consideration is restricted

to particular patient cohorts to adapt the EWS to known physiological di�erences

that occur due to sex, ageing, or both.

Extreme Value Distributions

A final novelty-based approach makes use of the Fisher-Tippett Extreme Value

Theorem (EVT).3 Instead of modelling the distribution of all vital-signs, and

alarming in the presence of observations in the tails of a distribution, EVT-based

methods use the distribution of vital-signs to perform inference on the tail-behaviour

of vital-signs. A principled inference of the tail distributions may be helpful

to anticipate whether extreme observations represent a true deterioration, an

artefactual measurement, or a reasonably-expected extreme value arising from

long-periods of continuous monitoring. The value of EVT-based methods are

typically championed when it is desirable to have a probabilistic novelty threshold

that can be adjusted automatically, with reference to the amount of available

data under consideration.

An early example of EVT used for a variety of biomedical signals can be found

in [92], which uses Gaussian mixtures as a model of normality, and EVT to model

anomalous data with respect to that model. Although [92] did not apply EVT to

vital-sign data as described in this thesis, it provided a basis for direct applications

to vital-sign monitoring, including a doctoral thesis [93], which applied EVT to

the same SDU data set as used in this thesis.

Since the CEWS systems described above were designed to mimic univariate-

oriented EWS, they fail to account for tail behaviour due to covariance. In contrast,
3 Fisher and Tippett’s EVT states that the extremum (minimum or maximum) of any sample

from any distribution must follow one of three distributions. It may be thought to provide the
limiting distribution of sample extrema, in the way that the Central Limit Theorem provides the
limiting distribution to sample means (which is the Gaussian distribution).
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EVT systems have been proposed which account for the multivariate and multi-

modal distributions of correlated vital-signs [94–96].

Outside of deterioration detection in critical care, EVT-based methods were

used to study patients with Crohn’s disease in the doctoral thesis by Niehaus [14].

EVT was used both to model patients’s lab-value time-series, as well as to derive

features for subsequent machine learning classification.

2.3.4 Cluster-based Methods

Cluster-based methods comprise the third and final broad category of proba-

bilistic methods.

Cluster-based patient models examine how patient groups di�er in the distribu-

tion of their predictive features. The understanding is that patients with di�erent

outcomes will generally diverge according to salient physiological metrics.

Cluster-based methods, when applied to classification, make use of data avail-

ability for each patient class of interest. Unlike the logistic regression-based EWS

classification, these clustering models typically build a probabilistic model of the

predictive feature, conditional on membership to a class. Clustering may also

be used as a pre-processing step for novelty detection methods, to create a more

succinct set of “normal” data points, as will be seen in the practical implementation

of KDEs in Hann [45] (described in Chapter 7) and the vital-sign trajectory

clustering of Pimentel [97].

In Yamamoto et al [98], the time-series of dialysis patients were hierarchically

clustered. Pulse rate, respiratory rate, and body movement time-series within

the same dialysis session were compared via (non-probabilistic) multi-dimensional

dynamic time warping, to assess intra-session agreement of the vital-signs. The

distance between intra-session vital-signs were then hierarchically clustered via the

(probabilistic) Ward method, which is based on Cophenic correlation (a measure of

how reliably a dendrogram preserves correlation). Although the various clusters

lacked interpretable medical features, it was noted that session clusters followed
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seasonal e�ects. This was interpreted to mean that biological patterns could be

influenced by environmental factors.

Schmidt et al [99] used k-means clustering to identify patient subgroups ac-

cording to their emergency department vital-signs. Intergroup similarities were

then compared for clinically significant di�erences and probabilistically significant

di�erences (via entropy measures and the Kolmogorov-Smirnov test).

Lee and Yetisgen used unsupervised random forest [100] (which trains a discrimi-

nator via adversarial generation of synthetic data) to generate patient features from

the MIMIC III data set. Summary statistics such as mean, minimum, maximum,

and standard deviation, for each vital-sign (heart rate, respiratory rate, mean

arterial pressure, and body temperature) were calculated for each patient-day. After

unsupervised random forest, k-medioid clustering was used to create interpretable

patient clusters to stratify patients by mortality rate.

In the doctoral thesis by Bose [101], statistical features were extracted from

heart rate, respiratory rate, and SpO2 time-series (e.g., mean, median, minimum,

maximum, variance, and range). The derived features were clustered via k-

means (optimising squared Euclidean di�erence) and the clusters were linked

hierarchically via Ward’s linkage procedure. After an initial clustering, further

statistical analysis was performed to identify and remove less-important features,

and to identify an optimal number of k-means clusters. Having reached a satisfactory

number of clusters comprised of the most important features, the driving factors

of cardiorespiratory instability were identified. For example, respiratory rate was

identified as the driver of 50% of all cardiorespiratory instability events, followed

by SpO2 (33%), heart rate (14%), and blood pressure (4%). SpO2 was identified

as the most frequent driver of first events, as well as the most frequent cause of

artefactual alarms. This study is of particular interested because the SDU data

under analysis was acquired from the same ward as the data used for this thesis.
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2.4 Non-Probabilistic Empirical Approaches to
Patient Monitoring

Non-probabilistic machine learning methods have demonstrated strong predictive

capacity in many applications, including health care. Well-known healthcare appli-

cations of non-probabilistic machine learning include signal-processing, computer

vision, bioinformatics, and mortality prediction. Many non-probabilistic methods

have a probabilistic interpretation (e.g., neural networks, random forests), but

these probabilistic aspects typically receive a minority of the focus when designing

and evaluating these methods. Unlike many of the probabilistic empirical systems

(e.g., APACHE, Visensia, prognostic regression, CEWS), it is di�cult to find

many instances of non-probabilistic approaches being implemented in the ward for

patient vital-sign monitoring. This “plague of pilots”, in which many solutions

are proposed but few are used, may be due to the perception of such methods

as being a “black box”, and therefore not amenable to the transparency required

by clinicians and regulators.

Decision trees are an intuitive choice for a method to replace heuristic thresholds

with empirical thresholds in early warning systems. The value proposition of decision

trees includes (i) validation of current heuristic EWS thresholds by comparison to

empirically-derived thresholds, and (ii) automated generation of manually-calculable

EWS for bespoke clinical environments [102]. Like the EWS decision-process,

decision trees naturally subdivide the feature space according to outcome. In [102],

the decision thresholds of NEWS were compared to the decision thresholds that

a decision tree would have selected, if presented with the same set of predictive

features. Only a single decision tree was used, instead of an ensemble of decision

trees. Unlike NEWS’s heuristic assignment of scores to high and low vital-sign

values, the Decision Tree EWS (DTEWS) assigned a score of 1, 2, or 3, according

to the risk of an adverse event at each node (as a proportion of the baseline risk of

deterioration). Three clinical outcomes were examined: cardiac arrest, mortality,

and ICU transfer. The DTEWS algorithm selected decision thresholds that were

very similar to those selected by NEWS. A similar DTEWS approach [103], from
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the same group, has been used for laboratory tests. Further examples of decision

tree-derived EWS can be found in [104] and [105].

Ensembles of decision trees have also been popular to derive empirical thresholds

for early warning systems. For example [106] (using data from the same SDU

as used in this thesis) used random forest to di�erentiate vital-sign artefact from

true alarms. The random forest classified artefactual values using (undisclosed)

features derived from the time-series.

Kernel-based learning methods, such as support vector machines (SVMs) are

also a popular comparator for the GP-based methods described in the next section.

SVMs have demonstrated comparable accuracy at forecasting, interpolation, and

imputation tasks, but lack the probabilistic descriptions of the uncertainty in those

forecasts, which GPs provide [107]. Gultepe [108] used SVMs (and probabilistic

Naive Bayes classifiers) to predict mortality in sepsis patients using only 3 vital-signs,

along with white blood cell count, and lactate level. The classifiers were advantageous

over previous machine learning approaches, and current practice, due to the reduced

number of predictive features required to achieve good predictive performance.

2.5 Gaussian Processes for Vital-Sign Modelling
and Deterioration Detection

GPs are a flexible and principled way to model a variety of functions, including for

regression, classification, time-series, and spatio-temporal modelling tasks. It is,

therefore, unsurprising that there exists an ever-growing body of literature describing

the use of GPs to model and predict vital-signs. The probabilistic framework of GPs

assists in the modelling of vital-signs, which are typically recorded using wearable

sensors, which induce various noise components, such as sensor noise, quantisation,

and artefact arising from patient movement or signal processing errors. The GP’s

flexibility allows it to handle a variety of modelling tasks. For example, as a regressor,

the GP can perform forecasting, interpolation, and missing-value-imputation tasks

with measures of uncertainty in its prediction. This allows GPs to serve both as

a modelling approach in its own right, as well as serve as a pre-processing step to
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subsequent analytical steps. As a classifier, GPs can circumvent unnecessary and

inaccurate assumptions of linear relationships between predictors and outcomes

(which concerned the authors of the later APACHE systems [32, 59, 60] as well).

Durichen et al [109] used multi-task GPs to model the correlation between

nurse-recorded observations in heart rate and respiratory rate. When compared to

single-task Gaussian processes (which do not account for inter-vital-sign correlation)

a multi-task approach demonstrated improved estimation of vital-sign values at

time points where (i) heart rate, or (ii) both heart rate and respiratory rate were

missing. This implies that GPs can improve the imputation of missing vital-sign

values. A similar example is given in [110], with the multi-task modelling extended

to include systolic blood pressure, as well as heart rate and respiratory rate.

A more concrete description of the value of empirical imputation is provided

in [107], which compared (i) univariate GPR-based imputation and (ii) support

vector regressor-based (SVR) imputation to more common heuristic approaches

of vital-sign imputation that used the population-mean or patient-mean. The

empirical methods demonstrated marked improvement in accurate imputation of

the missing values over the heuristic methods. The GP and SVR demonstrated

comparable performance, while the GPR imputation also provided an estimate of

uncertainty in the imputed value. Clifton et al concluded with an illustration of how

mean-imputation could falsely reduce a deterioration alarm using a system such as

the EVT-based method in [96], whereas the GPR method would (retrospectively)

infer the time of deterioration during the period of missing values. An extension of

this work is described in [48], which further illustrates the same methods, using nurse

observations to validate the accuracy of GP imputations of bed-side monitor data.

Wong et al [111] used Gaussian processes to impute missing vital-sign values as

well. By providing a complete set of vital-signs, the values could be fed into a patient

status index, such as in the KDE-based method from Hann [45], without resort to a

heuristic imputation at the population mean. Furthermore, the posterior distribution

of the Gaussian process allowed for probabilistic reasoning over both the missing
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vital-sign value and the patient status index which results from those vital-sign values.

(This second aspect was less-directly discussed in the imputation work of [107].)

In [112], GPs were used to model the periodic components of ECG in order to

estimate a patient’s respiratory rate coupled with an estimate of the uncertainty

in the respiratory rate.

In Pimentel et al [113], multi-task GPs are used to provide an estimate of heart

rate and respiratory rate trajectories, which were subsequently clustered via a

metric of local likelihood into four template trajectories. These templates were

then used to distinguish between deteriorating and non-deteriorating trajectories

in a held-out set of test patients. The value of GPR for modelling the trajectories

was several fold, including (i) imputation of vital-sign values at arbitrary and

constituent time intervals, (ii) the principled estimation of those values, and (iii) a

representation of uncertainty at any point (thereby accommodating greater weight

for trajectories with greater certainty). The GPR-based method out-performed

deterioration detection using clustering via multidimensional dynamic time warping.

(As seen previously in the dialysis example of Yamamoto [98], dynamic time-warping

is a popular method to cluster multivariate time-series.) An extension of this work

in [97] first generated patient clusters (as described above) using only the time-

series for temperature and systolic blood pressure. The patient clusters in 2D

were then compared to the clustering when heart rate, respiratory rate, and SpO2

were also included. Approximately 70% of patients remained in the same cluster

for the 5D clustering, which suggests that a smaller number of vital-signs drive

the di�erentiation between patient groups.

In Lasko et al [114], GPs were used to pre-process time-series of uric acid

measurements. GPs were used to transform “noisy, irregular, and sparse observations

to a longitudinal probability distribution”. The time stamps of these posterior

GPs were then heuristically time warped, and fed as inputs into an autoencoder

with the aim to distinguish between the uric acid measurement features of patients

with gout and leukaemia. The auto-encoder-learned features were compared to

features designed by clinical experts.
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Stegle et. al. [115] examined the use of GPs for free-living HR monitoring

with 40 adult subjects. Model-fitting and forecasting were improved by the use of

clustering based on “auxiliary” ECG-waveform summary data (for example, the

variability of inter-beat intervals, the extrema within these intervals, and the fraction

of time these extrema fell outside a credible range). The latter were used to identify

noisy periods in the data. The auxiliary variables were used to generate clusters

of variables with di�erent levels of noise. The noise model was then a mixture of

the di�erent classes with varying noise. After clustering, the kernel accounted for

two additive components of HR variability: a discontinuous short-term variability

component, and a periodic component for diurnal patterns. Model parameters were

found using expectation maximisation to approximate the posterior distribution

and then choosing values that maximised log-likelihood.

2.6 Potential Applications of Gaussian Process
Modelling State-of-the-Art to Patient Mon-
itoring

Despite the many applications describe above, GPs are yet to have been used to

their full potential in handling the varied and complex data presented by patients

on the ward or at home. The following is a brief survey of the variations on common

GPR models which may be useful in critical care monitoring.

GPR holds several advantages over more traditional regression methods. Most

broadly, GPR does not impute a functional form relating the dependent variables

to the independent variables. Pre-specified functional forms can include those

meant to handle non-linearity and other salient features (e.g. polynomial, fractional-

polynomial [82], or Poisson regression) or to specify the extent to which previous

observations a�ect future observations (e.g. models with autoregressive or moving-

average components, such as [116]). Such pre-specified functional forms lead to

inherent challenges in the modelling process. Most obviously, the pre-specified model

may be misspecified and deviate significantly from the actual form of the generative

process, especially where data are absent or sparse. The kernel-based modelling of
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GPs circumvents these issues by avoiding the need of undesirable assumptions of

the functional form. Furthermore, GPs are amenable to probabilistic assessment of

a kernel’s performance, so that the introduction of superior-performing kernels may

be automated in the presence of new data [117, 118]. This is certainly desirable

in continuous patient monitoring systems, which may wish to change the model

in light of further hours or days of information.

Similarly, GPs are amenable to on-line change-point detection [119, 120], for

example, to identify when there has been a change in the underlying generative

process, so that the previous model fails to describe the data subsequent to the

change-point. Plausible causes of change-points include changes due to deteriorating

physiology; or probe detachment leading drift, or bias, in the observations (due

to signal processing failures of the waveform. It is plausible that in the course

of deterioration, the underlying dynamics of a patient’s time-series will deviate

from the previous dynamics. These applications might be very useful in those

instances in which a patient does not have forecastable trajectory of impending

deterioration, but which instead can only be identified after a dynamic change has

occurred. As a concrete example, the step-change GP work in Chapter 8, which

identifies instances of rapid volatility could be supplemented by the change-point

models described in [119, 120]. In the presence of a suspected step-change, a

change-point model could evaluate the evidence for two separate GPs, occurring

at the time-point of the step-change.

A further flexibility is that GPs models are not constrained to Gaussian

likelihoods. This is useful since many important vital-signs measurements are

certainly not the product of Gaussian random variation, for example SpO2 which is

(i) constrained between 0%-100% and (ii) fixed at 100% during oxygen therapy, and

heart rate, in which noise is typically right-tailed. To avoid heuristic transformations

(such as log-transformation for positive-valued vital-signs) warped GPs can learn

transformations for both the outputs [121] or inputs [122] of the data to improve

the Gaussianity or stationarity of the data, implicitly creating a more accurate

probabilistic description of the untransformed data. GPs can also form the basis to
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segue into copula process modelling [123], which for multi-vital-sign modelling allows

for more bespoke modelling of (i) marginal distributions (e.g. a [0,100]-constrained

marginal distribution for SpO2), and (ii) the correlations between the vital-signs.

Other GP developments may be useful in niche clinical environments. McHutcheon

et al [124] examine uncertainty in a GPR model and the importance of precise

time-stamps depending on how quickly the functions are changing with respect to

time. In a patient-monitoring framework, poorly-synchronised monitoring devices

will likely contain errors in the times of the recorded measurements, creating

temporal uncertainty. This is especially true in mobile or home patient-monitoring

where information might be relayed between multiple devices. A simple example

could be the Bluetooth connection of a monitoring device becoming disconnected

or desynchronised from other devices being used to monitor the same patient.

GPs could be designed to accommodate this uncertainty if it were determined

to be significant.

Finally, advancements have been made to ensure that GP analysis can scale

to the size of the data. Approximation methods allow the GP to model a large

number of data points via a smaller number of (empirically selected) inducing points

[125] or pseudo inputs [126]. Approaches such as these may be preferable to more

heuristic approaches to “sparsify” or down-sample the data without independent

evaluation of its a�ect on the model.

2.7 Conclusion

This chapter has described how early warning systems for patient deterioration

detection may be usefully divided into two categories, (i) those systems with heuristic

decision criteria, and (ii) those systems with empirical decision criteria. While

heuristic approaches are most common in patient monitoring they are prone to well-

established flaws that undermine their capability to forewarn patient deterioration.

Empirical approaches are less widely-adopted but aim to address the short-comings

of heuristic systems in several ways, including (i) clarifying the clinical performance

metrics by which a monitoring system is evaluated, (ii) data-driven selection of
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monitoring parameters, and (iii) avoiding arbitrary thresholds in clinical decision

making. This thesis proposes GP-based methods of patient monitoring to build

upon these empirical methods.



3
Data Description

The methods in this thesis were developed using data from a step-down unit (SDU)

at the University of Pittsburgh Medical Center (UPMC). The data set comprises 333

SDU patients whose vital-sign data were recorded over the duration of their stays

on ward. Using criteria from similar studies at this UPMC SDU, each patient’s

time-series was retrospectively annotated for extreme vital-sign measurements

indicative of cardio-respiratory instability.

A descriptive analysis of patient vital-signs and the annotated clinical emergency

is provided. Attention is given to inter-and intra-patient variability in (i) vital-sign

measurements, (ii) emergency-event causes, (iii) length-of-stay (LOS) on ward,

and (iv) data missingness.

The large inter- and intra-patient variability in vital-sign values demonstrates

a fundamental challenge in early warning systems that are based on extreme-

valued vital-sign measurements. This challenge motivates the development of

personalised clinical inference via each patient’s time-series, which is the con-

tribution of this thesis.

49
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3.1 UPMC Data Collection

The UPMC data set comprises 333 adult patients in the surgical-trauma SDU at

the University of Pittsburgh Medical Center (UPMC) Presbyterian Hospital. The

patients were recorded as phase 1 of a 3-phase trial to optimise and validate the

e�cacy of the kernel density estimate (KDE) based monitoring system described

in [45]. The goal of phase 1 was to use the collected data to optimise the value

of the novelty threshold for the KDE used to generate clinical alerts. The KDE

model of normality had been constructed using data from two studies at the

John Radcli�e Hospital.

Phase 1 of the UPMC trial acquired vital-sign data via Philips MP30 bedside

monitors. The KDE was not used to alert clinicians, and the nursing sta� was blinded

to the KDE model and the KDE model’s outputted early warning score. Phase 1

started in November of 2006 and lasted eight weeks. Phase 2 and 3 of the UPMC

study were used, respectively, to train nursing sta� to respond to alerts generated

by the system, and evaluate the use of the KDE-based early warning system.

This thesis uses only data from phase 1 of the UPMC study. Accordingly, the

data corresponds well to the current clinical practice in the United States and

United Kingdom. (In contrast, the data in phases 2 or 3 would correspond to

clinical practice subsequent to the introduction of the KDE-based method.)

3.2 Individual Patient Data

Each UPMC patient’s data comprises vital-sign time-series, and a set of annotated

emergency events (these events are called C”-events, and are described in the next

section). Examples of two such vital-sign records are shown in Figure 3.1, for

3.1(a) a non-C”-patient with no annotated emergency events, and for 3.1(b) a

patient with three annotated emergency events. (The exact definition of C”-events

will be given in the next section.)

The vital-sign data contains unique time-series for each of five vital-signs: heart

rate (HR), respiratory rate (RR), SpO2, systolic blood pressure (SBP), and diastolic
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Figure 3.1: A full vital-sign time-series record for (a) a non-C”-patient and (b) a C”-
patient. Vital-signs are di�erentiated by colour. Annotated emergency events are shown
by vertical lines. For visual clarity, blood pressure values are held for 30 minutes after
the initial measurement. Vital-sign measurements are shown after artefact removal, and
down-sampling to fs= 1

60 Hz.

blood pressure (DBP), all of which were recorded by the Phillips bedside monitors.

Temperature was recorded but not used in any of the models discussed in this thesis.

The temperature measurements of the data set were beset with artefacts and were

of ambiguous clinical value. For these reasons, temperature is not included in our

discussion. The time-series of each vital-sign comprised vita-sign measurements

and their associated time-stamps.

Validated clinical emergency events, called C”-events, occurred in some of the

patient’s vital-sign time-series. Each patient record includes a record of the time-

stamp, duration and primary cause of any C”-event. For patients who did not

experience any C”-events, this record is empty.

Figure 3.1 illustrates many of the challenges encountered with continuous

vital-sign data:

First, each patient has several extended periods of missing measurements. In
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3.1(a), the non-C”-patient’s time-series begins with only a single initial measurement

(at hour 0), followed by 20 hours of missingness. Between approximately 35-38

hours, the non-C”-patient has a step-change with elevated HR. Since this period was

not marked as a C’-event (where data exceeded the MET calling limit of 140 bpm),

we know that clinical experts considered these measurements to be artefactual.

Since sections such as these are neither marked as C’-events nor C”-events, and

many of the measurements fall within both the artefactual limits (Table 3.1) and

the MET limits (Table 3.2) it is left to the patient monitoring algorithm to identify

these questionable measurements and decide how to handle them appropriately.

Measurements of this kind were left in the time-series with the understanding that,

if taken at face-value, they would represent highly unusual physiological dynamics.

Novel approaches to identifying artefacts (using the individual patient’s time-series

information) are described in Chapter 5.

In 3.1(b), the C”-patient has three C”-events due to high RR (where the MET

limit is 36 bpm). The C”-annotation seems appropriate, seeing that RR is visibly

elevated over that of the non-C”-patient. On average, the C”-patient’s HR is

about 20 bpm higher than that of the non-C”-patient. The preponderance of SpO2

measurements at exactly 100% suggests that the C”-patient received a significant

amount of oxygen therapy. (Patients breathing room air typically have SpO2 values

around 95%.) A final observation is SBP and DBP were sampled much more

frequently for the C”-patient compared with the non-C”-patient. This suggests

that the clinical sta� was taking particular interest in this patient following the

previous MET-level measurements. This observation supports our choice to focus

our predictive methods on only the first C”-event for each C”-patient.

3.3 Annotation of Clinical Emergency Events

3.3.1 Prospective Identification of Emergency Events

Over the course of phase 1 data collection, the medical sta� made 7 medical

emergency team (MET) calls based on extreme vital-signs (across all 332 Patients).

We view these 7 calls as emergency events that were prospectively-identified under
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current clinical practice. As described below, these 7 events constituted the minority

of emergency events that occurred over phase 1.

3.3.2 Retrospective Identification of Emergency Events

Retrospective annotation of all emergency events was completed by (i) an automated

screening of all patient time-series for candidate emergency events, followed by (ii)

validation of each candidate event by clinical experts for a final set of validated

clinical emergency events. Identical or nearly-identical criteria have been used in

numerous other studies at the UPMC SDU to define “cardiorespiratory instability”,

for example [16, 21, 28, 34].

Automated Screening of Emergency Events

For each patient, the automated screening for potential emergency events was

conducted as follows:

1. Artefactual measurements were removed from the recorded vital-sign time-

series, according to Table 3.1 (which was taken from [45]).

2. Further artefactual recording errors in respiratory rate were identified and

remedied.

3. Vital-signs that would have satisfied the univariate MET calling criteria (for

at least 4 of the previous 5 minutes) were identified. The MET calling criteria

are shown in Table 3.2 (which was taken from [45]).

4. Alarms occurring close in time were merged into a single alarm event.

This automated process identified 407 candidate emergency events to be val-

idated by clinicians.



54 3.3. Annotation of Clinical Emergency Events

Lower Threshold Upper Threshold
HR (bpm) 30 300

SDA (mmHg) 20 180
SpO2 (%) 10 -
Temp (¶C) 32 39
RR (bpm) 3 45

Table 3.1: Artefactual thresholds applied to phase 1 patients

Lower Threshold Upper Threshold
HR (bpm) 40 140
RR (bpm) 8 36
SpO2(%) 85 -

SBP (mmHg) 80 200
DBP (mmHg) - 110

Table 3.2: Univariate MET alarm thresholds

Clinical Validation of Emergency Events

A team of clinical experts were provided with the relevant time-series data to

determine whether any of the 407 potential events were indeed non-artefactual.

Any events that clinicians confirmed to be non-artefactual exceedances of the

MET thresholds in Table 3.2 were labelled as so-called C’-events. There were

237 C’-events between 83 patients.

For each C’-event, the group of clinical experts then decided whether an MET

ought to have been called to perform an emergency clinical intervention. C’-events

thus confirmed to have warranted an emergency intervention were labelled C”-events.

The annotated C”-events each had an associated start-time, stop-time, and primary

cause. There were 112 C”-events between 59 patients. (This means that there were

24 patients whose vital-signs exhibited non-artefactual, sustained MET exceedances,

but who were not thought to require emergency intervention.)

Patients who experienced a C”-event are labelled C”-patients. Those who did

not experience a C”-event are labelled non-C”-patients.

The presence of 112 emergency C”-events when, in practice, only 7 MET calls

were made supports the understanding that continuous monitoring can add value

to the intermittent observation of nursing sta�.
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3.4 Characteristics of Annotated Emergency Events

For the purpose of detecting deterioration, we are particularly interested in a

patient’s first C”-event because it is possible that vital-signs subsequent to that

first C”-event may be a�ected by clinical intervention.1

As seen in Table 3.3, SpO2 comprised almost one-third of first C”-event causes.

SBP and HR followed, comprising about one-quarter and one-fifth of first C”-

event causes, respectively.

As seen in Figure 3.2, events occurred between 0.1 and 1000 hours after admission.

The earliest C”-event occurred within minutes of recording. There is significant

heterogeneity, but no obvious relationship between the first C”-event time-stamp and

the C”-event’s primary cause. Within the same C”-patient’s time-series, multiple

C”-events tended to share the same primary cause.

HR RR SpO2 SBP DBP Total
Lower Threshold 2 4 20 11 - 37
Upper Threshold 10 6 - 3 3 22

Total 12 10 20 14 3 59

Table 3.3: Count of first C”-event by primary cause

3.5 Missing Vital-Sign Measurement Data

As seen in the example time-series of Figure 3.1, the time-stamps of di�erent

vital-signs (e.g. HR, RR, etc.) are not aligned. This is for several reasons,

including di�ering sampling rates, artefact removal, probe detachment, and vital-

signs beginning recording at di�erent times. It is helpful to distinguish between

two metrics of a patient’s available data:

1. Length of stay (LOS): The time from a patient’s entry on ward to release

from ward.
1Similar reasoning is found in the patient exclusion-criteria of APACHE IV [32], to avoid the

confounding a�ects of previous emergency interventions on a patient’s physiology.
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Figure 3.2: First C”-event by primary cause and time-stamp for the 59 C” patients.
Event time is presented in logarithmic scale from the time of admission. Each C”-event
is coloured according to primary event-cause. The earliest emergency event (patient 14)
occurs within minutes of admission, whereas the latest occurs (patient 2) after weeks on
ward. No clear pattern is visible to suggest a relationship between the C”-event’s cause
and time of event.

2. Length of monitoring (LOM): The total duration of (possibly non-contiguous)

time that a patient’s vital-signs were recorded.

LOS is an informative clinical indication, since a patient will remain on ward

until their status progresses (either to a lower- or higher-acuity ward) In contrast

LOM indicates data availability, which may be agnostic to clinical condition (unless

the patient’s condition interferes with vial-sign recording). While LOS is directly

available from the patient record, LOM must be calculated with reference to the

challenges of missingness and misalignment described above.

LOS and LOM are summarised in several tables and figures. In Figure 3.3,

patient LOS is stratified by C”-patient-status. Unsurprisingly, C”-patients were

much more likely to have long LOS, presumably because their physiology was

identified as abnormal by clinical sta� who delayed their discharge from ward.

In Figure 3.4 the LOM for each vital-sign is plotted, with patients stratified by

C”-patient-status. Since C”-patients were on ward longer, LOM was longer as well.

In Table 3.4, the number of patients with LOM < 1 for any vital-sign is tabulated.

Missingness was significantly more common among non-C”-patients.
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Figure 3.3: Length of stay in (a) non-C”-patients, and (b) C”-patients

Figure 3.4: Length of monitoring for each vital-sign and across all vital-signs in non-C”-
patients (left column) and C”-patients (right column). Vital-signs are ordered as (a-b)
HR, (c-d) RR, (e-f) SpO2, (g-h) SBP, (i-j) DBP, and (k-l) across all vital-signs.
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HR BR SpO2 SBP DBP Every Vital
Non-C”-Patients (n=273) 18 33 27 16 16 14

C”-Patients (n=59) 0 3 0 0 0 0

Table 3.4: Counts of patients with less-than 1 hour of data for a particular vital-sign

From Figure 3.3, there were 11 patients whose LOS was less than one hour. From

Table 3.4, there were 14 patients whose LOM across all vital-signs was less than

1 hour. In addition to these patients, many remaining patients had an individual

vital-sign with less than one hour of recorded data, as seen in Table 3.4. Precise

comparison of the rate of missingness is di�cult, since there are 59 C”-patients

and 333 ≠ 59 ≠ 11 = 263 non-C”-patients. However, the preponderance of missing

vital-sign channels is among the non-C”-patients, which suggests the obvious fact

that emergency events can only be observed in the presence of data. It is interesting

that, with the exception of three patients (each with less than 1 hour of RR data),

all other C”-patients had data available for all five vital-signs.

A further component of missingness is intervals of missing data within a time-

series. This is seen in Figure 3.1(a) around hour 50. It is possible, for example, that a

non-C”-patient with many hours of data may, in fact, simply be missing data during

a period in which abnormal vital-signs occurred. Similarly, if a C”-patient had only

a single recorded vital-sign available during the C”-event, then the true “primary

cause” vital-sign may have been missed in favour of the available vital-sign. (Table

3.4 does not refute this possibility, since it does not clarify when measurements were

available, only that at least an hour of measurements was available at some point.)

While, these are all possibilities, these aspects of missingness were not investigated.

As seen in Figure 3.3, C”-patients had longer lengths of stay compared to non-

C”-patients. Similarly, from figure 3.4, C”-patients had longer periods of continuous

monitoring for each vital-sign 3.4(a-j) and across all vital-signs 3.4(k-l). This could

be evidence of the clinician’s apprehension over releasing C”-patients.
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3.6 Distribution of Continuous Vital-Sign Mea-
surements

As seen in Figure 3.5, a quick overview of univariate vital-sign distributions

struggles to usefully di�erentiate between the average vital-sign measurements

of C”-patients and non-C”-patients. This may be partly due to the fact that the

preponderance of C”-patients’ vital-signs fall within normal ranges, and therefore

only di�erentiate in tail events.

In Figure 3.5, C”-patients appear to have, on aggregate, heavier right-hand tails

in HR, BR, and SBP than did non-C”-patients, and a heavier left-hand tail in

SpO2. The left-hand tail of HR, BR, and SBP is (slightly) heavier in HR, BR, and

SBP. It is clear that the C”-patients have, on aggregate, more extreme values, as

would be expected. It is unclear, however, whether these di�erences are su�cient

to di�erentiate health status in a timely manner. For example, a C”-patient could

have long periods of “normal” physiology prior to rapid onset of the emergency

event. Furthermore, extreme valued-measurements within non-C”-patients may

occur with su�cient frequency to produce alarms at a similar rate as C” patients.

This view is corroborated by Figure 3.6, which shows the 25th, 50th, and

75th percentile of measurements for each patient. Patients are stratified by C”-

patient-status. In both non-C”-patients in Figure 3.6 (top row) and C” patients in

Figure 3.6 (bottom row), individual patients can be seen to occupy distinct ranges

of measurements, but almost none are near the MET calling range of Table 3.2.

Furthermore, the inter-patient range of C” and non-C”-patients are nearly identical.

The only notable exception to this is RR, for which C”-patients indexed 50-60 have

elevated RR ranges beyond any seen among the non-C”-patient cohort.

3.7 Conclusion

The UPMC data set has been described. Several important aspects of the UPMC

data set are (i) the clinical annotation of C”-events, which warranted emergency
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Figure 3.5: Univariate CDF comparison of vital-signs between C” patients (-) and
non-C”-patients (-). Di�erences in tail density can be compared for (a) HR, (b) RR, (c)
SpO2, (d) SBP, and (e) DBP.

Figure 3.6: Intra-patient vital-sign variability of non-C”-patients (top row) and C”
patients (bottom row). The vital-signs are ordered by (a,f) HR, (b,g) RR, (c,h) SpO2,
(d,i) SBP, (e,j) DBP. The blue line shows the median measurement for each patient. Red
lines show the 25th and 75th percentile for each patient. Patients in each subplot are
indexed by median measurement, for visual clarity.
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medical intervention, (ii) the high inter- and intra-patient variability in vital-sign

values, and (iii) the confounding caused by vital-sign missingness.

The identification of 112 validated clinical emergency events when only 7 MET

calls were made in practice motivates the development of continuous monitoring

techniques so that fewer clinical emergencies are missed by clinical sta�. The

methods developed in this thesis aim to demonstrate (retrospectively) that these

emergency events could have been identified in advance without inundating sta�

with a large number of false-positive alarms.

The high inter- and intra-patient variability in vital-sign values demonstrates

the challenge of early warning systems that alarm only when a patient exhibits

physiology that is extreme with respect to a patient population, instead of extreme

with respect to their own physiology. The methods developed in this thesis will

aim to (i) learn, and (ii) exploit personalised physiology information to supplement

current monitoring systems.

Finally, there are inherent technical challenges to continuous vital-sign monitor-

ing, particularly those caused by missing vital-sign measurements. Missingness may

include complete missingness of a vital-sign record, or a vital-sign not recording

within a specific time-period. Ideally, these data would be available for clinical

inference. However, the ability to handle missing data is necessary for any automated

monitoring system that could be applied realistically to patient monitoring.
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4
Methods Review

This chapter describes the fundamental technical elements that will be applied

in this thesis. We begin by describing how the univariate Gaussian distribution

may be extended to the multivariate Gaussian (MVN) distribution, and then to

an infinite-variate Gaussian Process (GP). The GP’s probabilistic model is then

related to an equivalent state-space model, which is equivalent to a Kalman filter.

We then describe Bayesian optimisation, which uses a GP model to select sequential

queries to an objective function that we wish to optimise.

Finally, the Parzen kernel density estimate (KDE) is described, which forms the

basis of (i) the current state-of-the-art in patient monitoring (discussed in Chapters

7 and 8), and (ii) a candidate method for modelling the marginal distribution of

vital-signs, e.g., for artefact detection (used in Chapter 5) and copula modelling

(described in future work).

4.1 Introductory Reading

The methods described in this chapter are popular in many engineering applications

and therefore are accessible through a rich body of introductory material, which

the reader may find helpful. Particular examples of useful introductory material

are provided below.

63
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David MacKay’s “The Humble Gaussian Distribution” [127] provides the best

concise description of the properties of Gaussian distributions that are most pertinent

to GPs. Mark Ebden’s “Gaussian Processes: A Quick Introduction” [128] provides

a concise introduction to GPs for regression and classification (for those unfamiliar

with GPs). An overview of Gaussian process covariance functions can be found

in David Duvenaud’s “Kernel Cookbook” [129], with a more in-depth coverage

throughout multiple chapters of his thesis [118]. State-space representations for

Gaussian processes (as used in this thesis) are described in [130], more general

coverage of the relation between Gaussian Processes and the Kalman filter can

be found in [131, 132].

An overview of applications of GPs to optimisation can be found in Shahri-

ari et al [133].

The Parzen kernel density estimate (KDE) implemented by Alistair Hann in

[45] is covered extensively in the Chapter 7 of this thesis. The original publications

by Rosenblatt [44] and Parzen [43] remain useful introductions.

4.2 Units in probability

Readers familiar with the units inherent in various statistical entities (e.g., mean,

variance, probability density functions) may wish to skip this section.

Di�erent vital-signs tend to be measured in di�erent units. The statistical entities

that describe these vital-signs are seldom unitless, but instead change according to

• the random variable under consideration (e.g., which vital-sign), and

• the statistic of interest (e.g., mean, variance, etc.).

For brevity, we will stick to the case of continuous variables, as these (i) may

be less intuitive to the unfamiliar reader than discrete random variable and (ii)

constitute the majority of probabilistic models used in this thesis.
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4.2.1 Mean

When random variable Y is measured in units “u”, then operations on Y will have

units as well. For example, let Y be governed by probability density function

(pdf) p(y), then p(y)dy, roughly speaking, is the probability that Y falls within

the interval of (y, y + dy). Since a probability is unitless, then p(y)dy is unitless,

and dy has units of 1
u . The cumulative density function (cdf), F (y) outputs a

probability and therefore is unitless as well.

The expected value, or mean, of Y ,

E[Y ] =
⁄ Œ

≠Œ
y p(y) dy (4.1)

has units of “u ◊ u ◊ 1
u”, which is units of u. For example, given a random

sample of heart rates, measured in beats-per-minute (bpm), the mean of that

sample would be bpm as well.

4.2.2 Variance

The variance of Y ,

Var[Y ] =
⁄ Œ

≠Œ
(y ≠ E[Y ])2 p(y) dy = E[Y 2] ≠ E(Y )2 (4.2)

has units of “u ◊ u ≠ u ◊ u”, which is units of u2. For example, given a random

sample of heart rates measurements, measured in beats-per-minute (bpm), the

variance of that sample would be (bpm)2, which is beat-squared-per-minute-squared.

Note that Var[Y ] = 0 when Y is a constant and Var[Y ] > 0 otherwise.

4.2.3 Covariance

The covariance between two random variables, Yi and Yj, measured in units of

ui and uj, respectively, is

Cov[Yi, Yj] = E[(Yi ≠ µi)(Yj ≠ µj)] = E[YiYj] ≠ µiµj, (4.3)
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which is measured in units of ui ◊ uj ≠ ui ◊ uj, which is units of uiuj. For example,

given a random sample of heart rates measurements, measured in beats-per-minute

(bpm), and a (paired) random sample of blood pressure measurements, measured

in mmHg, the covariance of the heart rates measurements and blood pressure

measurements would be measured in units of “bpm ◊ mmHg”. Note that Cov[Yi, Yj]

may be greater or less than 0, and is equal to 0 only if Yi and Yj are independent.

Equations 4.1, 4.2, and 4.3 will form the basis of our inference via Gaussian-

distributed random variables, described in the next section.

4.3 Gaussian Processes

In this section we will extend the univariate Gaussian to the multivariate Gaussian,

and, finally, to the infinite-variate Gaussian process.

4.3.1 Univariate Gaussian Distribution

The univariate Gaussian random variable, Y ≥ N(µ, ‡) is parameterised by mean

µ = E[Y ] and variance ‡2 = Var[Y ]. A common alternative parameterisation of

variance is with precision ‡≠2. The probability density of Y is

p(y|µ, ‡) = 1
‡

Ô
2fi

exp
A

≠(y ≠ µ)2

2‡2

B

(4.4)

with cumulative density

�(y|µ, ‡) = Pr(y Æ a|µ, ‡) =
⁄ a

≠Œ
p(y|µ, ‡)dy = 1

2

C

1 + erf
A

y ≠ µ

‡
Ô

2

BD

(4.5)

where erf(x) is the error function

erf(x) = 2Ô
fi

⁄ x

0
e≠t2

dt. (4.6)

Further useful properties include the survival function

S(y|µ, ‡) = Pr(y Æ a|µ, ‡) = 1 ≠ �(y|µ, ‡), (4.7)
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Figure 4.1: Properties of the univariate normal distribution. The PDF, CDF, and
conditional distribution are shown for three univariate normal distributions, with di�erent
parameterisations. In (c,f,i), showing p(y|y Ø a) plots are shown for a = 1 and a = 3.
Note that the discontinuity in p(y|y Ø a) is induced by p(y|y Ø a) = 0 when y < a. The
conditional mean is marked on the x-axis. These later figures demonstrate how the normal
distribution facilitates interesting probabilistic reasoning, which will be applied in the
section on Bayesian optimisation.

and the conditional distribution of Y given that it exceeds a pre-defined threshold a.

p(Y |y Ø a, µ, ‡) = p(y, y Ø a)
Pr(y Ø a) =

Y
]

[
0, if y < a

(1 ≠ �(a|µ, ‡))≠1 p(y|µ, ‡), otherwise.
(4.8)

This conditional distribution then yields a conditional expectation E[Y |y Ø a, µ, ‡]

that is greater than the unconditional expectation, E[Y ] = µ.

These properties are illustrated in Figure 4.1. Roughly speaking, the parameter

µ regulates the location of Y, and ‡ regulates the symmetric spread around µ. Since

pdfs must sum to 1, the conditional distribution (in Equation 4.8) is proportional

to the unconditional distribution (in Equation 4.4) at all points greater than a.

However, the conditional expectation converges towards a as a increases due to

the exponentiated quadratic decrease in the tails. Conversely, as a decreases, the

conditional expectation converges to µ since the conditional distribution converges

towards the unconditional distribution.
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4.3.2 Multivariate Gaussian Distribution

The univariate Gaussian, Y ≥ N(µ, ‡), may be extended to a random vector,

Y ≥ MVN(m, K). Where

• Y is an n ◊ 1 random vector, where each element of Y = [y1, ..., yn] is a

univariate normal random variable.

• m is an n ◊ 1 vector of the marginal means. That is, mi = E[yi].

• K is an n ◊ n positive-definite covariance matrix, with Ki,j = Cov(yi, yj),

so that the marginal variances populate the main diagonal and pairwise

covariances populate o�-diagonal elements.

The pdf of the MVN is

p(y|m, K) = (2fi|K|)≠ 1
2 exp

3
≠1

2(y ≠ m)K≠1(y ≠ m)
4

. (4.9)

The MVN is the most common model for the joint distribution of univariate

Gaussian variables. Linearly correlated Gaussian distributions are jointly MVN.

If any linear combination of a set of univariate Gaussian distributions is also

Gaussian, then those Gaussian distributions are jointly MVN. However, the MVN

is not the only model for correlated variables that are marginally Gaussian. For

example, copula models can accommodate marginally normal random variables

that are not jointly multivariate normal.

The MVN’s cumulative density function, F (Y) = Pr(Y1 Æ y1, ..., Yn Æ yn),

has no analytical/closed-form solution. However, numerous numerical methods

exist to calculate this probability, along with alternative definitions of multivariate

cumulative density (which may or may not have analytical solutions).

As illustrated by the 2-D example in Figure 4.2, the values of m determine the

central coordinates of the multivariate Gaussian, while the diagonal elements of K

determine spread in the direction along the axis in each dimension. The o�-diagonal

values of K determine the spread along and angle of o�-axis variance. In 4.2(a,c)

the eigenvectors and eigenvalues of K form the principal directions of variation, and
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Figure 4.2: Properties of the multivariate normal distribution. MVN parameterisations
are shown above each plot. (a) and (c) show contours of the joint PDF of two di�erent
MVNs. The eigen vectors of each � are shown in black, centred at µ. To illustrate the
change in conditional expectation, (b) shows the change in p(Y1|Y2 = 2) as a function of
c = Cov[Y1, Y2], i.e. the o�-diagonal element of � and (d) shows the change in p(Y1|Y2 = a)
as a function of a for both a negatively (red) and positively (blue) correlated MVN. In
(b) and (d) the mean (-), 50% (-), and 95% (- -) quantiles are shown.

the magnitude of the variation, respectively. As pointed out by MacKay [127], the

diagonal and o�-diagonal elements of the covariance matrix will not necessarily share

the same units, and therefore, linear combinations of these di�erent-unit entities

may be questionable in interpretation. As per the rules of matrix multiplication,

eigen values and eigen vectors are not invariant to unit transformations.

When Yi and Yj are correlated, our uncertainty in Yi, conditional on ob-

serving Yj is now

p (Yi|Yj = a) ≥ N( mi + Ki,jK≠1
j,j (a ≠ mj) , Ki,i ≠ Ki,jK≠1

j,j Kj,i ) (4.10)

Intuitively, this is sensible: as our a priori uncertainty in Yi is equal to Yi’s

marginal variance ‡2
i,i = Ki,i. From this baseline uncertainty, we may subtract a

portion of the uncertainty that is proportional to the known Yj’s precision, K≠1
j,j ,

and the covariance between the known and unknown variables, Kj,i. Note that as

correlation goes to zero, the uncertainty removed by observing Yj decreases to zero,
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until we are only left with the original marginal variance ‡2
i . This is illustrated for

two di�erent parameterisations of the MVN in Figure 4.2(b). At Cov[Y1, Y2] = 0,

then p(Y1) = p(Y1|Y2). However as Cov[Y1, Y2] approaches perfect linear correlation,

we become certain in the values of Y1, since it will be a linear function of Y2.

Along similar reasoning, our a priori belief in the mean of Yi is equal to the

marginal mean of Yi, mi. Recalling that the covariance of two variables is the

expected product of the deviation from their respective means we may update

our expectation of Yi, having seen how much Yj has deviated from its mean.

The magnitude and directionality from which Yi is expected to deviate from mi,

is augmented according to (a ≠ mj), which is the magnitude and directionality

from which Yj has deviated from mj. The magnitude of this augmentation is

proportional to Yj’s precision, K≠1
j,j , and the linear covariance of Yi and Yj. As

seen in Figure 4.2, this is a linear relationship, both as a function of covariance

(in 4.2(b)) and as a function of a (in 4.2(d)).

This relation between the conditional distribution of observed and unobserved

correlated Gaussian distributions is fundamental to the intuition of the Gaussian

process, in which we will model our uncertainty of an infinite number of unobserved

points, conditional on a finite number of observed points. Our estimation of the

prior mean and covariance will inform the uncertainty in Y at unseen points. At

points near our observed values (where covariance is presumably high) we will be

more certain as in the poles of the ellipse in Figure 4.2(b). Alternatively, far from

the known values, at the centre of Figure 4.2(b), our prior knowledge dominates.

4.3.3 Gaussian Processes
Gaussian Process Model

The GP extends the multivariate Gaussian (of pre-defined dimensionality n) to

an infinite-dimensional stochastic process. We define the GP to be a stochastic

process for which any finite subset of points, along a domain t, follows an MVN

distribution. This MVN will, as before, have both a mean vector, m, and covariance

matrix, K to describe any observed data points.
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To populate the elements m and K for any finite subset (conditional on specifying

all t), we replace the mean vector, m, with a mean function µ(t). That is, the

mean of the Gaussian at point t is µ(t).

Similarly, the covariance of any two points yi and yj, located at points ti and tj,

is defined by covariance function k(ti, tj) = Cov[yi, yj]. This function k(ti, tj), which

will be described in detail below, is positive semi-definite and typically decreases

as ti and tj separate in distance. Note that whereas covariance (as in equation

4.3) takes random variables as arguments, covariance function k takes the location

of those random variables as arguments.

We return to our initial definition of a GP as “a stochastic process for which any

finite subset of points, along a domain t, follow a multivariate Gaussian”. Given this

specification of Y (t) ≥ GP(µ(t), k(t, tÕ)), then for any finite vector t = [t1, ..., tn] we

have a random vector Y(t) = [yti , ..., ytn], with the now-familiar mean vector

m = E[Y(t)] = E[yti , ..., ytn ] = [µ(ti), ..., µ(tn)] = µ(t).

The covariance matrix is

K =

S

WWU

Cov[y1, y1] · · · Cov[y1, yn]
... . . . ...

Cov[yn, y1] · · · Cov[yn, yn]

T

XXV =

S

WWU

k(t1, t1) · · · k(t1, tn)
... . . . ...

k(tn, t1) · · · k(tn, tn)

T

XXV .

While GPs do not necessarily specify a functional form over y(t), a priori,

functional characteristics may be made implicit via the a priori-specified mean

and covariance functions, which, typically, are parametric. A judicious choice in

µ(t) and k(t, tÕ), and the inference over their respective parameterisations ◊µ(t)

and ◊k(t,tÕ) will be discussed below.

Gaussian Process Mean Functions

The prior mean function µ(t) specifies the expected value of y(t) in the absence

of further information. An absence of information may occur when either no data

are observed or when the y(t) under consideration is so far from the observed

points (in terms of t) that the covariance between y(t) and the observed points
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is (approximately) 0. In these instances, the GP’s expectation of y(t) is equal to

the prior mean. We relate this back to Figure 4.2(b) where the expectation of

Y1 is the same, whether or not Y2 is observed. (The variance around this mean

will be described in the next section.)

The mean function may may have a parametric or non-parametric functional

form. Popular choices of mean function include constant functions (e.g., µ(t) = c,

where c is (i) the mean of training data, (ii) a particular value from the observed

data, or (iii) a known constant). Mean functions may also be derived from prior data

(e.g., from a related data set), and functions derived from physical models (e.g., an

exponential function which decays to room temperature when modelling a cooling

process). While the prior mean function has little e�ect on the posterior mean near

points at which y(t) has been observed (with some accommodation for high-noise

or low length-scale parameterisations of the covariance function, described later),

it has a strong e�ect in the absence of observations (where the posterior returns

to the prior mean). When used correctly, the prior mean can provide reasonable

descriptions of our uncertainty in sparse-data scenarios.

For many applications, the prior mean function is fixed to be µ(t) := 0, once all

observed data have been mean-centered via the transformation Y := Y ≠ 1
nYT 1.

This prior mean is equivalent to specifying a constant prior mean function µ(t) = c,

where c := 0, and therefore not estimated via statistical inference. For ease

of explanation, and without loss of generality, µ(t) := 0 will be used unless

otherwise noted. However, the parameters of µ(t) may be estimated (via the

likelihood function) simultaneously to the parameters of k(t, tÕ), as described in

the inference section.

Gaussian Process Covariance Functions

Selection of the covariance function k(t, tÕ), typically receives the lion’s share of

attention for GP model selection. This may be sensible, given that, while the

prior mean may be “washed out” where data is observed, the implicit e�ect of the

covariance function will always influence the posterior estimate of y(t).



4. Methods Review 73

Figure 4.3: Three simple covariance kernels: the RBF, Matérn 3
2 , and local periodic

kernel. For each covariance kernel, the mathematical function is given, along with a plot
of that function in (a,b,c). In (b,c) the RBF kernel (- -) is plotted for reference. In
(d,e,f) a random draw is shown for each kernel under two di�erent parameterisations. The
parameterisations are provided above each plot.

For example, in Figure 4.3(d-f), we may see how the length scale hyperparameter,

⁄, regulates how rapidly the function may change for each of the 3 di�erent covariance

functions. The shorter length scales (in red) correspond to more rapidly changing

functions. Similarly, the output scale h regulates the magnitude of deviation from

the mean. As seen in 4.3(d-e), both draws occupy approximately the same range

across the y-axis (since their output scales are identical for both parameterisations).

In contrast, increasing the output scale from 1 (red) to 1.5 (blue) in 4.3(f) results

in a function that spans a greater range along the y-axis.

The di�erentiability of the covariance function regulates the smoothness of

function y(t). For example, samples from a GP with an RBF covariance function

are infinitely di�erentiable. Although the RBF is a popular modelling choice,

such smoothness may or may not be an appropriate representation of less-smooth

functions. The Matérn(p) family of covariance functions (where v = 1
2 , 3

2 , 5
2 , ...)

is p + 1
2 ≠ 1 times di�erentiable. So samples from a Matérn 3

2 kernel are once-

di�erentiable, and samples from a Matérn 5
2 kernel are twice-di�erentiable. The
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Matérn family converges to the RBF kernel as p approaches Œ.

The Matérn 5
2

k(t, tÕ) = h2
A

1 + |t ≠ tÕ|
Ô

5
⁄

+ 5|t ≠ tÕ|2

3⁄2

B

exp
A

≠ |t ≠ tÕ|
Ô

5
⁄

B

(4.11)

will be used extensively in vital-sign modelling. As a twice-di�erentiable function,

the Matérn 5
2 provides another option to model un-smooth functions, such as

measurements of heart rate.

For GPs with multidimensional inputs, it may be desirable to model all covariance

via a single kernel, by allowing the length-scales to vary by input dimension, via

an Automatic Relevance Determination (ARD) kernel. The ARD kernel replaces

the scalar-valued length scale ⁄ with a vector-valued length scale ‹, with a value

for every input dimension. The ARD can incorporate a variety of kernels, for

example, the Matérn 3/2 ARD kernel

k(t, tÕ) = h2
3

1 +
Ô

3r
4

exp
3

≠
Ô

3r
4

,

s.t. r =
Dÿ

d=1

(td≠tÕ
d)2

‹d
.

(4.12)

where the distance between t and tÕ, r, is now regulated by di�erent a length-scale, ‹d

in each dimension d of t. Variable r is |t≠tÕ|. The ARD kernel is of particular interest

later in Chapters 4 and in Chapter 6, where it is used for Bayesian optimisation of

functions that vary di�erently according to the input dimension under consideration.

As shown in Figure 4.5, kernels may be combined to incorporate further

complexity. The most common additive component is the white noise kernel1

k(t, tÕ) = ‡2
n”(t, tÕ) =

Y
]

[
‡2, if t is tÕ

0, otherwise.
(4.13)

By requiring that t and tÕ not only be equal in value, but identical indices the

GP has codified that the function has some amount of irreducible noise error, and

therefore the function has uncertainty, even at points along the domain that have
1By convention, we denote the noise-variance parameter to be ‡n where the subscript n denotes

“noise”, and is unrelated to the typical use of n to denote the total number of data points.
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Figure 4.4: In (a,b) the Matérn 5
2 covariance kernel function (-) is plotted. The (a)

RBF (- -) and (b) Matérn 3
2 (- -) are provided for reference. Compared to the RBF,

the Matérn 5
2 covariance function decreases more rapidly near 0, but maintains a higher

covariance in the tails. In (c) a random draw is shown for the Matérn 5
2 under two di�erent

parameterisations. In (d) a draw from the Matérn 5
2 (-), RBF (- -), and Matérn 3

2 (- -) is
shown, with each draw using identical values for hyperparameters h and ⁄. Although the
functions’ hyperparameters are identical, each exhibits a distinct level of smoothness.

already been observed. By excluding a noise kernel, the kernel has codified that

any observed point is known with perfect certainty. This latter property is what

creates the classic “sausage-link” GP posterior (such as the red GP in Figure 4.5(c)),

in which uncertainty is zero at observed points and non-zero else where. This is

analogous to the certainty in the value of p(Y1|Y2) = a in the poles of Figure 4.2(b).

In contrast, by including the white noise kernel, the variance of any point is strictly

greater than the covariance of any two points. Even when white noise is not desired

in the GP model, the noise kernel with ‡n set to a negligible factor of computational

‘ may be used to avoid matrix singularity during the inference routine.

Beside noise-variance, additive components may help capture multiple sources of

signal variation. For example, by adding two RBF kernels with di�erent length-scale

parameters, we may capture both long length-scale trend and a short length-scale

trend, without to need to trade-o� the modelling of one trend for the other. This

may allow the GP to adapt to short-term volatility while maintaining its capacity

for long-term extrapolation. As seen in Figure 4.5, the GP with two additive

components may accommodate the short-term volatility around t = [50, 60], but it

also forecasts a further increase in t > 80, whereas the simple kernel more quickly

converges back to the prior mean (analogous to the central point of Figure 4.2(b)).
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Figure 4.5: Two additive covariance functions: (a) an RBF plus white noise, and (b)
an RBF plus another RBF. For reference, a single RBF kernel is in (- -). In (c) and (d)
a posterior GP (mean and 95% CI) from each kernel is shown fit to data, along with a
reference GP using an RBF kernel in red.

A final property, which is helpful when attempting to reason probabilistically

via GPs is the inducement of logical “and”/“or” statements via the kernel. A logical

“or” statement may be created via additive kernels, which allows correlation to be

high for when it is high for either one or the other kernel. This is particularly

helpful in multidimensional applications in which only a single dimension has been

thoroughly sampled. The logical “and” statement may be induced by multiplication

of kernel, requiring correlation to be high only when correlation is high for both of

the kernels being multiplied. For example, the locally periodic kernel from Figure

4.3 is a multiplicative kernel. Covariance is only high for Y ’s that are close in both

the RBF component and the periodic component in the kernel.

Gaussian Process Hyperparameter Inference

Collating the hyperparameters of the mean and covariance functions into a single

vector, ◊, we can infer appropriate values of ◊ though the posterior log marginal



4. Methods Review 77

likelihood (LML)

log p(y|◊) = ≠1
2(y ≠ m)T �≠1(y ≠ m) ≠ 1

2 log |�| ≠ n

2 log(2fi), (4.14)

where ◊ influences log p(y) via the the mean function and covariance function which

determine the values of the mean vector, m, and the covariance matrix, �.

This crucial inferential step typically either (i) optimises the LML (e.g. via

gradient ascent), or (ii) integrates across the LML, e.g. via Markov Chain Monte

Carlo (MCMC) [134]. Access to parallel computation can assist MCMC via (i)

running multiple parallel MCMC chains, or, alternatively, (ii) parallel processing

of the proposals for the likelihood-ratio step between points [135]. Quadrature

methods may be used may be used for a more Bayesian integration over p(y|◊) to

mitigate the short-comings of “fundamentally frequentist” MCMC methods [136].

Approximate methods or GP-based models with non-Gaussian likelihoods typically

require recourse to alternative forms of inference.

The primary computational burden of evaluating the LML is the O(n3) inversion

of the covariance matrix, with a memory requirement of O(n2), where n is the number

of observations. This is unfeasible in large data sets or in computationally-contained

settings. This is particularly true when performing a large number of evaluations of

the LML, as required for the MCMC sampling process used for integration.

State-space representation of Gaussian process regression

There are several ways to reduce the computational burden of GP inference.

Computation-saving methods include identifying those covariance matrices which

are simpler to invert (e.g. Toeplitz matrices) and Cholesky decomposition of the

covariance matrix to update in light of new data [137]. While these methods are

extremely useful for particular applications, vital-sign monitoring does not typically

lend itself to consistent time-stamps (to take advantage of Toeplitz properties).

Vital-sign dynamics themselves may rapidly change (motivating continuous re-

estimation), which limits the use of methods requiring identical parameterisations
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[137]. Alternative approximate methods to handle large amounts of data may infer

the GP via inducing points [125], however these methods require more complex

modes of inference [138] that are (i) computationally demanding in their own right

and, more importantly, (ii) more di�cult to automate for sequential time-series

fitting (as is required for the applications in this thesis).

Due to the real-time application of patient monitoring algorithms, it is still

desirable to reduce computational burden, where possible. One way to achieve

this is by framing the GP as an equivalent state-space model, which requires less-

burdensome inference. Due to its Gaussian likelihood, GPs are closely related to,

and frequently equivalent to, other least-squares models. (See Sorenson [139] for a

intuitive description, written for the casual reader in IEEE Spectrum). This relation

may be used advantageously, as equivalent models may require less computational

burden to achieve the same model.

Hartikainen et al [130] demonstrate how these requirements can be reduced

to O(m3n) for covariance inversion and O(m2n) for memory, by reformulating

k(x, xÕ) as an mth-order, scalar, linear time-invariant stochastic di�erential equation.

This computation-saving manipulation does not a�ect interpretation of the GP

models subsequently described.

4.4 Bayesian Optimisation

Bayesian optimisation uses GP inference to identify the global maximum (or

minimum) of a black-box function by sequentially selecting queries. Bayesian

optimisation requires both a probabilistic inference step, and a decision step,

both of which may be imbued with desired levels of complexity. For clarity,

Section 4.1 motivates the use of Bayesian optimisation over alternative, more

common optimisation procedures. Section 4.2 gives a general overview of the full

Bayesian optimisation algorithm. Sections 4.3 and 4.4 provide details about the

key components of inference and decision steps, respectively, which enables the

algorithm to achieve competitive performance compared to alternative algorithms.
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4.4.1 Motivation

A common challenge in optimisation is to identify the global optimum of a black-

box (unknown) function that is expensive to evaluate. “Expense” is usually a

computational or time expense, however in some applications, the expense could

be di�erent, e.g., the monetary expense drilling holes for geographical sampling.

Since the function is black-box, direct analytical solutions are not possible (e.g.,

setting the second derivative to zero, and solving). Convex algorithms are also not

possible (e.g., the Simplex methods) due to local optima. Gradient-based methods

are furthermore undesirable due added computational burden at each step. By

requiring a small number of evaluations to the function, the optimisation protocol

must choose between the competing needs to (i) explore unknown parts of the

function, and (ii) exploit further evaluations near known high values.

Bayesian optimisation uses GPs to identify the global optima of functions. Due

to the computational expense of fitting a GP, the use of Bayesian Optimisation

is typically relegated to applications were the objective function is (i) black-box

(thereby hindering the application of analytical optimisation routines), and (ii)

expensive to evaluate, which confines the total number of queries to a small budget.

Bayesian optimisation takes advantage of many of the benefits of GP modelling,

including (i) flexible forms to model the objective function, and (ii) a natural

application of probabilistic reasoning to the trade-o� between exploration and

exploitation. As shown in Figure 4.6, Bayesian optimisation provides a principled

conjecture about the global optimum, having only evaluated the function at a

small number of points.

4.4.2 Overview of the Bayesian Optimisation Algorithm

We will first present an overview of the Bayesian optimisation algorithm. Pseudo

code for the Bayesian optimisation algorithm is presented in Algorithm 1. The

text of Algorithm 1 was published in [1] and is © 2017 IEEE. Separate components

will be described in greater detail in subsequent sections.
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Algorithm 1 Bayesian optimisation algorithm
1: query L(s) at initial points, sinit.
2: {Lprev), sprev} := {L(sinit), sinit}.
3: while Iter < ComputationalBudget

• estimate µú
L and ‡ú

L from data {L(sprev), sprev}.

• estimate p(Lú(s)) ≥ N(µú
L(s), ‡ú

L(s)) from posterior GP over data
{L(sprev), sprev}.

• estimate A(s), from p(Lú(s)).

• query G(s) at snew := arg maxs A(s).

• {Lprev, sprev} := {Lprev
t

L(snew), sprev
t

snew}.

4: optimal solution s := arg maxsprev L(sprev).

Problem Set Up

We begin with an objective function, L(s), evaluable over the domain s. We

would like to identify the global maximum of L(s), while minimising the number

of evaluations to L(s). We begin with an initial set of queries to the domain,

sprev, resulting in an initial set of evaluations lprev = L(sprev). For all practical

purposes, we lack any analytical knowledge that would allow us to optimise L(s)

more directly, except through sequential evaluations. We aim to minimise the

number of evaluations required, but are hindered by our uncertainty in L(s) at

the points that have not been evaluated.

Probabilistic Model

For each new evaluation, we aim to use the information contained in (lprev, sprev)

to select the next query point snew with evaluation lprev = L(snew).

We denote sú to be any point in s that has not been queried, and Lú = L(sú) to

be its respective (true) evaluation in L. Clearly we are uncertain about the value

of L(s) at every point that we have not evaluated. A GP will be used to model

this uncertainty. As shown in Figure 4.6, the GP presents the possible values of an

unqueried sú as univariate normal distributions, to which we may apply probabilistic

reasoning, as described at the beginning of this chapter, particularly Figure 4.1(g,h,i).
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Figure 4.6: Probabilistic reasoning to query a black-box function. In (a) the posterior
GP is fit to previously queried points (at x = 30, 40, 60, 80, 100) allows a principled form
of inference over the un-queried points. Three potential queries at x = 10, 35, and
110 are shown in (b), (c), and (d), each corresponding in colour to the vertical line in
(a). The desirability of the next query is a function of its marginal univariate Gaussian
distribution, which formalises our belief about the potential to identify high values at
that location. The best choice of query from among these three options could then be
found by maximising the acquisition function, for example EI in Figure 4.7(d,e,f). This
would select the point with the highest expected improvement in the objective function.

The approach to deriving these posterior marginals shown in 4.6(b-d) is no

di�erent than, say, the GP modelling that uses observed points in a time-series

to estimate the uncertainty of values in the future, or for missing values within

the time-series. The same creative GP modelling techniques that apply to other

applications, apply to GP modelling of the objective function as well. We would

like to incorporate a mean function and covariance function that properly reflect

the properties of the generative function of the data, in this case, the black-box

objective function. Common properties and how to model them will be discussed

shortly in the section dedicated to the GP inference step of Bayesian optimisation.

Acquisition Function

The GP probability model alone (and its resultant posterior marginal distributions)

is insu�cient to select the next query point - we must have a decision rule to

select the next query point (from a possibly infinite set of potential queries), given

the posterior distribution at each point.

This decision rule is known as an “acquisition function”, A(s). Its salient

features include that
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1. A(s) takes sú as an argument,

2. A(s) operates on the posterior probability distribution of L at point sú, and

3. A(s) provides (as an output) a metric to quantify the suitability of querying

point sú.

Since we wish to select the most suitable querying point (i.e., the point at which

the acquisition function is largest), it is generally clearer to denote the acquisition

function’s argument to be sú, instead of the posterior probability p(L(sú)), although

some authors include both as arguments.

There are many possible acquisition functions. For example, we may wish to

query the location with the highest expected value. Alternatively, we might select

the query that is most likely to improve over the current best value, or with the

highest expected improvement over the current best value.

Querying and Update

With the next query point selected, the subsequent step is simple: we query the

objective function at the new point.

We then update our set of observed points (lprev, sprev) to include our newest

query (lnew, snew). That is, lprev := lprev fi lnew, and sprev := sprev fi snew.

In light of this updated set of information, our probabilistic inference on the

unknown points in L(s) may be updated as well. We return to the probabilistic

modelling step and repeat again, in sequence, until stopping criteria are met.

Stopping criteria typically involve a pre-defined budget of evaluations to L(s), with

early termination if further improvement is believed to be unachievable.

In Figure 4.7, we follow the posterior GP and acquisition function over three

complete iterations of the optimisation while loop in a 1D example. In (a) we see

the currently known evaluations of L(s), along with the GP’s posterior estimate of

the uncertainty in the points that have not been queried. In (d) the corresponding

acquisition function identifies the most promising point in s to query next. Having

evaluated L at that query point, the set of unknown points is updated in (b), as
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Figure 4.7: Three iterations of Bayesian optimisation. In (a) the posterior GP is shown
from the five total queries, followed by (b) six total queries in the second iteration, and
(c) seven total queries in the third iteration. The resulting acquisition function (expected
improvement, in this case) is shown from the (d) first, (e) second, and (f) third iteration,
with the EI-maximising location at each iteration is shown in red.

is the posterior distribution over L. The most promising new query (following

this updated information) is shown at the peak of the acquisition function in (e).

In this case, the algorithm chooses to exploit the same area instead of exploring

under-sampled regions. The estimated EI decreases with each iteration as the

algorithm explores more of the space.

This completes our overview of the Bayesian optimisation algorithm. Further

details on the GP model and acquisition function are given in the dedicated

sections below.

4.4.3 Bayesian Optimisation GP Modelling

As a Bayesian approach to optimisation, we hope to incorporate as much prior

information as possible into our GP to reflect the characteristics of the objective

function L(s). This may seem counter-intuitive, since the motivation behind

Bayesian optimisation is to handle functions that are black-box, non-analytic, and

expensive to query. However, the guiding principles of the GP model is largely
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the same. Just as before when we attempt to encode characteristics of heart

rate as a function of time, we now aim to encode characteristics of objective L

as a function of query point s.

The simplest example is measurement noise: if we know that querying the

same location sú will always yields an identical value of L(sú), then the covariance

function will be modelled without a noise kernel (as in the red GP of Figure

4.5(a,c)), since there is no further irreducible error after L(s) has been sampled

at that point. Noise-free objective functions are common, for example, for testing

parameterisations of computer simulation, or a machine learning algorithm with

fixed training/validation data.

Similarly, if we know our function is likely to change rapidly with respect to

one dimension, but very slowly with respect to another, then this can be encoded

via di�ering length-scales across dimensions of s. Additive and multiplicative

kernels can, respectively, encode logical “and”/“or” statements, allowing appropriate

extrapolation far from observed values.

Even estimates of the objective function’s gradient can be incorporated as

a further predictive dimension of the covariance function k. This may help to

better extrapolate in unseen regions and also alleviate the computational risks

from querying multiple nearby points [140].

If similar optimisations have been performed in the past, or via expert knowledge,

the prior mean function may help encode edge-case behaviour. For example, a

machine learning system with guaranteed low performance when parameters are

near the edge of the search space may place low priors values at the edges to

entice queries away from the edge cases.

Once a prior mean and covariance function have been selected for the GP prior

over L(s), the hyperparameters of those functions, collectively denoted as ◊, are

subject to the same inferential options described earlier, such as maximum a posteri-

ori estimation or slice sampling MCMC of the posterior distribution. In practice, it

may be desirable to refit ◊ each time a new data point is added to {L(sprev), sprev},

if we anticipate significant further learning of L(s)’s dynamics. Alternatively, ◊
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may be refit every few iterations. This approach would save on computation of

fitting the GP model, but at the risk of using a less-appropriate value of ◊.

The posterior predictive distribution, N(µú
L, ‡ú

L), of L(s) is calculated iden-

tically to that in Equation 4.14, but using the paired queries and evaluations

{L(sprev), sprev}. Denoting

• C to be the covariance matrix between values L(s) at locations s,

• Cú to be the covariance matrix between values L(s) and L(sú) at locations s

and sú, and

• Cúú to be the covariance matrix between values L(sú) at locations sú,

then L(sú) | L(sprev) is MVN such that:

µú
L = E[L(sú)] = CúC≠1L(sú).

‡ú
L = Var[L(sú)] = Cúú ≠ CúC≠1CúT .

(4.15)

The predictive distribution of equation (4.15) can now be used to describe our

posterior uncertainty in L(s) at any point along the domain. In particular, we

are interested in the uncertainty at unqueried points, from which we will select

the next point to query, as shown in Figure 4.6.

Using this posterior uncertainty to make a decision of where to query next is

the task of the acquisition function described below.

4.4.4 Bayesian Optimisation Acquisition Function

With the posterior estimate L(sú) ≥ N(µú
L, ‡ú

L) from Equation 4.15, our preference

between di�erent possible queries in s is a trade-o� between the value of L that

we expect at the query, µú
L, and the uncertainty of L around that expectation,

sú
L. There are two plausible locations where the objective function may have

high values: (i) query locations where L(s) is known to be large (exploitation),

or instead, (ii) query locations far from any previous queries where the objective

function may be high (exploration).
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The acquisition function formalises this trade-o� in preferences. Since the

posterior distribution of L(sú) ≥ N(µú
L, ‡ú

L) is identical to that of Equation 4.4,

we can reason probabilistically, using the properties of a Gaussian discussed in

Equation 4.7 and its conditional expectation from the beginning of the chapter.

Given the current best-found value, Lbest, popular choices of acquisition functions

include probability of improvement (PI) over Lbest:

A(sú) := PI(sú) = 1 ≠ �
1
Lbest | µú

L, ‡ú
L

2
, (4.16)

or the expected improvement (EI) over Lbest:

A(sú) := EI(sú) = (Lbest ≠ µú
L)�

1
Lbest | µú

L, ‡ú
L

2

+ (‡ú
L)N

1
Lbest | µú

L, ‡ú
L

2
,

(4.17)

where � and N are the Gaussian cumulative distribution and probability den-

sity, respectively.

The EI acquisition is typically more popular, since EI incorporates the magnitude

of improvement over Lbest, whereas PI gives equal preference to large and small

improvements over Lbest. As seen in equation 4.17, the EI acquisition function

yields high values where either (i) the posterior mean is near or greater-than Lbest,

or (ii) the posterior variance is large, allowing opportunity to exceed the current

best. A further o�set may be added to Lbest to prefer further exploration and avoid

over sampling of a small area, as was done in Figure 4.7.

It is worth noting, that since A(sú) requires the posterior mean and variance

to be calculated for sú, identifying the sú which maximises A(sú) is a further

optimisation problem in practice. However, since the posterior distribution is

inexpensive to evaluate at any point, optimisation of the acquisition function is

typically achieved by gradient methods, exhaustive enumeration, random search,

or grid search. To avoid computational issues of inverting a singular covariance

matrix, C, a popular heuristic is to require new queries to be a minimum distance

from any current points in sprev.

While PI and EI are two of the simplest acquisition functions, a variety of

sensible alternatives exist. For example, EI and PI, as presented, only account for a
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single iteration look-ahead, however there are alternatives that account for a large

remaining computational budget, or selection when multiple queries can be run in

parallel. Other alternatives include upper bound and entropy-based functions.

4.5 Kernel Density Estimation

4.5.1 KDE Model

Kernel density estimation is a non-parametric modelling technique originally in-

troduced by Rosenblatt [44] and Parzen [43]. Instead of relegating the fitted

pdf, p(y), to a pre-specified parametric form (e.g., Gaussian, Gamma, etc.), the

distribution of the data is modelled by placing areas of probability density around

the values where data are observed. This is achieved by placing a kernel, H with a

portion of the total density, centred at each data point. The sum of these kernels

meets all the properties of a pdf.

For example, using a Gaussian kernel

H(y) = 1Ô
2fi

exp
3

≠1
2y2

4
(4.18)

on data points [y1, · · · , yn] yields the probability density estimate

f(Y ) = 1
nÊ

nÿ

i=1
H

3
Y ≠ yi

Ê

4
(4.19)

with cumulative density function

F (Y ) = 1
nÊ

nÿ

i=1
�

3
Y ≠ yi

Ê

4
(4.20)

Several kernels, such as the Gaussian kernel in equation 4.18, have non-zero

density over the real line, resulting in a KDE with support across the real line.

When this is undesirable, e.g., to model vital-signs which are non-negative or subject

to upper and lower bounds, common corrective measures include:

• Variable transformation (e.g., log transformation for non-negative variables,

or logit/probit transformation for bounded variables),
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• Reflection of density outside of boundaries, or

• Truncation and factorisation by a normalisation factor.

Kernels are parametrised by a bandwidth parameter, Ê. It is commonly noted

that the kernel choice is frequently less important than the choice in bandwidth

for many practical applications.

For kernel density estimation over multiple dimensions, the bandwidth parameter,

Ê, becomes a bandwidth matrix, �. This extension is similar, in principle, to

estimating a single variance parameter for a univariate Gaussian distribution,

but n +
1

n
2

2
= n(n+1)

2 unique covariance parameters for the covariance matrix

of a multivariate Gaussian.

For clarity, a reasonable outline of KDE modelling, in increasing levels of

complexity, may be:

• a univariate KDE

• a multivariate KDE with an isometric kernel

• a multivariate KDE with identical bandwidth parameters in each dimension,

i.e., H = ÊI

• a multivariate KDE with unique bandwidth parameters in each dimension,

i.e., H = ÊT I

• a fully-specified bandwidth matrix H

It is common practice, as seen in Hann [45] (who, in turn, cites Bishop [141]), to

use an isometric kernel, which circumvents the need to estimate multiple bandwidth

parameters. Similarly, one may use an identical bandwidth parameter for each

dimension, that is, H = ÊI. These approaches are typically accompanied with a

zero-mean, unit-variance transformation along each dimension, as done in Hann [45].
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Figure 4.8: KDE bandwidth parametrisation. The locations of training points in (a)
and testing points in (b) are shown by (◊). A KDE is fit to the five training points in
(a), under two possible bandwidths. As seen in (b) shorter bandwidth risk placing lower
likelihood where the 30 held-out data points exist. As bandwidth Ê decreases towards
0, the log-likelihood of the KDE (c) increases towards infinity for training data, and (d)
decreases towards negative infinity for any testing data unseen in the training set.

4.5.2 KDE Inference

Like other probability models, inference on the KDE parameters (in this case

the bandwidth parameter or bandwidth matrix) is required. By inspection of

equation 4.18, direct maximum likelihood estimation is unsuitable for the bandwidth

parameter Ê, as the likelihood given Ê can be increased ad infinitum by decreasing

Ê further towards zero. This is illustrated in Figure 4.8, where the likelihood of

training points may continue to increase, even when the resulting likelihood is nearly

0 for the held-out testing/validation data. Accordingly, bandwidth parameters are

typically selected according to rules-of-thumb, prior knowledge, cross validation

techniques, or via Bayesian regularisation (e.g., a prior over Ê to counteract the

likelihood). Particularly popular methods are selection of Ê to minimise integrated

squared-error (ISE) and mean integrated squared-error (MISE).

The baseline-comparator in Hann [45] uses a rule-of-thumb described in Bishop

[141]. This rule-of-thumb, which estimates Ê of an isomorphic multivariate KDE to

be the average distance between each kernel centre and its 10 nearest neighbours.
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The KDEs implemented in the baseline comparators follow Hann’s approach, to

represent the work done in his thesis.



5
Detection of Artefactual Vital-Sign

Measurements

Data cleaning is a first step in many analyses. Robust continuous monitoring of

patient vital-signs must rely on vital-sign measurements that are representative of

the patient’s underlying physiology. Artefactual vital-sign measurements, which are

not representative of the patient’s physiology, undermine the clinical inference

we wish to perform.

In this chapter, we motivate the use of probabilistic artefact detection to move

beyond the most common, but insu�cient, approaches used in current literature.

We present several “archetypes” of vital-sign dynamics, and describe how to detect

a subset of these archetypes as measurement artefacts. A computationally light-

weight likelihood-based algorithm is proposed and tested on a cohort of patients.

An application to patient deterioration detection is then described.

Key elements of this chapter have been published in [2], and the algorithm has

been further used for pre-processing vital-signs in [1], [9], and [10].

5.1 Clinical Value of Artefact Detection

As discussed in Chapters 1 and 2, automated monitoring of patient vital-signs may

improve the timeliness, accuracy, and transparency of clinical inference. Potential

91
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improvements include (i) reliable monitoring in the absence of sta�, (ii) reduced

human error, and (iii) complex empirical modelling, estimation, and forecasting

of patient health status. The e�cacy of these automated systems, however, is

undermined by inappropriate handling of artefactual data, which is acquired from

the monitoring devices. This, in turn, undermines clinical sta�’s confidence in

the use of automated methods.

There are many potential technical causes for artefactual vital-sign measurements

[142]. These causes include (i) partial or complete probe detachment, (ii) algorithmic

failure of signal processing (e.g., missed or extra beats in a heartbeat-detector),

or (iii) corrupted device signal (e.g., from movement or perspiration). Potential

physiological causes abound as well. For example, the outputs of many monitoring

devices are validated on healthy patients, who di�er significantly from the critically-

ill patients whom we wish to monitor.

Regardless of origin, vital-sign artefacts are vexing to automated vital-sign

inference because they add a further layer of confounding and complexity into

an already complex system. These measurements must be handled to facilitate

machine reasoning with regard to the patient’s heath condition.

Data-cleaning is a fundamental step in most analyses. However, it is common in

many patient-monitoring publications to neither (i) acknowledge nor (ii) handle the

presence of artefactual measurements. When artefacts are acknowledged, common

solutions include (i) pre-screening to remove physiologically-implausible high or low

values, or (ii) introduce further smoothing of the vital-sign measurements under

consideration. As an example, already described in Chapter 3, the thesis by Hann

[45] removed measurements according to a pre-set threshold (e.g., HR values outside

of the 30-300 bpm range). Further median-filtering, and capture-and-hold methods

were used to avoid alarms due to transient artefacts.1

Both of these approaches have short-comings:
1It is understandable, of course, to give attention to these extreme-valued artefacts, since they

directly precipitate false-alarms. However, this is no reason to ignore the majority of artefacts
(with values within these thresholds), which may induce false alarms more indirectly.
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First, smoothing techniques such as mean- or median-imputation obscure the

measurement-noise of the monitoring device. This, in turn, biases the statistical

descriptions of the time-series, which we would like to use for inference. For

example, such smoothing may conflate measurement-noise with short-term variance

of the underlying vital-sign.

Second, upper and lower thresholds to remove extremal measurements only

address a minority of measurement artefacts. The remaining majority of artefacts

(within the upper and lower bounds) would continue to interfere with automated

clinical inference.

Principled approaches to identify and handle artefactual dynamics have been

published as well [143]. Motivations to use less-involved methods include algorithmic

simplicity, and lack of access to the original sensor waveform and clinical annotations.

The method proposed in this chapter is attractive in both its lightweight

implementation (making it suitable for general purpose inclusion in wearable sensors)

and applicability in the absence of waveform data.

5.2 Annotation of Artefactual Data

Twenty UPMC non-C”-patients with at-least 1 hour of data were selected for annota-

tion.

The first 48 hours of each patient’s HR time-series was visually inspected for

likely artefacts. The artefacts were manually annotated via a program (designed

by the author) using the Matlab graphical user interface.

The visual annotation of artefacts was conducted for each of the 20 patients

in sequence. For each patient, HR measurements equal to 0 bpm or greater than

200 bpm were automatically removed and those measurements were recorded as

artefacts. Removal of these extreme values reduced the visual distortion in the

y-axis (heart rate bpm) caused by a large range of values. Next, each 12-hour

segment of available HR data was viewed to (i) annotate large obvious artefacts,

such as those in Figure 5.2, and (ii) gain an understanding of the patient’s major

trends in HR variation over the monitoring period. The artefacts annotated when
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viewing the 12-hour segments were recorded and removed from the time-series to

further reduce visual distortion. Finally, 2-hour segments of the time-series were

viewed for less-obvious artefacts, such as those in Figure 5.2(c). The 2-hour window

was advanced in 1-hour increments to maximise the visual context of the time-series.

Artefacts annotated in this manner were recorded as artefacts, but not removed from

plots of the time-series. Once the entire time-series had been annotated within the

2-hour windows, the entire time-series was replotted with artefacts and non-artefacts

in di�erent colours to ensure erroneous annotations were not visible. If erroneous

annotations were visible, the patient’s time-series was re-annotated for accuracy.

This annotation of 140,556 total HR measurements identified 21,062 artefacts

(15%) and 119,494 non-artefacts (85%). Of the artefactual measurements, only

80 (<0.01%) exceeded the 30-300 bpm thresholds used by Hann [45] on the

same data set.

The proportion of artefacts within each time-series di�ered by patient and is

shown in Figure 5.1(b). The total number of HR measurements per patient ranged

from 1,390 to 13,950, so it is unsurprising that artefacts were identified in each

patient’s time-series. The large proportion of measurements annotated as artefacts

demonstrates how artefacts are more frequent than generally believed, and warrant

the attention of those developing automated systems.

Visual inspection of the patients’ time-series identified several archetypal HR

dynamics that warrant consideration for data-cleaning. Figure 5.2 shows six

such archetypes.

Certain archetypes clearly represent undesirable artefacts (which we may not

wish to model), such artefacts include 5.2(a) probe attachment, 5.2(b) probe

detachment, and 5.2(c) sporadic inter-beat detection failure and ectopic beats. The

artefacts in 5.2(a) and 5.2(b) are contextualised by the absence of measurements

before/after a non-physiological fall/rise. This suggests that the monitoring probe

has just been reattached or detached. In 5.2(c), red measurements are contrasted

with the consistent HR around 70 bpm, which are implausible variations over

this short time-scale.
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Figure 5.1: The frequency of artefacts in each of the 20 manually-annotated heart rate
time series. In (a) the number of annotated artefactual and non-artefactual measurements
shows that there is no clear correlation between the length of monitoring and the occurrence
of artefacts. In (b) the proportion of artefactual measurements as part of total number of
HR measurements shows that the frequency of artefacts per patient ranges from about
1-in-20 to 1-in-3 measurements. Elements of this figure were published in [2], and are ©
2017 IEEE.

Other archetypes warrant identification, even if we do not currently wish to

model them. These include bigeminy (not shown) and 5.2(d) atrial fibrillation. In

the absence of further waveform or signal-quality data, there are many borderline

cases as well, such as 5.2(e) which may be bigeminy after poor built-in median

smoothing, and 5.2(f) which may be atrial fibrillation, or simply a high-noise

regime due to signal interference coupled with algorithmic failure of beat-detection.

Examples such as these illustrate that the annotation process is both subjective,

and possibly erroneous for borderline cases.

A final distinction between (i) artefact and (ii) unusual dynamics is that we aim

to model each time-series via a homoskedastic Gaussian process.2 Dynamics such

as atrial fibrillation or bigeminy induce heteroskedastic and highly-non-Gaussian

noise. To facilitate our automated continuous modelling, we may wish to handle

certain “true” dynamics as artefacts for a more reliable and replicable inference

in light of our modelling choice. A more principled solution would be (i) to first

identify the current time-series dynamic, and then (ii) apply bespoke modelling

and inference that is most-appropriate for that physiology. However, in the absence
2That is, our model assumes that noise-corruption comes from a single IID Gaussian distribution,

which is clearly untrue in light of certain types of artefactual corruption
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Figure 5.2: Six example HR dynamics. Examples contain non-artefactual measurements
(•), example measurements from the archetype (ú), and plausible measurements of a
di�erent archetype (•). Archetypes (a)-(c) are transient, whereas (d)-(f) are probably non-
artefactual and more persistent. This suggests that they likely di�er in the appropriate
method to detect these dynamics. Unique dynamics were identified only by time-series,
not by waveform data. Elements of this figure were published in [2], and are © 2017 IEEE.

of waveform or further clinical annotation, such a system would be di�cult to

believe on the UPMC data set.

5.3 IID Modelling of Transient Artefacts
Artefact Model

From Figure 5.2 we see that (uncontroversial) artefactual measurements are out-

standing in the context of temporally-proximate measurements (or lack thereof).

We aim for an artefact detection algorithm with several attributes:

Computationally, we aim for an algorithm that is (i) lightweight (and may be

plausibly embedded within a wearable sensor), (ii) fast (so as not to delay clinical in-

ference), and (iii) transparent/intuitive in its decision process for clinical inspection.

Algorithmically, we aim for an algorithm that (i) may be run on time-series, in

the absence of waveform data, (ii) is sensitive to transient measurement artefacts,

as in Figure 5.2(a-c), and (iii) is agnostic to persistent noise dynamics, as in Figure

5.2(d-f), which should be left to an alternative form of artefact detection.

Since a distinguishing feature of transient artefacts is that they diverge from

temporally-proximate measurements, an intuitive approach is to model all mea-

surements Y = y1, ..., yn within a short window of duration · minutes as i.i.d.

draws from a probability distribution p(y). Artefactual measurements will have low

likelihood with respect to p(y). Since this requires a further (fallible) estimation
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step to infer p(y), we will average the log-likelihood of the measurement, with

respect to p(y), over each unique (but over-lapping) · -length window (indexed

w = 1, ..., W ) that includes the measurement of interest, y

z(y) = 1
W

Wÿ

w=1
log pw(y). (5.1)

Transient artefacts will have low values of this novelty score z(y), compared to

(i) stable (presumably non-artefactual) measurements, and (ii) persistent high-noise

regimes.

This approach merely requires the selection of (i) window-length · , (ii) probability

model p(y), and (iii) the inference procedure for p(y). Each is covered briefly below.

Selection of Time Window ·

Across windows of short time-length · , an outlying measurement becomes well-

separated from its neighbours. A short · comes at the cost of a smaller number of

neighbours by which to infer the sample distribution p(y). In contrast, a large ·

incorporates more data by which to estimate p(y), but (i) conflates noise variances

with the potential that the underlying HR has changed, and (ii) delays the inference

as the algorithm must wait until all data is collected.

Values of · between 5-10 minutes were found to have comparable ability to

discriminate artefacts, whereas · values less than 5 minutes began to compromise

discriminative performance. A · = 5 minutes was selected to minimise lag and

computation without compromising performance.

Selection of Inference Method of p(y)

As measurements from physiology, it is desirable to encode physiological knowledge

via Bayesian methods. However, the primary consideration for the inference step

is that the entire algorithm should remain both computationally light-weight and

fast. MCMC-based methods were excluded for this reason, along with the fact

that the novelty score of Equation 5.1 already contains an element of model-

averaging. For the parametric probability distributions considered to model p(y)
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(e.g., Gaussian, log-normal, and gamma), all had maximum a posteriori estimation

with analytical solutions (for some priors over their respective parameters). However,

a consistent and rigorous framework to parametrise these priors, particularly for

location parameters, was di�cult due to the wide range of possible values across

many patients at any time. This challenge was illustrated by the inter- and intra-

patient variability in vital-sign values in Chapter 3.

For frequentist inference, the potential parametric models of p(y) each had

analytical maximum-likelihood estimates, which makes the inference step predictable

in both operation and run-time. Frequentist maximum likelihood estimation was

chosen. Non-parametric KDE modelling was also examined. As described in

Chapter 4, the KDE requires cross-validated selection of a bandwidth parameter

(in place of maximum likelihood selection).

Selection of p(y)

The Gamma distribution over HR demonstrated a marginally superior ability to

discriminate between artefactual measurements and non-artefactual measurements

compared to normal and log-normal models of p(y). KDE demonstrated poorer

discriminative ability than the parametric models, presumably due to placing a

minimal level of likelihood on every observed HR measurement.

Final Artefact Scoring Algorithm

Figure 3 illustrates the steps to calculate z(y). At each window · a gamma distribu-

tion

p(y) = 1
—–�(–)y–≠1 exp

A

≠ y

—

B

, y > 0, (5.2)

was fit to the data y within the window. The gamma distribution is parameterised

by –, a shape parameter, and —, a scale parameter. The values of – and — are

set to their maximum likelihood estimate, that is, the values of – and — that

maximise Equation 5.2. These values of – and — are apt to change as the values

within the window change. As described in Equation 5.1, the artefact score of each



5. Detection of Artefactual Vital-Sign Measurements 99

Figure 5.3: In (a), a patient’s HR time series is shown with two artefacts around t = 6
minutes. The time-series is underlined by three unique windows of · = 5 minutes. There is
substantial overlap of measurements within nearby windows since each new measurement
creates a unique window. In (b) the corresponding artefact score is shown for each
measurement in (a) with low values at the time of the artefacts. A gamma distribution’s
PDF (as in equation 5.2) is fit via MLE to the measurements (x) within each window in
(c), (d), and (e). While the artefactual measurements in the tails of (c) and (d) visibly
flatten the PDF over the window of measurements, their tail-likelihood is significantly
lower than the likelihood of the other measurements in the same window. In (e) the
artefact-free window is well-described by the fitted Gamma pdf, which further bolsters the
average log-likelihood for non-artefacts. When averaged across all windows, the artefact
score in (b) is much lower for the transient artefacts, as desired. Elements of this figure
were published in [2], and are © 2017 IEEE.

measurement is equal to its average log-likelihood across all W windows in which it

is a member. Measurements with low values of z may be considered likely artefacts.

5.4 Discriminative Ability of Artefact Score

The artefact score’s ability to discern between artefactual and non-artefactual

measurements is examined in the trade-o� between the proportion of artefacts and

non-artefacts that would be discarded at any given threshold k on the artefact score

z(y). Results are shown in Figure 5.4 both for 5.4(a) inter-patient variability
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Figure 5.4: Ability to discriminate between artefact (–) and non-artefact (–), assessed
on (a) for each patient, and (b) on aggregate. In (a), the CDF of z(y) was calculated for
each of the 20 patients under consideration and the the 20%, 50%, and 80% quantiles
across all patient’s results are shown. In (b), the CDF is shown for all measurements
aggregated across all patients. A threshold k to classify artefacts may be determined
using such plots, according to what is an acceptable trade-o� for a particular application.
Elements of this figure were published in [2], and are © 2017 IEEE.

and 5.4(b) on aggregate.

However, since there is an inherent inter-patient variability, a specific threshold k

will remove a di�erent proportion of artefactual measurements and non-artefactual

measurements, depending on the patient. Even with the uncertainty of inter-patient

variability in 5.4(a), it may be seen that the artefact score e�ectively di�erentiates

between artefacts and non-artefacts. For example, at threshold k = ≠4, half

of all patients would have at least 35% of all artefacts removed, and almost no

non-artefacts removed. The top 20% of patients at k = ≠4 would have at least

50% of artefacts removed, and the top 80% of patients would have at least 30%

of artefacts removed. From the y-axis ranges, we can also see that the artefact

scores of artefactual measurements have a much narrower range in artefacts (red)

than non-artefacts (black). This suggests that there is only modest inter-patient

variability in the proportion of artefacts removed at a given threshold. In particular,

the large gap between the 50% and 80% quantiles suggest that most patients have

a considerable gap in z(y) values between their artefactual and non-artefactual

measurement, up to the point at which nearly all artefacts would be removed.
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In Figure 5.4(b), when aggregating all scores, regardless of patient, about 40%

of artefacts and <1% of non-artefacts had a score below threshold k = ≠4.

These results suggest that it is possible to remove a large portion of artefactual

measurements while removing only a negligible proportion of the non-artefactual

measurements. Since the identification of artefacts is only used for machine learning

ends (i.e., it does not directly generate clinical alarms) there is little risk from

false-positive identifications (beyond that it removes data we would otherwise prefer

to have for clinical inference). The results in Figure 5.4 suggest that there is little

risk of removing very much data that we would like to retain for clinical inference.

When paired with the low inter-patient variability, there is little risk in applying a

single threshold across an entire patient cohort. With no further patient-specificity

required to remove the most apparent artefacts, such a method may be suitable

(for example) to embed within a wearable sensor for general purpose monitoring.

In comparison to current practice (e.g. simple thresholds from Hann [45]), the

likelihood-based algorithms adds little to computational demand and run-time.

In terms of run-time, the proposed algorithm can compute z(y) for an hour of

HR data (collected at 1
5 Hz to 1

3 Hz) in less-than 1 second when programmed in

Matlab. From this, the time delay in using the proposed algorithm is only as

long as the window length · required to collect the data. In terms of e�cacy, the

proposed algorithm can remove many artefacts with minimal loss of non-artefactual

data. Although measurements exceeding the range of 30-300 bmp are virtually

assured to be artefacts, these extreme-valued instances are less than 0.01% of the

total annotated artefacts. Further varying of the thresholds proposed by Hann

quickly degenerates into removing true measurements since, as seen in Chapter

3, the range of patient values is highly individual. We suspect that the proposed

likelihood-based algorithm circumvents the need for patient individualisation by

performing inference using only the most pertinent data, that is, the patient’s

current values at the current time.
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5.5 Clinical Applications of Artefact Detection

The ultimate goal of artefact detection is to improve automated clinical inference.

Improved data supports such applications as inputs to (i) forecast future vital-signs

(as described in Chapter 6 and 8), (ii) identify a change in measurement-noise

regimes or patient status, or (iii) infer deterioration (described in Chapters 7 and 8).

To conclude, we demonstrate how simple removal of the most extreme artefacts

may improve deterioration detection. Although complete removal is not the only (or

best) way to handle measurements deemed artefactual, it illustrates how a simple

application may be applied to improve the end goals of this thesis.

As described in Chapter 8, time-series modelling provides an e�ective tool to

identify unusual vital-sign dynamics over time (for example a precipitous rise or

fall in HR beyond what would be expected of normal variability). As illustrated in

Figure 5.5(a), sequential GP forecasts could identify such step-changes, quantified

by forecast likelihood.

This approach is similar to likelihood-based artefact detection method itself,

except that we (i) incorporate a Bayesian time-series inference in place of a

frequentist IID inference, and (ii) evaluate the likelihood of a window of data

instead of individual measurements.

Artefacts hinder this inference by over-stating the noise or volatility of the

underlying physiology in the training or forecast window. By removing the most

erroneous data we blind our clinical inference to misleading data.

As described in Chapter 3, the UPMC data set has 59 patients with clinically-

annotated cardiorespiratory instability events (C”-events), along with the time

stamps of those events. By applying the step-change detection algorithm described

above, we examine the trade-o� between time of early warning (TEW) among the

59 patients with cardiorespiratory instability events (C”-patients) and the false

positive alarm rate (FPR) among the 89 patients with no such annotated events

(non-C”-patients). (Further details will be given in the dedicated chapter.)

In Figure 5.5, we show the TEW in advance of the first C”-event for each of the

59 C”-patients. The FPR is the rate at which the step-change detector alarmed
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Figure 5.5: Improving patient monitoring with artefact removal. (a) A GP step-change
detector may help identity abnormal vital-sign dynamics, however this inference can be
hampered by noise in both the training and/or forecast window. (b) GP deterioration
detection is performed with (–) and without (–) artefact removal, using threshold of
z(y) Æ k = ≠4. Increased sensitivity improves the hours of early warning in advance of
the annotated clinical emergency, but also increases the rate of false positive alarms in
patients without clinical emergencies. Lines show the 15%, 20%, and 25% quantiles of
early warning among the 59 patients with clinical emergencies. Elements of this figure
were published in [2], and are © 2017 IEEE.

in the 89 patient without annotated alarms. At a higher level of sensitivity to

step-changes, we may detect deterioration earlier in the C” patients. Due to the

individual patient dynamics, the TEW in C” patients varies on an individual basis,

creating 59 unique TEWs (one TEW per C”-patient). We summarise this TEW

distribution by quantiles. We would like to compare the TEW vs FPR trade-o�

from before (black) and after (red) artefact removal.

For patients with the largest TEW, artefact removal showed nearly identical

performance (not shown). That is, the trade-o� between TEW vs FPR had negligible

improvement for those patients who already benefited from very early warning.

In contrast artefact removal showed useful improvement for patients for the lower

quantiles of TEW (the patients currently receiving the least early warning via step-

change detection). This is a positive result, since those patients are most vulnerable

to (i) missed warning signs, or (ii) warning signs that are too late for e�ective clinical

intervention. For example, at an FPR of 3%, the patients with the lowest 15% of

TEWs (shown by the lowest red and black lines of Figure 5.5) improved from an

early warning of 0 hours (no advanced warning, only a contemporaneous warning)

to 2 hours of early warning. The improvement of advanced warning from 0 to 2

hours could be invaluable for clinical sta�, and potentially life-saving for a patient.
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While this example is performed on a small number (59 + 89 = 148) of patients,

and therefore is far from conclusive, it suggests that simple methods to improve

data quality, may help remove more subtle sources of error.

5.6 Time-Series-based Artefact Detection

The IID model for artefact scoring was attractive for its simple and transparent

(and therefore, robust) probabilistic inference. However, it should be noted that

a GP could also provide a such a score by replacing the p(y) from Equation 5.2

with the GP’s posterior predictive distribution at y(t).

A simplistic way to do this would be to assess the log-likelihood of each

measurement in the time-series with respect to the posterior GP. Measurements

with low log-likelihood would then be candidates for removal as artefacts. Such

a method was used to remove artefacts in [9] and [10]. A further addition could

apply EVT to calculate the probability of a measurement at least as extreme as the

measurement under consideration. However, when tested, the EVT-based methods

were highly sensitive to model misspecification (e.g., the estimation of noise variance)

when calculating these probabilities. Alternative scores derived from the GP model

could involve metrics drawn from Q-Q plots or Cramér-von Mises test statistics

to simultaneously (i) assess individual measurements while (ii) generating useful

model-checking metrics for the GP fit to the data.

Moving away from the traditional homoskedastic GP, alternative models could

include (i) “fault bucket” GP methods, (ii) data cherry picking regression methods,

(iii) mixtures of GPs and (iv) Student-t processes.

Modelling via (i-iii) involves the assumption that the vital-sign data comes from

multiple data generative sources or latent functions: one data generative process

that produces the non-artefactual vital-sign measurements, and another (or multiple

other) data generative processes that produce artefacts. For example, the fault

bucket could measure non-artefactual measurements by a GP with a covariance

function with a white noise term, such as those illustrated in 4.5(c,d). This GP

covariance would then be supplemented with an additional high-variance white
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noise kernel, as in Equation 4.13, to model high-noise volatility. This may be an

appropriate model for the artefacts in Figure 5.2(c,d), which likely represent signal

processing noise and atrial fibrillation, respectively.

Mixtures of GPs may be attractive to model time-series that appear to have

distinct simultaneous trajectories or for instances were the distribution p(y(t))

appears to be multimodal. Physiologically this would include modelling for patients

with bigeminy, trigeminy, etc. Time series of this nature could include those in

Figure 5.2(e) or Figure 3.1(a), both of which show two distinct HR trajectories.

Such methods would be a principled way to handle persistent artefacts, in contrast

to the IID method of this chapter, which handles transient artefacts.

The final alternative, Student-t processes, would make use of the heavy-tailed

Student-t distribution to model large outliers, such as those in Figure 5.3(a) at

t = 6. Whereas the Gamma distribution flattens significantly in the presence of

large outliers, as seen in the gamma PDFs of 5.3(c) and 5.3(d), the heavily-tailed

Student-t distribution may be less-flattened, thereby better distinguishing between

artefact and non-artefact. Furthermore, by robustly modelling these transient

artefacts, the initial step of removing artefacts may be rendered unnecessary since

the time-series model is less a�ected by such measurements.

Computationally, although GP-based and other time-series-based methods

require a larger calculation to fit the model (compared to the IID gamma model),

any artefact score would not require recalculation over multiple windows because

the model has estimated the mean and noise variance at a given point. Furthermore,

the time-series methods may completely circumvent the need for an additional

pre-processing step to remove artefacts, if artefacts may be robustly incorporated

into the probabilistic model.

5.7 Conclusion

In this chapter we demonstrated that artefactual vital-sign measurements are

more common than generally thought and that naive approaches to handling
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artefacts are insu�cient to either (i) identify most artefacts, or (ii) prepare data

for subsequent statistical analysis.

A simple likelihood-based artefact score is introduced to identify transient

artefacts while remaining agnostic to more persistent archetypal dynamics. Due to

direct inference on each patient’s vital-sign measurements, the artefact score has low

inter-patient variability. This suggest that the score may be appropriate for use on

a patient cohort without need for further patient-specific refinement. The absence

of waveforms relegates the current algorithm to general purpose monitoring (that

is, monitoring without the goal to identify disease-specific physiology). However, if

waveform data were available, there is are various ways in which such information

could be included.

Finally, we demonstrated how artefact removal may assist with deterioration

detection by improving early warning performance on patients who are may be

otherwise missed. Although far from conclusive, the improvement in the low-

TEW patients underscores how di�cult-to-identify patients may benefit from

more involved monitoring.
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GP Kernel Construction for Patient

Monitoring

The GP’s Bayesian nonparametric framework accommodates significant modelling

flexibility. This flexibility can assist in representing the underlying physiology that

generates vital-signs. In this chapter we first demonstrate how a kernel selection

procedure may flexibly model a wide range of dynamics from a cohort of patients.

Next, we propose to further personalise kernel complexity and parameterisations

via the patient’s previous monitoring data. These personalised models may be

learned using simple or sophisticated optimisation procedures. We demonstrate the

improvement in such models by improving worst-case scenario forecasting.

Key elements of this chapter have been published in [1], [3], and [4].

6.1 Clinical Value of GP Kernel Construction

Personalised inference of patient health has vast potential to improve patient

monitoring when compared to a single population-based model applied across a

large heterogeneous clinical population. Large inter-patient variability requires

population-based models to accommodate large ranges of “normal” data that are

highly abnormal in a patient-specific or time-specific context. GP modelling of a

107
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patient’s time-series implicitly avoids such limitations by performing all inference

via the patient’s own data.

The use of personalised models has inherent challenges: Reliance on only the

patient’s data requires that we e�ectively begin with no hard data. The learning

process, therefore, must develop from a robust reasoning pathway by which to

balance (i) physiological knowledge and (ii) the data of previous patients with (iii)

continuously acquired data from the current patient. We contend that Bayesian

methods provide such a reasoning pathway. Furthermore, personalised models must

be learned in a timely fashion to assist timely clinical inference.

The challenge of personalised modelling, then, is that we must consider a model

(or family of models) that is su�ciently flexible to accommodate a diverse range of

patients, but we must learn patient-specific parameterisations and regularisation

for the individual patient in a timely manner.

This chapter will illustrate of two main hypotheses: (i) population-based GP

priors may adequately model the wide range of vital-sign time-series dynamics

exhibited in the SDU, and (ii) further patient-specific refinement of these models

can out-perform population-based GP priors for useful clinical tasks. Furthermore,

the identification/specification of these personalised models are best determined

by sophisticated methods of optimisation, due to highly interrelated GP hyper-

parameters used to describe physiology.

Figure 6.1 illustrates the clinical value of good parametrisation or regularisation

of a GP model: The GP’s flexibility is helpful to model a range of physiology,

however this flexibility increases the risk of model misspecification. For example,

when we are certain that our model has correctly parametrised a patient model, we

may confidently discern between between 6.1(a) predictable and 6.1(c) unpredictable

volatility. However, in the presence of 6.1(b,d) poor model specification, it is unclear

whether volatility was truly unpredictable, or whether we simply failed to learn

from predicable dynamics. Since we may also aim to use unpredictable volatility

to infer deterioration (as described in Chapter 8), we must, in turn, aim for a

model that minimises (avoidable) poor forecasts.
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Figure 6.1: Model specification and misspecification. A GP is fit to the training window
(•) of each of four time series. A forecast is then made for future measurements (•). Solid
lines show the latent mean and its 95% CI. Dashed lines show the 95% CI of observations.
GP forecasts may inform us of (a) future values, or (c) unforeseen volatility. In both
cases, the GP model require correct parameterisation for robust clinical inference. Some
poor forecasts, which may be mistaken for deterioration, could be foreseen, such as when
the noise parameter, ‡2

n, is (b) over-estimated, or (d) under-estimated. Elements of this
figure were published in [1] and are © 2017 IEEE.

6.2 Data Set

6.2.1 Training, Validation, and Testing Set

The UPMC data set’s 169 non-C” training set patients (with at least 1 hour of data

both before and after 24 hours on ward) were subdivided into training, validation,

and testing sets to learn (i) a patient-cohort model, and (ii) the procedure to

learn patient-specific GP models.1 A testing set of 169 ≠ 43 = 126 patients will

demonstrate the inductive value of these approaches model-learning.

Without patient-specific learning, the GP model (or modelling procedure) will

be invariant to the the amount of patient data that is collected. In contrast, patient-

specific modelling will, naturally, be a function of the available data. As described in

Figure 6.2, we reserve the first 24 hours of each patient’s data for any patient-specific

learning. the comparison of patient-cohort versus patient-specific model will then

be assessed in hours 24-72 for each patient. Since clinical systems are typically

assessed against their worst-case performance, we will prefer a modelling procedure

that minimises the frequency or magnitude of “very poor” forecasts.
1We use the term “validation” as it is used in the computer science literature: to estimate

how our modelling choices will perform when using previously-unseen data. In contrast, medical
literature uses the term “validation set” to refer to held-out data, used for an unbiased estimate
of performance in the final selected model.
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Figure 6.2: (a) Three days of a patient’s continuously-acquired HR data. (c) The
sequential forecast performance using a cohort-based GP model (•) versus a regularised
GP model (•). Note that although the use of an cohort-based GP model (•) tends
to result in higher values of forecast LML for this patient, the regularised method (•)
avoids the large number of poor estimates and is more robust overall. The distribution
of the forecast LMLs from (c) is shown in (b) for cohort-based GP model and (d) for
patient-specific regularisation to optimise the 2.5-percentile of forecasts (the vertical
dashed line), which is objective function G1, defined later. Although use of the regulariser
certainly avoids worst-case scenario performance, we believe that the regulariser could
be learned without such detriment to upper-end performance. This motivates the use of
multi-objective optimisation, described later. Elements of this figure were published in [1]
and are © 2017 IEEE.

While, for demonstration purposes, the first 24 hours of each patient’s data

is used for learning, in practice we would not wait 24 hours to begin patient-

specific inference. Instead, the patient-specific GP model could be learned and

updated continuously, beginning immediately upon admission to the ward. For

simplicity, however, we will examine the performance of these models after 24 hours

of observation. This 24-hour cut-o� is a trade-o� between a large enough data

set on which to learn a model, and a large enough data set left over on which to

assess performance. However, this arbitrary cut-o� could be any time t > 0, with

updates as frequent as desired or as computationally possible.

For a rough estimate of data availability, the number of HR measurements

for each patient is shown in Fig. 6.3. The available data is roughly the same
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Figure 6.3: The total number of HR measurements (a) for each of the 43 patients in
the training/validation set, and (b) for each of the 126 patients in the test set. Patients
with fewer measurements (which may be dispersed in time) will have fewer data from
which to learn a personalised model (i.e., they may have fewer data in their first 24h),
and fewer data with which to test the performance of a personalised model (i.e., they may
have fewer data after their first 24h). Elements of this figure were published in [1] and
are © 2017 IEEE.

between 6.3(a) the 43 training/validation patients and 6.3(b) the 126 (held-out,

previously-unseen) test patients. With HR acquired between 1
3 Hz to 1

5 Hz, most

patients had more than one day (≥ 1.7 ◊ 104 measurements), but less than two

days of total usable data.

6.2.2 Data Preprocessing

As described in Chapter 5 (and partnered publication [2]), continuous HR data are

typically beset with artefactual corruption due to the measurement process, including

partial attachment of the measurement probe (often an ECG electrode or finger-

mounted pulse oximeter), or failures to identify the pulsatile complex of wave-forms

(e.g., the QRS complex in the ECG) that subsequently confounds HR estimation.

Just as we advocate the modelling of a patient’s time-series data using patient-

specific (and not population-based) approaches, a principled approach to artefact

removal evaluates potential artefacts in light of the patient’s current measurements,

and not using population-based rules-of-thumb. The likelihood-based artefact

score was used to identify measurements that deviated significantly from nearby

measurements. Measurements with an artefact score less than ≠4 were removed

as artefacts. Among the annotated patients, this corresponded to roughly 40% of
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artefactual measurements and less than 1% of non-artefactual measurements. Due

to inter-patient variability, these values may vary between 30% to 50% of artefacts,

and 0% to 1% of non-artefacts, for most patients.

6.3 Clinical Performance Objective

As described above, we will illustrate kernel building for the task of sequential

vital-sign forecasting. That is, we aim to continuously update our forecast of

future vital-signs as we continuously acquire new vital-sign measurements. We

simultaneously quantify the accuracy and precision of the forecast via the LML

of the future data with respect to the GP’s posterior predictive distribution. We

aim to optimise forecast LML performance by a personalised-selection of ◊ (the

vector containing all GP hyperparameters) for each patient.

Figure 6.4 shows the e�ect of hyperparameter values on forecasting with a

30-minute look-ahead. A forecast is made at hours [2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6]. In

practice, however, forecasts can be made for any length look-ahead (e.g., 1 minute,

or 1 hour), and at any frequency (e.g., continuously with each newly acquired

vital-sign measurement, or minutely, or at times requested by clinical sta�).

For a GP with a single Matérn 5/2 covariance kernel, a shorter length-scale

⁄ = 5 better fits the contours of the training data in 6.4(a) compared to the

longer length-scale ⁄ = 15 in 6.4(d), which tends to over-smooth. This results

in higher forecast LML values in 6.4(b) and 6.4(c) compared to 6.4(e) and 6.4(f).

Furthermore, as shown in 6.4(g) and 6.4(h), the e�ect of altering the value of one

hyperparameter is highly sensitive to the values of the other hyperparameters. This

e�ect is particularly pronounced in worst-case forecasts, which are those forecasts

which fall into the lowest quantiles of forecast performance. Examples of particularly

poor forecasts include the forecast in (i) 6.4(a) from hours 4 to 4.5, (ii) 6.4(c) from

hours 4 to 4.5, and (iii) 6.4(c) from hours 5.5 to 6. In each of these three forecasts,

the majority of HR measurements are far outside the 95% predictive bound, and,

accordingly, have low forecast LML.
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Figure 6.4: Sequential prediction on a time-series. A GP is sequentially fit via a fixed
(a) length-scale of ⁄ = 5 minutes, and (d) length-scale of ⁄ = 15 minutes. The forecast
LMLs at each time point are shown in (b) and (e), respectively. This time-series of
forecast LMLs form a distribution, in (c) and (f), which may be summarised by a further
statistic, such as mean or a quantile, to describe the overall forecast performance of the
choice in hyperparameters. The percentile of these distributions will change by varying
the parameters, as shown in (g) by fixing [h, ‡n] = [10, 2.5] and varying ⁄, in (h) by
fixing [⁄, ‡n] = [5, 2.5] and varying h. Percentiles are calculated from 4.5 ◊ 60 = 270
minutely-forecasts between hours 2 to 6.5, and show the 50 (•), 25 and 75 (•), 10 and 90
(•), and 2.5 and 97.5 (•) percentiles.
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Our principle aim is to minimise worst-case forecast performance, which we

formalise to be the 2.5-percentile of all forecast LMLs on an individual patient’s

vital-sign. We will examine forecast performance on each patient separately (instead

of on aggregate) (i) to avoid Simpson’s paradox in which a “best model” on aggregate

is sub-optimal for most or all patients, and (ii) because some patients are simply

harder to predict than others, so the maximum-attainable forecast LML will vary

by patient-to-patient. From this inter-patient variability, absolute thresholds may

confound our understanding of optimal performance for a particular patient.

Defining L to be the set of all forecast likelihoods of a patient, and Lfl to be the

flth percentile of L our first performance metric is the 2.5-percentile of L:

G1 = L2.5 (6.1)

Noting, from Figure 6.2, that such an objective may prefer models that are

far less accurate on average, a second metric is proposed to reward higher general

forecast performance, but with greater weight on small quantiles:

G2 =
50ÿ

fl=2
(51 ≠ fl)Lfl (6.2)

We seek (i) a cohort-wide GP model, and (ii) personalised GP models that will

optimise these metrics for sequential forecasting on individual patient’s time-series.

6.4 Gaussian Processes for Patient Cohort Mod-
elling

We will first aim to develop a single GP model which can be applied on any of

the UPMC patients at any time. This does not require us to pre-specify every

aspect of the GP model (from covariance function to hyperparameter values) in

advance. However, we do desire a single, time-invariant model-selection or fitting

procedure. Several options exists, ranging from full specification of the covariance

function and hyperparameter values in advance, to specification of the procedure

by which to select the kernel and hyperparameters. Complete a priori specification
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of the GP model would relegate the model to practically no learning, which is an

unrealistic baseline comparator. Accordingly, we will aim to learn a single set of

(patient-independent) regularisers to help guide the model fitting. We will aim to

learn a set of priors with superior forecasting performance.

To this end we select a finite number of covariance functions with a finite

number of priors over the hyperparameters. To give the baseline comparator the

best chance of performance, we performed an exhaustive combinatorial search

of kernel-prior combinations.

6.4.1 Covariance Function for a Cohort-Wide GP Model

The cohort-wide GP model aims to specify a single covariance structure with which

to fit (via MAP estimation) any patient’s time-series at any point of time on ward.2

For this discussion we will restrain our search to covariance functions k(t, tÕ)

composed of 1-, 2-, and 3-kernel additive combinations, where each kernel, ka(t, tÕ),

may be either (i) a radial basis function kernel, (ii) a Matérn 3/2 kernel, or (iii)

a Matérn 5/2 kernel. That is,

k(t, tÕ) =
Aÿ

a=1
ka(t, tÕ | ◊a) + ‡2

n”(t, tÕ) (6.3)

where A œ {1, 2, 3} and each ka(t, tÕ) may take one of the following three forms:

k(t, tÕ) = h2
a exp

A

≠(t ≠ tÕ)2

2⁄2
a

B

, (6.4)

k(t, tÕ) = h2
a

A

1 + |t ≠ tÕ|
Ô

3
⁄a

B

exp
A

≠ |t ≠ tÕ|
Ô

3
⁄a

B

, (6.5)

or

k(t, tÕ) = h2
a

A

1 + |t ≠ tÕ|
Ô

5
⁄a

+ 5|t ≠ tÕ|2

3⁄2
a

B

exp
A

≠ |t ≠ tÕ|
Ô

5
⁄a

B

. (6.6)

Regardless of the selected kernel, the respective hyperparameter sets, ◊, of a

1-, 2-, or 3-kernel covariance function are:
2As described earlier, the GP prior mean will be set to the mean of the training data.

Alternative specifications for the mean function were compared for forecasting tasks, but did not
yield improvements. We will use MAP inference to accommodate high-granularity sequential
forecasting.
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For A = 1, ◊ = {h1, ⁄1, ‡n} .

For A = 2, ◊ = {h1, ⁄1, h2, ⁄2, ‡n} .

For A = 3, ◊ = {h1, ⁄1, h2, ⁄2, h3, ⁄3, ‡n} .

(6.7)

Note that a 1- or 2-kernel covariance function can also be created from a 3-kernel

covariance function by fixing the appropriate output-scales h to 0.

The purpose of this is to allow the GP to model up to three di�erent time

scales over which a patient’s vital-signs may vary. For example, a GP with a single

kernel would aim to capture the single most prominent time scale (i.e., length scale)

over which vital-signs tend to vary. A GP with more kernels would aim to capture

the most important time scale, while also learning shorter-term time scales (to

incorporate greater detail) or longer-term time scale (to incorporate longer trends).

As described, this allows for 3 possible combinations for a 1-kernel covariance

function, 3◊3 = 9 combinations for a 2-kernel covariance function, and 3◊3◊3 = 27

combinations for a 3-kernel covariance function. We wish to further consider multiple

combinations of uninformative priors over the hyperparameters of each kernel. We

therefore selected a subset of the possible kernel combinations.

The priors over the hyperparameters of these kernels is described below.

6.4.2 Uninformative Priors for a Cohort-Wide GP Model

A common approach to modelling the heterogeneous physiology of patients is to

assign an uninformative prior over the hyperparameters of the covariance function.

Table 6.1 lists several common uninformative priors, which are available in the

GPStu� Toolbox [144].3 As seen in Table 6.1, the uninformative priors regularise the

fit of the hyperparameters by reducing probability of high values. For example, the

log-uniform distribution will regularise against large values more stringently than

the square-root uniform, but less stringently than the log-log-uniform distribution.

From this, we can codify our preference for certain hyperparameters to have higher
3Bishop [141] provides further information on uninformative priors in Section 2.4.3 of his book.
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Table 6.1: Uninformative priors for hyperparameter regularisation

Prior Parameterisation
Uniform* p(x) Ã 1

Square root uniform p(x1/2) Ã 1
Log-uniform p(log x) Ã 1

Log-log-uniform p(log log x) Ã 1
* = Unused in experiments

Table 6.2: Uninformative prior rules

Rule 1 Rule 2 Rule 3
h > ‡n hi Ã hj, ’i, j ⁄i < ⁄j, ’i < j

value than other hyperparameters without an explicitly specifying of what those

values might be.

For example, we may wish to encode the belief that the time-series’ total variance

contains more signal than noise. We may achieve this by placing a uniform prior

on output-scale, h, and a log-uniform prior on noise variance, ‡n. This results in

a greater penalty for a large ‡n than an equally large h. When the model is fit h

will be larger than ‡n, in the absence of stronger evidence to the contrary.

Following this intuition, combinations of uninformative priors over the hyperpa-

rameters can be selected. For the three kernels described above, we consider the

rules in Table 6.2 to generate a plausible set of priors. Table 6.3 counts the total

number of prior-kernel combinations for covariance functions of 1, 2, or 3 kernels.

Prior combinations compliant with rule 2 are a subset of those compliant with rule

Table 6.3: Prior-covariance function combinations

Covariance Function Rule 1 Rule 2 Rule 3 Total Combos
1 Kernel 3 3 (1) 3 3 ◊ 1 ◊ 3 = 9
2 Kernels 2 2 (1) 2 2 ◊ 1 ◊ 2 = 4
3 Kernels 2 2 (1) 1 2 ◊ 1 ◊ 1 = 2
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Table 6.4: Optimal kernel-prior combinations

Kernel Count Prior
1 p(log h) Ã 1, p(log ⁄1) Ã 1, p(log log ‡n) Ã 1
2 p(log h) Ã 1, p(log ⁄1) Ã p(⁄1/2

2 ) Ã 1, p(log log ‡n) Ã 1
3 p(log h) Ã 1, p(log log ⁄1) Ã p(log ⁄2) Ã p(⁄1/2

3 ) Ã 1, p(log log ‡n) Ã 1

1 and, therefore, do not add to the combination count.

Due to high inter-patient variability in both values and (more importantly)

time-series dynamics of vital-sign time-series, we do not consider parametric priors,

since they imply a level of prior-belief that does not exist. It seems unlikely that

parametric priors would yield significant performance gains and therefore, such priors

are left untested. However, if such a search were desired, the computational expense

to test any particular parameterisation across many patients would be very high.

We would recommend a search method such as the Bayesian optimisation search

described below to e�ciently search through the infinite number of possible options.

6.4.3 Selection of Cohort-Wide GP Model

Any set of priors that satisfies all three rules of Table 6.2 for a covariance function

of one to three kernels is considered as a kernel-prior pair and was tested. Such

an exhaustive search over kernel-prior combinations was deemed reasonable for

several reasons since (i) its o�ine calculation is a realistic representation of its

clinical application, and (ii) it is impossible to deduce the e�ect of the combinatorial

interplay between kernels and priors on performance, and therefore their performance

must be learned. Finally, (iii) there is no reason to test only a subset of all possible

combinations given that, in clinical practice, any cohort-wide model would be

developed o�-line.

The performance of each kernel-prior combination is assessed by G1 (in Equation

6.1) and G2 (in Equation 6.2).

To simplify comparisons, we took a single candidate from each of the 1, 2,

or 3-kernel candidate for final comparison. Accordingly, a single optimal set of
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uninformative priors was selected for each kernel of size 1, 2, or 3, shown in Table

6.4. The 2-kernel covariance function was the best among the three final candidates.

Extensions of the Cohort-Wide GP Model

These “general” kernels with light regularisation provide a useful foundation for

further personalisation. For example, with a smaller number of pre-determined

covariance functions, it is possible to simultaneously compare multiple GP models

for performance on a patient in real time. This could be considered an intermediate

step between a single cohort-wide model, and patient-specific modelling.

Two such examples include:

1. Identifying the covariance function with best performance in the first 24 hours

to use for monitoring in the subsequent hours 24-72.

2. Identifying the covariance function with best performance over the last m-

minutes to use for the next forecast.

These approaches are described in [1] and [4], respectively, however they did

not result in a significant improvement over the more simple rule of modelling all

patients via the best-found cohort-wide 2-kernel covariance function. This suggests

that uninformative priors have di�culty making use of full complexity of multiple

kernels. Further inspection of the MAP hyperparameter estimates of these models

suggested that the uninformative priors were highly susceptible to yielding extremely

large length scales across all kernel. This suggests that patient-specific modelling

may benefit from improved parameter estimation.

6.5 Personalised Parametrisation of GP Models

Solutions for improved personalised inference may include a combination of (i)

MCMC integration [134], which o�sets the risk of a single poor choice in hy-

perparameters; and (ii) regularisation via (cohort-wide or personalised) priors

over the hyperparameters.
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Instead of (i) or (ii), we aim to learn the combination of kernels and hyper-

parameters ◊a that best reflect each individual patient’s physiology, as measured

by Equations 6.1 and 6.2. A further advantage of pre-selected hyperparameters is

that the computations of modelling become very predictable, thereby removing the

possibility of computational error or fault during the online inference step.

6.5.1 Optimisation of Patient-Specific models

We aim to learn a single covariance function and set of hyperparameters (for each

patient), which optimises G1 and G2 from Equations 6.1 and 6.2.

Since G1 and G2 performance is a function of the GP kernel and its hyperpa-

rameters, ◊, we denote our objective functions as G1(◊) and G2(◊). For simplicity,

we omit the kernel argument, and present only the above 1, 2, and 3-kernel additive

Matérn covariance functions. That is, we aim to learn A (the number of kernels)

and ◊ for covariance function

k(t, tÕ) =
Aÿ

a=1
ka(t, tÕ | ◊a) + ‡2

n”(t, tÕ) (6.8)

where the form of each ka(t, tÕ) is

ka(t, tÕ) = h2
a

A

1 + |t ≠ tÕ|
Ô

3
⁄a

B

exp
A

≠ |t ≠ tÕ|
Ô

3
⁄a

B

, (6.9)

We formalise our learning goal as optimisation problems:

max G1(◊), s.t. ld Æ ◊d Æ ud (6.10)

and

max G2(◊), s.t. ld Æ ◊d Æ ud. (6.11)

The optimisation parameters ud and ld represent, respectively, the upper and

lower bounds placed on the dth element of ◊. For example, for the 2-kernel covariance

function with hyperparameters ◊ = [h1, ⁄1, h2, ⁄2, ‡n], then selecting the bounds

[l2, u2, l4, u4] = [2.5, 45, 60, 600] would require that the length-scale of the first kernel

fall between 2.5 and 45 minutes and that of the second kernel fall between 60

and 600 minutes.
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Although bounding the solution space to fall within l and u necessarily relegates

us to an optimum no-greater-than that of the unbounded problem, the constraints

l and u are valuable to (i) reduce the search space to the most plausible locations

of an optimal solution; (ii) prevent overlapping length scales, which reduces kernel

complexity; and (iii) prevent querying of ◊ that risk computational singularity in K.4

These objective functions are non-analytic and must be sampled to locate

global and local optima. As illustrated in Figure 6.4(a) and 6.4(d), each query

requires sequential fitting and forecasting of the patient’s data via the specified GP

covariance function and hyperparameters. Since each sequential query produces

a distribution of forecast LMLs values (1 value for each time at which a forecast

was made), as in Figure 6.4(c) and 6.4(f). The distributions are summarised into

a single metric by objective function G1(◊) or G2(◊).

Due to the computational expense of each query to G(◊), methods based on

gradient descent or line search are undesirable due to their extremely expensive use

of multiple function evaluations to decide the next query. We propose Bayesian

optimisation to identify the global optimum. We propose random search [145],

which is popular for hyperparameter search as a baseline comparator method.

A common critique of publications comparing the performance of two optimi-

sation algorithms is that only the author’s “preferred” method is tuned for best

performance on the problem at hand. We will describe how both random search

and Bayesian optimisation were tuned (among the 43 training-set patients) to

maximise their respective performances.

6.5.2 Random Search

Random search (RS) is a popular global optimisation technique because it (i) is trivial

to program, and (ii) exploits the low e�ective dimensionality of many optimisation

problems [145]. RS is most commonly implemented as a random uniform sampling

of a hyper-rectangle. Common variants of RS are discussed in [146].
4For example, a parameterisation with near-zero noise-variance, ‡n, or extremely-long length-

scales, ⁄.
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RS may be tuned to our parameter search by sampling more densely where a

patient’s optimal parameters, ◊, are likely to occur. This tuning may be achieved

a priori, e.g., by changing the uniform sampling distribution to a distribution

with modal values. Alternatively, this may be achieved adaptively, by altering the

sampling distribution after each query, as in simulated annealing. Using the 43

patients of the training set, several refinements of RS were attempted, including

(i) tuning of the random sampling distributions, (ii) iterative sampling of high-

performance regions of the sample space, and (iii) simulated annealing approaches.

However, these tunings of RS tended to be no better than a uniform random search

within a pre-defined hyper-rectangle. Tuning of the hyper-rectangle bounds ld

and ud involved running several long (1000 samples) random searches with large

sampling bounds. The sampling bounds were tightened to include only regions

in which patient-specific optima occurred.

The results of random search over 1, 2, and 3-kernel ◊ will be described in

the training set results.

6.5.3 Bayesian Optimisation

As described in Chapter 4, popular approaches to tune Bayesian optimisation are

via (i) the GP prior over G(◊), and (ii) the acquisition function.5 We tune the

GP model to more-appropriately represent our uncertainty about the unexplored

areas the search space, given our observations. We tune the acquisition function

to more-appropriately represent the wisest choice of the next query, given our

uncertainty in the unexplored areas the search space. Both (i) and (ii) allow us to

incorporate useful knowledge for a more e�cient sampling of the search domain.

GP Prior

All GP modelling for Bayesian optimisation was implemented in GPML [147].

The GP prior over G(◊) is modelled by a Matérn 3/2 Automatic Relevance

Determination (ARD) kernel:
5The GP inferential step is tunable as well, but this aspect was not explored in favour of MAP

estimation of the GP.
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c(◊, ◊Õ) = ÷2
3

1 +
Ô

3r
4

exp
3

≠
Ô

3r
4

,

s.t. r =
Dÿ

d=1

(◊d≠◊Õ
d)2

‹d
.

(6.12)

where ÷ is the output-scale (equivalent to h for the HR monitoring GPs). The

distance between ◊ and ◊Õ, r, is now regulated by di�erent a length-scale, ‹d in

each dimension of d of ◊. Variable r is |◊ ≠ ◊Õ|.

This covariance function has several desirable features:

First, the ARD component allows G(◊) to change over di�erent length-scales,

depending on the hyperparameter of the HR-monitoring kernel ka being varied.

For example, vital-sign GP hyperparameters h and ‡n are measured in log-HR

bpm, whereas length-scales ⁄ are measured in minutes. Accordingly, a change in

‡n of 0.01 log-HR bpm may induce a substantial change in G(◊) since this would

indicate a large di�erence in the noisiness of a patient’s HR. In contrast, a change

in ⁄ of 1 minute would induce no change in G(◊), much less a small change of

0.01. The parameter ‹d of Equation 6.12 allows c(◊, ◊Õ) to vary more quickly in

one dimension (i.e. hyperparameter of ◊) than the other.

Second, by encoding the Matérn 3/2 form, we are allowing G(◊) to vary more

sharply than, say, the infinitely-smooth RBF kernel.

Third, Equation 6.12 does not contain a white-noise component. This means

that we expect G(◊) to produce an identical value if given an identical query ◊.

This is typical in computer simulations.

Acquisition Function

The acquisition function was selected to be Expected Improvement (EI). Small

additive o�sets to the best-found value, which prompt greater exploration over

exploitation were found to improve performance in a subset of the 43 training

patients, but resulted in no improvement (but also no loss) for the remainder

of the 43 training patients.
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Practical Implementation of Bayesian Optimisation

Several further steps were taken to assist in automated Bayesian optimisation search

over a large, physiologically-di�use patient group. These include:

1. Left-censoring of G1(◊) < ≠3, for improved data stationarity.

2. Searching over a pre-specified (su�ciently spread-out) grid to avoid a compu-

tationally singular Bayesian optimisation GP covariance matrix.

3. Fixing the values of length scales, ‹d, to avoid a singular Bayesian optimisation

covariance matrix.

4. Searching over a subset of the dimensions of ◊ at any iteration.

These computational considerations are elaborated and justified in Appendix A.

6.6 Training Set Results

The 43-patient training set was used to tune and then compare the respective ability

of RS and Bayesian optimisation to identify high-performing values of ◊. Both

methods were given 250 total queries to G1(◊) or G2(◊) to identify an optimal

value. An example of these results is shown in Figure 6.5.

As seen in Figure 6.5, RS successfully optimised hyperparameters for a single

kernel. However, RS was unable to take advantage of increased modelling complexity

as the covariance function progressed from one (◊) to two (◊) to three (◊) kernels.

As more kernel hyperparameters were considered, the e�ective dimensionality of

the search space increased from a 3-dimensional search space to a 7-dimensional

search space. While 250 queries was su�cient to thoroughly query a 3-dimensional

search space by random chance, it was insu�cient to sample a larger search space,

given the correlation between dimensions.

The shortcomings of RS cannot be over come with computational brute force:

When increasing RS to 1000 queries, RS’ performance over 1 kernel remained the

same or improved slightly over its performance with 250 queries. RS over 2 and 3
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Figure 6.5: Best-found values to optimise (a) G1 and (b) G2 for each patient within the
training set. A Bayesian optimisation search over G2 not only identified ◊ to maximise
(b) G2 for 30-minute forecasts, but also for tasks it was not optimising, such as (a) G1 for
60 minute look-ahead. Elements of this figure were published in [1] and are © 2017 IEEE.

kernels improved marginally over its performance with 250 queries, but remained

significantly inferior to 1-kernel RS with either 250 or 1000 queries.

Since a single-kernel GP can, e�ectively, be achieved in 2-kernels and 3-kernels

by setting h2 = h3 = 0, an optimisation algorithm ought to learn (i) to remove

the additional kernels by setting the appropriate hyperparameters to 0, and (ii)

identify good parameterisations for a single kernel. As the performance of Bayesian

optimisation demonstrates, the additional kernels could be used to further optimise

the objective function, so long as the hyperparameter space is properly explored.

Bayesian optimisation improved performance as the complexity of the search

space increased. Optimising over objective G1 was su�cient to identify good ◊ for

both G1 and G2.6 The results proved to be applicable to a wide range of forecast

look-ahead windows from 5-60 minutes, suggesting that the solutions were not

myopic to a single physiological time-scale.
6 This suggests that the weighting scheme for G2 successfully emphasised performance at lower

quantiles of forecast likelihood.
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For optimisation performance over both G1 and G2, for various forecast windows

from 1-60 minutes, the Bayesian optimisation algorithm typically out-performed RS

in over 90% of patients. A notable exception to this was for forecast windows of 1-5

minutes, in which RS and Bayesian Optimisation performed nearly identically

for most patients.7

Training set evidence suggests that Bayesian optimisation is superior to RS for

the task of identifying patient-specific ◊ values. Therefore, the Bayesian optimisation

algorithm was selected as the preferred optimiser of patient-specific models. (For

reference, the superiority of Bayesian optimisation over RS, was also confirmed in

a post hoc analysis in the testing set patients as well.)

6.7 Testing Set Results: Cohort-wide vs Person-
alised GPs

The performance of cohort-wide GP modelling was compared to GP models with

personalised-parameterisations in the 126 test set patients. As described earlier, we

simulated the learning process by allowing the personalised GP models access to

the first 24 hours of ward data to learn a personalised parametrisation. Forecast

performance, as measured by G1 and G2, is then assessed in the subsequent hours

24-72, as data is available.8

For each patient in the test set, Figure 6.6 shows 6.6(a) G1 and 6.6(b) G2

performance of the Bayesian optimisation-found personalised ◊, subsequent to the

first 24 hours, compared to the population-based uninformative priors. On a patient-

by-patient basis, 120 of 126 patients’ G1 performance benefited from personalised

modelling. The 6 patients without improvement (2 of which are negligibly di�erent)

tended to have less than 2 hours of HR data either before 24 hours (on which to

train the personalised model) or after 24 hours (on which to test the personalised ◊’s
7It is possible that these short windows are comparatively easier to predict and therefore do

not require sophisticated methods to identify strong-performing ◊.
8The runtime of the Bayesian optimisation personalised ◊ estimation for a patient with a full

24 hours of data is estimated to be less-than an hour running in Matlab, so a fraction of the
forecast LML between hours 24-25 would not have access to the personalised ◊ after 25 hours,
but, could have a di�erent personalised ◊ calculated from some earlier time point.



6. GP Kernel Construction for Patient Monitoring 127

performance). Most encouragingly, the largest gains in G1 were made for patients

with the worst G1 under population-based regularisation. These patients would be

most likely to generate alarms, and plausibly are those patients with the physiology

that is most-di�cult to quantify. Patient-specific improvement was as equal to or

better than what is shown in Figure 6.6 for forecast depths of 1-45 minutes. Results

were slightly worse (than shown in Figure 6.6) at a forecast depth of 60 minutes.

In Figure 6.6(c-d), when comparing forecast LML aggregated across all patients,

the forecast LML of the cohort-wide GP models had heavier left-tails. The cohort-

wide GP model had hundreds of worst-case forecasts (left-censored at ≠2), whereas

the patient-specific models had tens of instances of worst-case forecasts.

6.8 Conclusion

In this chapter we demonstrated that a single loosely-regularised GP model may

be su�cient, although not-optimal, to model a wide range of vital-sign time-series

physiologies across a patient cohort. These cohort-wide models are sub-optimal, in

part, because they struggle to parametrise more-complex GP covariance functions.

Patient-specific parameters improves the robust forecasting of patient vital-

signs, e.g., heart rate. While simple optimisation techniques, such as RS may

identify optimal parameters for simple GP models, more sophisticated models are

required to successfully parametrise more complex GP models, since the e�ective

dimensionality of the search space is much larger.

Multi-objective optimisation via a vectorised objective function, such as G2

may be a useful technique to succinctly weight multiple forecasting goals with

di�ering priorities.
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Figure 6.6: Test set performance on cohort-wide and personalised GP modelling. Intra-
patient improvement measured by (a) G1 and (b) G2 can be seen by personalised modelling.
The aggregated forecast performance of (c) uninformative priors can be compared to
(d) patient-specific ◊’s. Forecast LMLs were left-censored at ≠2 for visual-clarity. The
forecasts LML values in (c) have a significant mode at ≠2 due to this censoring, where
the forecast LML values in (d) do not. For (c) and (d), red points mark the 1, 2.5, 5, 10,
and 50-percentiles. Elements of this figure were published in [1] and are © 2017 IEEE.



7
Baseline Comparators for Deterioration

Detection

This chapter describes four baseline comparator methods against which Gaus-

sian process (GP) methods will be compared. Three comparator methods are

based on heuristic approaches in current clinical practice. The fourth comparator

method is based on an FDA-approved empirical approach, which is also in current

clinical practice.

Each of the three heuristic baseline comparators are simple thresholding tech-

niques, which represent current clinical practice in early warning score calculations,

particularly, those done manually by nursing sta�.

The empirical method is a kernel density estimate-based (KDE) approach to

novelty detection. As an FDA-approved monitoring algorithm, it represents the

current state-of-the-art in continuous multi-parameter vital-sign monitoring.

Each of the 4 comparator methods is evaluated according to its trade-o� between

two performance metrics: (i) the false positive alarm rate (FPR), and (ii) the time

of early warning (TEW). This performance trade-o� is assessed for each of the four

comparator method on patients from the UPMC data set.

129
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Figure 7.1: The construction of a TEW vs. FPR plot. In (a) the early warning scores
of three patients (red, blue, and green) are shown near their respective C”-event, at time
0 (orange). Plausible alarms are considered if they occur within the 8 hours before until
2 hours after the event (white), and not considered if they occur outside of this time
period (grey). In (b), for any alarm sensitivity we have a corresponding false-alarm rate
in the non-C”-patient set (which we aggregate into a single proportion across all patients)
and the TEW across the 59 C”-patient. To visualise the dispersion of TEW values, we
plot the 33, 50, and 67 percentiles of the 59 C”-patients. The TEW distributions at two
distinct FPR values are shown in (b) in red, and the constituent TEW values are plotted
in (c) and (d), illustrating how, for each patient, TEW increases monotonically with FPR.

7.1 Overview of Deterioration Detection

7.1.1 Data

As described in Chapter 3, the UPMC data set held-out 89 non-C”-patients and

(all) 59 C”-patients to evaluate deterioration detection. To recap, the first C”-event

for each of the 59 C”-patients will be evaluated, since subsequent C”-event data

may be influenced by clinical interventions (as a reaction to the first C”-event).

In Figure 7.1(a), we show a generic early warning score (EWS), which are

calculated from vital-sign measurements of each of three patients. There is a unique

EWS time-series for each of three di�erent patients (red, blue, and green). For

each patient, we would anticipate the warning score to (i) be low in the absence

of abnormal physiology, and (ii) escalate near to the emergency event at time 0

(orange). We must select a threshold on the EWS to determine when to generate

an alarm and identify a patient as deteriorating.
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Traditional metrics of classification performance use a confusion matrix, describ-

ing the incidence of true positive, false positive, true negative, and false negative

predictions. In contrast, the TEW vs. FPR performance metric incorporates both

(i) the clinical ambiguity of a patient’s time-series prior to deterioration, as well

as (ii) the time-value of early alarms. The calculation of a TEW vs. FPR plot is

described in Figure 7.1. Alarms on non-C”-patients are false positive alarms. For a

generic EWS calculated over time, in 7.1(a), alarms on C”-patients falling in the

time period of 8 hours before until 2 hours after the C”-event (in orange) are true

positive alarms. A TEW is the time between a C”-patient’s first true alarm (within

this window) and his first C”-event (in orange). Alarms prior to 8 hours before, or

following 2 hours after the C”-event (in the greyed-out region) are not considered

due to their ambiguous status. That is, it is less certain that an alarm in this region

is specific to the abnormal physiology related to this C”-event.

A false negative would be the failure of the EWS to escalate su�ciently to

surpass an alarm threshold within the alarmable-window. The TEW of such cases

is censored at ≠2 hours, which is 2 hours after the C”-event at 0 hours. This

is the worst possible TEW result. The desired TEW vs. FPR plot of 7.1(b) is

achieved by modulating the threshold required to trigger, which, in turn, modulates

our alarm sensitivity in the window of 7.1(a), but at the cost of more frequent

false positives among non-C”-patients.

At a given alarm threshold, each patient will di�er in the TEW due to di�ering

personal physiology in the period surrounding their C”-event. We are therefore

interested in the the distribution of TEWs for all 59 C”-patients at any particular

FPR. To achieve this, we plot the 33, 50, and 67-percentiles of the TEW distribution

at each FPR. For example, at two di�erent FPR values, marked in red in 7.1(b),

we can see that the span of TEW quantiles di�er since they are drawn from the

individualised patient TEWs shown in 7.1(c) and 7.1(d). We are interested in the

distribution of TEW because it informs important clinical considerations, such as

worst-case performance on the hardest patient cases. Such patients are of special
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interest to machine-monitoring applications, since they have the greatest potential

to benefit compared to easy-to-identify deteriorating patients.

7.1.2 Evaluating Performance

A challenge posed is that with only 59 C”-patients and 8 C”-event causes, there

is insu�cient data to have separate training and validation sets for deterioration

detection (as we had for the forecast tasks of the previous chapter). It is di�cult,

then, to both (i) tune a method for optimal TEW vs. FPR performance, and also (ii)

produce an unbiased estimate of the method’s performance on a held-out patient set.

In the absence of a large held-out test set, we will underscore several aspects

of the methods presented:

First, each early warning method is based on novelty detection [47], and therefore

no models are trained with direct reference to TEW in C”-patients. This separates

them from many traditional parametric machine learning approaches, in which

parameters are directly tuned to perform well on a training set but, necessarily,

perform less-well on the held out validation or test set.

Second, these methods have few (or no) tunable parameters to derive an EWS.

This means fewer avenues by which the method’s TEW vs. FPR performance

may improve with respect to the training set, but also fewer ways in which it

may fail to generalise to the test set.

Third, in addition to few tunable parameters, the parameter themselves have

fewer “reasonable” values, and very little inter-patient variability in the optimal

value of those parameters. This means that any choices for parameter values tend to

be the same regardless to whether a subset of patients is held out and that optimal

values for one patient tend to have robust performance for other patients.

For the methods discussed in this and the next chapter, we will highlight the

aspects above to illustrate how these models more readily generalise, without

loss of performance.1

1Similar results were demonstrated in the Chapters 5 and 6 as well. In Chapter 5, the
artefact scoring algorithm was su�ciently personalised that it experienced very little inter-patient
variability, which would cause inferior performance on a held-out patient set. Similarly, in Chapter
6, the Bayesian optimisation methods performed better (compared to the alternative methods) in
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7.2 Selection of Comparator Methods

There are many methods from which to select a baseline comparator. As discussed

in Chapter 2, most early warning systems have a quantitative score but take

either an empirical or heuristic approach to derive that quantitative score. To

represent heuristic methods (most commonly used in hospitals) we select (i) a

single-vital-sign thresholding method (also known as a “triggering system”), and

(ii) a multiple-vital-sign thresholding method (also known as a “scoring system”).

To represent the technical state-of-the-art in empirical patient monitoring, we select

(iii) a KDE-based novelty detection algorithm.

Each method escalates a patient’s EWS, with respect to their vital-sign measure-

ments in a di�erent way, as shown in Figure 7.2 for univariate vital-sign changes, and

in Figure 7.3 for jointly-varying vital-signs. Each system di�ers in the granularity

of alarmable values. For example, the NEWS-based system scores each vital-sign

from a value of 0 to 3. This means (for an individual vital-sign) that there are four

alarmable values (including an alarm at 0, which would induce a 100% FPR). The

four alarmable values also implies that there are only four distinct points along the

TEW vs. FPR curve, from which to select a preferred trade-o�. Systems with a

greater number of alarmable values would, in turn, accommodate a more granular

range of setting along the TEW vs. FPR curve.

The KDE values (in both Figures 7.2 and 7.3) are scaled and right-censored to

fall between 0 and 3, for comparability to the trigger and NEWS-based approaches.

Escalations of the KDE-based score are continuous-valued and based on data from

a set of healthy patients. This is why (i) small fluctuations in warning scores can

be within the range of highly-normal values, and (ii) each vital-sign is not given

the same maximal warning value (as is done with NEWS-based methods).

The variation of warning score over multiple vital-signs in Figure 7.3 is even more

informative. In each plot, the warning score is gradated from low-warning regions

(dark blue), which would raise no medical alarm, to high-warning regions (dark red)

which would be certain to raise a medical alarm. As can be seen in the NEWS-based
the testing set than in the training set, which is atypical in most machine learning settings.
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Figure 7.2: Escalation of warning score by vital-sign in the trigger, NEWS-based, and
KDE-based early warning system. Vital-signs are ordered by row, as (a) HR, (b) RR,
(c) SpO2, (d) SBP, and (e) DBP. Notably, each method escalates the score of vital-signs
with extreme measurements, however, each di�ers in the granularity of the escalation.
NEWS has no escalation with regard to DBP since DBP is not included in the NEWS
calculation.

Figure 7.3: Multivariate escalation of NEWS-based (left-column) and KDE-based (right-
column) warning scores in HR, RR, and SpO2. In each plot, the warning score is gradated
from low-warning regions (dark blue), which would raise no medical alarm, to high-warning
regions (dark red), which would be certain to raise a medical alarm.
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escalations of 7.3(a,c,e), the joint abnormality of vital-signs is not incorporated,

for example, to acknowledge correlated vital-sign measurements. In contrast, the

data-derived KDE method in 7.3(b) consider high HR values to be less alarm-worthy

when RR is high as well, since the KDE acknowledges a positive correlation between

HR and RR in the patient population. Furthermore, in 7.3(d,f), a highly-alarming

score is present in nearly all of the region where SpO2 < 90. In contrast, the

NEWS-based system considers, for example, SpO2 < 90 to be less-alarm worthy

when HR and RR fall into normal ranges, than when they are extreme as well.

However, we can also see plausible short-comings of such a data-driven method

as well: For example, there are approximately 5-6 low-warning regions (blue)

apparent in 7.3(d,f) where SpO2 is less-than 90. While this, in itself, may not

be inappropriate given the data, the fact that these regions are separated from

other low-warning regions by high-warning (dark red) regions suggests that this

is a more likely a facet of the data on which the KDE was trained, instead of

an apt description of alarm-worthy regions.

Heuristic Comparators

We consider both the trigger and scoring systems to be heuristic because the

selection of decision thresholds for such methods are largely heuristic.

For the trigger system, we consider each of the five available vital-signs in the

UPMC data set (HR, BR, SpO2, SBP, and DBP).

For the scoring system, we use the thresholds provided by NEWS (for the

available vital-signs). NEWS is selected over alternatives, such as MEWS, because

it incorporates the fewest proportion of parameters that are not included in the

UPMC data set. Since the aggregate warning score is not identical to that of the

NEWS score, we call it a “NEWS-based” system. Scoring system thresholds may

be tuned, depending on the patient cohort particular to the ward, and therefore the

NEWS-based comparator may not be identical to the system currently preferred by

some SDU clinicians. However, as shown in Chapter 2, di�erent scoring systems

do not vary greatly in their selected thresholds. We do not anticipate large
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di�erences in performance between the selected NEWS-based comparator and

the existing alternatives.

Empirical Comparators

For empirical comparators, it is reasonable to believe that distinct empirical methods

may di�er substantially in performance. (In fact, that assumption underlies this

thesis.) With many alternative methods from which to select, the KDE-based

method has several attributes to recommend it:

First, KDE-based models have been studied extensively in relation to the UPMC

SDU, where this data set was collected. This creates significant transparency in terms

of best-practice, implementation, and model design, compared to other methods, e.g.,

APACHE scores for which the parameters are propriety and therefore kept secret.

Second, an FDA-approved version of the KDE-based method was developed

and is subsequently implemented in the UPMC SDU. This indicates that the

KDE method represents a clinician-preferred algorithm from among the many that

are available. From this, the KDE is a realistic representative of an empirical

system that may be on the ward.

7.3 Heuristic Comparator: Trigger System

Extreme values of a single vital-sign parameter is indicative of patient deterioration.

Trigger systems typically designate upper and lower limits on the “healthy” range

for each vital-sign. Outside of this range, a clinician should be informed. This

means that for a single vital-sign two thresholds must be selected: an upper

threshold and a lower threshold.

In the simplest case, we select only the upper threshold or only the lower threshold

for each vital-sign. An alarm is sounded when the upper or lower threshold is

exceeded.2 Since, unlike NEWS, a standard trigger threshold is not published, we

will allow the trigger threshold to vary for each vital-sign.
2Typically, the exceedance must persist for several minutes before an alarm is generated. Such a

criterion was tested for each baseline method but did not improve performance. Further discussion
can be found in Appendix C: Alarm Hold Criterion.
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Figure 7.4: TEW vs FPR trade-o� for univariate upper-bound and lower-bound trigger
systems in (a) HR, (b) RR, (c) SpO2, (d) SBP, and (e) DBP. The upper-bound trigger on
SpO2 is included for completeness. TEW and FPR are modulated by the upper or lower
bound on each vital-sign that triggers an alarm. Each line represents the 33, 50, and 67
percentile of TEW for the respective FPR.

The calculations of TEW and FPR (described earlier in Figure 7.1) are shown

for upper-bound and lower-bound triggering systems in Figure 7.4. An upper

threshold alarm on SpO2 is shown for completeness but is not considered to be of

interpretable value. Note that the FPR of upper and lower bounds are equivalent

to the survival function 1 ≠ F (y) and cumulative density function F (y) respectively,

of measurements of the 89 non-C”-patients. Visually, the superior trade-o� is as

close to the upper-left corner as possible (similar to an ROC curve).

Unsurprisingly, the upper threshold on HR and RR, along with the lower

thresholds on RR and and SpO2 seem to have the best trade-o� between TEW

and FPR. This corroborates our understanding that measurements from a single

vital-sign, which (i) act as a bellwether for abnormality across multiple vital-signs,

and (ii) are reliably acquired, may provide a sound foundation for monitoring

to be as continuous as possible.

As a final note on this simplest of thresholding methods: When viewed in light

that (i) the clinical sta� identified only 7 of 112 deterioration events, (ii) of those

7 patients, at least 2 were identified too late to save and (iii) alarm fatigue in



138 7.3. Heuristic Comparator: Trigger System

Figure 7.5: NEWS scoring table used to create (i) the NEWS-based multivariate scoring
baseline comparator, and (ii) a univariate trigger system baseline comparator which
incorporates both high and low values on which to trigger.

rampant across clinical practice, it is reasonable to assert that a result, such as any

subplot in Figure 7.4, may represent an upper-bound performance on current clinical

practice. In terms of false alarms, there is little reason to believe that these trigger

systems di�er significantly from trigger systems in clinical practice. So many missed

deterioration events in the original study suggests that the sporadic bedside checks

are too infrequent to identify deterioration in a timely manner, if at all. There

is value in continuous monitoring algorithms simply because they are continuous,

regardless of whether the monitoring algorithm is particularly sophisticated.

Clearly, alarming on a single vital-sign in a single direction may only detect a

minority of alarm-worthy vital-sign measurements. Trigger systems may incorporate

both an upper bound and a lower bound on each vital-sign. However, this creates

two tunable parameters from which to generate the binary alarm score. To create a

single score from both high and low values we use the NEWS scoring thresholds for

each individual vital-sign, which are shown in Figure 7.5. From Figure 7.5, we can

see that each vital-sign is assigned a value from 0 to 3, depending on how high or

low the value is. By alarming on this score, instead of the vital-sign value itself we

may examine a trigger system which alarms on both high and low values.

Compared to the single-direction trigger system (shown in Figure 7.4) the

univariate scoring systems (shown in Figure 7.6) results in a significant reduction

of granularity in the TEW vs. FPR plot, as each vital-sign now has (at most) 4

alarmable thresholds. Overall performance in TEW vs. FPR trade-o� is reduced

as well. The low granularity could be deduced a priori from the system having

only 4 alarmable values (that is, only 4 achievable settings along the TEW vs.

FPR curve), however this e�ect can also be seen in Figure 7.6, with each curve
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Figure 7.6: TEW vs. FPR trade-o� of an univariate trigger system with upper-bound
and lower-bound scoring based on NEWS. Vital-signs are (a) HR, (b) RR, (c) SpO2,
and (d) SBP. DBP is not included since it is not included in NEWS scoring. TEW and
FPR are modulated by the upper on each vital-sign’s NEWS-score, at which an alarm is
triggered. Each line represents the 33, 50, and 67 percentile of TEW for the respective
FPR.

having only 3 inflection points. The clinical inference on both high and low values

is insu�cient to overcome the value of an empirically selected threshold in either

direction. Worse yet, the low-granularity creates a TEW vs. FPR trade-o� that

largely falls outside a clinically viable FPR around 0%-5%.

Alternative methods that would retain this granularity could include (i) fixing

either the upper or lower alarm bound as a constant, while allowing the other (upper

or lower) alarm bound to vary, or (ii) simultaneously modelling the irregularity

of high and low values as tail behaviour of some reference distribution. Both

approaches are more empirical than both of the presented trigger systems. However,

alternative (i) is computationally involved without addressing the trigger system’s

short comings. Alternative (ii) is, e�ectively, a univariate version of the KDE

method described in the Section 5 of this chapter.
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Figure 7.7: TEW vs FPR trade-o� of a NEWS-based scoring system. TEW and FPR
are modulated by the upper threshold on the total NEWS-score (summed across the
individual HR, RR, SpO2,and SBP score from Figure 7.5), at which an alarm is triggered.
Each line represents the 33, 50, and 67 percentile of TEW for the given FPR.

7.4 Heuristic Comparator: Scoring System

Patient deterioration can manifest in di�erent vital-signs at di�erent times. Optimal

monitoring should therefore consider multiple vital-signs for signals of deterioration.

More concretely, an early warning system should identify (i) large abnormalities

in individual vital-signs, as well as (ii) smaller joint abnormalities across multiple

vital-signs. As seen in Chapter 2, current EWS attempt to achieve both (i) and

(ii) by summing warning scores from individual vital-signs.

The NEWS-based scoring system in Figure 7.5 is implemented to simulate such

a system. Since the UPMC data set lacks several decision variables incorporated

in NEWS, only the available vital-signs are used for the calculation. Figure 7.7

shows the TEW vs. FPR plot of the NEWS-based comparator. Noticeably, the

performance improvement of the five-vital-sign scoring system is marginal compared

to the single vital-sign, single-threshold system. As stated before, this representation

of NEWS performance is likely an over-estimate of the NEWS system in current

practice since no time is lost due to sporadic in-person monitoring.
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7.5 Empirical Comparator: KDE Model

A KDE-based model of patient normality represents the current technical state-of-

the-art in empirical methods. The UPMC data set was first collected in order to

train and evaluate such a model in 2008. As a testament to its success, KDE-based

monitoring was retained in the UPMC SDU after the conclusion of the study, and

KDE methods continue to generate publications using UPMC SDU data. The

KDE-based model, Viscensia, was FDA-approved in 2012.

A review of KDE modelling can be found in Chapter 4. The KDE-based model

for patient monitoring finds its motivation in probabilistic novelty detection [47].

As shown in Figure 7.8, the KDE models the joint distribution of the vital-signs

from a “healthy” patient group. The novelty of a new measurement is quantified by

the inverse-log-likelihood of the new measurement with respect to the KDE.

We examine two versions of the KDE model:

1. The baseline KDE models the joint distribution of HR, RR, SpO2, SBP,

and DBP using all available data in the 174 training set patients. This KDE

model replicates the modelling process in Hann [45], which is the only model

described in that thesis.

2. The KDE with vital-sign volatility features uses the original five vital-

signs but includes a further three features quantifying short-term volatility in

HR, RR, and SpO2. These features are the standard deviation of HR, RR,

and SpO2 over a short time window of the last m minutes. This method

attempts to incorporate abnormal vital-sign volatility into the deterioration

detection process, which is not captured in the baseline model.

7.5.1 Baseline KDE Model

Construction of the baseline model in Hann [45] is described over the length

of a chapter in his thesis, and is outlined in Figure 7.8, with further details in

Appendix B. The multi-step process involves 7.8(b) data cleaning, 7.8(c) alignment

and transformation of data, imputation and/or removal of missing data, 7.8(f)
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Figure 7.8: Creation of a KDE-based novelty score. Each patient’s (a) 5-vital-sign
time-series is first (b) cleaned via artefact removal of any measurements that exceed a
pre-determined artefact threshold, as described in Table 1 of Chapter 3: Data Description.
The clean vital-sign data is then (c) aligned via their time-stamps so that each unique
vital-sign measurement may comprise a unique 5-dimensional data point. These aligned
data points are then (d) collated into a matrix of IID observations, which, in turn, are (e)
collated across all training set patients. In (f), the multitude of IID measurements are
clustered into 500 vital-sign centroids, with the outer-most 100 clustered removed as a
form of data cleaning. (g) A KDE is fit to the remaining 400 clusters, which, in turn, is
(h) converted into novelty score.
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Figure 7.9: TEW vs. FPR trade-o� of KDE-based early warning system displaying (a)
the entire FPR range from 0% to 100%, (b) within the more clinically-actionable range of
0% to 5% FPR. TEW and FPR are modulated by the upper threshold on the KDE-based
novelty score, at which an alarm is triggered. Each line represents the 33, 50, and 67
percentile of TEW for the respective FPR.

generation of representative clusters in the data, and further cleaning of those

clusters - before 7.8(g) finally fitting a KDE. A detailed description is in “Appendix

B: Construction of Kernel Density Estimate Model of Patient Normality”.

In Figure 7.9, the trade-o� between TEW and FPR of the first KDE model is

shown. Without the need for any expert tuning of thresholds (as required for the

expert-tuned NEWS system thresholds), the KDE clearly outperforms the heuristic

trigger and scoring systems representative of current practice. In particular, the

KDE-based system not only outperforms the heuristic methods in terms of area-

under the curve, but also accommodates a much higher granularity, compared to

the NEWS-based methods which have only a small number of triggerable settings.

7.5.2 KDE Model with Vital-Sign Volatility Features

The baseline KDE provides an EWS based on the magnitude of patient vital-signs.

However, we may also be interested in the clinical implications of erratic vital-sign

volatility, even when those vital-signs fall within normal magnitudes. For example,

the step-change detection algorithm, developed in Chapter 8, demonstrates high

TEW vs. FPR performance without any reference to magnitude, just volatility.
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Figure 7.10: Features of the 8-feature KDE model. For (a) HR, (b) RR, and (e) SpO2
a volatility metric is calculated as the standard deviation of the vital-sign over the last
5-minute. This provides 3 additional features: (c) HR-V, (d) RR-V, and (g) SpO2-V. The
volatility feature of vital-signs SBP and DBP (not shown) are not calculated due to the
infrequency of their measurement. In (f) the new aligned vital-sign data includes HR,
RR, SpO2, SBP, DBP, HR-V, RR-V, and SpO2-V. This matrix may replace the aligned
patient data in 7.8(d) to create a KDE over all 8 vital-sign features.

To incorporate this volatility dynamic into our KDE model, we take the original

patient vital-sign time-series (post-artefact removal) and create 3 new time-series:

HR volatility (HR-V), RR volatility (RR-V), and SpO2 volatility (SpO2-V). Figure

7.10 shows this, using the original HR, RR, and SpO2 time-series in 7.10(a,b,e),

and to derive the volatility features HR-V, RR-V, and SpO2-V in 7.10(c,d,g). The

3 new features are appended to each patient’s aligned data set, as in 7.10(f). After

replacing the 5-feature matrix in 7.8(d) with the 8-feature matrix in 7.10(f), the

remainder of the KDE development was identical to that described in Figure 7.8

for the baseline KDE (i.e., vital-sign alignment, scaling, k-means clustering, etc.).

The new KDE describes the joint-distribution over 8 random variables: the five

original vital-signs and the three derived volatility features.

The additional volatility features did not improve performance with respect to

the TEW vs FPR trade-o�. Several windows of varying length m-minutes were

tested but with little change to performance. There are several reason why the

KDE’s performance might be unresponsive to the additional features. This will

be left for the discussion at the end of the chapter.
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7.6 Discussion

From the TEW vs. FPR figures, it is clear that the empirical approaches to

deterioration detection clearly outperform the heuristic threshold-based methods.

However, the KDE models have limitations as well: By virtue of being IID models,

they struggle to incorporate informative time-series dynamics. Attempts to address

this by simply adding more features did not help, in part due to the challenge

of estimating density of high dimensions, which hampers model specification in

areas with little training data. In 8 dimensions, it’s possible that the KDE is

over-sensitive to even small deviations from the KDE’s centroids (such as those

shown in Figure 7.8(f).

7.7 Conclusion

In this chapter we present three baseline comparator methods (five total imple-

mentations). Each patient monitoring method represents a method likely to be

found on the SDU, such as the UPMC SDU where the dataset was collected.

The shortcomings of these baseline methods, from both a technical and clinical

perspective are discussed in detail in Chapter 1 and 2.

The heuristic trigger system and the scoring system demonstrate a trade-o�

between alarm granularity and alarm sensitivity. The KDE method improved

significantly over these heuristic methods in terms of TEW vs. FPR trade-o�. The

addition of further features failed to improve KDE performance. Furthermore, it is

clear that empirical systems may outperform heuristic methods, even in the absence

of any expert tuning. It is not surprising then, why clinicians may prefer empirical

systems if they are (i) transparent, and (ii) available.

These methods will be compared to the performance of GP-based models in Chap-

ter 8.
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8
Bayesian Gaussian Processes for

Identifying the Deteriorating Patient

In this chapter we demonstrate how Gaussian Process (GP) models can forewarn

patient deterioration by identifying informative time-series dynamics. We describe

several GP approaches to forewarn deterioration, followed by a more in-depth

coverage of GP modelling for step-change detection.

The clinical value of step-change detection for early warning relies on the

tendency of vital-sign time-series to exhibit step-changes long before they exhibit

extreme values. Since clinical inference is performed over likelihood metrics, it is

simple to extend the method, e.g., to include multiple vital-signs or time-scales.

Step-change detection monitoring of only a single vital-sign (e.g., HR, RR, or SpO2)

can match or outperform the 5-vital-sign KDE method, in terms of time of early

warning (TEW) vs. false positive rate (FPR) trade-o�. Further extensions beyond

univariate step-change detection build on this high performance of maximising the

time of early warning while reducing the rate of false alarms.

Elements of this chapter have been published in [4] and [5], and patented in

[6]. Further applications of the work described in this chapter have been used

in [8], [9], and [10].

147
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8.1 Overview

GPR Approaches to Deterioration Detection

Significant e�ort has been dedicated to formalise and automate (i) our belief in the

measurements acquired from the bed-side monitors (Chapter 5), and (ii) our belief

in inference of the GP fit to data (Chapter 6). The reliability of these tools now

allows us to automate the relay of warning signs to clinicians for further inspection.

As illustrated in Figure 8.1, there are many possible warnings that we may wish

to bring to a clinician’s attention via GP inference on vital-signs.

For example, a GP can forecast the probability of a vital-sign time-series’ future

values. This allows for the application of probabilistic reasoning to questions such

as whether the vital-sign will 8.1(a) exceed the thresholds of of a trigger system, or

8.1(b) achieve a particular EWS, for example those defined by the thresholds of

the NEWS scoring system. Compared to sporadic monitoring of vital-signs, the

GP-based approach allows for a transparent and principled method to handle the

trends and noisiness of vital-sign measurements. Both 8.1(a) and 8.1(b) use GP

modelling to infer a patient’s deviation from a population-norm.

Alternatively, we may wish to 8.1(d) compare a segment of a patient’s time-series

to segments from a dictionary of healthy patients. This method would incorporate

both (i) the magnitude of values, like current systems, as well as (ii) time-series

dynamics, which are currently ignored.

Noting that homeostatic mechanisms should react to personally-abnormal vital-

sign values, we may also focus on 8.1(c) unusual dynamics. In particular, if we

interpret abnormally rapid increases or decreases of a particular vital-sign as evidence

of homeostatic reaction, then we may circumvent the need to learn or incorporate

absolute measures of vital-sign abnormality.

Selection of Step-change Detection

Within the UPMC data-set, it is rare for vital-signs to gradually degrade into

abnormality. This is, perhaps, unsurprising in light of the large number of C”-events
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Figure 8.1: Gaussian process inference for deterioration detection. In (a) a GP fits a
patient’s time-series and identifies the sharp downward trend in HR, and forecasts the
the probability that HR will fall below the 40 bpm threshold within the next hour, which
would trigger a clinical alarm. (The GP’s prior mean is set to the last measurement in
the training window.) On the same patient, this same GP fit and forecast can be used (b)
to estimate the probability of the HR achieving a particular NEWS early warning score.
On a di�erent patient, in (c) the GP forecast may be used as a step-change detector, to
quantify the deviation of a patient’s vital-sign trajectory from its expected trajectory. As
an alternative to comparing vital-signs at only a single point in time, in (d) a segment of
the patient’s time-series is compared to a dictionary of healthy patients’ time-series.
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that were undetected in clinical practice. When these predictable degradations

do occur, they are typically too close in time to the emergency event to provide

actionable early warning. This suggests that GP applications such as in Figure

8.1(a) and 8.1(b) are unlikely to garner significant gains in terms of early warning of

deterioration, since there is rarely a prolonged period of evidence for extreme

values before they occur.

The comparison of a current time-series to a dictionary of reference patients, as

in Figure 8.1(d) can provide early warning gains over currently available methods.

Such a method was patented in [6] and may be thought of as an expansion of

the KDE methods of Chapter 7 into the personalised probabilistic time-series

domain. Furthermore, the method is extensible and transparent in its decision

criterion. Although time-series matching can easily be run in real-time, it does

require significant memory to hold the reference dictionary.

This chapter will focus on step-change detection methods, as illustrated in Figure

8.1(c). These methods have been published in [5] and [4], and may be extended

with minimal computational e�ort. This makes such methods a realistic contender

for clinical implementation across a variety of clinical environments (e.g., both those

with and without significant computational resources). The remainder of this chapter

will demonstrate that step-change detection is simple, flexible, and extensible from

a technical standpoint. More importantly, from a clinical standpoint, such methods

are transparent and interpretable for real-time inspection by the clinician.

8.2 Step-Change Detection

Figure 8.2 illustrates how step-change algorithm sequentially fits and forecasts the

future distribution of 8.2(a) BR, 8.2(b) SpO2, and 8.2(c,d) HR values. When the

future values are consistent with the prediction, as in 8.2(d), the corresponding

LML, as shown in 8.2(h) will be high. However if the future values are not consistent

with the forecast distribution, as in 8.2(c), then the corresponding LML will be

lower, as in 8.2(g). It is reasonable to present the various LML values within a

forecast window via a summarising statistic, such as the mean. This also mitigates
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the a�ect of occasional outlying measurements. Since conventional alarm scores are

high in the present of abnormal physiology, we will measure step-change warning

scores in terms of negative log marginal likelihood (NLML).

Since the step-change detector forecasts over a time-window that contains one

NLML value per vital-sign measurement within the window (as seen in Figure 8.2(g)

and 8.2(h)), the step-change detector’s tunable parameters include (i) the metric to

summarise NLML values within the forecast window, and (ii) the time-length of

the window. As discussed in Chapter 6, the selection of a GPR model to derive

these forecasts is a further tunable element. We will aim to demonstrate that

step-change methods are robust to many of these choices or, at the very least,

that they out-perform alternatives no matter how these parameters are tuned. To

reduce research degrees of freedom, we will relegate our choices to the simplest

and most obvious choices for these tunable parameters. We will examine the

mean NLML of a 1-minute forecast window. To model HR time-series we will use

the two-kernel covariance function (described as the best cohort-wide covariance

function) from Chapter 6. Using the same cohort-wide selection procedure described

in Chapter 6, we will use a single-kernel Matérn 3/2 covariance function to model

the time-series of RR and SpO2.

In Figure 8.3, we show how step-change metrics may be used as a continuously-

monitored warning score in the same manner as the NEWS or the KDE methods

described in the previous chapter. It is noteworthy that unlike the NEWS-based or

KDE-based warning scores, which tend to be persistent, the step-change detector

(by its nature) produces transient warning scores. This can be seen in 8.3(b)

where step-change NLML is escalated for only a short period of time, e.g. for HR

step-change NLML (red) near hours 71, 73, and 74.5 and for SpO2 step-change

NLML (green) near hours 77.5, 78.5, and 80. This is to be expected since the

flexibility of the GP allows it to adjust quickly to the new (volatile) data and

resume precise forecasting. In contrast, the KDE-based warning score in 8.3(d) is

persistent when elevated, e.g., between hours 79 and 80.
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Figure 8.2: Illustration of a GP-identified step-change in (a) RR, (b) SpO2, and (c) HR.
In (d) the HR time-series shows no step-change. GPs are fit to observed data (•) and
forecast the distribution of unseen data in the future (•). In (c) the asymmetric GPR
confidence bounds on SpO2 are due to a log (101 ≠ SpO2) transformation, to minimise the
proportion of the posterior distribution greater than 100%, which is physically impossible.
Since the marginal Gaussian distribution changes throughout the forecast window, the
z-scores of the forecast-window HR from (c) and (d) are shown in (e) and (f), respectively.
In (e) and (f) a N(0, 1) reference distribution (gold) is provided with (- -) denoting mean
± 0, 1, and 3 standard deviations. The forecast LML of each measurement in the forecast
windows of (c) and (d) are shown in (g) and (h), respectively. The LML measurements
within a specific time window may be summarised, e.g., by the mean or another statistic.
Step-change warning scores are the negative of these LML values, NLML.
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Figure 8.3: Time-series of a patient’s vital-signs and early warning scores leading up
to an emergency event near hour 80 (black vertical line). The patient’s vital-signs in (a)
HR (•) and RR (•), and (c) SpO2 (•) each display various step-change dynamics. SBP
and DBP are not shown. In (d), the 5-vital KDE score of the patient vitals has been
calculated. It is seen here to escalate at the approach of the emergency event. In (b) the
step-change detection novelty score for each individual vital-sign is shown for HR (•), RR
(•), and SpO2 (•). No step-change score is available in the absence of measurements.

Since the warning scores produced by step-change detection are transient instead

of persistent, the warnings scores of a step-change detector are apt to be missed

if monitored only sporadically by clinical sta�. In this, step-change detection

would only be appropriate in a continuous computer-assisted monitoring setting

since the score indicative of deterioration would need to be recorded and brought

to the attention of clinical sta�.

8.3 Univariate Step-Change Detection

In Figure 8.4, we show the TEW vs. FPR plots of step-change monitoring on HR,

RR, and SpO2 on the UPMC patients. HR and RR easily out-perform the baseline

KDE-model, whereas step-change on SpO2 performs approximately as well at the

KDE method. Since blood pressure is not measured continuously, step-change

detection is not applied to SBP and DBP.

Noting that the lines for each method represent the 33, 50, and 67 percentile

of TEW, step-change detection on HR in 8.4(a) demonstrates the strongest per-
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Figure 8.4: TEW vs. FPR plots of a step-change detector on (a) HR, (b) RR, and
(c) SpO2. Each is compared to the baseline KDE model described in Chapter 7. Lines
represent the 33, 50 and 67 percentile of TEW at the FPR.
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formance, followed by RR, then SpO2. For example, the 33-percentile TEW of

HR step-change detector generally exceeds the median TEW of the KDE system

across the FPR range from 0% to 5%. Similarly, the median TEW of the HR

step-change detector exceeds the 67-percentile of the KDE method by a significant

margin. At an FPR of 1% (for minutely-evaluations for deterioration, this is a

false alarm approximately every 100 minutes or 1 hour and 40 minutes) the 33-

percentiles are approximately the same for each method at about 0.5 hours to 1

hour. The median TEW improves from 2 hours with KDE to 5 hours with the

HR step-change detector. The 67-percentile TEW improves from 3.5 hours with

KDE to 7 hours with the HR step-change detector. More importantly, since we

prefer to reduce or eliminate worst-case performance, between a 1% and 5% FPR,

the 33-percentile of the HR step-change detector escalates rapidly to nearly-match

the 67-percentile of the KDE method. This means that (for the same FPR in

non-C”-patients) worst-case performance under HR step-change is generally better

than average-case performance under the KDE method.

Similar intuition can be applied to 8.4(b-c) to determine that step-change

detection on RR also outperforms the KDE. Step-change detection on SpO2 is

superior to the KDE for the 67th percentile, but otherwise nearly identical.

8.4 Bivariate Step-Change Detection

Univariate methods are susceptible to missingness of the single vital-sign under

consideration, since missingness removes possibility for clinical inference.1 The

susceptibility of monitoring algorithms to missingness can be seen in Figure 8.3, in

which the KDE and SpO2-based step-change detector continue to produce estimates

in the absence of HR and RR, whereas the HR-based and RR-based step-change

detectors produce no score because the requisite vital-sign is not available. Therefore,
1Vital-sign missingness may arise from anything from unintentional probe-detachment to

intentional detachment to facilitate clinical intervention (however such events are not annotated in
the UPMC data set). As seen in Chapter 3: Data Description, as well as Figure 8.3, missingness
typically does not refer to complete missingness over the patient’s stay, but instead, the periods of
missingness interspersed between periods of measurement.
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we may wish to monitor across multiple vital-signs to (i) maximise vital-sign coverage,

in addition to (ii) incorporating a wider variety of informative clinical hypotheses.

As shown in Figure 8.3(b), this has several challenges: First, the forecast NLML

of di�erent vitals-signs are not directly comparable in terms of units. As seen

in Figure 8.3(a) and 8.3(c) each vital-sign di�ers in variance (the spread of the

vital-sign’s distribution), so forecast NLMLs di�er in average magnitude. For

example, the median NLML of the HR step-change detector is about -2, where

for RR and SpO2 it is about -1 and 0, respectively.

Furthermore, as transient metrics, the step-change evidence may be separated

in time across di�erent vital-signs. For example, a step-change in blood pressure

may precede a step-change in HR. Furthermore, this lag itself may vary across

time, vitals-signs, and patients. While sophisticated approaches to combine these

signals are recommended for future work, in the absence of further held-out testing

data it would be di�cult to determine whether such sophisticated methods were

generalisable or over-fit to the data. Instead, we apply a simple approach of

adding the NLML value from each vital-sign at each minute. (Addition is a

reasonable operation for these joint log-likelihoods, since likelihoods ought to be

multiplied if modelled independently.)

Figure 8.5 shows the TEW vs. FPR of each univariate step-change detector,

followed by the three unique pairwise combinations of HR, RR, and SpO2. These

bivariate combinations are 8.5(d,e) HR and RR, 8.5(f,g) HR and SpO2, and 8.5(h,i)

RR and SpO2. All bivariate step-change detectors of the same two vital-sign (e.g

“HR and RR” vs. “RR and HR”) represent an identical step-change algorithm, and

therefore exhibit identical TEW vs. FPR performance.

Each univariate step-change detector benefited significantly from gaining moni-

toring coverage by including other vital-signs. Most importantly, the 33-percentile

of TEW of each bivariate step-change detector increased to at least the median

performance of the respective univariate baseline models. This means that worst-

case TEW performance is significantly improved, so few patients will have their

deterioration signs completely missed or identified too late for clinical intervention.
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Figure 8.5: TEW vs. FPR plots of bivariate step-change detectors starting with the
univariate step-change detectors on (a) HR, (b) RR, and (c) SpO2. Each of the other
vital-signs is then included for

!3
2
"

= 3 unique bivariate combinations: (d,e) HR and RR,
(f,g) HR and SpO2, and (h,i) RR and SpO2. In each column, the baseline univariate
step-change detector is plotted in blue for ease of visual comparison. Lines represent the
33, 50 and 67 percentile of TEW at the respective FPR.

8.5 Trivariate Step-Change Detection

The final step-change detection model includes HR, RR, and SpO2. As with the

bivariate step-change detectors, the NLML of each of the three vital-signs at each

minute is added together for a single warning score.

The TEW vs. FPR performance of the trivariate step-change detector is plotted

against each of univariate and bivariate step-change detectors in Figure 8.6. As

before, the inclusion of further vital-signs increases the coverage of clinical inference

in the event of missing vital-sign channels. From 8.6(a), it is clear that most of

the TEW improvement has been achieved by an FPR of 0.5%, or a false alarm

approximately every three hours of patient monitoring. The trivariate models

clearly outperforms the univariate step-change detectors in 8.6(b,c,d). Compared

to the bivariate models in 8.6(e,f,g), the trivariate model only improves in the

33-percentile. This is a positive result, in the sense that the inclusion of a further

vital-sign improves the consistency of improvement across all patients.
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Figure 8.6: TEW vs. FPR plots of (a) the trivariate step-change detector compared
to univariate step-change detectors on (a) HR, (b) RR, and (c) SpO2, and the bivariate
step-change detectors on (e) HR and RR, (f) HR and SpO2, and (g) RR and SpO2. The
trivariate detector is included in each plot (red) for ease of comparison. Lines represent
the 33, 50 and 67 percentile of TEW at the respective FPR.

8.6 GP Step-Change vs. Baseline Comparators

8.6.1 TEW vs. FPR Results

Figure 8.7 shows the TEW vs. FPR performance of the 5-vital-sign KDE (the

top-performing baseline comparator) against the performance of each of the step-

change detection models. We focus on early warning performance in the 0% to

2.5% FPR range due to the desirability to mitigate alarm fatigue. The strong

performance of step-change detection methods suggest that step-change detection,

or similar methods may provide a useful supplement to the current state of the

art in patient monitoring.

Among the univariate step-change detectors, 8.7(a) HR and 8.7(b) RR both

outperform the KDE, despite each using only a single vital-sign compared to the
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Figure 8.7: TEW vs. FPR plots of KDE baseline comparator (≠) next to Univariate
step-change detectors (≠) on (a) HR, (b) RR and (c) SpO2; Bivariate step-change detectors
(≠) on (d)HR+RR, (e) HR+SpO2, and (f) RR+SpO2; Trivariate step-change detector
(≠) on (g) HR+RR+SpO2 (red). Lines represent 33, 50 and 67 percentiles of TEW at
the respective FPR.

KDE’s five vital-signs. The step-change on 8.7(c) SpO2 performs nearly the same

as KDE, except for the KDE’s superior performance in the 0% to 0.5% FPR range.

An explanation for the superior performance of univariate step-change detection

over the KDE will be discussed shortly, however this outcome is positive in several

respects: First, the step-change method is not dependent on the magnitudes of

vital-signs. The information contained within the step-change detection metrics is

significantly di�erent from KDE-based or NEWS-based scores. This suggests that

such a metric may be a useful supplement to current monitoring. Second, the strong

monitoring results on only a single vital-sign suggests that a vast number of clinical

variables may not be necessary to achieve optimal or near-optimal monitoring

performance. This may be useful, i.e., in resource-constrained settings where fewer

monitoring modalities are available. However, both of these benefits are dependent
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on the interpretability of the step-change detector when it brings warning scores

to the attention to clinical sta�.

A final note on the univariate step-change methods is that, within the FPR

range of 0% to 0.5%, the KDE frequently outperforms the step-change detector in

median and 33-percentile performance. This region roughly corresponds to warnings

about 1-hour-or-less prior to the emergency event. Contributing factors to this

are several-fold. One factor is the missingness in individual vital-signs near the

emergency event, as illustrated for HR and RR in Figure 8.3(a). This puts univariate

methods at a disadvantage when the particular vital-sign under consideration is

missing. However, this would also put the KDE method at a disadvantage when 3

or more of the five-total vital-signs (that is, any 3 between HR, RR, SpO2, SBP,

and DBP) are missing, since the KDE would no longer produce a score whereas

univariate monitoring system on either of the other two vital-signs would continue.

More important than the issue of missingness, is the definition of emergency

events. Emergency events, by definition, have highly-abnormal vital-sign values.

This means that the KDE-based warning score is nearly-guaranteed to be high in

proximity to emergency events because at least one vital-sign will be su�ciently

abnormal to contribute to a high warning score. In contrast, the emergency events

are not defined according to vital-sign volatility, on which step-change methods are

based. Step-changes are, therefore, not guaranteed to occur at the time of event.

When KDE performance is compared to 8.3(d,e,f) bivariate and 8.3(g) trivari-

ate step-change detection, there are fewer caveats to the results, since results

are almost uniformly superior. While the improved performance itself may be

unsurprising (having already seen that univariate methods themselves produced

superior results) the magnitude of di�erence in performance motivates further

inspection to understand why this may be.

The remainder of this chapter discusses possible factors that contribute to

the di�erence in performance between step-change based monitoring and KDE-

based monitoring.

The following factors were determined to be particularly important:
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1. The physiology at the time of the emergency event di�ers from the physiology

preceding the emergency event.

2. Personalisation of monitoring improves FPR, or, conversely, population-based

risk assessment necessitates high FPR.

8.6.2 Physiology Preceding and During the Emergency Event

This section will discuss how the vital-sign measurements tend to di�er between (i)

the time of the emergency event, and (ii) the time preceding an emergency events.

The subsequent sections will then discuss FPR and TEW in particular.

We begin by reasserting that a patient’s deterioration is not usually preceded

by a long period of gradual decent towards abnormal values. Instead it is more

frequently characterised by “shocks” to one or more vital-signs, which are quickly

corrected by homeostatic mechanisms. This can be verified by examining plots

of patient time-series in the the time period surrounding emergency events. For

example, in Figure 8.3, the low SpO2 which triggered the emergency event near

hour 80, was only preceded by about 1 hour of decreasing SpO2. Otherwise, there

was nothing abnormal in the absolute values of HR, RR, or SpO2. This means that

NEWS or KDE-based warning scores would only begin to increase (compared to

the general population) in the final hour before deterioration. Therefore, for the

KDE to achieve an early warning greater than 1 hour, FPR would need to increase

substantially. In contrast, step-change detection identifies at least 3 prominent HR

step-changes, 2 prominent RR step-changes, and 2 prominent SpO2 step-changes,

in addition to several smaller step-change episodes. This results in approximately 1

step-change episode per hour. It is unclear whether the KDE warning score was

artificially depressed between hours 76 to 80 due to the missingness of HR and

RR, however, the KDE does not appear to identify any alarmable episodes between

hours 70 to 76, in which all vital-sign are available.

In summary, the KDE method has several advantages and disadvantages.

The KDE method’s advantage is that it alarms on vital-sign measurements that

(either univariately or jointly) are abnormally high or low. Since the emergency
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events of this data set were also annotated as such for their abnormally high or low

values, the KDE can alarm reliably at the time of the annotated emergency events.2

However the TEW metric places a premium on advanced warning, since earlier

warning facilitates preventative clinical intervention. If vital-signs are neither

abnormally high or low far in advance of the emergency event, then the KDE

monitoring method is at a disadvantage.

The KDE is at a further disadvantage with respect to FPR since it attempts to

describe the entire patient cohort using only a single model. This is discussed

in the next section.

8.6.3 Personalisation Improves FPR

Like the heuristic NEWS approach, the KDE-based EWS su�ers from attempting

to use a single model to describe each patient. This means that it only matters

(i) whether a patient exhibits physiology abnormal to the entire population, not

(ii) whether the patient exhibits physiology abnormal to himself. Age- and sex-

based early warning scores attempt to adjust for obvious confounding demographic

information, however, the intra-group variability is likely to be substantial, given

that inter-patient and intra-patient variability is high. As seen in Chapter 3,

inter-patient variability is high, even when stratified by C”-status.

To illustrate this, the inter- and intra-patient variability of vital-signs, KDE

warning scores, and step-change warning scores are plotted in Figure 8.8 for the

89 non-C”-patients, and Figure 8.9 for the 59 C”-patients.

Inspection of the intra-patient ranges in 8.8(a-c) and 8.9(a-c) show patient

vital-signs may operate in completely di�erent dynamic ranges. In extreme cases

the upper 2.5 percent of one patient’s vital-signs may still be less-than the lower

2.5 percent of another patients vital-signs. This, e�ectively, removes the possibility

of alarming on low values for patients with high-valued vital-signs or alarming on

high values for patients with low-valued vital-signs. More importantly with respect

to the FPR metric, this means for an “average” patient in the middle of this range
2In contrast, the step-change detector has no such guarantee that the requisite physiology (a

step-change) will occur at the time of the event.
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Figure 8.8: Non-C”-patient intra- and inter-patient variability in (a) HR, (b) RR, (c)
SpO2, contrasted to (g) KDE warning scores, and step-change NLML in (d) HR, (e) RR,
and (f) SpO2. For each patient the following percentiles are marked: median (-), 25 and
50 (•), 5 and 95 (•), and 2.5 and 97.5 (•). Patients are indexed by their median value for
each metric.

Figure 8.9: C”-patient intra and inter-patient variability in (a) HR, (b) RR, (c) SpO2,
contrasted to (g) KDE warning scores, and step-change NLML in (d) HR, (e) RR, and (f)
SpO2. For each patient the following percentile are marked: median (-), 25 and 50 (•), 5
and 95 (•), and 2.5 and 97.5 (•). Patients are indexed by their median value for each
metric.
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could not achieve any type of alarm without the monitoring system inducing a

nearly-constant state of alarm in other patients.

In contrast, the dynamic range of step-change NLML for HR, RR, and (to a

lesser-extent) SpO2 is highly consistent and compact across all patients. Very few

patients have dynamic ranges in step-change NLML that overlap with the extreme

(alarm-generating) values of other patients. For example, the 2.5 quantile values of

HR NLML in C”-patients in 8.9(d) are more extreme than those of non-C”-patients

in 8.8(d). This indicates that C”-patient have more pronounced HR step-changes

than non-C”-patients, as we would expect. More important for maintaining a

low FPR, though, is that no patient has average values that would fall within

the high NLML range. This leads to a two-fold conclusion: (i) a single threshold

can delineate between low-NLML and high-NLML step-changes across all patients,

and (ii) highest NLML step-changes occur more frequently in C”-patients than

they do in non-C”-patients. It is not surprising then, that step-change detection

demonstrates a successful trade-o� between TEW and FPR.

The KDE method falls in between thresholding on raw vital-signs and the step-

change method. Comparing KDE warning scores between the 89 non-C”-patients in

8.8(g) and the 59 C”-patients in 8.9(g), it is immediately apparent that C”-patients

experience a much higher rate of high warning scores than non-C”-patients. The

di�erence is much greater, even, than the di�erence between NLML step-change

values of C” and non-C”-patients). This is expected, since the KDE-based novelty

score is persistent in the presence of abnormality. However it can be seen that the

95 (•) and 97.5 (•) percentiles of KDE novelty are still highly-intermingled on an

inter-patient basis. To avoid the high FPR that make an early warning system

infeasible in clinical practice, the high and low percentiles must be clearly delineated.

Otherwise the system will generate a near-constant rate of alarms in non-C”-patients.

While Figures 8.8 and 8.9 help illuminate the FPR trade-o�, they do not directly

address the timeliness of the alarms. The question of timeliness is investigated next.
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8.6.4 Early Warning Examples

We complete this chapter with a series of exemplar patient time-series for which both

both step-change and KDE-based warning scores are calculated. These examples

are helpful illustrations of (i) where step-change inference may usefully supplement

current extreme-value-oriented monitoring, (ii) where step-change detection is not

helpful, and (iii) how technical interference is a challenge to both step-change

and KDE-based monitoring.

The exemplar time-series are grouped in the following way:

Figures 8.10 and 8.11 show two patients who experienced a C”-event within 1.5

and 3 hours of entering the ward. In these situations, the KDE-based approach is

particularly advantageous because it is able to assess deterioration immediately,

whereas the time-series-based step-change detector (i) must wait to collect a

su�ciently long time-series before beginning inference, and (ii) has less information

on which to learn the patients time-series dynamics and provide a reliable forecast.

Similarly, Figure 8.12 also su�ers from little data near the C”-event.

The patients in Figures 8.13 and 8.14 show a gradual deterioration of vital-

signs (with regard to the KDE-based warning score) in the 5 hours preceding

the C”-event. Although such patients are uncommon, they exhibit the type of

time-series physiology for which the KDE-based method was designed. However,

both of these patients, still exhibit erratic dynamics that are identifiable by the

step-change detector as well.

In contrast to the patients in Figures 8.13 and 8.14, the patients in Figures 8.15,

8.16, 8.17, and 8.18 exhibit little evidence of deterioration (in absolute terms) until

shortly prior to the emergency event. In this, the KDE method would be unable to

attain additional hours of early warning without a significant increase in FPR.

Finally, the patients in Figures 8.19 and 8.20 exhibit punctuated periods of

both abnormal physiology and non-abnormal physiology, both in absolute terms

and in step-changes. In this, the patients di�er from those shown in Figures

8.15, 8.16, 8.17, and 8.18 since there is ample evidence of deterioration in advance
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Figure 8.10: A vital-sign and warning score time-series of a patient who deteriorates
within 3 hours of entering the ward. The cause of the C”-event is abnormal blood pressure
(not shown). Whereas the KDE is able to quantify abnormality from time t = 0 the
GPR-base step-change detector requires nearly an hour in order to (i) acquire su�cient
data, and (ii) identify the next step-change.

Figure 8.11: A vital-sign and warning score time-series of a patient who deteriorates
shortly after 1.5 hours of entering the ward. The KDE and step-change detector exhibit
similar early-warning times, since a step-change precipitates the patient’s low HR in
absolute terms.

of the C”-event, however that evidence is not as gradual or consistent as the

patients in Figures 8.13 and 8.14.



8. Bayesian Gaussian Processes for Identifying the Deteriorating Patient 167

Figure 8.12: A vital-sign and warning score time-series of a patient with significant
periods of missing data, both prior-to and during the SpO2-based C”-event. Since the
vital-signs are not abnormal in absolute terms, the KDE fails to identify the deterioration
in advance. Furthermore, with only SpO2 available, the KDE ceases clinical inference. In
contrast, any step-change detector that included SpO2 would continue to perform clinical
inference throughout the C”-event.

Figure 8.13: A vital-sign and warning score time-series of a patient with long-term
escalation in KDE warning score. Although the KDE warning score is punctuated by
several large jumps in the hours preceding the C”-event, its general upward trend from
hours 60 to 66 is on the account of a the gradual increase in HR and RR over an extended
period. HR, RR, and SpO2 each have a multitude of identifiable step-changes in this
period too, which would allow a step-change detector to maintain its advantage in early
warning.
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Figure 8.14: A vital-sign and warning score time-series of a patient with long-term
escalation in KDE warning score. The KDE warning score steadily increases from hours
18 to 22 as the patient desaturates and HR increases. It is di�cult to discern whether the
sporadic drops in SpO2 are artefactual, or instead antecedent to the prolonged desaturation
that begins around hour 19. Even without SpO2, pronounced step-changes in HR and
RR occur through the hours preceding the C”-event.

Figure 8.15: A patient with low KDE warning in the hours preceding a C”-event from
low RR. With the exception of a small escalation in KDE novelty at hour 32 (caused
primarily by low RR as well), there is little evidence of deterioration until nearly an
hour after the C”-event. This, in part, reflects that clinical annotation considered only
individual vital-signs, even when other vital-signs appear to fall within usual ranges. In
this case the abnormally low RR goes unnoticed because of the values of other vitals-signs.
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Figure 8.16: A vital-sign and warning score time-series of a patient with low KDE
warning but multiple step-changes in the hours preceding a C”-event from low SpO2.
Since the desaturation event at hour 79 is followed by a subsequent desaturation at hour
79, it is unclear whether the C”-event was preceded by several smaller desaturation as well
(since this data is missing). It is possible that the KDE would have identified deterioration
earlier had SpO2 been available, however the step-change detector identified at least 1
event per hour in the 8 hours prior.

Figure 8.17: A vital-sign and warning score time-series of a patient with little warning
from the KDE but multiple step-changes in the hours preceding a C”-event. In this
example both the KDE and step-change detector struggled to find evidence of abnormality
until the HR drop immediately preceding the C”-event.
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Figure 8.18: A vital-sign and warning score time-series of a patient with little warning
from the KDE but multiple step-changes in the hours preceding a C”-event from high HR.
This C”-event shows how emergency physiology frequently coincides with noisy signal
processing. Since the event is annotated at the end of this noisy period, the clinical
annotators have indicated that this is the proportion of the event they believe to be non-
artefactual. With the entire HR escalation occurring over the span of 30 minutes, there
was little time for the KDE to anticipate the event. However the multiple pronounced
step-changes may have for warned of a struggling homeostatic mechanism.

Figure 8.19: A vital-sign and warning score time-series of a patient with multiple
escalations in KDE novelty score prior to a C”-event from high RR. The series of highly-
escalated KDE novelty scores are largely due to low SpO2 event which may or may not
be artefactual. Since the patient’s SpO2 achieves a consistent value of 100 for much of
the time it is possible that the patient was on oxygen therapy. Furthermore, the KDE
novelty is not calculated at the time of event because SpO2, SBP, and DBP are missing
at the time of the event.
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Figure 8.20: A vital-sign and warning score time-series of a patient with multiple
escalations in KDE novelty score prior to a C”-event from high HR. Each of the escalations
in KDE novelty are due to combination of escalated HR and/or a drop in SpO2. Due to
the sharpness of the HR and SpO2 volatility, the escalations of KDE warning score are
each paired with a pronounced step-change score from at least one vital-sign.

8.7 Conclusion

Current practice in vital-sign early warning scoring focuses on identifying patients

with extreme vital-sign measurement values. This is sensible, given that emergency

events themselves are typified by vital-signs with extreme values. However, clinical

reasoning over time-series o�ers many ways to identify early physiological indications

that current practice tends to ignore.

The probabilistic representation of GP modelling allows us to incorporate a

richer range of physiological features beyond magnitude, such as volatility and

uncertainty in the patient’s current and future vital-sign values. The described

methods can provide useful clinical insight beyond or paired with current practice,

even when using only a single vital-sign. This is helpful in implementation, since

the benefits of a step-change detector may be realised with only a single vital-sign,

whereas other empirical monitoring systems may require a di�use range of vital-

signs in order to provide an EWS. Both the baseline KDE method and step-change

detection have their advantages, however it is possible the the KDE and related

methods are limited due to (i) their population-based approach to modelling patient
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abnormality, which increases the rate of false positive alarms, and (ii) the fact that

many patients do not exhibit extreme-valued vital-signs until shortly before the

emergency event, which decreases the TEW provided by such methods.

The described step-change methods may be applied to a variety of settings

including those with constrained computational resources or with a single vital-sign

under consideration. Importantly, the described step-change detection models can

be run in real-time, even with minimal computational resources, and present salient

interpretable physiology to clinical sta� to explain the cause of the alarm. By

displaying the vital-sign step-change that precipitated the alarm, the GP-based

step-change detector is far from a black-box algorithm.
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Conclusion

9.1 Thesis Contributions

This thesis has described several ways in which probabilistic modelling of patient-

specific time-series dynamics may be incorporated into vital-sign data analysis.

These contributions included:

• Development of a computationally lightweight algorithm to identify transient

artefactual vital-sign measurements (Chapter 5). This required the identifica-

tion of a distribution and inference method that could robustly model vital-

sign measurement noise to identify low-likelihood measurements as potential

artefacts. This resulted in an algorithm with strong inter-patient capability

to identify artefactual measurements that were not extreme-valued, which are

missed by current methods that place thresholds to remove extreme-valued

measurements.

• Identification of a GP covariance function and regularising priors suitable for

cohort-wide patient time-series modelling (Chapter 6). The cohort-wide GP

model’s multiple kernels allowed for modelling of multiple time-series trends,

while the regularising priors encoded basic physiological knowledge for reliable

automated inference. This resulted in robust automated vital-sign forecasting,

173
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which significantly surpassed the automated forecasting performance of GP

models without regularisation via well-chosen priors.

• Development of optimisation methods by which to learn personalised GP

models (Chapter 6). This included a simple optimisation method by which to

learn a single-kernel personalised GP, as well as more complex optimisation

method by which to learn a multi-kernel personalised GP. The latter method

proved more e�ective to navigate a search space in which the input dimensions

have a heavily interrelated a�ect on output. This resulted in the capacity to

parametrise more-complex personalised GP models and improved forecasting

performance compared to cohort-wide GP models.

• Identification of objective functions quantifying forecast performances with

which to (i) reduce worst-case forecasting or (ii) balance the reduction of

worst-case forecasting with improved average-case performance (Chapter 6).

The outcome was personalised models that did not compromise average

performance to achieve robust regularisation against worst-case forecasting

performance.

• Development of an early warning score based on personalised time-series mod-

elling to detect erratic volatility (Chapter 8). This involved the development

of a 1-, 2-, and 3-vital-sign GP step-change detector. The result was a method

of deterioration detection with a superior trade-o� between early warning time

and false positive rate (when applied to the UPMC SDU data set) compared

to a 5-vital-sign KDE-based method, which represents the current technical

state of the art.

9.2 Artefact Detection

9.2.1 Result Summary

Vital-sign measurements are beset with artefactual noise-corruption due to a variety

of clinical and technical factors including probe-detachment, signal-interference,
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and signal-processing error. Common remedies to this noise corruption include (i)

removal of implausibly extreme measurement values and (ii) further smoothing

of all measurements. The former solution addresses only a minority of vital-

sign measurement artefacts, while the latter distorts the measurement noise of

the vital-signs.

By performing artefact-inference on a patient’s individual vital-sign time-series

both of these shortcomings are circumvented by (i) comparing a current measure-

ments to temporally-proximate measurements only, instead of a cohort of patient’s

measurements, and (ii) identifying specific measurements likely to be artefactual.

This results in an artefact score that can e�ectively delineate between the major-

ity of artefactual measurements and the majority of non-artefactual measurements.

Furthermore, by personalising the artefact inference, the score’s performance does

not su�er from the high inter-patient variability of vital-sign measurements. Initial

evidence was also presented on how removal of artefactual data may improve the

false-positive alarm rate in a deterioration detection algorithm.

9.2.2 Future Work

The computationally lightweight calculation of the artefact score allows many

possibilities for future work. The most important addition to the artefact analysis

would be to validate (via wave-form data) the various archetypal vital-sign dynamics

that present in the SDU. This would contribute greatly to the believability of current

artefact annotation (in the absence of waveform data).

With believable artefact annotation across multiple vital-sign channels for both

transient and persistent artefacts, sensible steps would then include multivariate

and time-correlated modelling, since artefacts are likely to correlate across vital-sign

channels (e.g. from movement interference, which corrupt PPG measurements

for both HR and SpO2). From a supervised learning perspective, a model-driven

approach may aim to classify artefactual dynamics as a function of predictive features,

one of which may include the transient artefact score described in Chapter 5.



176 9.3. Personalised GP Kernel Construction

9.3 Personalised GP Kernel Construction

9.3.1 Result Summary

The monitoring of patient vital-signs via GPs requires not only automated data-

cleaning (as described above) but also automated model selection and inference

on noisy time-series. Furthermore, there is significant heterogeneity in vital-sign

dynamics between patients, and within a single patient’s time-series. Addressing

this challenge is especially important to avoid worst-case forecast performance, in

which a GP produces an extremely inaccurate forecast.

This thesis demonstrated how a GP’s covariance function and regularising hyper-

priors may be identified in order to apply a single GP model across a patient

cohort. Patient-specific GP were then identified, which consistently and significantly

improved the robustness of vital-sign forecasting.

A concern with this latter personalised approach is that by optimising a single

quantile of forecast performance, we may be ignoring alternative models which are

nearly as good, but with superior average performance. This was addressed by the

inclusion of a further multi-objective objective function, which demonstrates that

a balance may be achieved between these competing objectives.

A final advantage of these personalised model searches is that the patient-

specific models were not myopic to the specific forecasting task. Instead, the

uncovered parameterisations successfully identified models with high performance

for objective functions and for other forecast look-ahead lengths di�erent for which

the model was not optimised.

9.3.2 Future Work

Personalised regularisation of GP models can be improved both technically and clini-

cally.

Clinically, personalised models should contain interpretable elements, to be

communicated (i.e., in words) to clinical sta�. For example, the kernel composition

of the personalised model should provide sta� with a description of the overall
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complexity of a patient time-series. Similarly, parameterisations should be directly

translated into terms such as long-term fluctuations, short-term volatility, and

noisiness. If extended to multi-task modelling, these same approaches may describe

the strength of correlation between vital-signs.

Technically, the identification of personalised models must further overcome the

high e�ective-dimensionality of the hyperparameter search space, which is due to

the interrelation of hyperparameter values within and between kernels. This will

be especially necessary to build more complex models such as multi-task vital-sign

models, and/or identifying priors over the hyperparameters. These goals may be

assisted by (i) dimensionality reduction models to learn the modes of variation

across dimensions, and (ii) encoding when query points are e�ectively identical

(e.g., di�erent values of ⁄i will cease to matter when hi = 0).

Where feasible, heuristic elements should be removed (or replaced with a more

reasonable heuristic). For example, left-censoring query values might be remedied

via warped-output GPs [148]. If warped GP inference (i) creates an additional

computational burden, or (ii) is unreliable in automation, then a practical semi-

heuristic alternative may be to learn (one or more) warping functions in an o�-line

setting, which will be applied to the on-line Bayesian optimisation algorithm.

9.4 GP-based Deterioration Detection

9.4.1 Result Summary

Current vital-sign monitoring aims to identify patients whose vital-sign measure-

ments are persistently extreme-valued. This approach requires a patient’s vital-sign

to become persistently deranged with respect to a patient cohort before deterioration

is identified. However if the goal is to identify the earliest signs of deterioration,

then the value of this approach may be limited. Reasons for this may include that

(i) extreme values for an individual patient di�ers from the extreme values of a

patient population, and (ii) patients may not exhibit vital-signs that are extreme,

long in advance of deterioration. In other words, the physiology at the time of an
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emergency events may look very di�erent from the physiology (in the preceding

hours) that forewarn the emergency event.

The GP step-change detection algorithm may supplement current extreme-

measurement monitoring by identifying instances of erratic volatility in vital-signs.

Results from the UPMC data set suggest that step-change methods can provide

significantly earlier warning times with a much smaller false positive rate of alarm.

This advantage is especially true for those patients who receive the least early

warning under current monitoring methods.

The advantage of step-change-based methods for improved early warning time

are several-fold:

First, as stated earlier, vital-signs certainly become deranged in the hours

preceding cardio-respiratory instability. However, derangement in the form of

extremely high or low vital-sign measurements may occur only shortly before cardio-

respiratory instability. This means that methods relying on extreme vital-signs

(while ideal for identifying patients at the point of cardio-respiratory instability)

may struggle to identify the types of vital-sign derangement that occur many hours

before cardio-respiratory instability.

Second, one type of vital-sign derangement that is present in the hours before

cardio-respiratory instability is erratic volatility. This erratic volatility may be

described as rapid dynamical changes in a vital-sign time-series, which may or may

not result in extreme vital-sign values. This can be seen by visual inspection of

vital-sign time-series before or in the absence of a cardio-respiratory instability

events. Furthermore, this can be quantified by the reduction in vital-sign forecasting

accuracy for patients who experience a cardio-respiratory instability event, compared

to the forecast accuracy of patients who did not. The work in previous chapters to

(i) remove artefactual data, and (ii) automate robust time-series modelling, allows

us to reliably identify these erratic volatility events.

Third, the step-change based method is e�ective, even when monitoring only a

single vital-sign, but improves with the inclusion of multiple vital-signs. From a

technical perspective, this allows the step-change detector to continue to monitor
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patients, even when vital-sign channels have been dropped (e.g., due to probe

detachment). From a physiological perspective, this may relate to the homeostatic

mechanism, in that a rapid change in one vital-sign may precipitate a rapid corrective-

change in another vital-sign. This means that a step-change in an unmonitored

vital-sign is not missed, so much as delayed until its e�ect is identified in another

vital-sign. However, the inclusion of further vital-signs can magnify the deterioration

signal by identifying a step-change across multiple vital-sign.

The advantage of step-change-based methods for reduced false-positive alarm

rates is also several-fold:

First, the GP-based step-change detection algorithm performs direct, person-

alised inference on the patient’s vital-sign time-series. By learning the patient’s

typical noise-corruption and rate of change in vital-sign values, the resulting early

warning score implicitly controls for uncertainty in vital-sign measurements.

Second, the highly-personalised warning score is less a�ected by inter-patient

variability. This means that a single threshold on the volatility metric will have

a similar false alarm rate across all patients. In contrast, inter-patient variability

is highly vexing to methods based on extreme values because high values for one

deteriorating patient may be low values for another deteriorating patient. This

means that a single threshold on a vital-sign value might produce no false positives

alarms in one patient, but constant false positive alarms in another patient.

9.4.2 Future Work

The GP-based step-change detector may be in expanded in a variety of ways,

ranging from modelling, inference, and clinical development.

As a model of early warning, the step-change early warning score warrants

development of a more complex relationship between forecast likelihood and clinical

outcome. Specifically, non-linear relationships should be learned to connect early

warning scores across vital-signs. Further functional relationships should also be

learned to connect multiple warning scores across time. Related to this second point,

since the current step-change warning score is transient instead of persistent, there
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may be value is summarising cumulatively greater risk as a patient experiences

more step-changes over more vital-signs over time.

The GP modelling of vital-sign may also be extended to more realistically

represent vital-sign-specific measurement noise and the correlation between vital-

signs. More specifically, copula modelling would allow us to diverge from the

assumption that each vital-sign is marginally Gaussian and that all vital-signs

are jointly multivariate Gaussian. This will have important implications, e.g., for

vital-sign measurements such as SpO2 which frequently achieve their maximum

attainable value of 100%, and therefore are clearly non-Gaussian. The obvious

advantage would be to provide greater discernment between step-changes and non-

step-changes. Furthermore, such methods may provide greater context to the cause

of alarm, e.g., volatility in heart rate and respiratory rate vs. volatility in heart

rate in the context of a stable respiratory rate.

For development of step-change detection as a useful clinical algorithm, clinical

feedback is required on several fronts:

First, clinician feedback would be useful to identify which of the step-change

alarms are clinically informative. This would include the identification of (i) alarms

on C”-patients that are not clinically informative, and (ii) alarms on non-C”-patient

which are clinically informative. This would allow further development of the step-

change detector to identify only those dynamics that the clinicians would like to see.

It is equally important to learn how to inform clinicians of step-change-based

alarms. As demonstrated earlier, a step-change in vital-signs can be easily visualised

by plotting the patient’s vital-sign time-series against the forecasted distribution

of the GP. This is a first step towards explaining the cause of the alarm without

requiring clinical sta� to understand the underlying quantitative components. It

may be helpful to supplement this visualisation with a written description of the

step-change physiology. Such a description could make use of the direction, duration,

and magnitude of vital-sign derangement, the GP’s hyperparameter values, and

the context of other vital-sign values to provide useful context. Such descriptive

supplements would require automation as well and therefore require significant
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further development for robust performance. The development of automated

visualisation and descriptive statements would be require significant collaboration

and feedback from the clinicians who would use such alarms.

Developing any of the above requires expanded testing in other data sets with

larger numbers of annotated clinical emergencies. Greater data will allow the

development of more complex algorithms whose robustness must be verified on

held-out data. Furthermore, this would allow us to compare the e�cacy of the

same algorithm across di�erent hospitals and patient-cohorts. Proving that an

algorithm has e�cacy across di�erent wards provides the strongest case of the

inductive validity of the monitoring method.
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A
Practical Implementation of Bayesian

Optimisation

Bayesian optimisation was used to identify patient-specific Gaussian process (GP)

models for robust forecasting. The aim was to identify kernel-complexity and

parametrisation with strong forecasting performance, as defined by the objective

functions G1 and G2, as defined in Chapter 6. The challenge in identifying such

kernel-parameter combinations is that the e�ect of one parameter’s values is heavily

influenced by the value of the other parameters, creating an optimisation problem

with high e�ective dimensionality. This is why simplistic methods such as random

search and simulated annealing struggled to parametrise personalised GPs with

more than 1 covariance kernel (corresponding to 3 parameters to optimise).

The patient set under consideration was large and physiologically di�use. The

Bayesian optimisation routine benefited from several practical steps to ensure that

the automated optimisation process ran reliably for all patients under consideration.

These practical steps include:

1. Left-censoring of G1(◊) < ≠3, for improved data stationarity.

2. Searching over a pre-specified (su�ciently spread-out) grid to avoid a singular

covariance matrix of the Bayesian optimisation’s GP.
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Figure A.1: Forecast LML quantiles at varying values of h. Percentiles are calculated
from 4.5 ◊ 60 = 270 minutely-forecasts between hours 2 to 6.5, and show the 50 (•), 25
and 75 (•), 10 and 90 (•), and 2.5 and 97.5 (•) percentiles. Objective function G1 is
identical to the bottom red points. Objective function G2 is roughly equivalent to a linear
combination of the bottom half of points. A rapid performance drop o� can be seen in
h œ [0, 10] compared to h œ [10, 100]. Without censoring extremely low values, this would
warrant non-stationary GP modelling.

3. Fixing the values of length-scales in the Bayesian optimisation GP to avoid a

singular Bayesian optimisation covariance matrix.

4. Searching over a subset of the dimensions of ◊ at each iteration of Bayesian

Optimisation.

Each of these items is described below.

Left-censoring of G1 Values

The objective function G1 is measured in the log marginal likelihood (LML) of

a Gaussian distribution. Vital-sign measurements that fall into the extreme tails

of a forecast distribution, have LML values that are orders of magnitude lower

than measurements near the centre of a forecast distribution. This, in turn, means

that personalised models with extremely poor forecasting accuracy have values

in G1 that are orders of magnitude lower than personalised parameterisations

with high forecasting accuracy. As shown in Figure A.1, the parameterisations

that correspond to the poorest performance are typically edge cases, such as a

noise-variance, ‡n, or signal-variance, h, near 0. The modelling of such points

requires a non-stationary GP since G1 changes much more rapidly near these edge

cases than away from these edge cases.
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To improve data stationarity, values of G1(◊) < ≠3 were left-censored to be

≠3. By censoring these low values, the Bayesian optimisation algorithm remains

informed that forecasting performance was low at this point, and is less likely to

sample near these points (as it would anyway without censoring).

Since no patient in either the training or test set achieved an optimal G1(◊)

near ≠3, the censoring does not influence our final estimate of patient-specific

◊ performance.

Alternatives to this left-censoring heuristic are to directly model the non-

stationarity via a warped-output GP [148]. The challenge to this approach, however,

is the same as fitting the Bayesian optimisation GP in general: reliable automated

inference without further hand-tuning.

Optimisation via Pre-specified Search Grid

The selection of a query point that is too close to current set of query points runs

the risk of creating a GP covariance matrix that is singular. The risk of singularity

is especially high for GP’s without a white-noise kernel (that is ‡n = 0). It is

typical practice, therefore, to require that new queries be at least a minimum

distance from previous queries.

There are many way to achieve this heuristic. In this case, we only accept new

Bayesian optimisation queries along a pre-determined grid, in which all points are

su�ciently spread out to minimise the risk of singularity.

Fixed Values of Length-scales

The Bayesian optimisation covariance kernel is defined to be

c(◊, ◊Õ) = ÷2
3

1 +
Ô

3r
4

exp
3

≠
Ô

3r
4

,

s.t. r =
Dÿ

d=1

(◊d≠◊Õ
d)2

‹d
.

(A.1)

Since each element in ◊ is an interpretable GP hyperparameter, describing the

dynamics of a patient time-series, we have insight into the values of ‹d. That is,

we understand the minimum values over which a change in ◊d will e�ect forecast
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performance. This directly corresponds to a minimum value in ‹d, the length scale of

the Bayesian optimisation GP in that dimension, which may result in a change in G1.

Computationally, fixing the values of ‹d a priori have several advantages: first

it removes the possibility of a singular covariance matrix due to low values in ‹d

which, in turn, interferes with proper inference on the other parameters of c(◊, ◊Õ) .

Secondly, with fewer parameters over which to perform inference, the MAP fitting

of the remaining parameter, ÷, is quicker in addition to being more reliable.

Sequential Optimisation over a Subset of dimensions

To encourage greater exploration of the G1 and G2 search spaces, the Bayesian

optimisation algorithm searches over only a subset of the dimensions of ◊ at

each iteration. In other words, the sequential approach optimises only a subset,

D, of ◊’s D total dimensions by holding the remaining values fixed at those

of the current best found ◊.

Concretely, the sequential optimisation search can be achieved simply by

changing line 3iii of Algorithm 1 in Chapter 6 to

query G(◊) at ◊new := arg max◊ A(◊)
s.t. ◊d = ◊best

d ’d /œ D.
(A.2)

The sequence of subsets D can be selected at random, or by any other selection

criterion. However, for simplicity, we opted to tune the dimensions of ◊ that are

particularly related. For example, the Bayesian optimisation could sequentially

tune length-scales (⁄i=1,..,a), followed by variances (hi=1,..,a and ‡n). Alternatively,

the algorithm could sequentially tune hyperparameters of a specific kernel, for

example, hi and ⁄i of kernel ki.

This sequential optimisation approach was found to be helpful to increase the

exploration of the search space, more so than, e.g., further augmentations of the

acquisition function to encourage exploration.



B
Construction of Kernel Density Estimate

Model of Patient Normality

This appendix covers the practical design elements to construct a KDE of patient

normality. The implementation is the same as that described in Chapter 4 of

Hann [45]. A summarising diagram of this process is shown in Figure 8 in Chapter

7, and is reproduced as Figure B.1 of this appendix. The elements of Figure

B.1 are described in turn below.

In summary: Each patient’s 5-vital-sign time-series (HR, RR, SpO2, SBP,

DBP) is cleaned of any (presumably artefactual) measurements that exceed a

pre-determined artefact threshold. Each of the 5 clean vital-sign time-series are

aligned to create a unique 5-dimensional data point at any time-stamp. The training

data set is created by collating all of these 5-vital-sign data points (irrespective

of time-stamp) for all patients in a held-out set of non-C”-patients. This creates

an m-by-5 training set, where m is the total number of 5-D data points across all

training set patients. These data are scaled to be zero mean and unit variance. A

k-means clustering algorithm is applied to identify 500 vital-sign centroids. The

100 outer-most centroids are removed, leaving 400 centroids to describe the joint

vital-sign distribution of healthy patients. The joint pdf of this distribution is
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Figure B.1: Creation of a KDE-based novelty score reproduced from Chapter 7. Each
patient’s (a) vital-sign time-series is (b) cleaned of artefactual measurements, and (c)
aligned via their time-stamps. These aligned data points are then (d) collated for each
patient, which in turn are (e) collated across all training set patients. To reduce the size
of the training set, (f) 500 centroids of the data are identified via k-means clustering. The
400 most-central centroids (•) are kept and the 100 outer-most centroids (•) are removed.
In (g) a KDE is fit to the 400 remaining centroids. In (h) the pdf of the KDE is converted
into a novelty score, which increases as data moves into the tails of the joint distribution
of the vital-signs.
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modelled by an isometric kernel density estimate (KDE). The novelty of a new 5-D

vital-sign data point is a function of its likelihood with respect to this joint pdf.

B.1 Data Cleaning

In Figure B.1(a) and B.1(b), each patient’s time-series was cleaned by removing

any artefactual measurements, as determined by Table B.1.

While this approach to artefact removal certainly removes the most extreme

artefactual data, as seen in Chapter 5, a threshold approach removes only a minority

of all vital-sign measurement artefacts. A particular instance where this may warrant

improvement is the SpO2 threshold of 10%. It is impossible to say a priori that an

SpO2 of 10%-70% are artefactual. However, it is highly likely that such measurements

are artefactual, especially if transient. (The signal-quality of waveform data at such

points would be helpful to make such a decision, but are not available in the UPMC

data set.) This leaves many potential artefactual data in the training set. The

latter step of removing the 100 farthest centroids attempts to alleviate this issue,

as well as remove transient abnormal vital-signs in the training set data.

A further artefactual feature of the UPMC data set involved RR remaining fixed

at a single value for an extended period of time. These artefacts were removed as well.

Lower Threshold Upper Threshold
HR (bpm) 30 300

SDA (mmHg) 20 180
SpO2 (%) 10 -
Temp (¶C) 32 39
RR (bpm) 3 45

Table B.1: Artefactual thresholds applied to phase 1 patients

B.2 Alignment and Collation of Patient Training
Data

In Figure B.1(c), the 5 vital-signs of an individual patient are aligned across time-

stamps. These aligned vital-sign measurements are then collated for each patient in
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Figure B.1(d) and then collated across all training set patients in Figure B.1(e).

Since the rate of data acquisition varies across each of the 5 vital-signs time-

series, the vital-signs must be aligned. This is achieved via a capture-and-hold

mechanism, in which the value of a vital-sign is held of a period of time. During

this period of time, if a new measurement for that vital-sign is acquired, then the

new value is held for the same period of time. If no new measurement is acquired

then the vital-sign is considered missing, until a new vital-sign is acquired.

The hold periods are 30 seconds for HR and SpO2, 1 minute for RR, and 30

minutes for SBP and DBP. The extended hold for SBP and DBP is due to the

infrequency of blood pressure measurements.

An aligned patient data set is created as follows: All unique time-stamps in

each of the 5 vital-sign time-series were used to create an aligned 5-D vital-sign

time-series. For each such time-stamp, if a vital sign did not occur within the

capture-and-hold window then it was considered missing at that time-stamp.

To accommodate the very large number of data points for each patient’s 5-D time-

series, measurements are down-sampled to 1
60 Hz. Time-stamps were then discarded,

since the KDE-based method does not make use of time-series information.

All measurements are collated for all patients in the training set, creating a

large, aligned 5-vital-sign training set, shown in Figure B.1(e).

B.3 Data Transformation and Missingness

The mean and standard deviation of each of the 5 vital-signs is calculated. Each

vital-sign column (of the 5-vital-sign matrix in Figure B.1(e)) is then transformed

to be zero-mean and unit variance. Subsequent to this transformation, any missing

vital-sign values were set to the mean (i.e., 0). Individual measurements with three

or more missing vital-signs values were removed.

When applied to the test set patients, this convention of (i) scaling, (ii) imputing

missing values, and (iii) discarding measurements with excessive missingness,

was maintained.
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B.4 Representative Centroids of Patient Data

A KDE will be used to estimate the joint density of the 5 vital-signs in the training

set. However, it would be infeasible to evaluate such a KDE, with respect to new

data, since the training set comprises hundreds of thousands of data points. Such a

KDE could not be reasonably employed in a real-time monitoring system.

Therefore, a k-means algorithm is used to find 500 centroids that best represent

density of the data comprising hundred of thousands of measurements. (This is the

single largest computation of the KDE method.) This is illustrated in Figure B.1(f)

with HR and RR measurements transformed back into their original units.

As a least-squares algorithm, many of the k-means centroids only account for

outliers and do not represent the points of centrality for most healthy patients. As

a step to remove outliers, only the 400 centroids closest to [0,0,0,0,0] are kept. Note

that this is not the same as the 400 points nearest to the mean value of the centroids.

An interesting alternative modelling approach would be to perform k-means

clustering and artefact removal on a per-patient basis. This might more accu-

rately identify the artefacts by implicitly incorporating the patient-specific context

of outlier data.

B.5 Construction of KDE Joint Density Model

From the remaining 400 centroids we now create the KDE, using equation

p(x) = 1
400 (2fi)5/2 ‡5

400ÿ

i=1
exp

A

≠ |x ≠ xi|2

2‡

B

, (B.1)

where x is the 5-D vector of vital-sign measurements, and xi is the ith centroid,

from 0 to 400.

The bandwidth parameter ‡ is calculated according to a rule-of-thumb described

in Bishop [141]: For each of the 400 centroids, the 10 closest original data points are

identified via K-nearest neighbours. The “variance”, ‡i, around centroid xi is the

average Euclidean distance of xi from its 10 nearest neighbours. The bandwidth

parameter is then the average of these centroid variances, ‡ = 1
400

q400
i=1 ‡i.
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By plugging ‡ into Equation B.1, we now have a joint probability density

function over the vital-signs of the healthy patient cohort, as shown in Figure B.1(g).

Note that this model has non-zero support for areas corresponding to SpO2 > 100%.

New measurements that are close to the centroids of the healthy group will have

high likelihood according to Equation B.1. As a patient deviates from these central

points, the likelihood diminishes, indicating a deviation from normality.

B.6 KDE-based Novelty Score

Our formal novelty score will mimic alarm systems, such as NEWS, in which values

are high when the patient deviates from physiological normality and low otherwise.

This may be achieved by defining the novelty score to be the reciprocal of the

log-likelihood of Equation B.1, that is:

z(x) = 1
log p(x) . (B.2)

From Equation B.2, we have a probabilistic metric of patient abnormality,

according to how a patient’s current vital-signs measurements compare to the

current vital-signs of a training set of healthy patients. As shown in Figure B.1(h),

the novelty score increases as vital-sign measurements diverge from the centroids.

This score, as described is shown in Figure B.2 for a patient with a C”-event

at annotated near hour 23. It can be seen that the patient’s vital-signs deviate

from normality as they approach the C”-event and the KDE-based novelty score

escalates accordingly.
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Figure B.2: The KDE-based novelty score z(x) calculated from a patient’s time-series.
SBP and DBP are not shown. The novelty score z(x) is right-censored at 50 for visual
clarity.
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C
Alarm Hold Criterion

C.1 Motivation of Alarm Hold Criterion

Each early warning system described produces a single early warning score (EWS) on

which to alarm. This EWS can range from the vital-sign itself (for trigger systems)

to a composite score across all vitals (for scoring systems) to likelihood-based metrics

(for the kernel density and Gaussian process-based systems). An alarm is sounded

when the EWS exceeds a predefined alarm threshold (this is distinct from any

thresholds used to calculate the score, e.g., the intra-vital-sign thresholds in NEWS).

Typically, the score is required to exceed the alarm threshold for an extended

period of time (e.g. exceeding an alarm threshold for 4 of the last 5 minutes) before

before presenting an alarm. An alarm status would only cease if the alarm criteria

were not met for a period of time as well (e.g. falling below an alarm threshold

for 2 of the last 3 minutes). This is in contrast to sounding an alarm at the first

instance of a vital-sign measurement or risk score is in exceedance of the threshold.

The choice of m1 over the last m2 minutes is a heuristic choice in its own right.

The intuition behind this approach is that vital-sign measurements are typically

fraught with artefactual measurements that are unrepresentative of the patientú

current physiology. Requiring that a threshold be exceeded for an extended period

of time attempts to reduce false alarms caused by these artefacts. This is equivalent
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to the alarm being “muted” until the abnormal vital-signs have persisted for

a period of time.

Since the implementation of such a system may vary by the acquisition rate

of the EWS, it is unclear why this heuristic approach would be preferable over

an alternative (and trivial to code) heuristic such as median smoothing of the

warning score over a small time window.

C.2 Alarm Hold Criterion for Baseline Compara-
tor Methods

For a fair comparison to clinical practice, all baseline comparator methods were

tried both with and without a “four minutes out of five” exceedance requirement.

For both the simple thresholding and the KDE-based novelty score this extra

step either (i) did not improve performance or (ii) decreased performance, in terms

of the TEW vs. FPR trade-o�. To corroborate or contradict this finding, a literature

search was conducted but unable to find any published research which compared

early warning performance with and without this heuristic.

In the absence of reasons to do otherwise, the results in the baseline comparator

chapter only display thresholding results that did not use a holding heuristic, i.e.,

the best-found results for the baseline methods.

C.3 Alarm Hold Criterion for GP-based Step-
Change Methods

Alarm holds were neither used nor tested for GP-based step-change detection since

the step-changes are inherently transitory. Therefore the alarm score from these

methods do not persist long enough to make alarm holds a viable option.

To improve alignment of step-change scores across vital-signs, it may be helpful

to hold the highest NLML value for each vital-sign (i.e. the value most-indicative

of step-change in that vital-sign). This was examined, and resulted in an improved
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tradeo� between TEW and FPR. However, these results are not presented to reduce

the research degrees of freedom in the results.
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