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This thesis is dedicated to three patients:

A patient who tolerated a wearable sensor poorly, until it detected that
they were having a cardiac arrest and arguably dramatically improved

their future health. Thereafter they tolerated the sensor very well.

A patient who was very talkative before their operation, and died

tragically young a few days later despite wearing a wearable sensor.

A patient who probably didn’t need a wearable sensor, but ended up
practically dancing around the ward whilst wearing it, laughing and

joking with the staff.

)

“...a time to mourn and a time to dance ...

Ecclesiastes, ch. 3



Abstract

Acutely-ill hospitalised patients are at risk of clinical deteriorations in health leading to adverse
events such as cardiac arrests. Deteriorations are currently detected by manually measuring
physiological parameters every 4-6 hours. Consequently, deteriorations can remain unrecog-
nised between assessments, delaying clinical intervention. It may be possible to provide earlier
detection of deteriorations by using wearable sensors for continuous physiological monitoring.
Respiratory rate (RR) is not commonly monitored by wearable sensors, despite being a sensitive
marker of deteriorations. This thesis presents investigations to identify an algorithm suitable
for estimating RR from two signals commonly acquired by wearable sensors: the electrocardio-
gram (ECG) and photoplethysmogram (PPG). A suitable algorithm was then used to estimate
RRs retrospectively from a physiological dataset acquired from acutely-ill patients to assess the

potential utility of wearable sensors for detecting deteriorations.

Existing RR algorithms were identified through a systematic review of the literature. A tool-
box of RR algorithms was created to facilitate comprehensive assessments of algorithms across
multiple datasets. This was used to assess the influence of technical and physiological factors on
respiratory signals extracted from the ECG and PPG, providing recommendations for wearable
sensor designs for RR estimation. An assessment of 95 RR algorithms using data from healthy
and hospitalised patients showed that the algorithms did not perform well enough for use with
acutely-ill patients. Therefore, a novel algorithm was designed specifically for use with wearable

sensors, providing improved performance.

The novel RR algorithm was used to estimate RRs retrospectively from wearable sensor data
acquired from 184 patients. The performances of algorithms to detect deteriorations from the
resulting wearable sensor data were similar to those used with routinely collected intermittent
data, suggesting that it is feasible to use wearable sensors to continuously assess the likelihood
of deterioration. However, the false alert rate increased when using wearable sensor data due
to the continuous, rather than intermittent, monitoring. Therefore, further work is required
to improve algorithms to detect deteriorations from wearable sensor data to provide clinically

useful alerts.
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Chapter 1

Introduction

Acutely-ill hospitalised patients are at risk of deteriorations in health leading to adverse events
such as cardiac arrests, sepsis, and acute kidney injury. Adverse events such as these are
detrimental to patients as they increase morbidity and mortality, and prolong their length of
stay in hospital [12-14]. In addition, adverse events have a significant impact on healthcare costs
and resources. For instance, in the USA adverse events have been estimated to cost upwards of
US$17 billion per annum [15], and in Australia they have been estimated to account for 8% of
hospital bed days [16]. Furthermore, in the UK clinical negligence costs for the National Health
Service (NHS) totalled £769 million during 2008-2009 [17]. Therefore, any measures which
reduce the incidence of adverse events may improve patient outcomes and reduce healthcare

resource utilisation.

Many adverse events are preceded by measurable changes in physiology. Schein et al. pub-
lished landmark results in 1990 that 84% of patients “had documented observations of clinical
deterioration or new complaints” in the eight hours preceding cardiac arrest [18]. This finding
was subsequently supported by a study by Franklin et al. [19]. Physiological abnormalities
have also been observed in the hours prior to unplanned admissions to the Intensive Care Unit
(ICU) [20, 21] and preventable deaths [22]. Furthermore, in a study of electronic health record
(EHR) variables, it was found that 9 out of 14 predictors of cardiopulmonary arrests, unplanned
transfers to ICU, and death, were physiological (and at least 4 of the remaining 5 were directly
linked to physiology) [23]. The assumption that adverse events are preceded by changes in
physiology is also supported by expert opinion. In 2010 a consensus of international experts

found that most cardiac arrests and deaths are preceded by physiological parameters “lying
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outside . .. normal ranges” [24]. The overwhelming conclusion is that changes in physiology can

be observed during the hours prior to many adverse events.

It is widely accepted that the progression of deteriorations, and therefore the likelihood of
subsequent adverse events, can be reduced by recognising and acting on the accompanying
changes in physiology [25-27]. Currently, staff on general hospital wards identify deteriorations
through manual measurement of physiological parameters every 4-6 hours (such as heart rate
and blood pressure), from which an early warning score (EWS) is calculated indicating the
likelihood and severity of a deterioration [28]. The effectiveness of current practice is limited to
intermittent assessments since they have to be performed manually. This means deteriorations
can remain unrecognised until the next assessment, potentially delaying the clinical response by

several hours. In addition, the current manual assessments are time-consuming and inefficient.

It may be possible to address the shortcomings of manual and intermittent measurements by
using wearable sensors to monitor physiology continuously and automatically. Wearable sensors
for use in hospitals have traditionally been limited to providing electrocardiogram (ECG) based
heart rate and arrhythmia monitoring. Consequently their use has been confined to patients
at risk of arrhythmias. Recent developments in wearable sensor design and biomedical signal
processing techniques mean that it may now be possible to monitor a broader range of phys-
iological parameters using wearable sensors [29]. As a result, wearable sensors may now have
utility for the early detection of the wider range of deteriorations from which all acutely-ill
inpatients are at risk [30]. For example, wearable sensors can now monitor additional signals
such as the pulse oximetry (photoplethysmogram, PPG) signal, providing arterial blood oxygen
saturation (SpO3) monitoring. Furthermore, signal processing techniques for monitoring of the
respiratory, vascular, and autonomic systems have been developed in other settings, which could
be adapted for use with wearable sensors. Consequently, novel wearable sensors may be useful
for detecting not only cardiac deteriorations, but also those which manifest as changes in other

physiological systems.

Two additional steps are required to realise the potential of wearable sensors to provide clini-
cal benefit through detection of deteriorations. The first step concerns respiratory rate (RR),
which is a highly sensitive marker of deterioration [31]. Current methods for monitoring RR
using wearable sensors are either obtrusive or inaccurate [32]. Therefore, further development
and evaluation of RR monitoring techniques for use in wearable sensors is required. Secondly,

techniques for generating alerts of deteriorations need to be adapted for use with wearable
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sensors. Wearable sensor data is susceptible to artifact, due to poor sensor contact and move-
ment, and is also acquired during periods of activity. In contrast, intermittent physiological
measurements are checked for artifact by the measurer, and are acquired whilst patients are at
rest. Therefore, the techniques which have previously been used to identify deteriorations from
intermittent measurements may need to be refined for use with wearable sensor data. If these
issues can be resolved then there is potential for wearable sensors to improve patient safety
and quality of care, and reduce staff workload [33]. This is of particular importance since the
number of patients in hospital and severities of illnesses are increasing, whilst staffing levels are

decreasing [29, 34].

1.1 Thesis Goals

This thesis addresses the first step identified to realise the potential of wearable sensors: de-
veloping RR monitoring techniques for use in wearable sensors. The overall aim of this thesis

is:

To develop and assess the performance of techniques for continuous RR monitoring

using ECG and PPG signals for use in wearable sensors to detect deteriorations.

A deterioration is defined as an acute worsening of health, resulting in a transition to a physi-

ological state with an increased likelihood of a clinical adverse event [35].

Several goals were identified in order to achieve the overall aim as follows:

e To assemble a comprehensive physiological dataset using wearable sensors: A
comprehensive dataset was assembled containing wearable sensor data and labels of de-
teriorations suitable for development of algorithms to detect deteriorations. This dataset
included continuous ECG and PPG signals, from which RR could be estimated retrospec-

tively.

e To identify algorithms to estimate RR from the ECG and PPG from the lit-
erature, and methods used to assess their performance, to create a toolbox
of resources for algorithm assessments: Many algorithms have been proposed to

estimate RR from the ECG and PPG signals, which are commonly acquired by wearable
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sensors. These provide a convenient method for monitoring RR. However, a systematic re-
view of the literature found that these algorithms had not been comprehensively assessed.
Therefore, it was unclear which algorithm, if any, performed well enough for use in wear-
able sensors. A toolbox of algorithms and benchmark datasets was created to facilitate

comprehensive assessments of algorithm performances.

e To assess the influence of technical and physiological factors on respiratory
signals extracted from the ECG and PPG: It was not clear how technical and
physiological factors influence the performance of RR algorithms. Therefore, the quality
of respiratory signals extracted from the ECG and PPG was assessed under different signal
acquisition procedures and a range of physiological conditions to provide recommendations

for the design of wearable sensors incorporating RR algorithms, and for their clinical use.

e To assess the performance of RR algorithms for the ECG and PPG in healthy
subjects and hospitalised patients: A comprehensive assessment of existing RR algo-
rithms was performed to determine which, if any, were suitable for continuous monitoring

of acutely-ill patients using wearable sensors.

e To develop a novel algorithm for continuous RR monitoring: A novel RR algo-
rithm was designed specifically for use with acutely-ill patients and wearable sensors. This

algorithm was found to provide superior performance compared to existing RR algorithms.

e To assess the potential utility of wearable sensors for detecting deteriorations:
The potential utility of continuous RR monitoring using wearable sensors to detect dete-
riorations was assessed by using the novel RR algorithm to estimate RRs retrospectively
from the comprehensive physiological dataset assembled in the first goal. This provided
evidence to suggest that EWSs could be continuously updated using data acquired from

wearable sensors.

1.2 Thesis Outline

This thesis is structured as follows. Chapter 2 presents the clinical background, including
the current clinical practice for identifying deteriorations in ambulatory hospital patients, the
growing role of wearable sensors, and the steps required to realise the potential of wearable

sensors to improve identification of deteriorations. In Chapter 3 the data processing steps
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taken to assemble a comprehensive physiological dataset are described. The resulting dataset is
suitable for the development of algorithms to detect deteriorations. In Chapter 4 a systematic
review of RR algorithms is presented, followed by a toolbox of resources for assessment of RR
algorithms. Chapter 5 reports a study of the influence of technical and physiological factors on
the quality of respiratory signals extracted from the ECG and PPG, with implications for the
use of RR algorithms in wearable sensors. Chapter 6 presents a study of the performance of
RR algorithms across a range of datasets, culminating in the conclusion that no existing RR
algorithm performed well enough to be used for continuous RR monitoring of acutely-ill patients.
In Chapter 7 a novel RR algorithm is presented, designed specifically for monitoring acutely-ill
patients. In Chapter 8 the novel RR algorithm was used with the dataset presented in Chapter
3 to demonstrate the feasibility of continuous RR monitoring to detect clinical deteriorations
using wearable sensors. Finally, Chapter 9 presents a summary of the achievements of this

thesis, and directions for future work.



Chapter 2

Clinical Background

In this chapter the clinical background to this thesis is presented. Firstly, the clinical need for
identification of deteriorations is described. Secondly, an overview of current practice for phys-
iological assessment of ambulatory patients, and identification of deteriorations, is presented.
This is followed by an explanation of the potential role of wearable sensors in providing earlier
identification of deteriorations than current practice, and reducing staff workload. The current
evidence for the clinical benefit of multi-parametric wearable sensors is then reviewed. Finally,
the steps required to realise the potential of wearable sensors are described: (i) the need for
continuous, unobtrusive, RR monitoring; and, (ii) the need for sensitive and specific algorithms

to generate alerts of deteriorations from continuous wearable sensor data.

2.1 The Need for Early Identification of Deteriorations

There is no consensus on the definition of a clinical deterioration in the literature [36]. Deterio-
rations have been defined using four approaches: (i) adverse events contributed to by negligence;
(ii) defined clinical adverse events; (iii) the presence of physiological instability; and (iv) move-
ment to a clinical state which is associated with increased risk of defined clinical adverse events
[36]. In this work approach (iv) was used. A clinical deterioration was defined as an acute wors-
ening of health, resulting in transition to a physiological state with an increased likelihood of
a clinical adverse event. Examples of clinical adverse events include the development of sepsis,

acute kidney failure, respiratory failure, and cardiac arrest. This definition of a deterioration
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is particularly relevant to both patients and clinicians, since clinical adverse events result in

increased morbidity, mortality, and healthcare resource utilisation.

Acutely-ill hospitalised patients are at increased risk of deteriorations. Within this broad pa-
tient population, specific groups have a particularly high risk of deteriorations. For instance,
approximately 50 % of patients recovering from upper gastrointestinal surgery suffer from an
adverse event during their hospital stay [37]. In contrast, approximately 10 - 20 % of patients
recovering from cardiac surgery suffer an adverse event whilst in hospital [38, 39]. A large pro-
portion of adverse events (38.7 - 60.7 % in different patient groups) in post-operative patients
are potentially avoidable [39]. Therefore, there is a clinical need to identify deteriorations early
to prevent the subsequent adverse events which increase morbidity, mortality, and healthcare

costs.

Acutely-ill hospital patients suffer from a wide range of different types of adverse events [39, 40].
The relative importance of detecting deteriorations which are associated with each type of
adverse event is determined by several factors. Firstly, different types of adverse events have
different incidence rates in different populations. For instance, in a study of patients recovering
from coronary artery bypass graft (CABG) surgery, approximately 9 % suffered from congestive
heart failure, whereas only 1 % suffered from a stroke [40]. Secondly, the impact of each type of
adverse event on morbidity, mortality and quality of life varies [41]. For example, in this CABG
study the mortality rates associated with the two types of adverse events differed markedly, with
approximately 12 % of occurrences of congestive heart failure resulting in death, compared to
27 % of strokes. Thirdly, different types of deteriorations can be treated with differing success
rates. In this example, the treatments for the two deteriorations differed. The symptoms
of congestive heart failure can be treated by oxygen (or respiratory) therapy, and the use of
vasodilators and diuretics. In contrast, the treatments for strokes are less easily administered,
and often last far longer, including extensive rehabilitation programmes. The heterogeneity
in incidence, impact, and treatments of different types of deteriorations has an effect on the

relative importance of detecting each one.

It is important that deteriorations are identified early to improve patient outcomes and reduce
healthcare costs. In a study of inpatients from four surgical services approximately 6 - 12 %
of deteriorations resulted in death [39]. Furthermore, 20 - 45 % of these deaths were judged to
be potentially avoidable [39]. Therefore, timely identification and appropriate management of

deteriorations may decrease mortality. The importance of early identification of deteriorations
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was shown by a trial investigating the impact of hospital-wide medical emergency teams (MET'Ss)
[42], who attend to and manage deteriorating patients. The rate of cardiac arrests and unex-
pected deaths decreased as the proportion of early MET calls increased [43], suggesting that
early identification and management of deteriorating patients may indeed be associated with
improved outcomes. In addition, deteriorations have been shown to increase length of stay after
surgery [12], thereby increasing healthcare costs [13, 14]. Early identification of deteriorations

is beneficial for both patients and healthcare providers.

2.2 Physiological Monitoring of Ambulatory Inpatients

Acutely-ill hospital patients have their physiology measured regularly to assess their risk of dete-
rioration, since deteriorations are commonly accompanied by changes in physiology [18],[19],[20—
24]. In the UK seven physiological parameters are measured regularly in acutely-ill patients, as
listed in Table 2.1 [28]. These physiological parameters are typically measured every 4-6 hours,
although this can be decreased to once every 12 hours for patients not displaying any deranged
physiological parameters, or increased to every hour or even continuous monitoring for patients
displaying deranged physiology [28]. Physiological measurements are obtained using a monitor
which is typically wheeled from one patient to the next. The current practice of taking regu-
lar physiological measurements is designed to ensure that every acutely-ill patient is regularly

assessed for signs of deterioration, and has several benefits:

e Accuracy: Since measurements are taken by hand, the operator can assess the accuracy
of the measurements, quickly resolving the causes of any unreliable measurements, such

as poor sensor contact.

e Data coverage: The level of patient compliance with these physiological measurements

is extremely high, since an operator ensures that the measurements are successfully taken.

e Additional assessment: The operator has opportunity to observe additional factors

which may be indicative of deterioration, which cannot be measured electronically.

e Response: A clinical response can be easily initiated in response to the physiological
measurements, because these are immediately reviewed by the operator. The operator can

either initiate a response themselves (such as the administration of supplemental oxygen),
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TABLE 2.1: Physiological parameters measured intermittently during routine practice: The

listed parameters are measured every 4 - 6 hours in acutely-ill hospital patients to calculate the

National Early Warning Score (NEWS) [28]. Details of techniques (either electronic or manual)
which are commonly used to measure the parameters are provided.

Parameter Abbr. Measurement technique Electronic?

Heart rate HR A pulse oximeter is used to automatically esti- v
mate HR from the PPG.

Arterial blood SpOs A pulse oximeter is used to automatically esti- v
oxygen saturation mate SpO2 at the same time as estimating HR.
Systolic blood SBP A sphygmomanometer is used to automatically v
pressure estimate SBP. This involves application of a

blood pressure cuff around the upper arm.

Temperature temp A thermometer is used to estimate core temper- v
ature. A variety of thermometers are in routine
use, including single-use oral thermometers, and
electronic tympanic thermometers.

Respiratory rate ~ RR RR (the number of breaths per minute) is usu- X
ally measured by manually counting chest wall
movements over a period of approximately 30 s.

Oxygen therapy (02 A binary variable indicating whether or not the X
patient is receiving supplementary oxygen.

Level of LOC A multinomial variable indicating the LOC with X

consciousness the following categories: (i) Alert (fully awake),

(ii) Voice (responds to a voice stimulus), (iii)
Pain (responds to a pain stimulus), (iv) Unre-
sponsive (no response to voice or pain).

or can quickly inform another member of staff to trigger a more complex response (such

as a new pharmacological intervention).

Once a set of measurements have been obtained an additional step is taken to identify deteri-
orations. This is performed by calculating an early warning score (EWS), an aggregate score
calculated from physiological parameters, which indicates the presence and severity of a deteri-
oration. EWSs are designed to overcome the problem that no single parameter is all-important
for identification of deteriorations [44]. A simple formula is used in which each parameter is as-
signed a score indicating its level of abnormality, and these individual scores are summed to give
an aggregate score. The higher the aggregate score, the higher the likelihood of deterioration.
The regular use of a standardised National Early Warning Score (NEWS) to assess acutely-ill
hospital patients was mandated in the UK in 2012 [28]. The methodology for calculating the
NEWS is displayed in Table 2.2. This score has been found to outperform previously proposed
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TABLE 2.2: Calculation of the National Early Warning Score (NEWS): Seven physiological

parameters (defined in Table 2.1) are measured, and a score is assigned to each. The NEWS is

then calculated as the sum of these individual scores [28]. Definitions of LOC categories: A -
alert, V - responds to voice, P - responds to pain, U - unresponsive.

Parameter Score assigned to individual parameter

3 2 1 0 1 2 3
HR <40 41-50 51-90 91-110  111-130 > 131
SpO2 <91 9293 94-95 > 96
SBP <90 91-100 101-110 111-219 > 220
temp < 35.0 35.1-36.0 36.1-38.0 38.1-39.0 > 39.0
RR <8 9-11 12-20 21-24 > 25
(02 Yes No
LOC A V, P, or U

EWSs when used to identify patients at risk of cardiac arrest, unexpected ICU admission, and

death [45]. EWSs have also been integrated into worldwide clinical practice [46].

The performances of EWSs are the subject of debate. On one hand, EWSs have been shown
to correlate with important patient-centred endpoints such as levels of intervention [47], higher
hospital mortality [47, 48], length of stay [48], and to be a better predictor of cardiac arrest than
individual parameters [49]. Furthermore, they have resulted in clinical response at lower levels
of physiological abnormality [50]. On the other hand, it has not been shown conclusively that
the use of EWSs translates to improved patient outcomes [51]. For instance, in 2003 a study
of the use of an EWS to triage medical admissions did not find any impact on outcomes [31].
In 2007, there was “little evidence of reliability, validity and utility” of EWSs [52], particularly
as the majority of 33 different EWSs discriminated poorly between survivors and non-survivors
[53]. Reassuringly, since then the NEWS has been recommended for use across the NHS, and
has been shown to outperform the 33 previously tested EWSs [45]. Nonetheless, there may still

be scope to improve the performances of EWSs.

2.3 The Potential Role for Wearable Sensors

The use of wearable sensors (hereafter also defined as wireless) to monitor human physiology

began in 1961 when the first human in space, Yuri Gagarin, was continuously monitored by
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doctors on earth [29]. By 1969 the technology had developed to allow simultaneous monitoring
of multiple astronauts during the first moon-landing mission. By the 1980s wearable sensors

had been successfully translated into hospital use in intensive and acute care units [54].

Since the 1980s the role of wearable sensors in hospitals has been largely confined to cardiac
monitoring. Their routine use is dominated by electrocardiogram (ECG) monitoring, which is
indicated for specific patient groups in hospital [55]. Wireless ECG monitoring is typically used
to facilitate mobilisation when patients are not sufficiently ill to require more intensive, tethered
monitoring. Possible settings include intensive and coronary care units, cardiac telemetry wards,
and less routinely, post-cardiac surgery units, the surgical recovery room, and the emergency

department [56].

Wearable sensors are currently used to identify abnormal heart rhythms. A wide range of
rhythms can be identified in real-time, such as: inefficient arrhythmias including atrial fibrilla-
tion; life-threatening arrhythmias such as bradycardia and ventricular tachycardia; and asystole.
Indeed, the use of wearable sensors for identification of life-threatening dysrhythmias has been
shown to improve patient outcomes. Recent studies have found telemetry (remote monitoring,
typically of the ECG) to be associated with improved survival to hospital discharge following
in-hospital cardiac arrest [57, 58]. The mechanism underlying this improvement may be that
the use of telemetry allowed earlier defibrillation, which increased the likelihood of survival
to hospital discharge [59]. This illustrates how wearable sensors are currently used to trigger

restorative, rather than preventative, treatments.

There is a desire to use wearable sensors in a preventative manner for early detection of the dete-
riorations which precede adverse events. Currently, clinical deteriorations of acutely-ill patients
are detected through manual physiological assessments. However, this is limited to intermit-
tent assessments, meaning deteriorations can remain unrecognised until the next assessment
exposing the patient to delays in time-sensitive interventions. The use of wearable sensors cou-
pled with an intelligent notification system may facilitate earlier detection of deteriorations,
since they could provide continuous physiological assessments. Indeed, in some cases they are
currently being used for this purpose, rather than solely for detection of dysrhythmias [60], de-
spite only being able to monitor a minority of physiological parameters such as HR and SpOs.
However, studies have demonstrated only minimal, or no, improvement in patient outcomes
associated with the use of wearable sensors for detection of deteriorations [56, 61-63]. This

is because traditional wearable sensors are designed to identify dysrhythmias based on ECG
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monitoring, but are ill-equipped to identify the multi-parametric physiological changes that in-
dicate deteriorations. Furthermore, there is a low frequency of cardiac arrests or dysrhythmias
amongst patients monitored by telemetry [61-63], meaning that wearable sensors will have lim-
ited impact unless a wide range of deteriorations can be detected. There are also unintended
consequences of using wearable sensors in this way. They may provide a false sense of security
[30] and result in alarm fatigue due to a high false alarm rate [64]. Overall, the evidence suggests
that the use of traditional ECG-based wearable sensors for detecting deteriorations is far from

ideal, as summarised in [65].

Recent developments have rendered wearable sensors much more suitable for detection of dete-
riorations. Firstly, novel wearable sensors can now be used to monitor a much broader range of
physiological parameters than traditional wearable sensors [29]. Table 2.3 lists those parame-
ters which can be measured by wearable sensors which are available for clinical use in hospitals.
These include the five routinely measured ‘vital signs’ (HR, RR, SpO2, SBP and temp), and
ECG-based analyses. This demonstrates that it is technically possible to monitor the five vital
signs using a wearable sensor, as well as parameters indicative of cardiac function. Secondly,
wearable sensors are being made less obtrusive, making them more acceptable to patients. For
example, wrist-worn and patch-style sensors are now being trialled for use in hospitals, such as
the sensor shown in Figure 2.1 [66, 67]. Thirdly, algorithms for assessing the quality of phys-
iological signals can now be implemented on wearable sensors to ensure that only parameters
estimated from high quality signals are reported (such as HRs estimated from the ECG) [67].
Fourthly, the battery life of wearable sensors has increased up to five days [68], reducing the
workload associated with battery replacement. Fifthly, wearable sensors can now be operated
on a hospital’s Wi-Fi network, rather than requiring a bespoke wireless network [69]. Finally,
novel data fusion algorithms for identification of deteriorations from multi-parametric data have
been developed [70], increasing the reliability of identifications of deteriorations [71]. As a re-
sult, the role of wearable sensors may no longer be largely confined to cardiac monitoring in
patients perceived to be at risk of dysrhythmias [30]. Instead, they may have utility for the

early detection of deteriorations which precede adverse events.

An additional, related application for wearable sensors is to reduce the workload associated with
manual physiological assessments. Considerable workload is created by 4 - 6 hourly assessments
since on a general hospital ward there are several patients per member of staff, and each manual
assessment takes several minutes. It may be possible to use wearable sensors to safely reduce the

frequency of manual assessments in patients deemed to be at low risk of deterioration. A process
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TABLE 2.3: Parameters which can be measured using wearable sensors

Parameter Sensor(s) Methodology

Vital Signs

HR ECG or pulse Heart rate (HR) can be measured from either the ECG or
oximeter PPG by detecting individual heart beats in the signals.
This is commonly achieved by using a QRS detector (e.g.

[72, 73]), or pulse peak detector (e.g. [74]).

SpO. pulse oximeter  Arterial blood oxygen saturation (SpO2) can be measured
using a pulse oximeter, commonly situated at either the
finger or ear. The acceptability of pulse oximeters is im-
proving with the design of more comfortable sensors, such
as a miniaturised Velcro finger strap sensor [75].

RR ImP, InP or ac- Several techniques have been developed for monitoring
celerometer respiratory rate (RR), although none is used ubiquitously.
RR can be extracted from: inductance plethysmography
(InP) signals acquired from a strain gauge in a chest
band [76]; impedance pneumography (ImP) signals ac-
quired using two ECG electrodes [69]; and recently an
accelerometer has been used to monitor respiratory move-
ments on the abdomen [77]. Although not in clinical use,
methods are being developed for estimation of RR from
a gyroscope, the ECG, and the PPG [78-80].

BP sphygmoman- Some novel wearable sensors include a sphygmomanome-
ometer ter for blood pressure (BP) measurement [77].
temp thermometer Surface temperature (temp) can be measured in wearable

sensors using a thermometer sited at various locations
including the axilla [81] or at an ECG electrode [69].

ECG-Based Analyses

Arrhythmia ECG Arrhythmia and dysrhythmia alarms are routinely pro-
Detection vided in traditional wearable sensors through analysis of
the ECG [82].

ECG ECG Novel wearable sensors provide measurements of ECG
morphology morphology such as ST duration and QT elevation [83].

such as that illustrated in Figure 2.2 could be used to achieve this. In this process, patients
who have a low enough NEWS at a manual assessment would have the next manual assessment
conducted 12 hours later unless their wearable sensor detected a change in physiology. If a
change in physiology was detected by the wearable sensor, then a manual assessment would
be conducted immediately. This process is based on current guidelines for determining the
frequency of assessments in [28], in which the frequency is reduced to 12 hourly in patients who

are assessed to be at minimal risk of deteriorations, as indicated by a NEWS of zero. If it is
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FIGURE 2.1: A wrist-worn wearable sensor: Nonin Medical’s WristOxs ® 3150 measures heart
rate (HR), arterial blood oxygen saturation (SpO3), and the photoplethysmogram (PPG) con-
tinuously. Source: [5] (CC BY 4.0, DOI: 10.5281/zenodo.166546)

possible to safely reduce the frequency of manual assessments in low risk patients using this

approach, then it could result in a considerable reduction in workload.

2.4 Current Evidence for the Clinical Benefit of Wearable Sen-

SOors

Wearable sensors must satisfy two key requirements to confer clinical benefit in the broad

population of acutely-ill patients:

1. Data coverage: Wearable sensors must provide a sufficiently high real-time data cover-
age, where the data coverage is defined as the proportion of time for which high quality
data are available. Achieving high data coverage in an ambulatory population is not
straightforward for several reasons. These include: the presence of artifact due to move-
ment or poor sensor contact; the discomfort of wearing sensors for prolonged periods;
and, minimal capacity for both clinicians and patients to troubleshoot any problems, since
clinicians already have busy workloads, and patients are often unfamiliar with wearable

SEensors.

2. Multi-parameter monitoring: Wearable sensors must acquire a sufficiently comprehen-
sive set of signals and parameters to be able to detect the physiological changes indicative
of deteriorations. Although a broad set of parameters are measured during intermittent
observations (Table 2.1), it is difficult to acquire such a comprehensive set from wear-

able sensors. This is due to: the increased burden on the patient of wearing multiple
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Manual
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Is the
NEWS <
thresh?

No Frequency of manual
assessments set by
routine guidelines

Frequency of manual Wait until next
assessments set to 12 assessment
hourly
- [ Return ]
Continuous
assessment of
/ wearable sensor data

Have wearable
sensor
parameters
changed?

[ Refurn ]

FIGURE 2.2: Using wearable sensors to reduce staff workload: This process could be used

to reduce the workload associated with manual physiological assessments. An initial manual

assessment is taken to determine whether a patient is at sufficiently low risk of deterioration,

as indicated by a NEWS < thresh. Low risk patients are continuously assessed for changes in a

subset of physiological parameters using wearable sensors. If a change is detected then a manual

assessment is triggered; otherwise, the delay between manual assessments is 12 hours, reducing
workload.

transducers (such as both a pulse oximeter and a set of ECG leads); the increased power
requirements and consequent shortening of battery life when using multiple transducers;

and, the difficulty of acquiring some parameters accurately and unobtrusively, such as RR.

If wearable sensors satisfy these requirements, resulting in a high enough data capture rate for
a sufficiently comprehensive set of physiological signals and parameters, then they may confer

clinical benefit.

Surprisingly few studies have been conducted using multi-parametric wearable sensors in hos-
pitals, as summarised in Table 2.4. Those studies that have been conducted are subject to the

shortcomings of using short monitoring periods and small sample sizes, as illustrated in Figure
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FIGURE 2.3: The shortcomings of studies of wearable sensors: Most studies of multi-parametric

wearable sensors (represented by dots) have either monitored patients for short periods (typically

24 hours or less), or have enrolled few patients (typically less than 50). The studies shown are

detailed in Table 2.4. It was assumed that the patients monitored “until discharge” in [85] were
monitored for 120 hours (five days).

2.3. Evaluations of wearable sensors must be conducted over a similar time-scale to that for
which they would be used in practice. Acutely-ill patients may stay in hospital for several days
or weeks. However, all except one of these studies monitored patients for less than 26 hours on
average, limiting the relevance of their findings with regard to patient acceptance of the sensors.
Furthermore, evaluations must be adequately powered (i.e. have a sufficiently large sample
size) to assess inter-subject variability in feasibility, and to identify clinical benefit given that
only a small minority of patients are likely to deteriorate. However, only three studies enrolled
more than 50 patients. This suggests that further research is required to assess the technical

functionality and clinical benefit of wearable sensors.

Existing studies provide insight into the technical feasibility of acquiring data from wearable
sensors in hospitals. Half of the studies identified in Table 2.4 reported packet reception ratios
or data coverage rates, and are listed in Table 2.5. The packet reception ratios indicate the
proportion of data transmitted from a wearable sensor which were successfully received. The
reported packet reception ratios of over 95 % suggest that it is feasible to transmit and receive
data from wearable sensors in the hospital setting. Indeed, in one study, Chipara et al. found
that service intervals (periods of time for which transmissions were continuously received) lasted
a median of 17.7 minutes, with 90 % of subsequent outage intervals (periods of time for which
transmissions were not received) lasting 1.4 minutes or less [86]. Therefore, the challenges

associated with transmitting wearable sensor data in a hospital, such as obstacles in wards, a
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TABLE 2.5: Studies of wearable sensors which reported data acquisition rates: Studies reported

packet reception ratios (the proportion of data packets transmitted from a wearable sensor which

were successfully received) and data coverage rates (the proportion of time for which valid data
were acquired). * indicates that multiple devices were tested.

Study Sensor(s) Packet reception  Data coverage
ratio [%] rate [%]
Orphanidou et al. [66] ECG - 97
pulse ox - 88
Chipara et al. [86, 87| pulse ox 99.7 ~ 80.9
Ko et al. [33] pulse ox 95.4 -
Ko et al. [89] pulse ox 98.3 -
Lopez et al. [90] accelerometer ~ 90 )

ECG, thermometer
Bonnici et al. [75] ECG - 56.1, 38.8 *
pulse ox - 18.7, 56.1, 9.9 *

changing environment due to movements of people and equipment [33], and transmission within

close proximity to the human body, do not appear to preclude the use of wearable sensors.

Evidence for the feasibility of using wearable sensors to acquire physiological measurements
from hospital patients is less conclusive. Three studies reported the data coverage rate, the
proportion of time for which valid data were acquired. Data can be rendered invalid by sensor
disconnection, poor sensor connection or motion artifact. A wide range of data coverage rates
have been reported for both ECG and pulse oximetry sensors, ranging from 19 to 97 % (see
Table 2.5). This is likely to be indicative of the user acceptability of wearable sensors, since
sensors may be removed by patients or staff if they are too burdensome. Whilst some studies
have reported acceptability feedback from both patients and clinicians, none of these studies
have monitored patients for over 24 hours [33, 88, 91]. It should be noted that the highest
data coverage rates were achieved when monitoring patients for < 4.0 hours [66]. In contrast,
the lower data capture rates reported in 75, 86, 87] were achieved when monitoring patients
for approximately 24 hours. This suggests that the acceptability of wearable sensors, and
therefore the data capture rates, may be associated with the time for which patients have worn
the sensors. Therefore, further research is required to determine whether the use of wearable

sensors for prolonged monitoring is acceptable to patients.

Evidence for the clinical benefit of wearable sensors is sparse. The utility of wearable sensors
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for arrhythmia detection has been reported [88, 91], although a high false alarm rate for critical
arrhythmias has also been reported [84]. Only minimal evidence is currently available to support
the hypothesis that wearable sensors can be used to detect deteriorations other than arrhythmias
and result in changed patient outcomes. For instance, Kisner et al. reported that the use of a
wearable pulse oximeter, coupled with a protocol for initiating supplementary oxygen therapy
if the SpOy fell below 90 %, reduced the incidence of atrial fibrillation in patients recovering
from a coronary artery bypass graft [85]. There are two reasons for a lack of evidence for
the clinical benefit of wearable sensors. Firstly, very few studies have been conducted on the
topic. Secondly, development of wearable sensors has focused largely on the hardware required
to acquire streams of clinical data. However, simply acquiring data will not have an impact
unless it is appropriately processed, providing decision support to clinicians. The next section
will discuss how software for processing of wearable sensor data could be designed to realise the

potential of wearable sensors.

2.5 Realising the Potential of Wearable Sensors

The key to realising the potential of wearable sensors for detecting deteriorations is found in the
development of techniques to process and synthesise the continuous data to provide clinically
useful and actionable outputs. This section provides the clinical background to the contributions

of this thesis towards realising the potential of wearable sensors.

2.5.1 Development and evaluation of techniques for continuous, unobtrusive

RR monitoring

RR has been found to be a highly sensitive marker of deteriorations [93]. For instance, cardiac
arrests are preceded by abnormal RRs [18, 49, 94-96]; elevated RR can indicate respiratory
dysfunction [97]; and, both elevated and reduced RRs (> 20 and < 6 breaths per minute, bpm)
are predictors of mortality [22, 98, 99]. RR has been shown to be a particularly important
indicator of deterioration. For instance, it has been observed to be the best discriminator of
patient risk [31] and the best single variable predictor of cardiac arrest [49]. Furthermore, it
has been found to be highly predictive of resuscitation events and death (odds ratio, OR (95%
CI) = 9.1 (7.12 - 11.59) for RR > 24 bpm) [23], and of in-hospital mortality (OR (95% CI) =
3.18 (2.89 - 3.50) for RR > 22 bpm). Thus, there is much evidence that manual, intermittent
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measurements of RR are highly sensitive markers of deteriorations, suggesting that RR has an

important role to play in the detection of deteriorations using wearable sensors.

Current methods for taking individual and continuous measurements of RR are far from ideal,
despite the clinical importance of RR. In current clinical practice individual measurements are
usually taken by manually counting the chest movements associated with individual breaths
over a period of approximately 30 - 60 s [100]. This practice is time-consuming, inaccurate
[32], and poorly carried out [101-104]. Electronic methods for monitoring RR continuously are
also susceptible to criticism, being obtrusive and inaccurate [32]. For instance, three methods
are currently employed in wearable sensors to monitor RR: impedance pneumography (ImP),
inductance plethysmography (InP), or an accelerometer. ImP is the least obtrusive of these
methods since it consists of measurement of variations in thoracic impedance with respiration
through injection of a high frequency voltage into the thorax at ECG electrodes [105]. However,
ImP has been found to be imprecise, with 95% limits of agreement between reference RRs and
ImP-derived RRs reported as + 11.9 bpm and -9.9 - 7.5 bpm [32, 106]. These errors are large
considering that a normal RR range is approximately 12 - 20 bpm. The use of InP is limited
by the cumbersome nature of the chest bands which are required to hold a strain gauge against
the thorax. Chest bands have been observed to be too uncomfortable for prolonged monitoring
[66]. Until recently the use of accelerometers was confined to experimental devices [107], and
their performance remains unclear. Therefore, there is an urgent need to develop a method for

continuously and unobtrusively monitoring RR using wearable sensors.

A potential solution is to estimate RR from the ECG or PPG signals. Both signals are modu-
lated by respiration as shown in Figure 2.4, providing opportunity to estimate RR from them.
Furthermore, most wearable sensors monitor at least one of the ECG and PPG signals, since
they are required to measure HR, and the PPG is required to measure SpOs. Therefore, esti-
mation of RR from the ECG or PPG would allow RR to be monitored without the need for
any additional sensors, providing a valuable marker of deterioration. Over 100 algorithms have
been proposed in the literature to estimate RR from the ECG and PPG [10]. However, it is not
clear which of these algorithms provides the best performance, nor whether any of these algo-
rithms perform sufficiently well for use in wearable sensors. This is because previous comparison
studies have compared only a small number of algorithms [10] (see for example [108-113]). In
addition they have often evaluated algorithms on data acquired from mechanically ventilated

patients whose respiratory mechanics are different to those of ambulatory patients. Therefore, a
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FIGURE 2.4: Modulation of the pulse oximetry (PPQG) signal by respiration: Stroke volume

varies during respiration due to changes in intrathoracic pressure and venous return. This causes

amplitude modulation of the PPG signal. Other modulations of the PPG are also caused by
respiration, as detailed in Section 4.2.

comprehensive evaluation of existing algorithms is required to identify the best algorithm, and

determine whether its performance is sufficient for use in wearable sensors.

2.5.2 Identification of deteriorations from wearable sensor data

The second step in the processing of wearable sensor data is to generate alerts of deteriorating
patients which can be used to trigger clinical actions. There has been much research into EWSs
for identification of deteriorations from intermittent measurements. However, only minimal re-
search has been conducted into techniques for detecting deteriorations from continuous wearable
sensor data. Two techniques are in clinical use with wearable sensors. The first technique is
to use an EWS to detect deteriorations with the continuous data provided by wearable sensors.
This approach is now clinically available in the IntelliVue Guardian Solution (Philips Medizin-
Systeme GmbH, Béblingen, Germany) [77], which can be customised to use any desired EWS
algorithm [114]. Secondly, novelty detection algorithms are being used to assess the likelihood

™ gystem, designed

of deterioration using wearable sensor data. For instance, the Visensia
by Tarassenko et al. and commercialised by OBS Medical Ltd (Abigndon, UK), uses novelty
detection methods to quantify the level of abnormality of a set of physiological parameters,

indicating deteriorations [115]. These two techniques are now explained in further detail.

The use of an EWS to assess the likelihood of deterioration is a benchmark method for converting
physiological data into clinically meaningful alerts. However, EWSs are designed for use with

high quality data obtained from patients at rest during intermittent physiological assessments.
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In contrast, wearable sensor data present additional challenges due to the increased likelihood
of low quality data, and the possibility of data being acquired during physical activity. Both
scenarios result in the physiological inputs to an EWS not being representative of a patient’s
true physiology when at rest. Furthermore, EWSs typically require inputs which are not pro-
vided by wearable sensors, meaning that additional inputs from the previous set of intermittent
measurements are required, which may no longer be accurate. Therefore, the straightforward
use of an existing EWS to synthesise wearable sensor data cannot be presumed to be an optimal
solution. Modifications to existing EWSs may be needed, such as a requirement that elevated
EWSs be sustained for a certain period before raising an alert to avoid false alerts due to tran-
sient, unrepresentative input data. However, an advantage of the use of EWSs is that they are

already familiar to hospital clinicians due to their widespread use.

The second technique of using novelty detection algorithms to identify deterioration is more

™ gystem consists of a multi-

easily adapted for use with wearable sensor data. The Visensia
variate probability density function (PDF) learnt from a historical dataset. An alert is triggered
when the probability associated with a set of measurements is below an empirically-optimised
threshold. The system was originally trained using continuous monitoring data [115]. Therefore,
it is likely that the model is more robust to the potentially unrepresentative data provided by
wearable sensors. In addition, the model was generated using statistical methods, unlike EWSs
which usually contain an element of expert opinion [116]. Therefore, the system could easily be
re-trained for use with wearable sensor data. Furthermore, the PDF can be generated from any
desired set of numerical inputs. Consequently, this approach is suitable for use with wearable
sensors which only provide a subset of the routinely measured physiological parameters. It is
also suitable for patient-population specific monitoring, since a new PDF could be generated for
each patient population (although this is not currently implemented). In addition, this approach

may facilitate analysis of physiological variability, since the variability in each parameter, and

the variability in their relationships, is captured by the PDF.

Techniques to identify deteriorations from wearable sensor data should be designed with the
following three requirements in mind. Firstly, they must provide sensitive alerts of deterio-
rations. Secondly, the alerts must provide sufficiently earlier warning of deteriorations than
current practice to be clinically advantageous. Thirdly, the positive predictive value (PPV) of
alerts (the proportion of alerts which are true) must be sufficiently high to avoid alarm fatigue.
The problem of alarm fatigue arises where staff have to respond to an overly high false alert

rate. Previous studies of wearable sensors have identified extremely high false alert rates [64],
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which has potential to desensitise staff to alarms, cause mistrust of the equipment, and result in
a lack of response to true alarms [117-119]. Further research is required to determine whether
either of the approaches described meets these three requirements, or whether novel techniques

are required.

2.6 Final Remarks

Acutely-ill hospitalised patients are at risk of deterioration, defined as an acute worsening in
health, resulting in transition to a physiological state with an increased likelihood of a clini-
cal adverse event. Current practice for identification of deteriorations is based on intermittent
physiological assessments, which are performed by hand at 4 - 6 hourly intervals. Recent devel-
opments in wearable sensors mean that they may now have a role in improving the detection
of deteriorations, and reducing the workload associated with manual physiological assessments.
The continuous data provided by wearable sensors may facilitate earlier identification of changes
in physiology, personalised alerting, and analyses of physiological variability. However, very few
studies have investigated the use of multi-parametric wearable sensors in hospitals. Most pre-
vious studies have been limited by low sample sizes or a short monitoring duration. Therefore,
evidence for the feasibility of using wearable sensors to monitor hospitalised patients for pro-
longed periods is lacking, and evidence for the clinical benefit of wearable sensors is even more
sparse. Consequently, further research is required before wearable sensors can be used for de-

tection of deteriorations in hospital patients.

Two steps towards realising the potential of wearable sensors for detecting deteriorations have
been identified. Firstly, a technique is required for continuous and unobtrusive RR monitoring
using wearable sensors. This is because RR is a sensitive marker of deteriorations, yet current
methods for monitoring RR using wearable sensors are highly obtrusive or inaccurate. Secondly,
a technique is required to identify deteriorations from multivariate, noisy, wearable sensor data.
Two existing techniques are now in clinical use: EWSs and novelty detection algorithms. How-
ever, it is not clear whether they perform well enough to meet the three requirements of a
technique to identify deteriorations: sensitivity, advanced warning, and a high PPV. The re-
mainder of this thesis presents investigations into continuous RR monitoring techniques for
use with wearable sensors. In Chapter 8 a RR algorithm is used with algorithms to detect

deteriorations to assess the utility of wearable sensors for detection of deteriorations.
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Assembling a Physiological Dataset

This chapter describes the processes undertaken to assemble a comprehensive physiological
dataset acquired from 226 adult patients. Firstly, the clinical trial in which the data were col-
lected is summarised. This is followed by descriptions of the processes for data preparation
(preparation specific to this particular trial) and quality assessment (identification and elimi-
nation of unreliable continuous data). A detailed description of the dataset is then provided.

Finally, the utility of the dataset for assessing the utility of wearable sensors is evaluated.

3.1 The Feasibility and Efficacy of Continuous In-Hospital Pa-
tient Monitoring (LISTEN) Trial

The Feasibility and Efficacy of Continuous In-Hospital Patient Monitoring (LISTEN) Trial
was an observational study in which acutely-ill patients were monitored continuously using
wearable sensors. Its primary aim was to determine whether wearable sensors could be used
to provide earlier warning of deteriorations than standard practice. Secondary aims included
assessments of the feasibility and clinical utility of using wearable sensors to monitor hospital
patients continuously, and to develop novel early warning algorithms for use with wearable
sensors. A highly comprehensive physiological dataset was acquired during the trial, including
electrocardiogram (ECG) and photoplethysmogram (PPG) data from wearable sensors, making
it particularly suitable for this work. The trial was approved by the Bloomsbury Research
Ethics Committee (reference 12/L.0/0526), and was carried out at Guy’s and St Thomas’ NHS
Foundation Trust, London, UK (National Clinical Trial no. 01549717) between November 2012

24
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and January 2014. Continuous physiological data were acquired throughout patients’ post-
surgical hospital stays, as well as routine health record data. Furthermore, labels of adverse
events (defined in Table 8.1) were added retrospectively. Consequently, the dataset is a highly
comprehensive record of the physiology of a set of acutely-ill hospital patients, both in terms of

the frequency and breadth of measurements.

The patient population chosen for the trial was that of adult patients recovering in hospital
after major cardiac surgery, which had both advantages and disadvantages. The advantages
stemmed from the relative ease of acquiring continuous physiological data from this population.
Firstly, it was possible to equip all of the wards on which these patients would typically stay with
continuous monitoring equipment, since the patients typically followed a narrow and predictable
clinical pathway. Secondly, all of the study wards already used continuous monitoring equipment
when clinically indicated. Therefore, ward staff were familiar with the equipment, making it
easier to use continuous monitoring equipment with the study patients. However, there were
two key disadvantages. Firstly, the incidence of deteriorations in this population is low (in
comparison to high-risk surgical cohorts). Approximately 10-20% of patients recovering from
cardiac surgery suffer from a deterioration during their hospital stay [38, 39], and their hospital
mortality rate is approximately 3% [120]. In contrast, approximately 50% of patients recovering
from major gastrointestinal surgery suffer from a deterioration [37]. Secondly, clinical staff
could not be blinded to the continuous physiological data, since the monitoring equipment was
already in routine clinical use. Therefore, it may have helped staff to identify deteriorations

earlier, prompting clinical interventions which would otherwise not have been carried out.

Patients recovering from major cardiac surgery are at risk of a wide range of adverse events.
The adverse events which can be expected after coronary artery bypass graft (CABG) surgery,
a common type of cardiac surgery [120], have been reported in [40]. Several organ systems
are affected by these events. For instance, the heart is affected by congestive heart failure and
other cardiac events; the cardiovascular system is affected by bleeding and hypotension; the
respiratory system is affected by pneumonia, respiratory compromise, and pneumothorax; and
the kidneys are affected by renal dysfunction. Consequently, the physiological manifestations of
the deteriorations preceding these events can be expected to differ greatly with different types
of event. For instance, cardiac deteriorations are commonly manifested as abnormalities on
the ECG. In contrast, respiratory deteriorations primarily impact vital signs such as RR and
SpO2, whereas cardiovascular deteriorations primarily impact HR and BP. Since each type of

deterioration may affect a different organ system, and manifest differently, it may be necessary
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TABLE 3.1: The typical clinical pathway of patients participating in the LISTEN trial whilst
recovering from cardiac surgery.

Care  Description  Duration [days], = Monitoring Continuous  Parameters
Level med (quartiles) Equipment Signals
1-3 Hospital 7.0 (5.3-11.1) n/a n/a n/a
Care
1 Critical Care 0.9 (0.7 - 1.3) Static bedside = ECG, PPG, HR, SpOs,
monitors ImP, CVP, RR, CVP,
ABP SBP, DBP,
MAP
2 Critical Care 1.3 (1.0 - 2.3)  Static bedside = ECG, PPG, HR, SpO,,
monitors ImP, CVP RR, CVP
3 Ambulatory 4.2 (3.1-8.1) Wearable ECG, PPG HR, SpO.
telemetry
monitors

to design algorithms to detect individual types of deteriorations, or groups of deteriorations

which manifest similarly.

Patients in this trial typically stayed in two distinct clinical settings with differing capabilities
for continuous physiological monitoring: critical care and the ambulatory ward. Patients were
initially treated in a level 1 critical care ward following surgery, known as an intensive care
ward. They were then cared for in a level 2 critical care ward, known as a high dependency
ward. Finally, they stayed in a level 3 ambulatory ward until hospital discharge. The first two
settings, the level 1 and 2 critical care wards, used static bedside monitors (IntelliVue MP70
monitor, Philips Medical Systems, Andover, MA, USA) for continuous physiological monitoring.
The physiological signals monitored were lead IT ECG, finger PPG, impedance pneumography
(ImP), arterial blood pressure (ABP) signals (although ABP was rarely monitored in the level
2 ward), central venous pressure (CVP), and occasional additional ECG leads. In contrast, in
the level 3 ambulatory ward static monitors were no longer used, and instead wearable sensors
(IntelliVue TRx M4841 telemetry monitors, Philips Medical Systems) were used, which only
provided continuous monitoring of ECG and PPG signals. Further details of the signals and
parameters are provided in Table 3.1. As a result of the reduced monitoring capabilities on
the ambulatory ward, the only continuous physiological signals available throughout patients’

recoveries were ECG and PPQG, and the only continuous parameters were HR and SpOs.
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Continuous monitoring data, which consisted of physiological signals, parameters and monitor-
ing alarms, were acquired from the bedside monitors and the wearable sensors using BedMaster
data acquisition software (v.4.1.12, Excel Medical Electronics, Jupiter, FL, USA). The software
associated data with the monitor from which they were recorded, rather than with a particu-
lar patient. Therefore, the times at which patients were being monitored by each monitor were
manually recorded in the electronic Case Report Form (eCRF) to allow the data associated with
each patient to be identified. The data were recorded in a proprietary format, and converted
to Extensible Markup Language (XML) format using the BedMaster software. They were then

converted to Matlab ® format using bespoke software.

The acquisition of intermittent physiological measurements also varied between clinical settings.
In the level 1 and 2 critical care wards observations were routinely recorded in an Electronic
Health Record (EHR), and could be exported to a text file for subsequent processing. However,
in the level 3 ambulatory ward observations were routinely recorded on paper notes. In an at-
tempt to capture these electronically we introduced new vital signs monitors (CVSM 6000, Welch
Allyn, UK) to the ward for the trial. This allowed the user to optionally send measurements
directly from the monitor to an EHR, in addition to the routine use of paper notes. However,
this did not provide a comprehensive record of the intermittent measurements on its own, since
many measurements were not sent from the monitor to the EHR. Therefore, measurements from
the ambulatory ward were dual-transcribed from both the electronically transmitted data and
the paper notes, to obtain as complete a dataset as possible. The intermittent measurements
will serve two purposes in this thesis. Firstly, they will be used to calculate benchmark early
warning scores (EWSs), which will be used as comparators when evaluating novel algorithms for
detection of deteriorations. Secondly, they will be used as inputs to novel algorithms, supple-
menting the continuous data with additional vital signs which are not monitored continuously,

such as temperature.

Three further types of data were recorded. Firstly, fixed variables, i.e. those which do not
change during a patient’s hospital stay, were manually recorded in the eCRF. These included
demographic data and operation details. They may have utility as inputs to early warning
algorithms to stratify patients into groups [121]. Secondly, laboratory test results were auto-
matically recorded in an EHR as part of routine care. They were retrospectively exported as
text files. They may also be useful inputs to early warning algorithms since algorithms have

recently been developed which incorporate laboratory values in addition to traditional vital sign
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inputs resulting in improved performance [122]. Thirdly, adverse events were identified retro-
spectively from each patient’s notes by an expert and recorded in the eCRF. Best estimates of
the times of events were recorded, as well as the times at which they were identified by clinical
staff. These labels are essential for this work since they provide the response variable against

which early warning algorithms can be trained and assessed.

For further details of the LISTEN Trial the reader is referred to [35, 123].

3.2 Data Preparation

The first stage of dataset curation was to perform the data preparation tasks which were specific
to this particular dataset. The aim was to convert the raw data files into a Prepared Dataset

on which analyses can be performed. The following tasks were performed:

e Fixed variables: Age, gender, ethnicity, operation type and operation duration were
extracted from the eCRF. Ethnicities were grouped as: Asian, Black, White, or Other.

Operation types were grouped as: bypass, valve, bypass and valve, or other.

e Events: The following events were extracted from the eCRF: the wards which a patient
stayed on; the times at which patients were admitted to and discharged from each ward;
the times at which patients were provided with a wearable sensor; and the type and times
of any withdrawals from the trial. In addition, the times at which patients stayed in
critical care, an ambulatory ward, and the study ward (the ambulatory ward on which

patients were provided with wearable sensors) were extracted.

e End-points: The types and times of adverse events were extracted from the eCRF, as
well as the following additional end-points: re-admission to critical care; hospital discharge

(regardless of survival status); and discharge from hospital alive.

e Laboratory test results: The majority of laboratory tests gave a result in either a
numerical or a categorical value, whereas a small minority of results were in free-text
format. Those tests which had numerical or categorical results were extracted from the
raw text files. Both the times of tests and the results were extracted. Tests with free-text

results were not exported.
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e Intermittent physiological measurements: Intermittent physiological measurements
were extracted from EHR exports (corresponding to critical care) and dual-transcribed
spreadsheet files (ambulatory ward). Most sets of measurements contained the five vital
signs (HR, SpO2, SBP, temp and RR) and Os. In addition, measurement sets collected

in critical care contained the heart rhythm and ventilator settings.

e Continuous monitoring data curation: Any continuous monitoring data with either
implausible timestamps (e.g. 01-Jan-1970), or physiologically implausible values (e.g.

values > 1 x 10° ), were identified as erroneous and discarded.

e Continuous monitoring alarms: Continuous monitoring alarms were categorised ac-
cording to: (i) whether they were physiological; (ii) the input signal; (iii) type (such
as ‘threshold limit breached’); and (iv) level of severity (as provided by the monitoring

equipment).

e Timestamps: All timestamps were adjusted to be relative to the time at which the
patient left the operating theatre. Times were measured in seconds (except for the times

of physiological signals, which were measured in milliseconds).

e Formatting: All data were imported into Matlab ® format (.mat). This provided effi-
cient data storage, and ensured that all the data were accessible for analysis via a single

software platform.

e Correction of continuous monitoring data timestamps: The timestamps of contin-
uous monitoring data were sometimes incorrect, perhaps due to latencies in data transmis-
sion prior to timestamping. This resulted in sections of data being shifted in time, resulting
in data gaps and simultaneous data, as illustrated in Figure 3.1(a). A bespoke algorithm
was designed and implemented to correct the timestamps. This resulted in correction of
the timestamps of many of the shifted sections, as demonstrated in Figure 3.1(b). The
results of using the algorithm are summarised in Table 3.2. The key advantage of using
the algorithm is that it increases the number of segments which contain continuous data,
allowing additional parameters to be derived from the waveforms. Further details of the

algorithm are available in [35].

The Prepared Dataset is designed to be an accessible representation of the raw data from the
LISTEN trial, following essential data curation processes. It is useful for a small set of analyses

which require all the data, regardless of its quality. For instance, the primary aim of the
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FI1GURE 3.1: Correction of continuous monitoring data timestamps: Errors in timestamps

resulted in simultaneous data at some times, and missing data at others, as shown in (a).

A bespoke algorithm was implemented to correct for erroneous timestamps, as shown in (b).
Figure and caption adapted from [35].

TABLE 3.2: Performance of the timestamp correction algorithm: the proportion of data points,
and continuous data segments, available for analysis are shown before and after using the
timestamp correction algorithm. The key benefit of the algorithm is the increased percentage
of continuous data segments available for signal processing. Assessed using the first 24 hours of
heart rate data acquired from each subject after admission to critical care following surgery.

Proportion available [%], med (lower - upper quartiles)

Before algorithm After algorithm

Data points 94.2 (91.3 - 98.0) 95.3 (92.4 - 99.0)
10 s segments | 90.5 (88.7 - 92.0) 94.6 (91.4 - 98.0)
30 s segments | 85.9 (83.8 - 88.6) (89.6 - 96.1)
60 s segments | 82.0 (77.8 - 85.0) (87.2 - 94.0)

93.2
91.2

LISTEN trial was to assess the feasibility of using wearable sensors for continuous monitoring.
The Prepared Dataset should be used for analyses such as this. However, most analyses are best
conducted using only those data which are of high quality. As such, they should be conducted
on the Processed Dataset. This is an enhanced version of the Prepared Dataset in which data
deemed to be of low quality have been discarded. The processing steps performed to obtain the

Processed Dataset from the Prepared Dataset are now described.
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3.3 Quality Assessment

The second stage of dataset curation consisted of eliminating unreliable continuous monitoring
data from the Prepared Dataset. Unlike intermittent physiological measurements, continuous
monitoring data are recorded without verification by a clinician. Therefore, they are susceptible
to inaccuracies due to factors such as movement artifact and poor sensor contact, making quality
assessment particularly important. Several methods have been proposed in the literature to
identify artifactual data [114]. In this section the methods used to identify and eliminate low
quality continuous data are described. The use of quality assessment methods ensured that
only high quality continuous data were retained in the Processed Dataset. All data other than
continuous monitoring data were simply carried forward from the Prepared Dataset to the

Processed Dataset.

Quality assessment was performed by calculating signal quality indices (SQIs) for ECG, PPG,
ABP and ImP signals. SQIs are metrics derived from a physiological signal which indicate
its quality. In this work SQIs were calculated for the ECG and PPG after segmentation into
windows of 10 s duration [124]; for the ABP using 20 s windows [125]; and for ImP using
32 s windows (as described in Section 4.6.2). A range of measurements indicative of signal
quality were derived from each signal and each window. The quality of each window was then
determined through comparison of the measurements to empirical threshold values, indicative
of the boundaries between low and high quality. Low quality windows of signal were discarded,
as were any parameters derived from these windows (such as SBP values derived from a window
of ABP signal). The quality assessment process is helpful for avoiding false alarms in early
warning algorithms, which are often caused by parameters being inaccurately derived from
artifactual signal data [126]. An example is provided in Figure 3.2, where false bradycardia and
desaturation alerts were triggered by low quality data, which were eliminated through quality

assessment. The signal processing steps involved in calculation of SQIs are now described.

The first step towards calculation of SQIs was to detect heart beats in the ECG, PPG and ABP
signals, and breaths in the ImP signal. Beat detection was performed on the ECG using the QRS
detector proposed by Pan, Tompkins and Hamilton [72, 73]. Two implementations of this QRS
detector were used. Firstly, the implementation that was used in the original SQI algorithms
was used to facilitate SQI calculation [124]. However, since this implementation has not been

rigorously tested and is not publicly available, a second implementation, rpeakdetect.m, was
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FIGURE 3.2: Quality assessment of PPG-derived numerics. The pulse rate (PR) and arterial
blood oxygenation (SpO2) numerics provided by the clinical monitor are shown. It appears that
the patient desaturated at approximately 35 and 70 mins, and that the pulse rate dropped at
40 mins. However, quality assessment of the PPG waveform from which these numerics were
derived revealed that the numerics coloured in pink were of low quality, indicating that these
derangements were not physiological, but artifacts of low quality data.

used for all other purposes besides SQI calculation [127]. Similarly, PPG SQI calculation was
performed using the three-point peak detector used in the original SQI algorithms [124]. For
all other purposes the Incremental Merge Segmentation algorithm proposed in [74] was used
for beat detection. This particular implementation was written by M. Pimentel [128]. Beat
detection in the ABP signal was performed using the pulse onset detector described in [129],
which was implemented in the code accompanying [125]. A modification of this code was used
for both SQI calculation and other purposes. Breath detection in the ImP signal was performed
using the count-orig method, which was originally proposed for use with respiratory signals
derived from the ECG [109]. This consists of: (i) detrending the signal; (ii) detecting peaks and
troughs; (iii) defining a threshold as 0.2 times the 75th percentile of peak values; (iv) ignoring
peaks with an amplitude below this threshold; and, (v) identifying valid breaths as consecutive

peaks separated by only one trough with an amplitude less than zero.
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(a) (c)

ECG ECG
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W |/

Time [s] Time [s]

~

F1GURE 3.3: Template-matching for signal quality assessment: ECG and PPG signals were

segmented into windows, and the correlation between individual beats (thin grey lines) in a

window and the window’s average beat template (thick red line) was calculated. If the correla-

tion was below an empirically determined threshold then the segment was deemed to be of low

quality, as described in [124]. (a) and (b) show high quality windows, whereas (c) and (d) show
low quality windows. Figure and caption adapted from [10].

The second data processing step was to perform signal quality analysis on the continuous signals.
Signal quality analysis of the ECG and PPG signals was performed using the template-matching
algorithms proposed in [124]. The algorithms consist of two parts. Firstly, the HR and the beat-
to-beat intervals are derived from the heart beat annotations. These are compared to a series
of thresholds to determine whether the timings of the annotated heart beats are physiologically
plausible. Secondly, a template beat is calculated as the average of each individual beat. The
correlation between each individual beat and this template is calculated, and compared to an
empirical threshold indicating the minimum acceptable correlation. If a window fails any of these
tests then it is deemed to be of low quality. The template-matching process is demonstrated
in Figure 3.3. These algorithms were chosen since they were designed for use with ambulatory

data.
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Signal quality analysis of the ABP signal was performed using the algorithm proposed in [125].
This consisted of deriving a range of metrics for each beat, and assessing whether they are
physiologically plausible. The metrics included the systolic, diastolic and mean arterial blood
pressures, and the beat duration. If any metric was outside of a pre-specified range of physio-
logically plausible values then that beat was deemed to be of low quality. If a window contained
any low quality beats, then it was deemed to be of low quality. This algorithm is based on
the assumption that physiologically plausible ABP signals can be described by a fixed set of
metrics. Unlike the ECG and PPG SQIs, it does not adapt to an individual patient’s signal

morphology.

The remaining signal for which a SQI was required was the ImP (respiratory) signal. Signal
quality assessment techniques for use with respiratory signals are far less established than those
for use with cardiac signals. Therefore, a novel signal quality index (SQI) for the ImP signal
was developed and assessed, as described in Section 4.6.2. This SQI completed the set of SQIs
required to assess the quality of all of the signals from which routinely used vital signs are

derived.

3.4 Dataset Description

A total of 229 subjects were enrolled into the LISTEN Trial. Three subjects subsequently with-
drew consent so were excluded from any analyses. The demographic characteristics of the 226
remaining subjects are summarised in Table 3.3. A total of 201 subjects (89%) remained in
wards where physiological data could be acquired continuously throughout their stay. Further-
more, 200 subjects (89%) were provided with a wearable sensor for 3.7 (2.6 - 5.2) days. The
physiological dataset acquired from these subjects is presented as two distinct datasets. The
Prepared Dataset is the dataset after completion of the data preparation described in Section
3.2, but before any of the data processing described in Section 3.3. The Processed Dataset is the
dataset after completion of the additional processing described in Section 3.3. These datasets
are described in this section to facilitate evaluation of the dataset for future research. Firstly,
an evaluation of the utility of the dataset for this thesis is presented in Section 3.5. Secondly,
the description in this section will allow future researchers to evaluate the utility of the dataset

for their own research.
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TABLE 3.3: Demographic characteristics of the 226 LISTEN subjects who underwent surgery

Characteristic
Age [yrs|, median (lower - upper quartiles) 67.5 (60.0 - 76.0)
Gender [male], no. (%) 166 (73.5)
Ethnicity, no. (%)
White 210 (92.9)
Asian 6 (2.7)
Black 7(3.1)
Other 1(0.4)
Operation Type, no. (%)
Bypass 71 (31.4)
Valve 111 (49.1)
Bypass and Valve 36 (15.9)
Operation Duration [hrs], median (lower - upper quartiles) 3.4 (2.8-4.2)

The LISTEN data is presented as the Prepared Dataset and the Processed Dataset since the
two datasets are suitable for different types of research. The Prepared Dataset is designed to
contain all of the recorded data, with the exception of nonsensical data, regardless of its quality.
Consequently, it has the advantage of containing additional continuous signals which were not
quality assessed, such as central venous pressure (CVP) and additional ECG leads, and their
accompanying parameters. However, it has the disadvantage that the continuous physiological
data have not been quality assessed. This dataset is designed for either: (i) the experienced
analyst who wishes to process the data using their own methods, or (ii) research which requires
‘real-world’ data, as opposed to solely high quality data. The Processed Dataset is designed to be
used for analyses which require only high quality data. It requires minimal pre-processing, since
any low quality continuous physiological data have already been eliminated. It is designed for
use by novices, and is particularly suitable for use with supervised machine learning algorithms
since it is structured to facilitate extraction of predictor and response variables. A selection of
end-points are provided, giving a choice of response variables. Figure 3.4 shows an example of
the data available for a single patient in the Processed Dataset. All data other than continuous

physiological signals and numerics are identical in the two datasets.

The data coverage rates for the continuous data were limited by the settings in which the data
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FIGURE 3.4: A summary of a LISTEN subject’s processed data: Fixed variables (such as
demographics) are shown at the top, followed by labels of adverse events. The times at which
the patient was in critical care (CC), on the ambulatory ward (Amb), and being monitored
by a wearable sensor (Tele) are then shown. This is followed by the times of laboratory tests
(Labs), and then each of four vital signs: heart rate (HR), arterial blood oxygenation (SpQO2),
respiratory rate (RR) and systolic blood pressure (SBP). Continuous data is shown in small
dots, whereas intermittent measurements are shown as larger dots with a black outline.
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TABLE 3.4: Data coverage rates of continuous data in the Processed Dataset. Definitions:
prop: Proportion of time for which data were acquired [%], median (lower - upper quartiles);

lag: Time until next measurement [median hrs|, median (lower - upper quartiles).

Entire Dataset Critical Care Ambulatory
Variable
prop lag prop lag prop lag
ECG 56.6 0.0 78.3 0.0 45.7 0.0
(39.0-70.6) (0.0-1.9) (68.7-82.6) (0.0-0.0) (15.7-67.1) (0.0-8.1)
PPG 279 0.8 54.4 0.0 9.6 21.0
(17.6-37.7)  (0.0-51.5) (42.8-64.3) (0.0-0.0) (1.1-262)  (1.1- )
ImP 5.3 00 15.6 0.2 n/a n/a
(3.0 - 8.0) (0.6 - o0) (9.9 - 21.7) (0.0 - 0.7)
ABP 6.8 00 21.2 00 n/a n/a
(4.1-11.7) (00 - 00) (11.5 - 30.6) (0.0 - o0)
HR 56.4 0.0 78.5 0.0 45.4 0.0
(39.1-70.3) (0.0-1.9) (68.7-827) (0.0-0.0) (158-67.1) (0.0-8.1)
PR 27.6 0.9 54.7 0.0 7.9 31.0
(17.4-37.7) (0.0-164.6) (43.1-642) (0.0-0.0) (0.9-258)  (1.6- o)
SpO, 27.6 0.9 54.5 0.0 8.4 27.3
(17.3-37.7) (0.0-70.3) (42.8-64.2) (0.0-0.0) (0.9 - 25.8) (1.5 - 00)
SBP 6.9 00 21.4 45.1 n/a n/a
(4.2 -11.9) (00 - 00) (11.6 - 30.7) (0.0 - o0)
DBP 6.8 00 21.4 45.1 n/a n/a
(4.2 -11.9) (00 - 00) (11.6 - 30.7) (0.0 - o0)
MAP 6.8 00 21.4 45.1 n/a n/a
(4.2 -11.9) (00 - 00) (11.6 - 30.7) (0.0 - o0)
PP 6.8 00 214 45.1 n/a n/a
(4.2 -11.9) (00 - 00) (11.6 - 30.7) (0.0 - o0)

were recorded. Continuous data could only be recorded from subjects whilst they were staying
on study wards, i.e. those equipped with data acquisition equipment. Out of the 226 subjects,
25 (11.1%) stayed on a non-study ward at least once during their hospital stay. These subjects
stayed on non-study wards for a median (lower - upper quartiles) of 43.2 % (26.5 - 59.7) of their
hospital stay. In addition, only a subset of the continuous variables available in critical care
could be acquired in the ambulatory setting as described in Section 3.1. The data coverage rates
of the continuous data in the Processed Dataset are summarised in Table 3.4. These are shown
firstly for the entire dataset, and then broken down according to critical care and ambulatory

settings.

Several aspects of the continuous data coverage rates are useful for informing the design of

algorithms for use with wearable sensors. Firstly, only the ECG and PPG signals were available
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FIGURE 3.5: Changes in data coverage in the 24 hours before severe adverse events on the

ambulatory ward: in (a) the coverage of continuous data decreased in the time before adverse

events; whereas in (b) the coverage of intermittent physiological observation data increased in

the time before deteriorations, as shown by a reduced time between consecutive observations.

Dashed lines show median values for all other observations. Severe adverse events were defined
as death, cardiac arrest and critical care readmission.

in the ambulatory setting. Of these, the data coverage rates for the ECG were substantially
higher than those for the PPG. The numerics derived from the ECG and PPG signals (HR,
PR and SpO;) had similar data coverage rates to the signals from which they were derived.
Secondly, in this setting the PPG was rarely acquired at times when the ECG wasn’t acquired:
the PPG was recorded for 31.4 (11.1 - 48.4) % of the time that ECG was recorded, and the
ECG was recorded for 95.7 (87.7 - 99.0) % of the time that PPG was recorded. Therefore, any
algorithms which can use either the ECG or the PPG, such as for estimation of HR, should
prioritise using the ECG due to its improved data coverage. Furthermore, there would be little
benefit to allowing an algorithm to switch between the ECG and PPG interchangeably, since this
would only provide a minimal improvement in data coverage. Thirdly, the data coverage on the
ambulatory ward varied with the progression of deteriorations: the data coverage of continuous
data decreased as shown by a reduction in the proportion of time for which it was acquired
(Figure 3.5(a)), whereas the frequency of intermittent physiological observations increased, as
shown by a reduction in the time between observations (Figure 3.5(b)). This may reduce the

advanced warning of deteriorations which can be provided by wearable sensors.

It is also helpful to consider how the window duration used for analysis of continuous signals
affects the expected time between consecutive windows of continuous data. Most algorithms

would benefit from a longer duration of data to provide more accurate parameter estimation.
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FIGURE 3.6: The impact of signal window duration on the frequency of available windows: (a)
and (b) show how the time between consecutive windows of continuous ECG and PPG signals
is impacted by the window duration. Gaps between segments of high quality continuous data
mean that the time between consecutive high quality windows decreases as the duration of
windows increases. This results in a compromise between the duration of data used in signal
processing algorithms, and the frequency with which parameters can be estimated.

TABLE 3.5: The impact of signal window duration on the frequency of available windows. The
median time between consecutive windows is provided for typical window durations used for
signal processing algorithms. Results expressed as median (lower - upper quartiles).

Median time between consecutive windows [mins]

ECG PPG

Window
duration [s]

15 3.34 (1.50 - 11.17) 2.00 (1.18 - 4.00)
30 6.43 (3.00 - 13.63) 3.25 (2.00 - 6.17)
60 9.58 (4.33 - 17.67) 5.00 (3.00 - 9.52)
90 11.29 (5.33 - 21.91) 6.83 (4.02 - 13.08)
120 11.45 (6.87 - 24.12) 8.83 (5.17 - 18.00)
300 20.17 (11.33 - 39.71) 23.08 (11.67 - 54.23)

However, increasing the required window duration has the disadvantage of also increasing the
time between consecutive windows, due to gaps in the data. Figures 3.6 (a) and (b) show how the
time between consecutive windows increases with increased ECG and PPG window duration. It
is clear that an increase in the window duration used by an algorithm will dramatically reduce
the frequency with which parameters could be derived, since the time between consecutive
windows is greater. Results for specific candidate window lengths are shown in Table 3.5. These

results suggest that it may be possible to estimate parameters sufficiently frequently when using
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TABLE 3.6: Data coverage rates of intermittent physiological measurements. Definitions:
freg: Frequency of measurements per day, median (lower - upper quartiles);
lag: Time until next measurement [median hrs|, median (lower - upper quartiles).

Entire Dataset Critical Care Ambulatory
Variable
freq lag freq lag freq lag
HR 11.2 1.6 24.1 0.5 4.2 3.3
(9.4-13.4)  (0.6-4.4) (22.7-251) (0.3-08) (3.7-49) (1.6-5.7)
SpO, 11.2 1.6 23.6 0.5 4.3 3.2
(9.2-13.3) (0.6-4.3) (221-247) (0.3-0.8) (3.8-5.0) (15-5.6)
RR 11.2 1.6 23.9 0.5 4.2 3.2
(9.3-13.2) (0.6-4.3) (22.3-249) (0.3-0.8) (3.7-4.8) (15-5.6)
SBP 8.8 2.6 184 0.7 4.3 3.2
(7.0-11.0) (0.8-59) (13.5-223) (0.3-4.6) (3.8-50) (1.5-5.5)
DBP 8.8 2.6 184 0.7 4.3 3.2
(7.0-11.0) (0.8-59) (13.5-223) (0.3-4.6) (3.8-50) (1.5-5.5)
temp 6.0 2.5 9.6 1.5 4.1 3.2
(52-7.0) (L1-46) (8.3-113) (0.7-2.7) (3.6-4.6) (15-5.6)
MAP 6.2 00 18.1 0.7 0.0 39.9

(43-83) (71-00) (13.3-221) (0.3-35.9) (0.0-0.1) (14.4- o)

longer window durations. For instance, a window duration of 120 s would allow parameters to
be estimated multiple times per hour, which is often enough to detect physiological changes

indicative of deteriorations.

The data coverage rates of the intermittent physiological measurements are provided in Table
3.6. The five routinely measured vital signs (HR, SpO3, RR, SBP and temp) were each measured
approximately once every four hours on the ambulatory ward. DBP was also measured at the
same frequency, although it may not be widely measured at other institutions since its inclusion
in routine physiological measurements is not mandated [28]. MAP was not recorded on the paper
charts, but only through the occasional electronic transmission of measurements to the electronic
health record (EHR), explaining its low frequency of measurement. It may well be helpful to
include the five routinely measured vital signs in algorithms for detection of deteriorations,
since they were measured frequently enough to identify changes in physiology associated with
deteriorations. Furthermore, the use of intermittent temp and SBP values may be particularly

beneficial since these parameters are not available from the processed wearable sensor data.

The data coverage rates of the biochemistry results are provided in Table 3.7. The most fre-

quently measured biochemistry values in the ambulatory ward were measured 0.4 (0.3 - 0.6)
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TABLE 3.7: Data coverage rates of biochemistry results. Definitions:
freg: Frequency of measurements per day, median (lower - upper quartiles);
lag: Time until next measurement [median hours|, median (lower - upper quartiles).

. Entire Dataset Critical Care Ambulatory
Variable
freq lag freq lag freq lag
Activated partial 0.0 00 0.0 00 0.0 00

thromboplastin (0.0 - 0.0) (00 - 0) (0.0 - 0.0) (00 - 0) (0.0 - 0.0) (00 - 00)
time

Albumin 0.1 00 0.5 0 0.0 0
(0.0-0.2) (00 - 00) (0.0 - 0.6) (00 - 00) (0.0 - 0.0) (00 - 00)
Bilirubin 0.0 00 0.0 0 0.0 0
(0.0-0.2) (00 - 00) (0.0 - 0.0) (00 - 00) (0.0 - 0.0) (00 - 00)
C-reactive 0.3 65.0 0.3 54.0 0.2 00
protein (0.1-04) (284-00) (0.0-0.6) (22.7-78.1) (0.0-0.3) (34.5-00)
Creatinine 0.8 20.1 1.5 11.5 0.4 35.8
(0.6 - 1.0) (8.9 - 53.5) (1.2 - 1.6) (5.6 - 19.5) (0.3-0.6) (15.0 - 00)
Glomerular 0.8 20.1 1.5 11.5 0.4 35.8
filtration rate (0.6 -1.0) (89-53.5) (1.2-1.6) (5.6 -19.5) (0.3-0.6) (15.0- c0)
Haemoglobin 0.8 19.9 1.5 114 0.4 35.8
(0.6 - 1.0) (9.1 -54.7) (1.2-1.7) (5.4 - 19.5) (0.3-0.6) (15.0 - 00)
Magnesium 0.5 00 14 11.8 0.0 00
(0.4-0.6) (17.2 - 00) (1.2 - 1.6) (5.6 - 20.3) (0.0 - 0.0) (00 - 00)
Platelet count 0.8 19.9 1.5 11.4 0.4 35.8
(0.6 - 1.0) (9.1 -54.7) (1.2 - 1.6) (5.4 - 19.5) (0.3-0.6) (15.0 - 00)
Potassium 0.8 20.5 1.4 11.6 0.4 35.6
(0.6 - 1.0) (9.0 - 53.3) (1.2 - 1.6) (5.6 - 19.7) (0.3-0.6) (15.0 - 00)
Sodium 0.8 20.1 1.5 11.5 0.4 35.8
(0.6 - 1.0) (8.9 - 53.5) (1.2 - 1.6) (5.6 - 19.5) (0.3-0.6) (15.0 - 00)
Red blood cell 0.8 19.9 1.5 11.4 0.4 35.8
count (0.6 - 1.0) (9.1 -54.7) (1.2-1.7) (5.4 - 19.5) (0.3-0.6) (15.0 - 00)
Troponin-T 0.0 00 0.0 00 0.0 00
(0.0 - 0.0) (00 - 00) (0.0 - 0.0) (00 - 00) (0.0 - 0.0) (00 - 00)
Urea 0.2 00 0.6 34.2 0.0 0
(0.1-04) (00 - 0) (0.3 -1.0) (11.6 - 0) (0.0 - 0.0) (00 - 00)
White blood cell 0.8 19.9 1.5 11.4 0.4 35.8

count (0.6-10) (9.1-547) (12-17) (54-195) (03-06) (15.0 - 00)
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TABLE 3.8: Number of patients experiencing each of the most frequent types of adverse clinical
event in the ambulatory setting, n (%)

Adverse event Entire Dataset Critical Care Ambulatory
Atrial fibrillation 77 (34.1) 50 (22.1) 28 (12.4)
Cardiac pacing 107 (47.3) 84 (37.2) 26 (11.5)
Critical care readmission 11 (4.9) 0 (0.0) 11 (4.9)
Sepsis 26 (11.5) 17 (7.5) 9 (4.0)
Pleural drain 13 (5.8) 8 (3.5) 6 (2.7)
Cardiac failure 10 (4.4) 5(2.2) 5 (2.2)
Return to surgery 18 (8.0) 15 (6.6) 4 (1.8)
Deep wound infection 6 (2.7) 2 (0.9) 4 (1.8)
Cardiac arrest 6 (2.7) 3(1.3) 3 (1.3)
Altered mental state 21 (9.3) 18 (8.0) 3(1.3)
Acute kidney injury 101 (44.7) 99 (43.8) 2 (0.9)

times per day, resulting in a median expected lag time until the next measurement of approxi-
mately 36 hours (1.5 days). Since deteriorations are expected to progress over periods of hours
rather than days, routinely measured biochemistry values are unlikely to be beneficial for detec-
tion of deteriorations. Nonetheless, it has previously been observed that the use of biochemistry

results can improve algorithms for detection of deteriorations [130].

Table 3.8 lists the the most common types of adverse clinical events in the ambulatory setting.
The rate of adverse events in this patient population was low, as expected. The most common
adverse events in the ambulatory setting were the onset of paroxysmal atrial fibrillation (occur-
ring in 28 patients) and the need for cardiac pacing (26). However, neither of these are suitable
candidates for predicting using multi-parameter wearable sensors since they can be readily de-
tected from the ECG, and any precursory changes in physiology are likely to be confined to the
ECG. In contrast, critical care readmission (11), sepsis (9), return to surgery (4), and cardiac
arrest (3) are suitable candidates for prediction since they are more likely to be manifested
across a range of physiological parameters. The low rates of adverse events mean that any
predictive algorithms trained on this dataset should be hypothesis generating, and should be
re-trained and validated on larger datasets. In addition, a technique such as cross validation

should be used to maximise the contributions of the patients who experienced adverse events.
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3.5 Dataset Evaluation

In this section the utility of the LISTEN Dataset for designing algorithms to detect deteriorations

is evaluated.

The LISTEN Dataset is a valuable resource for assessing the utility of wearable sensors. It
contains data collected from 226 patients, 200 of whom were provided with a wearable sensor
for 3.7 (2.6 - 5.2) days. In contrast, similar datasets acquired in previous studies have been
limited by either the wearable sensors being worn for short periods (typically 24 hours or less),
or collecting data from a small number of patients (typically less than 50), as described in
Section 2.4. Consequently, this dataset can be used for relatively robust analyses over a large
number of patients, and over a length of time which is comparable to that of their expected

usage.

The LISTEN Dataset contains all the variables which could be acquired routinely in the clinical
setting in which the study was conducted, as detailed in Table 3.1. In addition to the routine
monitoring, patients wore a wearable sensor for the entirety of their recovery on an ambulatory
ward. In contrast, only a minority of patients wear a wearable sensor routinely. This facilitated
capture of ECG and PPG signals throughout patients’ hospital stays, making this a uniquely
comprehensive record of the physiology of hospital patients recovering from cardiac surgery. In
addition, all of the signals and parameters which are routinely monitored in critical care were
captured. However, the dataset cannot be considered to be fully comprehensive since some
other wearable sensors provide additional monitoring of activity, RR and temp, which are not
available in this dataset. Nonetheless, it has the advantage that all of the variables acquired can
be monitored in routine clinical practice, ensuring that any novel techniques developed based

on continuous monitoring of these variables could be implemented in practice.

The inclusion of routinely acquired intermittent physiological measurements, and labels of ad-
verse events, ensures that the dataset is highly suitable for developing and evaluating algorithms
for detection of deteriorations. The intermittent measurements can be used to derive bench-
mark EWSs, allowing novel algorithms for detection of deteriorations to be compared to current
practice. In addition, the labels of adverse events can be used to classify data from each patient

to train algorithms.

The data coverage rates are those which can be expected in a real-world clinical setting (Table

3.4). The highest data coverage rate was given by the ECG in both critical care and ambulatory
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settings. Therefore, it should be the primary choice of signal for analyses which can be performed
using several signals, such as RR estimation and heart rate variability (HRV) analysis, which
could use either the ECG or the PPG. The PPG signal had a relatively low data coverage rate,
which should be considered when evaluating the usefulness of deriving novel parameters from
the signal. The data coverage rates tended to be much higher in critical care. Therefore, it may
be advantageous to develop techniques on the critical care data, and use the ambulatory data

to test their performance.

The LISTEN Dataset has been pre-processed using several trial-specific processing procedures,
ensuring that future users can begin analyses quickly without having to perform pre-processing
to clean up the data. Four continuous signals were quality assessed, reducing the inaccuracies in
the numerics derived from them. This is particularly important in the ambulatory setting where
motion artifact and poor sensor contact are common. A novel SQI was developed for use with
the ImP signal, allowing users to have confidence in both the RRs and the timings of individual
breaths derived from this signal. This facilitates analyses which require accurate breath timings,
such as respiratory rate variability analyses [131], and those which require precise RRs, such
as the use of ImP-derived RRs as a reference for the assessment of algorithms to estimate RR
from the ECG and PPG [4]. In contrast, other comparable datasets containing continuous
physiological data, such as the MIMIC Database acquired using static monitors in critical care
[132], require substantial pre-processing before analyses can be conducted. This makes the

LISTEN Dataset ideal for rapid analyses without the need for considerable pre-processing.

The data acquisition procedures used to collect the LISTEN Dataset were not perfect, leading
to missing, and in some cases, erroneous data. Approximately one third of the patients who
wore a wearable sensor asked to have it removed before the end of their hospital stay [123]. In
addition, technical malfunctions of the data acquisition system led to gaps in the continuous
monitoring data of several hours or even days on occasion. Furthermore, the intermittent
physiological measurements were acquired by transcription from handwritten charts, which were
sometimes illegible. Data gaps such as these mean that some subjects may not contribute data
to particular analyses. Future users should also be aware of the limitations of the monitoring
equipment and data acquisition software. These included: (i) sampling frequencies of 125 Hz,
potentially inhibiting particular analyses such as HRV analyses; (ii) varying, unknown timing
offsets between the ECG and PPG signals, inhibiting pulse transit time calculations; and, (iii)

the acquisition of signals using the amplitude scaling applied by the ward staff, potentially
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reducing the resolution of signals. Nonetheless, the acquired signals and parameters represent

those which can be reasonably collected during current clinical practice.

The patient population for this trial was chosen to facilitate relatively high data coverage rates.
However, there were several disadvantages to using this population. Firstly, the group of subjects
was relatively homogeneous since each patient’s critical illness was caused by cardiac surgery.
In contrast, medical inpatients can be admitted because of a range of illnesses, meaning that
any findings may not be generalisable beyond cardiac patients. However, findings may still have
ramifications since over 30,000 patients undergo cardiac surgery in England and Wales each
year [120]. Secondly, since of all the subjects had undergone cardiac surgery, their physiology
may have been deranged due to the after-effects of the operation, making it difficult to differ-
entiate between derangements indicative of deteriorations, and those due to surgery. Thirdly,
all physiological measurements acquired were available to clinicians in real-time, so would have
prompted changes in treatment thus altering both physiology and end-points from their natural
courses. The impact of this could have been reduced by selecting a patient population which

does not receive continuous ambulatory monitoring as part of routine care.

3.6 Final Remarks

This chapter has described the processes for, and results of, assembling a physiological dataset
with which to test the hypothesis of this thesis. The LISTEN Dataset is a highly comprehensive
physiological dataset containing data acquired from patients recovering from major cardiac
surgery in hospital. The data is presented as two datasets: the Prepared Dataset, which is
designed to contain all of the data acquired, after elimination of nonsensical data; and the
Processed Dataset, which has been subject to quality assessment. The Processed Dataset is
recommended for most analyses, unless real-world data is required, in which case the Prepared

Dataset should be used.

The LISTEN Dataset contains continuous physiological monitoring data acquired from critical
care using static bedside monitors, and the ambulatory setting using wearable sensors. Contin-
uous ECG and PPG signals are available throughout, with additional ImP and ABP signals in
critical care. In addition, intermittent physiological measurements, biochemistry results, demo-
graphics and labels of adverse events are provided. Furthermore, EWSs can be derived from

the intermittent measurements, acting as benchmark algorithms for detection of deteriorations.
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Initial analyses of the dataset provided guidelines for the design of algorithms to detect deteri-

orations when using this dataset:

e Only ECG and PPG signals were available from wearable sensors. Therefore, algorithms
for use in the ambulatory setting should use these signals and the numerics derived from

them (HR, PR and SpOy).

e The ECG was captured for a greater proportion of the time than the PPG. Furthermore,
the PPG was only rarely captured at times when the ECG was not, meaning that the
ECG should preferably be used for algorithms where possible.

e Data coverage rates of continuous monitoring data decreased before severe adverse events,

which may impair the detection of deteriorations.

e The use of shorter windows (e.g. 30 s) of signals to estimate additional parameters, such
as RR, is beneficial for increasing the frequency of available windows. However, the use
of longer windows (e.g. 120 s) would still allow additional parameters to be estimated

multiple times per hour, potentially providing early detection of deteriorations.

e The five routinely measured vital signs (HR, RR, SpO2, BP and temp) were the only
intermittent measurements which were measured frequently enough to be expected to be

of use in algorithms for detection of deteriorations.

e The adverse events which occurred most often in the dataset, and which are expected to be
manifested across multiple physiological parameters are: cardiac arrest, sepsis, readmission

to critical care, and return to surgery.

The LISTEN Dataset has the advantage of being a real-world dataset, although its generalis-
ability to other acutely-ill patient populations is potentially limited. It has the advantage that
it contains variables which can be routinely acquired from hospital patients. This means that
any algorithms developed using the dataset could be applied in current practice. Furthermore,
since the data was collected across long monitoring periods from a high number of patients, the
data coverage rates are those which could be expected in clinical practice. However, the dataset
has the disadvantage that it contains data solely from patients recovering from cardiac surgery.
Therefore, any findings may not be generalisable beyond this population. In addition, this pop-
ulation suffered from a relatively low rate of adverse events, meaning algorithms developed on

this dataset may need to be re-trained and validated on other datasets.



Chapter 4

Estimating Respiratory Rate from
the Electrocardiogram and
Photoplethysmogram: a Systematic

Review and Toolbox of Resources

This chapter presents a systematic review of algorithms to estimate respiratory rate (RR) from
the electrocardiogram (ECG) and photoplethysmogram (PPG) signals. It starts by describing
the rationale for estimating RR from the ECG and PPG. This is followed by an explanation of the
physiological basis for estimating RR from the ECG and PPG. The methodology for a systematic
review of the literature is then presented. The results of this review are presented focusing on
the systematic search process, the characteristics of the included publications, the techniques
used for RR algorithms, and the methodologies used to assess RR algorithms. A discussion
provides a critical review of the state of the literature, culminating in the identification of key
limitations which should be addressed in future research. Finally, a toolbox of resources to aid
research into RR algorithms is presented consisting of: (i) novel datasets for assessment of RR
algorithms, (ii) a novel signal quality index (SQI) for use with the impedance pneumography
(ImP) signal, and (iii) a set of benchmark RR algorithms. These resources are being made

publicly available at: http://peterhcharlton.github.io/RRest.
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4.1 Rationale

RR is an important physiological parameter which provides valuable diagnostic and prognostic
information. It is frequently measured in acutely-ill hospital patients since it is a highly sensitive
marker of deteriorations, as detailed in Sections 2.2 and 2.5. It is also widely used in many other
clinical scenarios, such as: in emergency department screening of both children [133] and adults
[134]; in the identification of pneumonia [135] and sepsis [136]; as a marker of hypercarbia [104]
and pulmonary embolism [137]; and, for prognosis in the ICU [138]. RR is usually measured by
manually counting chest wall movements, which is time-consuming, inaccurate [32], and poorly
carried out [101, 102, 104], as described in Section 2.5. In addition, RR monitoring is not widely
incorporated into wearable sensors. Therefore, there is an unmet clinical need for an automated,
electronic method for measuring RR. If an unobtrusive method could be developed then it may
have utility both for taking intermittent measurements, and for continuous monitoring using

wearable sensors.

A potential solution is to estimate RR from a non-invasive signal which is modulated by respi-
ration and is easily measured. Two such signals are considered in this review: the ECG and the
PPG. The ECG is measured for a short period of time during screening for heart disorders. It is
also monitored continuously in high acuity settings such as the intensive care unit or coronary
care unit, and in hospital patients at risk of dysrhythmias [56]. In addition, wearable sensors
often monitor the ECG. Indeed, some recently developed sensors incorporate ECG monitor-
ing into a chest-worn patch, providing continuous single-lead ECG monitoring over a period of
several days in a highly unobtrusive manner [81]. The PPG is routinely measured in a wide
range of clinical settings to obtain arterial blood oxygen saturation (SpO2) and pulse rate (PR)
measurements. In addition, the PPG is continuously monitored in critically-ill patients, and
can also be monitored continuously in ambulatory patients using wearable sensors. Further-
more, non-contact video-based technology is being developed for continuous PPG monitoring
in a wide range of clinical scenarios, without the need for any equipment to be attached to the
patient [139]. Therefore, both the ECG and PPG signals are widely available. In addition,
they are both modulated by respiration, making them a highly attractive means of obtaining
unobtrusive, electronic RR measurements. Furthermore, they were both acquired throughout
the LISTEN Trial (Section 3.4), meaning that techniques for estimation of RR from the ECG
and PPG could be used to derive RR from the continuous data in the LISTEN dataset.
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FIGURE 4.1: Respiratory modulations of the ECG and PPG: Both the ECG and the PPG are
subject to three respiratory modulations: baseline wander (BW), amplitude modulation (AM)
and frequency modulation (FM). Source: [10] (CC BY 3.0, DOI: 10.1088/0967-3334/37/4,/610)

Over 100 algorithms have been proposed to estimate RR from the ECG or PPG [10]. However,
the literature surrounding these algorithms has not been synthesised. Consequently, it is difficult
to identify all of the algorithms which have been proposed, and to determine which, if any, RR

algorithm is most suitable for clinical use.

A systematic review was undertaken to establish: (i) the techniques used to estimate RR; (ii)
the methodology used to assess RR algorithms; and, (iii) the reported performances of RR

algorithms.

4.2 Physiological Basis for Respiratory Rate Algorithms

Algorithms to estimate RR from the ECG and PPG are based on extraction of one or more respi-
ratory modulations from the signals. Both the ECG and PPG exhibit three types of respiratory
modulation as illustrated in Figure 4.1: baseline wander (BW), amplitude modulation (AM)
and frequency modulation (FM). RR can be estimated from the ECG or PPG by extracting a
signal which is dominated by one or more of these modulations. For instance, a low-pass filter
could be used to extract the low frequency respiratory modulation due to BW. The resulting

signal could then be used to estimate RR through spectral analysis.
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TABLE 4.1: Physiological mechanisms of ECG and PPG respiratory modulation. For a compre-
hensive treatment see [79] and [140]. Source: [7] (CC BY 3.0, DOIL: 10.1088/1361-6579/aa670e)

Modulation ECG PPG

BW Changes in tissue blood volume
caused by: (i) transmitted changes
in intrathoracic pressure; and (ii)
vasoconstriction of arteries during
inhalation, transferring blood to
more central veins [144].

Beat morphology is influenced
during respiration by two
mechanisms: (i) changes in
thoracic impedance, and (ii)
changes in the orientation of the

AM electrical axis of the heart relative ~ Stroke volume is reduced during in-
to ECG electrodes [79). halation due to changes in intratho-
racic pressure, affecting pulse ampli-
tude [140].
FM FM is the manifestation of respiratory sinus arrhythmia (RSA) [145] which

causes heart rate to increase during inspiration and decrease during exhala-
tion. It is caused by at least three mechanisms: (i) changes in intrathoracic
pressure during inhalation stretch the sino-atrial node, increasing heart rate
(HR); (ii) increased vagal outflow during exhalation reduces HR; and (iii)
reduced intrathoracic pressure during inhalation decreases left ventricular
stroke volume, causing a baroreflex-mediated increase in HR [146].

Several physiological mechanisms are responsible for the respiratory modulations of the ECG
and PPG. They have been reported previously in [79] and [140], and are summarised in Table
4.1. The mechanisms which cause BW and AM differ between the ECG and PPG, whereas
a single mechanism causes FM in both signals. The mechanisms are not fully understood.
However, it is clear that the strength of any particular respiratory modulation can be affected
by a range of factors. For instance, respiratory sinus arrhythmia (RSA, which causes FM) and
chest wall expansion (which is linked to BW and AM) both diminish with age [141], [142], [143],
[10]. The strength of a modulation may affect the reliability of RR estimates which can be

derived from that modulation.

4.3 Methods

4.3.1 Approach

Publications containing algorithms for estimation of RR from the ECG and PPG were identified
systematically using the following methodology. Firstly, it was decided that publications would
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be eligible for inclusion if they described: (i) an algorithm which operated on either the single-
lead ECG signal or the single-channel PPG; and (ii) an algorithm for estimation of either
RR or breath-to-breath intervals. Publications were excluded if they met one of the following
exclusion criteria: (i) they were written in a language other than English; (ii) no full text was
available (after contacting authors where possible); or, (iii) they were patents. Secondly, an
initial, pragmatic search was performed for publications containing algorithms meeting these
criteria. Thirdly, the titles of the publications identified during the pragmatic search were
analysed to determine a search strategy for use in a systematic search. Fourthly, a systematic
search was conducted using the following online databases: PubMed, Scopus, IEEE Xplore, and
Google Scholar. Finally, publications containing algorithms meeting the inclusion criteria were

identified through screening of titles, followed by full publications.

4.3.2 Determining a search strategy

The initial pragmatic search yielded a total of 90 qualifying publications. This allowed a search
strategy to be determined as follows. Inspection of the publication titles revealed three common
themes: (i) the process of respiration; (ii) a mathematical process; and, (iii) description of the
input signal. Words which occurred in at least 5% of the publication titles were sorted into
one of these three categories, or deemed to be irrelevant. This yielded 27 keywords: three
in the respiration category; 15 in the mathematical process category; and nine in the input
signal category. A total of 76.7% of the titles contained at least one of the keywords from each
category. Therefore, a search strategy was devised consisting of three search terms (one for
each category), in which publication titles had to contain at least one keyword from each search
term to be included. The next step was to eliminate keywords which did not add value to the
search strategy, to increase the specificity of the search. A total of 10 keywords did not add
value to the search strategy, as demonstrated by there being no reduction in the sensitivity of
the search strategy (from 76.7%) when each was individually omitted. Omission of all 10 only
slightly reduced the sensitivity of the search strategy to 75.6%. Therefore, this was chosen as
the search strategy to be used in a systematic search. The final keywords are listed in Table
4.2. These were used to perform a systematic search on the 12t and 13t August 2016. Both
publications identified through the systematic search and those identified through the initial

pragmatic search were screened against the inclusion and exclusion criteria.
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TABLE 4.2: Systematic review search terms. To be included, publication titles had to contain
at least one keyword corresponding to each search term.

Search  Theme Keywords
term
S1 Respiration breathing, respiration, respiratory
S2 Mathematical process derivation, derived, estimation, extraction, methods,
rate, rates
S3 Input signal ECG, electrocardiogram, photoplethysmogram, pho-
toplethysmographic, photoplethysmography, PPG,
pulse
Google Scholar IEEE Xplore PubMed Scopus Manual Search
338 121 163 306 90
A
Screening
Excluded
553
after removal of duplicates 4 1 3
Consisting of:
303 Irrelevant title
50 Didn’t estimate RR
y 36 Didn’t use single-lead ECG or
single-channel PPG
Included 13 Not in English
9  No full text available
1 40 2  Patents

FIGURE 4.2: Identification and screening of publications describing respiratory rate (RR) algo-
rithms showing: the number of publications identified by the searches, screened, excluded and
included in the final analysis.

4.4 Results

4.4.1 Search and screening

The results of the identification and subsequent screening of publications are summarised in
Figure 4.2. The search identified 553 publications. These were screened against the inclusion

and exclusion criteria, leading to exclusion of 413 publications. Most excluded publications were
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TABLE 4.3: The utility of databases searched in a systematic review of respiratory rate (RR)

literature. Definitions: No. pubs - number of publications included in the final analysis; No.

unique pubs - number of publications included in the final analysis which were unique to this
database; Sen - sensitivity; PPV - positive predictive value.

Database No. pubs No. unique pubs Sen [%] PPV [%)]
Google Scholar 36 7 25.7 10.7
IEEE Xplore 59 2 42.1 48.8
PubMed 48 2 34.3 29.4
Scopus 91 4 65.0 29.7
Manual Search 90 31 64.3 100.0

deemed to be irrelevant based on their titles. In addition, many articles were excluded because
they did not present algorithms to estimate RR. These articles often presented methods for
extracting a respiratory signal from the ECG or PPG, without estimating RR from that signal.
A total of 140 publications were included in the final analysis: [10, 80, 108-113, 147-278]

Statistics describing the utility of each database are presented in Table 4.3. The most compre-
hensive database was Scopus, which contained nearly two thirds of the publications included
in the final analysis (shown by its sensitivity of 65.0 %). Approximately one third of the re-
sults retrieved from Scopus were included in the final analysis (shown by its positive predictive
value, PPV, of 10.7 %). The least comprehensive database was Google Scholar, which returned
only 25.7 % of the included publications, and only approximately one tenth of its results were
included (shown by its PPV of 10.7 %). It is notable that the manual search strategy missed
35.7 % of the publications included in the final analysis, and the automated search strategy

consisting of the four electronic databases missed 22.1 % of the included publications.

4.4.2 Characteristics of included publications

The included publications were published between 1991 and 2016. Only three were published
in the seven years following the initial publication in 1991. Since 1999, the rate of publication
has risen steadily up to the present rate of approximately 16 publications per year, as shown
in Figure 4.3. Approximately half of the included publications (72 out of 140, 51.4 %) were
presented at conferences. Most of the remaining publications were journal articles (63, 45.0 %).

The remainder were theses (5, 3.6 %).
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FIGURE 4.3: The number of publications describing respiratory rate (RR) algorithms published

each year: This histogram illustrates how the number of publications describing RR algorithms

each year since the first publication in 1991. The rate of publication has risen steadily since
1999.
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FIGURE 4.4: The stages of a respiratory rate (RR) algorithm. Dashed stages are optional.

4.4.3 Respiratory rate algorithms

During the review of RR algorithms it was observed that they consisted of up to five stages,

as illustrated in Figure 4.4. The role of each stage is as follows. Ezxtract Respiratory Signal(s)

consists of extracting one or more time series dominated by respiratory modulation. Fuse Signals

is an optional stage in which multiple respiratory signals can be fused to give one respiratory

signal in either the time or frequency domain. FEstimate RR(s) consists of estimating a RR

from a window of a respiratory signal. Fuse RR FEstimates is an optional stage used to fuse

multiple RR estimates to obtain one final estimate. Quality Assessment can be used at various

stages throughout an algorithm to reject or mitigate against imprecise estimates. The signal

processing steps which have been used in the literature at each stage are now described.
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FIGURE 4.5: Extraction of a respiratory signal from the ECG or PPG: ECG (upper plot) and
PPG (lower plot) signals and extracted respiratory signals (grey) are shown on the left. The
corresponding frequency spectra are shown on the right. The frequency spectra of the raw
ECG and PPG signals are dominated by the cardiac frequency content at 1.2 Hz. In contrast,
the frequency spectra of the extracted respiratory signals are dominated by respiration at 0.3
Hz, which is approximately the RR provided by simultaneous ImP measurement (shown by the
dashed line). Respiratory signals were extracted from amplitude modulation (AM) of the ECG
and PPG.

4.4.3.1 Extracting respiratory signals

ECG and PPG signals are primarily cardiac in origin, with secondary respiratory modulations
of much lower magnitudes. Therefore, the first stage of an RR algorithm is extraction of a
respiratory signal, i.e. a time series dominated by respiratory modulation, from which RRs
can be much more easily estimated. Figure 4.5 shows examples of respiratory signals extracted
from the ECG and PPG. The frequency spectra demonstrate that the extracted respiratory
signals are dominated by respiratory modulation. Techniques for extraction of a respiratory
signal fall into two categories: either feature-based or filter-based techniques. Feature-based
extraction of a respiratory signal consists of the extraction of a time series of beat-by-beat
feature measurements (such as the amplitude of each QRS complex). Filter-based extraction
consists of filtering the raw signal to attenuate non-respiratory frequency components (such
as band-pass filtering the PPG to extract a respiratory signal exhibiting BW). The individual

processing steps used for each approach are shown in Figure 4.6, and are now described.
Processing steps common to both feature- and filter-based techniques

The first and final steps of the extraction of respiratory signals are common to both feature- and

filter-based techniques. The first step is the elimination of very low frequency (VLF) components
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FIGURE 4.6: Processing steps for extraction of a respiratory signal: The steps required to

extract a respiratory signal using the two possible approaches: (a) Feature-based respiratory

signals are extracted by constructing a time series of beat-by-beat feature measurements (on

left); (b) Filter-based respiratory signals are extracted by filtering the raw signal to produce a

signal in which the non-respiratory frequency components of the raw signal are attenuated (on
right). Dashed lines indicate optional steps.

of the PPG and ECG, i.e. those at sub-respiratory frequencies. VLFs are eliminated using a
finite-impulse response high-pass filter such as: a median filter [168, 240, 244]; subtraction of
a baseline trend calculated using a linear or polynomial fit [177, 226], or using measurements
of the baseline at a specific point in the cardiac cycle (such as the baseline shortly before the
QRS complex [225], or the midpoints between successive R waves [150] in the ECG). A cut-off
frequency of 0.03-0.05 Hz is typically chosen [226, 256, 257, 264]. This stage is not required if the
ECG or PPG monitoring device removes VLF's prior to output. The subsequent processing steps
for extraction of respiratory signals then differ depending on whether a feature- or filter-based

technique is being used, until the final step which is common to all techniques. The final step is
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the elimination of frequency components outside of the range of plausible respiratory frequencies.
Band-pass filtering is used to eliminate non-respiratory frequencies with cut-offs at either end
of the range of plausible respiratory frequencies [113, 153, 168, 198, 238]. Several ranges of
plausible respiratory frequencies have been proposed in the literature, with no consensus on
the optimal range. Furthermore, the range may need to be adjusted according to the patient
population, particularly for paediatrics [279]. Indeed, some algorithms use a range with varies
according to age [280], or a range which adapts to the HR [108, 231, 232, 267, 281]. As a
guideline, Karlen et al. used a conservative range of 4 - 65 breaths per minute (bpm) [80].
The steps of elimination of VLFs before extraction of a respiratory signal, and elimination of
non-respiratory frequencies after extraction of a respiratory signal, help to avoid erroneously
identifying spurious frequency content as the RR. The intermediate steps for extraction of a
respiratory signal differ according to whether a feature- or filter- based technique is being used,

and are now described.
Filter-based techniques for extraction of respiratory signals

Filter-based techniques for extraction of a respiratory signal are performed in a single step.

Several techniques have been proposed, as listed in Table 4.4.
Processing steps specific to feature-based extraction of respiratory signals

Feature-based extraction of respiratory signals consists of five processing steps. Three of these
steps are common to all feature-based techniques, with the two remaining steps changing ac-

cording to the technique being used.

The first of these five steps is the elimination of very high frequency (VHF) noise by low-pass
filtering to improve the accuracy of beat detection and feature measurements. Higher cut-off
frequencies are used for the ECG (e.g. 40, 75, or 100 Hz [159, 187, 257]) than the PPG (e.g. 10
or 35 Hz [113, 187]), to retain the high frequency content of the QRS complex. In addition, the
ECG is particularly susceptible to power-line interference [283], which may be eliminated using
an additional band-stop filter. Whilst a fixed filter is commonly used, an adaptive filter (which
adapts to the noise content) has also been used [198, 284, 285]. Commercial monitoring devices

typically remove VHFs prior to signal output, similarly to VLF's.

Next, feature-based techniques require the detection of individual beats. ECG beat detection is
typically performed by identifying QRS complexes, from which the R-waves can be identified.
Approaches for identifying QRS complexes include: threshold beat detection [187]; adaptive
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TABLE 4.4: Filter-based techniques for extraction of respiratory signals. Techniques used in
this thesis are indicated by *

Abbr. Technique

Xa1* BW: Band-pass filter to eliminate frequencies outside the range of plausible respi-
ratory frequencies using a digital filter [214].

Xa2* AM: The maximum amplitude of the continuous wavelet transform within plausible
cardiac frequencies (approx. 30-220 beats per minute) [282].

Xas* FM: The frequency corresponding to the maximum amplitude of the continuous
wavelet transform within plausible cardiac frequencies [282].

Xas* BW, AM, FM: Filter using the centred-correntropy function [110].

Xas Decimation, consisting of detrending the signal, low-pass filtering to eliminate fre-
quencies higher than respiration, and re-sampling at a reduced sampling frequency
[108] of 1 - 2 Hz [177].

Xag AM, FM: Estimate instantaneous amplitudes and frequencies using the Teager-
Kaiser energy operator [263].

Xa7 Use empirical mode decomposition to identify the oscillation modes within a signal,
and extract a respiratory signal as the sum of the IMFs indicative of respiration
[254].

Xasg FM: Calculate instantaneous frequencies using variable frequency complex demod-
ulation [164].

Xa9  AM, FM: Decompose signal using the discrete wavelet transform to reconstruct the
detail signal at a predefined decomposition scale [157].

Xa10 Extract respiratory oscillation using principal component analysis by detecting pe-
riodicity using singular value decomposition to identify periodicity [222].

threshold beat detection using the first derivative of the ECG [72, 73]; a combination of meth-
ods using adaptive threshold detection and the curve length transform [111]; and, wavelet
transform methods [286]. The adaptive threshold, curve length and wavelet methods have all
been evaluated on the benchmark MIT/BIH arrhythmia database, achieving sensitivities and
PPVs for beat detection of over 99.5%, as described in [72, 73], [287] and [286, 288, 289] respec-
tively. Once QRSs have been detected, R-waves can be identified. They have been identified
as the maximum ECG value between consecutive QRS onsets [191], or more specifically, as the
maximum value within a certain time of the detected QRS (e.g. within 20 ms [159]). PPG
beat detection is similarly performed by identifying cardiac pulses, from which pulse peaks can
be identified. Methods of identifying cardiac pulses include: band-pass filtering to eliminate
non-cardiac frequencies (e.g. 0.5-2.0 Hz), followed by peak detection [186]; threshold beat de-
tection using the first derivative of the PPG [250]; the Incremental-Merge Segmentation (IMS)

algorithm [74, 80]; and, identifying regions for pulse peaks using a simultaneous ECG signal
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TABLE 4.5: Feature-based techniques for extraction of respiratory signals. Techniques used in
this thesis are indicated by *

Abbr. Technique

Xp1* BW: mean amplitude of troughs and proceeding peaks [10].

Xp2*  AM: difference between the amplitudes of troughs and proceeding peaks [80].
Xps3* FM: time interval between consecutive peaks [237], [80].

XB4* BW: mean signal value between consecutive troughs [112].

Xps* BW, AM: peak amplitude [80].

Xps* BW, AM: trough amplitude [112].

Xp7*  FM: QRS duration [244]. Q and S waves were identified as the minima immediately
before and after the R wave [112].

Xps* AM, FM: QRS area [256], defined as the integral of the ECG between Q and S waves
after subtraction of a baseline linearly interpolated between Q and S waves.

Xpo* BW: Kernel principal component analysis using a radial basis function, with the
variance of the Gaussian kernel determined by maximising the difference between
the first eigenvalue and sum of the remainder [291].

XB1o* FM: PPG pulse width estimated using a wave boundary detection algorithm [199).
Xp14  Calculate the kurtosis between adjacent peaks [174].

Xg15  Difference between durations of the upslope and downslope of the PPG [265].

[113, 198, 236, 241, 290]. Pulse peaks are then identified as the maximum PPG value between

consecutive cardiac pulse onsets [186, 191].

The third and fourth steps are specific to the particular feature-based technique being used.
Many techniques require identification of additional fiducial points beyond simply R-waves and
pulse peaks. These points are usually identified using heuristic rules. Once the required fiducial
points have been identified, measurements of features which vary with respiration are obtained
from the time-amplitude co-ordinates of the fiducial points. Several features have been used, as

summarised in Table 4.5.

The fifth step specific to feature-based extraction of respiratory signals is to re-sample the
respiratory signal at a regular sampling frequency. This is necessary since signals obtained
from beat-by-beat feature measurements are irregularly sampled (once per beat), whereas the
subsequent elimination of non-respiratory frequencies is conducted using filtering techniques
which require a regularly sampled signal. Often linear [80, 268] or cubic spline interpolation

[198] is used. More complex methods include: Berger’s algorithm, designed for use with an
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FM signal [292], and used in [80, 191]; the Integral Pulse Frequency Modulation model, also
designed for use with FM signals [293], and used in [254]; and, the discrete wavelet transform
[244]. Respiratory signals are typically re-sampled at 4-10 Hz, completing the processing steps

specific to feature-based extraction of respiratory signals.
Additional approaches

Two additional approaches have been proposed which are not based on the physiological mech-
anisms described earlier in Section 4.2: the use of pulse transit time (PTT) and the electromyo-
gram (EMG). PTT can be estimated from the time interval between the R-wave and subsequent
PPG pulse onset [149, 187], or between the R-wave and the time at which the PPG pulse has
risen by 50% of its amplitude [198]. It has been suggested that this varies with respiration,
possibly due to changes in pulse wave velocity induced by respiration [294]. It has been sug-
gested that an EMG signal can be extracted from the high frequency content (> 250 Hz) of
the ECG exhibiting the activation of the diaphragm and intercostal muscles during respiration
[185]. However, neither of these signals can be extracted from the LISTEN Dataset described
in Chapter 3, due to the low sampling frequency (125 Hz) of its signals, and the changing time
alignment between the ECG and PPG. Therefore, they are not considered any further.

4.4.3.2 Fusing respiratory signals

The second stage of RR algorithms is the fusion of multiple respiratory signals to provide one
respiratory signal from which RR can be estimated. Multiple respiratory signals arise in two
scenarios. Firstly, multiple respiratory signals can be extracted simultaneously from one patient,
either by using both the ECG and PPG, or by using multiple methods for extracting respiratory
signals. Secondly, a respiratory signal can be segmented into several (often overlapping) time
periods, and the signals within each time period treated as individual respiratory signals. In
each scenario, fusion is conducted in either the time or the frequency domain, depending on the
domain in which the subsequent RR estimation component functions. Methods for performing
fusion of multiple respiratory signals are listed in Table 4.6. This stage is optional, and is one
of two ways in which multiple respiratory signals can be used to increase the robustness of RR

estimates, the other being the fusion of RR estimates derived from multiple signals.



Chapter 4. Estimating Respiratory Rate: Review and Resources 61

TABLE 4.6: Techniques for fusion of respiratory signals

Abbr.

Technique

Maq

Mapo

Mas

Mas

Mae

Mg,
Mg,

Frequency domain, Ma1 to Mag

Spectral-averaging [256]: Calculate the individual power spectra of multiple respi-
ratory signals, and then find the average power spectrum.

Peak-conditioned spectral-averaging [113, 198]: only spectra which are sufficiently
peaked are included in calculation of the peak-conditioned average power spectrum.
To qualify: (i) a spectrum must contain a peak within a confidence interval around
the previous RR estimate with a magnitude > 85% [113] (formerly > 75% [198])
of the largest peak in the spectrum; (ii) at least a certain proportion of the power
within this confidence interval must lie in a narrower interval centred on the largest
peak within this confidence interval.

Cross time-frequency analysis [236]: Use the smoothed pseudo Wigner-Ville distri-
bution to estimate time-frequency spectra between two signals.

Time-frequency coherence [236]: used to measure the degree of coupling between
two signals.

Vector autoregressive (AR) modelling [217]: The poles of multiple AR models (one
for each respiratory signal) are calculated. Only those poles which are common to
both models, and which fall within the range of plausible respiratory frequencies,
are used to extract a respiratory signal.

Temporal spectral averaging [113, 198]: Calculate an averaged frequency spectrum
from overlapping periods of a respiratory signal.

Time domain, My1 and Mpa
Point-by-point multiplication [197].

Use of a neural network to identify periods of inhalation and exhalation [149, 186].

4.4.3.3

Estimating respiratory rate

The third component of RR algorithms is the estimation of RR. The input to this component

is a single respiratory signal, and the output is an estimate of RR. The techniques used for

this component act in either the time or frequency domain. Time-domain techniques involve

detecting individual breaths in a respiratory signal. The RR is then calculated as the mean

breath duration. Frequency domain techniques mostly involve calculating a frequency spectrum,

from which the RR is identified as the frequency corresponding to the maximum spectral power

in the range of plausible respiratory frequencies. The techniques are listed in Table 4.7. These

techniques are used to estimate RR from a window of a respiratory signal, such as a 32 s

window. The RR estimation component may be the last in a RR algorithm. However, two
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TABLE 4.7: Techniques for RR estimation. Techniques used in this thesis are indicated by *

Abbr. Technique
Frequency-based, Ex, to Exy

Ep*  Fast Fourier Transform spectral analysis [80].

Ery*  Auto-regressive spectral analysis [259] using model order 8 [237].

Ers*  Auto-regressive spectral analysis using the median spectrum for model orders 2-20
[295].

Ers*  Auto-regressive all-pole modelling (order 8), with the highest magnitude pole se-
lected as the respiratory pole [177].

Eps*  Auto-regressive all-pole modelling (order 8), with the lowest frequency pole selected
as the respiratory pole [108].

Epg* Find periodicity using the autocorrelation function [109).

Er7*  Spectral analysis using the Welch periodogram [199].

Exg Spectral analysis using the short-time Fourier transform [253].

Erg Use Gaussian process regression to estimate periodicity [242].

Time domain breath detection, E11 to Ers

Er1* Breath detection by peak detection [280].

Ere*  Breath detection by positive gradient zero-crossing detection [186].

Ers*  Breath detection by combined peak and trough detection [281]: elimination of peaks
less than the mean, and troughs greater than the mean; elimination of peaks (and
troughs) within 0.5s of the previous peak (or trough); elimination of peaks (and
troughs) which are immediately followed by a peak (or trough).

Ers*  Breath detection using Count-orig [109]: detrend; detect peaks and troughs; define
a threshold as 0.2 times the 75th percentile of peak values; ignore peaks with an
amplitude below this threshold; identify valid breaths as consecutive peaks separated
by only one trough with an amplitude less than zero.

Ers*  Breath detection using Count-adv [109]: detrend; detect peaks and troughs; define a

threshold as 0.3 times the 75th percentile of amplitude differences between consecu-
tive extrema, eliminate the pair of extrema with the smallest amplitude difference if
this is below the threshold; repeat until no more pairs can be eliminated; remaining
peaks represent breaths.

further components can optionally be used to improve the robustness of RR estimates, and are

now described.
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TABLE 4.8: Techniques for fusion of respiratory rate estimates. Techniques used in this thesis

are indicated by *

Abbr.

Technique

Fry

Modulation, Fyrn to Fua

Smart Fusion [80]: RRs estimated from BW, AM and FM respiratory signals
(XB1,2,3) are quality assessed. If their standard deviation is < 4 then RR is es-
timated as the mean, otherwise no RR is output.

Spectral peak-conditioned averaging [199]: Frequency spectra calculated from BW,
AM and FM respiratory signals (XB1,2,33) using the Welch periodogram (Fr7) are
fused to give a mean spectrum. Only those spectra for which a certain proportion
of spectral power is contained within a frequency range centred on the frequency
corresponding to the maximum spectral power are included (a modification of the
reported method). RR is estimated as the frequency corresponding to the maximum
power in the mean spectrum.

Pole Magnitude Criterion [237]: The respiratory pole is chosen as the highest mag-
nitude pole obtained from auto-regressive spectral analysis of BW, AM and FM
respiratory signals (Xpi,2,3)-

Pole Ranking Criterion [238]: The pair of highest magnitude poles obtained from
auto-regressive spectral analysis of BW, AM and FM respiratory signals (X1 23)
with the greatest pole ranking criterion (PRC) is selected. PRC = ;;/db; ;%, where
m;; = (m; +m;) /2 and db; ; = |6; — 6|, for 3,5 =1,..., N, where N is the number
of poles calculated. # and m are the pole angles and magnitudes respectively. RR
is estimated from the mean frequency corresponding to the selected pair.

Temporal, Fpq

Temporal smoothing [113]: estimated RRs, RRest, are smoothed to give the final
RR, RR;, using RR; = 0.2RR.st + 0.8 RR;_.

4.4.3.4

Fusing respiratory rate estimates

Techniques for fusion of multiple RR estimates can be used to improve the robustness of a

final RR estimate. They can be separated into two categories: modulation, or temporal fusion

techniques. Modulation fusion techniques consist of fusing RR estimates derived from the same

window of input signal using different modulations. For instance, simultaneous estimates derived

from respiratory signals indicative of AM and FM have been fused to provide a single output.

Temporal fusion techniques involve fusing RR estimates derived from a single respiratory signal,

over different windows. For instance, when continuously monitoring RR during exercise testing

previous RR estimates can be fused with the current RR estimate to improve robustness. The

techniques which have been proposed for fusion of RR estimates are described in Table 4.8.

63
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4.4.3.5 Quality assessment

Quality assessment is an optional component of RR algorithms, which can be performed at
any stage of an algorithm. Quality assessment techniques used in RR algorithms fall into
two categories: signal quality indices (SQIs) and RR estimate quality indices (RQIs). SQIs
are used to identify segments of ECG or PPG data of low quality. Low quality segments are
typically rejected based on the assumption that RR estimates derived from them are likely to
be inaccurate [80]. RQIs are used to assess the expected accuracy of estimated RRs and reject

any estimates which are expected to be inaccurate.

Several SQI techniques have been used in RR algorithms to avoid estimating RRs from low qual-
ity input data. SQIs based on template matching, described in Section 3.3, have been commonly
used in RR algorithms. These involve construction of a template of average beat morphology,
and calculation of the correlation between individual beats and the template. A signal segment
is deemed to be of high or low quality by comparing the average correlation coefficient over that
segment to an empirically-determined threshold. Another common approach is to use Hjorth
parameters as SQIs [241, 296]. Hjorth parameters quantify the quality of oscillatory signals
[297]. The highest quality is achieved by a signal consisting of a single oscillatory component,
and the lowest quality by a signal which has a uniform frequency spectrum (i.e. white noise). If
the Hjorth mobility, an estimate of a signal’s central frequency, is not a plausible HR, then the
signal is deemed to be of low quality. If the Hjorth complexity, an estimate of a signal’s half-
bandwidth, is small this indicates a strongly oscillatory signal. Conversely, if it is greater than
an empirical threshold (e.g. 8 Hz), this indicates a non-oscillatory, and therefore low quality,
signal [298]. An alternative approach is to search for any beat-by-beat characteristics which are
indicative of low quality input signals. Beat-to-beat intervals [80, 280, 281], pulse amplitudes
[80] and clipped pulses [80] have been used to identify segments of low quality input signal.
SQIs are commonly used to identify and reject low quality input data in critical care [114], so

many techniques are borrowed from this literature.

Several quality assessment techniques have been developed specifically for RR algorithms which
assess either the extracted respiratory signals or the RR estimates. Similarly to ECG and
PPG signal quality assessment, Hjorth parameters [111] and breath-to-breath intervals [280]
have been used to assess the quality of respiratory signals. In the frequency domain, it has
been proposed that if the ratio of the magnitude of the respiratory peak to that of the next
highest peak is below a cut-off threshold, then the respiratory signal should be identified as
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TABLE 4.9: Characteristics of RR algorithms assessed in the literature. Definition: PTT -
pulse transit time

Characteristic Category No. publications (%)
Input Signal ECG 71 (50.7)
PPG 79 (56.4)
ECG and PPG 1 (0.7)
PTT 6 (4.3)
Window duration (s) < 30 3(2.1)
30-59 30 (21.4)
60-89 33 (23.6)
> 90 7 (5.0)
unknown 67 (47.9)
No. algorithms assessed 1 65 (46.4)
2.5 58 (41.4)
6-10 12 (8.6)
11-15 3(2.1)
> 16 2 (1.4)

low quality [191]. The quality of RR estimates has been assessed by estimating three estimates
simultaneously using the three respiratory modulations [80]. If the range of the estimates is

small, then they are deemed to be of high quality.

4.4.4 Respiratory rate algorithm assessment methodologies

The characteristics of the RR algorithms assessed in the literature are provided in Table 4.9.
Research into RR algorithms has been divided between the use of ECG and PPG signals as the
input signal (used in 50.7 % and 56.4 % of publications respectively). Very few publications have
assessed algorithms which use both the ECG and PPG (0.7 %), or the pulse transit time (PTT)
as inputs (4.3 %). The duration of input signal used to estimate a single RR was most commonly
between 30 and 90 s, although the duration was not reported in 46.4 % of publications. Very few
publications conducted large scale comparisons of algorithms, shown by only 5 publications (3.6
%) containing comparisons of more than ten algorithms, and only 2 (1.4 %) comparing more
than 15 algorithms. Approximately half of publications (46.4 %) assessed the performance of

only one algorithm.
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The characteristics of the datasets used to assess the performances of RR algorithms are pro-
vided in Table 4.10. The majority of publications used datasets containing data from young
adults (63.6 %). In contrast only 30.0 % of publications used data from elderly adults. Most
publications used data from healthy subjects (70.7 %). The most frequently used patient pop-
ulation was critically-ill patients (24.3 %), whereas only 5.7 % of publications used data from
acutely-ill patients. Similarly, the data used in most publications were acquired during spon-
taneous breathing (77.1 %). Few publications assessed the performance of RR algorithms on
ambulatory data (11.4 %). The duration of recordings used to assess RR algorithms varied
greatly from < 10 mins to several hours. Nearly a quarter (23.6 %) of studies did not report

the duration of recordings used.

At least some of the data used in most assessments (74.3 %) is not publicly available. A total
of 11 publicly available datasets have been used to assess the performance of RR algorithms,
as detailed in Table 4.11. The publicly available datasets tend to be relatively small, with only
three datasets containing data from more than 50 subjects. All of the datasets contain ECG
signals, whereas only six out of eleven contain PPG signals. A range of respiratory signals were
used to estimate reference RRs across these datasets. Data in five of the datasets, including
the four largest datasets, were collected from critically-ill patients who may either be breathing
unassisted or with the aid of a mechanical ventilator. Only three datasets contained data from
sick patients outside of the critical care setting, all of which were recorded during sleep apnea
assessments. Despite the public availability of 11 datasets with which to assess RR algorithms,
only one publication has used more than 2 datasets [155]. Note that the VORTAL dataset has

not been included here since it is described in Section 4.6.

The methods used to assess algorithm performance are summarised in Table 4.12. A range
of equipment was used to acquire reference RRs, measurement of air flow or pressure, and
impedance pneumography (ImP), being most common (each used in 22.1 % of publications).
The type of reference RR equipment was not reported in 17.9 % of studies. A range of algorithms
were used to obtain reference RRs from reference respiratory signals. However, often there was
no assessment of the performance of these algorithms, making it difficult to know whether
errors in RR estimates derived from the ECG and PPG were solely due to poor RR algorithm
performance, or contributed to by inaccuracies in the algorithms used for obtaining reference
RRs. Two notable exceptions were [109] and [10]. In [109] several algorithms for obtaining
reference RRs were compared, and the time domain Et4 and ETs5 methods were found to be

“the only serious candidates”, with frequency domain spectral methods (Ep;, Frz) and an
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TABLE 4.10: Characteristics of the datasets used to assess RR algorithms in the literature.

Characteristic

Category

No. publications (%)

Age of subjects (years)

Level of illness

Breathing

Included ambulatory data?

Recording time (mins)

Dataset publicly available?

Number of datasets used

0 - 0.1: Neonate

0.1 - 17: Paediatric

18 - 39: Young adult

40 - 69: Middle-aged adult
> 70: Elderly adult

Healthy

Sick in community
Acutely-ill
Critically-ill

Unknown

Spontaneous
Metronome
Ventilated

Unknown

Yes
No

Unknown

1-10

11-20
21-59
> 60

Unknown

108 (77.1)
33 (23.6)
26 (18.6)
15 (10.7)

16 (11.4)
134 (95.7)
1(0.7)

60 (42.9)
104 (74.3)

122 (87.1)
17 (12.1)
1(0.7)
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TABLE 4.12: Methods used to assess RR algorithm performance in the literature.

Characteristic Category No. publications (%)
Reference RR equipment air flow or pressure 31 (22.1)
ImP 31 (22.1)
InP 11 (7.9)
Piezoelectric 7 (5.0)
Strain gauge 10 (7.1)
Metronome 7 (5.0)
Other 14 (10.0)
None 3(2.1)
Unknown 25 (17.9)
Statistics Error statistic 71 (50.7)
Breath detection statistic 25 (17.9)
Bias and LOA 18 (12.9)
Correlation 8 (5.7)
Coverage Probability 2 (1.4)
None 28 (20.0)
Unknown 3(21)
Conflict of interest? Yes 1(0.7)
No 139 (99.3)

autocorrelation method (Epg) performing poorly. In [10] (which arose from this review) a time
domain breath detection algorithm was used, and its performance was quantified by comparing
the reference RRs provided by the algorithm to those obtained through manual annotation of

a subset of the data.

Similarly, a wide range of statistics were used to assess RR algorithm performance. The most
common group of statistics were based on the errors in estimated RRs (used in 50.7 % of
publications), including the mean (absolute) error, root mean squared (normalised) error, and
the percentage error. Statistics indicating the reliability of breath detection were used in 17.9
% of publications. These included statistics such as sensitivity, specificity, false negative and
false positive rates. The limits of agreement method [309], consisting of the systematic bias and
limits of agreement within which 95% of errors are expected to lie, was used less often (12.9 %).

Only one publication reported a conflict of interest.
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4.5 Discussion

This review has presented a comprehensive synthesis of the literature on algorithms to estimate
RR from the ECG and PPG. A total of 140 publications were included in the review following
a systematic search of four online databases. This demonstrates both the importance of the
topic to the research community, and the potential utility of a comprehensive review to future
researchers. This review builds on previous reviews of algorithms for use with the ECG [79] and

PPG [280, 281, 310]. The results of the review are now discussed.

4.5.1 Search and screening

The methodology used to conduct this review differed from previous reviews of the topic, which
consisted of manual search strategies. In contrast, this review used a combination of manual
and systematic search strategies, ensuring a highly comprehensive search. The systematic search
strategy was designed based on the results of an initial manual search, allowing the search terms
to be optimised for identification of relevant literature. This resulted in a relatively high PPV for
the identified publications of 25.3 %, indicating the proportion of publications identified based
on their title which were included. In addition to the manual search, four electronic databases
were searched, providing a comprehensive survey of the literature. The most comprehensive
search database was Scopus, which identified 91 included publications, including 65.0 % of
the publications which were included. IEEE Xplore had a high PPV of 48.8 %, indicating
its usefulness for quick, initial searches. However, it only identified 42.1 % of the included
publications. Google Scholar had low sensitivity and PPV values (25.7 and 10.7 % respectively),
and only provided 7 unique publications. The manual search strategy was highly important since
31 (22.1 %) of the included publications were only identified by the manual search and not any
of the electronic databases. It was, however, by far the most time-consuming search. The search
strategy used was not only beneficial because of its comprehensiveness, but has the additional

advantage that it can be easily updated in the future.

4.5.2 Characteristics of included publications

This review demonstrated that research into the estimation of RR from the ECG and PPG

is both a recently developed and rapidly growing field. The earliest included publication was
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published in 1991. Since then the rate of publication has increased greatly, and continues to
grow. Currently there are approximately 16 new publications describing RR algorithms per
year. This highlights the need for frequent updates of this review, which are facilitated by the

systematic search strategy.

4.5.3 Respiratory rate algorithms

This review presented a generalised structure of RR algorithms which can be used to facilitate
in-depth assessments of algorithm performance. Algorithms were found to consist of up to five
stages, as summarised in Figure 4.4. Two of the stages are compulsory: extraction of respiratory
signal(s), and estimation of RR(s). The remaining three stages are optional. An algorithm can
be constructed by selecting an interchangeable technique for use at each stage of the algorithm.
This framework is a novel approach to decomposing RR algorithms into their constituent parts,
which allows the multitude of different algorithms described in the literature (over 100) to be
described concisely. It will also facilitate assessment of the influence of the technique used at
each stage on algorithm performance. Some algorithms contain modifications, or additions, to
the orthodox techniques listed for use at each stage. For instance, techniques for estimation of
RR based on autoregressive modelling often require specification of the model order. Several
approaches have been proposed to select an appropriate model order, including: (i) the use of a
pre-specified model order [108, 237, 280]; (ii) analysis of the respiratory signal using Rissanen’s
minimum description length method [110, 311, 312] or the Akiake criteria [111]; or (iii) the
optimal parameter search (OPS) criterion [203-205, 271]. Therefore, the techniques listed in
the generalised structure do not capture all of the potential subtleties of algorithms. However,
this structure has the great benefit of providing a manageable way to implement and assess the

many algorithms proposed in the literature.

The extraction of respiratory signals was performed using two approaches: feature- and filter-
based approaches. Feature-based techniques extract one measurement of the influence of res-
piration on the input signal for each heart beat. In contrast, filter-based techniques extract a
continuous signal. The benefit of the feature-based approach is that a specific influence can be
measured. For instance, the change in QRS amplitude due to movement of the ECG electrodes
with respect to the heart’s electrical axis can be measured directly, without any confounding
from P- or T-waves. In contrast, filter-based techniques make no distinction between the differ-

ent components of the ECG or PPG signals, and therefore do not measure a specific influence.
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However, the feature-based approach has the disadvantage of only taking a measurement of the
influence of respiration once per heart beat. If the HR is less than twice the RR, then this may
inhibit RR estimation by the Nyquist-Shannon sampling theorem [313]. Conversely, the filter-
based approach provides a continuous signal, potentially allowing estimation of RRs when the
HR is less than twice the RR. It is not yet clear which approach provides superior performance,
or whether the optimal choice of approach varies between patient populations. Furthermore,
it is not clear which technique for extracting a respiratory signal provides the highest quality
signal (i.e. that which correlates most closely with a reference respiratory signal), and whether

this also varies between patient populations.

The fusion of multiple respiratory signals to provide one, more robust signal, has received rela-
tively little attention in the literature. Time domain methods have received little consideration
since their conception in 2003 [186]. Frequency domain methods have been used in a few publi-
cations, and often have the benefit of incorporating a quality assessment step, for instance only

including respiratory signals whose frequency spectra meet certain criteria.

Estimation of RRs was performed using techniques operating in either the time or the frequency
domain. Time domain techniques consist of the identification of individual breaths. These
techniques have the benefit of being able to estimate RRs when the respiratory pattern is
not stationary. However, they are susceptible to erroneous breath detection due to abnormal
morphology in a respiratory signal. On the other hand, frequency domain techniques require
the respiratory pattern to be quasi-stationary, but are less susceptible to transient noise on the
respiratory signal. Similarly to feature- and filter-based approaches to extracting a respiratory
signal, it is not yet clear whether either approach for estimation of RRs provides superior

performance.

The fusion of multiple RR estimates has been proposed as a method to increase the robustness
of RR estimates [80, 237, 238]. However, these techniques have not been tested widely across
different datasets, so it is not clear whether this optional component consistently improves
algorithm performance. The techniques fall into two categories: modulation and temporal
fusion. Modulation fusion is conducted by fusing individual estimates derived from multiple
respiratory signals, whereas temporal fusion consists of fusing sequential estimates from a single
respiratory signal. Therefore, temporal fusion may not be suitable for use with wearable sensors

since there may be gaps between consecutive segments of high quality data.



Chapter 4. Estimating Respiratory Rate: Review and Resources 73

A range of quality assessment techniques have been proposed. However, no individual technique
has been commonly used across several publications, highlighting the experimental nature of
these techniques. Recent work has compared the performances of several techniques for assess-

ment of respiratory signal quality, although this work is still ongoing [154, 155].

4.5.4 Respiratory rate algorithm assessment methodologies

The 140 included publications used a wide range of methodologies for assessment of RR al-
gorithms. Research has been split almost equally between using the ECG and PPG as input
signals. This demonstrates the potential clinical utility of using each input signal, as well as the
need to compare algorithm performances when using each input signal. The duration of input
signals used to estimate RR ranged between 30 and 90 s in most assessments. This reflects a
compromise between, on the one hand, reducing the time required for assessments and ensur-
ing that the true RR remains stable during the measurement period, and on the other hand,

increasing the measurement duration to obtain more precise estimates.

The focus of RR algorithm assessments appears to have been on the assessment of novel algo-
rithms, rather than comparisons of performances of existing algorithms. This is demonstrated
by approximately half of the publications assessing the performance of only one algorithm. In
contrast, only two publications (one of which arose from this work) compared the performance
of more than 15 algorithms. Consequently, it is difficult to determine from the literature which

algorithms perform best.

The datasets used to assess RR algorithms were often acquired from subjects who are not rep-
resentative of acutely-ill, ambulatory patients who would be monitored with wearable sensors.
Assessments were often conducted using data from young, healthy subjects. A smaller propor-
tion used data from ventilated patients or subjects breathing in time with a metronome, whose
respiratory mechanics could not be presumed to be similar to those of spontaneously breathing
patients. In contrast many hospital patients are elderly, and therefore have stiffer arteries, more
frequent ectopic beats, and co-morbidities which may affect the performance of RR algorithms.
Ouly a few publications (8, 5.7 %) used data from acutely-ill patients. This is likely to be
because it is difficult to acquire reference RR measurements in acutely-ill, ambulatory patients,
and also because none of the publicly available datasets contain data from acutely-ill patients

outside of critical care.
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4.5.5 Future Research Directions

This review identified three key limitations of previous assessments of RR algorithms which
should be addressed in future research. Firstly, prior to this review there were no compre-
hensive comparisons of RR algorithms. The performances of 30 algorithms were compared in
one publication [278], whilst the only other publication to have compared more than 15 RR
algorithms arose from this review [10]. This demonstrated the urgent need for a comprehensive
assessment of RR algorithms to determine whether any algorithm performs sufficiently well for
use in wearable sensors. Secondly, most of the assessments used data from populations which
are not necessarily representative of acutely-ill patients. Therefore, it is not known whether RR
algorithms could be expected to perform at the same level when used for monitoring hospital
patients using wearable sensors. Thirdly, it is unclear whether the reference RRs used in many
publications were reliably obtained, since the algorithms used to obtain them were often not
assessed. This may have resulted in the observed performances of RR algorithms being worse
than their true performances due to inaccuracies in reference RRs. The impacts of these three

limitations on future research are now discussed.

Comprehensive assessments of algorithms are currently hindered by the lack of publicly avail-
able algorithm implementations. The publications identified were written by 101 first authors,
indicative of the wide range of skills and knowledge used to design the algorithms. Therefore,
a substantial amount of effort is required to implement the algorithms for assessment. An al-
ternative approach which would not require implementation of the different algorithms would
be to perform a meta-analysis of existing studies. However, several factors make this difficult
including: poor reporting of study methodology; the use of different statistical methods to
assess algorithms; the use of data from several populations ranging from healthy subjects to
critically-ill patients; the potential for different algorithm implementations between studies; and
the potential range of accuracies of reference RRs. Therefore, a publicly available toolbox of

algorithms is required to facilitate comprehensive assessments.

Assessments of the utility of algorithms for use with wearable sensors are hindered by a lack of
datasets acquired from acutely-ill patients. None of the 11 publicly available databases contain
data from acutely-ill patients outside of the critical care setting. Therefore, additional datasets

are required to assess the potential performance of algorithms in this setting.
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It is essential that the reference RRs used to evaluate RR algorithms are reliable. However, there
has been little research into the techniques used for obtaining reference RRs [237]. Consequently,
it is not clear how accurate reference RRs are, and also whether the technique used to obtain
reference RRs biases the performance metrics towards particular methods for estimating RR
from the ECG and PPG. These are important considerations since inaccuracies in reference
RRs will result in the performances of RR algorithms appearing to be poorer than they truly
are. Several methods have been used previously to obtain reference RRs, although none are
ideal. These include: manual annotation of individual breaths [80]; using a time domain breath
detection algorithm to identify individual breaths [109, 204]; using two methods for estimating
RR, and only outputting a reference RR at times when the two methods agree within a specified
tolerance (e.g. two frequency domain techniques [154], or a time domain and a frequency
domain technique [4, 237]). However, none of these methods is without its limitations. Manual
annotations are time-consuming and not easily reproducible [109]. The use of a time domain
algorithm may bias the analysis towards RR algorithms which use a time domain RR estimation
technique. The use of two methods to estimate RR from the reference signal may result in
excessive exclusion of windows, since those windows on which only one of the two methods
provides an accurate reference RR will be excluded. It may not be possible to develop a perfect
technique for obtaining reference RRs which is free from any of these limitations. However,
further research should be based on an informed choice of technique, allowing its limitations

and possible influence on the results to be appreciated.

Despite the extensive research into RR algorithms, none have yet been widely adopted into
clinical practice. However, clinical devices are now available which incorporate RR algorithms.
Covidien™ have developed an RR algorithm for use with the PPG which can be incorporated
into their patient monitors. This is likely based on the algorithm they have previously reported
and assessed in healthy volunteers and hospitalised patients [147, 148]. The device has been
independently assessed [260], although it is not yet clear whether it is suitable for widespread
clinical use. In addition, Philips Healthcare (Andover, MA, USA) have conducted studies
investigating the estimation of RR from the ECG [151, 153, 176, 183-185]. The availability of
clinical devices containing an RR algorithm makes it substantially easier to assess RR algorithms
prospectively in a range of clinical settings, although such research is limited to the algorithm

implemented in the device.
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4.6 RRest: Respiratory Rate Estimation Resources

This section presents the development of three resources to address the three limitations of
RR algorithm assessments described above: a lack of datasets from acutely-ill patients; the
need to ensure that reference RRs are reliable; and, a lack of publicly available algorithm
implementations. These resources are designed for two purposes. Firstly, they are used in
the remainder of this thesis to assess RR algorithms for retrospective use with the wearable
sensor data in the LISTEN Dataset. Secondly, they are being made publicly available, enabling

researchers to evaluate novel algorithms, and to perform their own assessments of RR algorithms.

4.6.1 Datasets for Assessment of RR Algorithms

The range of datasets publicly available for assessment of RR algorithms is not sufficient to
determine whether RR algorithms perform well enough for use with wearable sensors. The
publicly available datasets which have previously been used to assess RR algorithms (listed in
Table 4.11) are not ideal for two reasons. Firstly, the available datasets were recorded from
three patient populations, none of which is entirely representative of acutely-ill patients who
would wear wearable sensors. These are: (i) critically-ill patients; (ii) healthy subjects; and, (iii)
subjects being assessed for chronic obstructive sleep apnoea. Critically-ill patients often require
organ support which may impact the respiratory, cardiovascular and autonomic nervous systems,
artificially altering their physiology. For instance, patients may require mechanical ventilation
which provides positive pressure during inhalation (rather than the usual negative pressure
provided by thoracic expansion). They may also require positive or negative inotropic agents
which increase or decrease the strength of heart muscle contraction respectively. Critically-
ill patients may also be subject to pathologies such as sepsis which reduce autonomic nervous
system functionality [314]. Conversely, healthy subjects may have improved organ function when
compared to acutely-ill patients. Finally, sleep apnoea markedly changes respiratory dynamics,
making it unrepresentative of acutely-ill patients. Secondly, only in vivo datasets are available,
making it difficult to ensure that algorithms have been reasonably implemented, since when
using in vivo datasets it is difficult to determine whether poor algorithm performance is due
to a lack of respiratory modulation of the ECG and PPG signals, or due to poor algorithm

implementation. Therefore, there is a need for additional datasets for initial verification of RR



Chapter 4. Estimating Respiratory Rate: Review and Resources 77

algorithm implementations, and subsequent assessment of the performances of RR algorithms

in subjects who are similar to the target population of acutely-ill patients.

In the remainder of this section six novel datasets are described which have been assembled to
facilitate the assessment of RR algorithms for use in wearable sensors. These have been designed
to allow the influences of individual physiological and technical factors on RR algorithms to be

assessed. The datasets are summarised in Table 4.13.

RRest-synth: a dataset of idealised synthetic signals

Currently it is not possible to verify algorithm implementations on an idealised dataset. Rather,
algorithms are implemented and tested on real-world datasets. This approach makes it difficult
to perform robust comparisons of algorithms, since it is difficult to determine whether poor
performances of algorithms are due to intrinsic flaws in the algorithmic techniques, or simply
due to flawed implementations of the algorithms. The RRest-synth Dataset was designed to
overcome these difficulties. The dataset contains simulated ECG and PPG signals covering a
range of heart rates (HRs) and RRs. Three signals are provided for each combination of HR and
RR, each exhibiting either baseline wander (BW), amplitude modulation (AM), or frequency

modulation (FM). The exemplary signals shown in Figure 4.1 are taken from this dataset.

The signals were simulated based on mathematical descriptions of ECG and PPG signals in the
presence of the three respiratory modulations: BW, AM and FM. This builds on previous work
by Pallés-Areny et al., who described a mathematical formulation for AM of the ECG [315].
They assumed that if the ECG (here extended to the PPG), denoted z(t), is assumed to be

periodic, then it can be described as
z(t) = Z Vi cos(nwet + @) (4.1)

where the periodic signal consists of n sinusoidal components of amplitude V,,, w, is the constant
cardiac angular frequency (frequency, f = 2mw,), and ®,, is a phase shift [315]. This describes

the ECG or PPG in the absence of any respiratory modulation.

The manifestation of BW on the unmodulated signal can be modelled by assuming that the res-
piratory modulation is sinusoidal, at constant respiratory angular frequency w, with amplitude

A,, and that it obeys the superposition principle. Therefore, an ECG or PPG signal influenced
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by BW can be expressed as
z(t) = z V, cos(nwet + ®,,) + Ay cos(wyt + @) (4.2)
n

where @, is the respiratory phase shift.

The manifestation of AM can be modelled through time domain multiplication of the amplitude
of the unmodulated signal by a respiratory modulation (the latter being always positive). The
respiratory modulation is characterised by an oscillation of maximum amplitude modulation
AV and at angular frequency w,. Therefore, an ECG or PPG signal influenced by AM can be
expressed as

z(t) = Z Vi cos(nwet + @) - (1 4+ AV cosw,t) . (4.3)

The manifestation of FM can be modelled by modulating the instantaneous cardiac angular

frequency, wci(t), at the respiratory frequency, giving
wei(t) = we + Aasin(w,t) (4.4)

where A is the maximum angular displacement. The instantaneous phase angle of the FM

signal, 0.;(t), is found by integrating w.;(t) over time, as

Buit) = wet — 22

T

cos(wrt) . (4.5)
Therefore, an ECG or PPG signal influenced by FM can be expressed as

z(t) = Z Vi cos(nfwet — % cos(wrt)] + @5) . (4.6)

The dataset was generated as follows. An exemplary beat for the ECG and PPG signal was
acquired from a young subject. The time values of these beats were interpolated so that each
beat lasted 1 s. These were then repeated 210 times, giving a simulated signal lasting 210 s. This
signal was then modulated according to the descriptions of the three respiratory modulations
listed above, producing three separate signals. This process was repeated for a range of HRs
(30 - 200 beats per minute) and RRs (4 - 60 breaths per minute). When the HR was varied,
the RR was fixed at 20 bpm. When the RR was varied, the HR was fixed at 80 bpm. This
provided a total of 192 signals, each sampled at 500 Hz.
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The RRest-synth Dataset serves two purposes. Firstly, it allows one to determine whether an
RR algorithm has been implemented reasonably (i.e. whether it estimates RR accurately in
ideal simulated signals). Secondly, it allows one to assess the limitations of RR algorithms, such
as whether they perform accurately in the presence of different types of respiratory modulation,

and whether their performance is dependent on the underlying HR. or RR.

RRest-ideal: a dataset of young healthy subjects before, during and after exercise

It is useful to assess the performance of RR algorithms on data from healthy subjects as well
as patients, to determine their best possible performance in the absence of pathophysiology.
Despite five publicly available datasets containing data from healthy subjects, none of these are
ideal for this purpose. Only one of these five contains PPG signals, which were recorded from
eight subjects. Therefore, a novel dataset acquired from healthy subjects is required to assess

the performance of RR algorithms on both ECG and PPG signals.

The RRest-ideal Dataset contains data acquired from 39 young healthy subjects aged 18 -
39 years old as part of the VORTAL study (National Clinical Trial 01472133) [10]. Ethical
approval for the study was obtained from the London Westminster Research Ethics Committee
(11/LO/1667). Data were acquired for approximately 10 mins at rest in the supine position,
followed by 2 mins walking on a treadmill, followed by several minutes running (until the
subject’s HR reached 85 % of their age-predicted maximum [316]), followed by a further 10

mins at rest whilst recovering from the exercise.

Therefore, the RRest-ideal Dataset is useful for two purposes. Firstly, it facilitates assessment
of the performance of algorithms in ideal conditions. Secondly, it can be used to assess the

impacts of walking and running on RR algorithm performances.

RRest-healthy: a dataset of young and elderly healthy subjects at rest

Several technical and physiological factors may influence the performance of RR algorithms, as
described in Chapter 5. These include technical factors such as the use of high fidelity recording
equipment (as opposed to clinical monitors), signal sampling frequency, the use of the ECG
or PPG as the input signal, and the location of PPG measurement (e.g. ear or finger); and

physiological factors such as age, gender, RR and HR. The technical factors may influence the
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design of wearable sensors, whilst the physiological factors may influence the choice of clinical

settings in which RR algorithms are used.

The RRest-healthy Dataset is designed to facilitate investigation of the influence of each of these
factors on the performances of RR algorithms. It contains data acquired from 41 young healthy
subjects aged 18 - 39 years old, and 16 elderly healthy subjects aged over 70 years old, as part
of the VORTAL study [7]. A 10 minute recording was acquired from each subject whilst laid
supine. Subjects who had co-morbidities or were receiving medications that might significantly

affect the functioning of the cardiac, respiratory and autonomic nervous systems were excluded.

Data were acquired simultaneously using a range of sensors. High fidelity laboratory (lab)
equipment was used to acquire lead II ECG, finger PPG, ear PPG, and oral-nasal pressure
signals. The lab equipment consisted of a 1902 amplifier, a Power 1401 analogue-to-digital
converter and Spike2 v.7.09 acquisition software (all Cambridge Electronic Design, Cambridge,
UK). Finger and ear PPGs were transduced using MLT1020FC and MLT1060EC infra-red re-
flection plethysmographs respectively (AD Instruments, CO Springs, New Zealand). Oral-nasal
pressure was transduced using an Ultima Dual Airflow differential pressure transducer (Braebon
Medical Corporation, Kantata, ON, Canada) connected to a P1300 Pro-Flow oral-nasal can-
nula (Philips Respironics, Murrysville, PA, USA). Signals were sampled at 500 Hz. In addition,
clinical equipment was used to simultaneously acquire Lead II ECG and finger PPG signals.
The signals were monitored using an IntelliVue MP30 clinical monitor (Philips Medical Sys-
tems, Boeblingen, Germany) and captured using ixTrend acquisition software (v.2.0.0 Express,

Ixellence GmbH, Wildau, Germany) at 500 Hz and 125 Hz, respectively.

The RRest-healthy Dataset is used in the investigation presented in Chapter 5, where additional

details such as demographic characteristics are provided.

RRest-acute: a dataset of acutely-ill patients recovering from cardiac surgery

The RRest-acute Dataset is designed to facilitate assessment of the performances of RR algo-
rithms in acutely-ill patients. Approximately 20 mins of data were acquired from each of 108
patients recovering from major cardiac surgery as part of the LISTEN Trial (National Clinical
Trial 01549717). The data were acquired during the last eight hours of patients’ stays in critical
care prior to being discharged to an ambulatory ward where most were monitored using wear-

able sensors. Therefore, the physiology of the patients can be expected to be similar to that
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which would be encountered when monitoring acutely-ill patients using wearable sensors. To be
eligible, patients had to be in sinus rhythm, and not paced, excluding patients with arrhythmias

or receiving external pacing.

RRest-afib: a dataset containing recordings during sinus rhythm and atrial fibril-

lation

The RRest-afib Dataset is designed for assessment of the influence of atrial fibrillation (AFib) on
RR algorithms. The data, consisting of paired 20 min recordings of periods of AFib and sinus
rhythm, was extracted from the LISTEN Dataset. All patients in the dataset were assessed
for eligibility using heart rhythm labels documented in the routine clinical records. To be
eligible, patients had to be in AFib for a sustained period, and in sinus rhythm for a separate
sustained period, during the 24 hours of their critical care stay immediately prior to discharge
to an ambulatory ward. A total of 20 patients were eligible according to the heart rhythm
labels. Of these, five patients were removed because the labels were found to be inaccurate
upon inspection. Therefore, RRest-afib contains 30 recordings, consisting of a recording during

AFib and a recording during sinus rhythm, from 15 patients.

The reliability of the data labels was also assessed through analysis of the ECG R-R intervals
in the dataset. This was achieved using a previously reported method for detecting AFib from
R-R intervals [317]. This method quantifies the variability of R-R intervals by plotting the
durations of the R-R intervals in each 128 s against the difference between consecutive R-R
intervals. The plot is divided into a 25 ms resolution grid, and the number of non-empty cells
(NECs, 25 x 25 ms cells) is calculated. Higher numbers of NECs demonstrate greater levels of
variability, associated with AFib. The results, shown in Figure 4.7, show a marked difference

in the variabilities of R-R intervals between the two groups.

RRest-vent: a dataset containing recordings shortly before and after extubation

The final dataset, RRest-vent, is designed to facilitate assessment of the impact of mechanical
ventilation on RR algorithms. It consists of data acquired from 59 LISTEN Trial patients at
three points during their recovery from surgery: shortly before disconnection from a ventilator;
shortly after disconnection from a ventilator; and, shortly before discharge from critical care

to the ambulatory ward. At each time point approximately 20 mins of data were acquired.
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FI1GURE 4.7: RRest-AFib Dataset verification: This shows the difference between the variabili-

ties of the R-R intervals in the sinus rhythm recordings and atrial fibrillation (AF'ib) recordings.

The distributions (median, lower and upper quartiles) of the NECs (a measure of variability of

R-R intervals) are shown for each set of recordings. As expected, the AFib recordings exhibit
a much greater level of variability than the sinus recordings.

This dataset will not be used to help directly with the assessment of algorithms for use with
wearable sensors, since acutely-ill patients who may wear wearable sensors are not mechanically
ventilated. Instead, assessment of the impact of mechanical ventilation on RR algorithms will
contribute towards an understanding of whether the results of previous studies of RR algorithms
in mechanically ventilated patients are representative of those which would be obtained during

unassisted breathing.

4.6.2 A Signal Quality Index for the Impedance Pneumography Signal

One finding of the review was the need for further research into methods for obtaining reference
RRs, as detailed in Section 4.5.5. All publicly available datasets for assessment of RR algorithms
include a reference respiratory signal from which reference RRs can be obtained (Table 4.11),
although only one (CapnoBase) contains reference RRs. Therefore, an algorithm is usually
required to obtain reference RRs from the reference respiratory signal. Several algorithms have
been proposed for this purpose as described in Section 4.5.5, although these each have significant
limitations. An alternative approach would be to use a signal quality index (SQI) to discard
segments of low quality reference respiratory signals, ensuring that only segments of high quality
respiratory signals are used to obtain reference RRs. Indeed, this approach has been widely used

to obtain high quality parameters from the ECG, PPG and ABP signals, as demonstrated in
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FIGURE 4.8: Impedance (ImP) signal quality assessment: A novel SQI algorithm was designed

to assess the quality of ImP signal segments. On the left, two segments are shown with dots

indicating detected breaths. On the right, the corresponding breath templates (red) and indi-

vidual breaths (grey) are shown. The upper segment is of low quality, as indicated by a low

correlation coefficient (R?) of 0.54. The lower segment is of high quality, as indicated by a high
R? of 0.97.

Section 4.4.3.5. However, SQIs have not yet been thoroughly developed for use with respiratory
signals. A SQI has been previously proposed for use with the ImP signal [318]. However, when
used for RR estimation it was reported to result in a relatively large mean error of 3.2 + 4.6
bpm. Furthermore, it did not perform adequately in initial testing on this dataset. This section
describes the development of a novel SQI for use with the ImP signal, and subsequent assessment

of its performance.

The novel SQI was developed by adapting the approach proposed by Orphanidou et al. for
cardiac signals in [124]. This approach consists of three steps. Firstly, individual respiratory
cycles are detected in the signal (i.e. heart beats in the original implementation). Secondly, the
timings of the individual cycles are assessed for physiological plausibility. For instance, in the
original implementation all beat-to-beat intervals had to be less than 3 s in duration. Any signal
segments with implausible cycle timings were deemed to be of low quality. Thirdly, template-
matching was used to assess the similarity of the signal at each cycle as shown in Figure 4.8. If
the correlation between the average cycle’s morphology, and each individual cycle’s morphology,

was high enough then the signal segment was deemed to be of high quality.

A range of criteria for assessing the plausibility of breath-to-breath timings were trialled, re-

sulting in the following algorithm:
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1. Pre-process the ImP signal: The following steps were taken: low pass filter to remove
frequency content above 1 Hz (60 bpm) using a Tukey window to avoid edge effects;
downsample to 5 Hz; normalise to give a mean of 0 and standard deviation of 1; invert

and remove any linear trend.

2. Detect individual breaths: The Count-orig method (ET4) was used to detect breaths,
as described in Table 4.7. This allows individual breaths to be labelled as either valid

(high quality), or invalid (low quality).

3. Assess plausibility of breath timings: Three criteria were used: (i) the normalised
standard deviation of breath durations had to be < 0.25 to permit only a small variation
in the durations of detected breaths; (ii) the proportion of breath durations > 1.5, or <
0.5, times the median breath duration had to be < 15 % to prevent errors due to outlying
breath durations; (iii) >60 % of the window duration had to be occupied by non-outlying
breaths. Any window which did not satisfy these three criteria was deemed to be of low

quality.

4. Assess similarity of breath morphologies: The morphologies of individual breaths
had to be highly correlated, as demonstrated by a mean correlation coefficient between

individual breath morphologies and a template breath of > 0.75.

5. Calculate RR: If a window was deemed to be of high quality then the reference RR was

calculated as the mean duration of the valid breaths in that window.

The performance of the SQI was assessed using the RRest-vent Dataset. This dataset was
chosen to allow the performance to be assessed in three settings: ventilated in ICU, unassisted
in ICU, and shortly before discharge from critical care to the ambulatory ward. The assessment
was performed in two steps. Firstly, the ability of the SQI to discriminate between high and low
quality signal segments was assessed. To do so, ImP signal segments were manually labelled as
high or low quality, where a high quality was only given if the annotator was confident that they
could accurately identify all the breaths in that segment. A total of 1801 signal segments were
annotated (each of 32 s duration, totalling 16 hours of signals). These comprised approximately
10 mins of data from 34 subjects in each of the three clinical settings. Secondly, the accuracy and
precision of reference RRs obtained using the SQI were assessed. To do so, individual breaths
were annotated in those windows deemed to be of high quality by the SQI. These were used to

calculate reference RRs to compare with those calculated by the SQI. In addition, a benchmark
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method for identifying high quality respiratory signal segments, and obtaining reference RRs
was implemented and assessed. The method chosen was the agreement SQI, used in [4, 237].
It consists of estimating RR from the respiratory signal using two independent methods, one
in the time domain and one in the frequency domain. If the two estimates agree to within
4 2 bpm then the window is deemed to be of high quality, and the reference RR is calculated

as the mean of the two estimates. The two methods used were E14 and Epy.

Results detailing the performance of both the novel ImP SQI, and the agreement SQI, are
provided in Table 4.14. The results show the improved performance of the ImP SQI compared to
the agreement SQI, across all performance metrics and all clinical settings. The key advantages
of the ImP SQI were as follows. Firstly, it was able to provide better discrimination between
high and low quality signal segments. It provided an increased sensitivity of 74.0 % compared to
48.6 % across all clinical settings, showing that more of the segments identified as high quality
were truly of high quality. It also provided an increased specificity of 88.0 % compared to
81.7 %, showing that a greater proportion of the segments identified as low quality were indeed
of low quality. Secondly, the ImP SQI provided more accurate and precise reference RRs than
the agreement SQI. This is shown by a bias (95 % confidence interval, CI) of 0.0 (-0.1 - 0.1) bpm
for the ImP SQI, compared to -1.1 (-1.7 - 0.6) bpm across all settings. This indicates that there
was no systematic mean error between the reference RRs calculated by the ImP SQI and the
manually determined reference RRs. In contrast, the agreement SQI tended to under-estimate
the manually determined reference RRs by 1.1 bpm. In addition, the precision (2SD) of the
ImP SQI was 1.9 (1.4 - 2.4) bpm, compared to 7.9 (5.8 - 9.9). Since 95 % of the errors are
expected to lie within £+ 25D of the bias, a smaller precision indicates improved performance
[309]. These results are in keeping with previous work, which found that time domain techniques
should be used to obtain reference RRs from respiratory signals [109]. These results compare
favourably with previous analyses of RRs obtained from the ImP signal, which have found that

ImP-derived RRs can have 2SD values of > 8 bpm [32].

The results suggest that the performance of the ImP SQI is not only an improvement on the
previous methodology, but also sufficient for the assessment of RR algorithms. This is shown
by a reasonably high proportion of high quality windows (74.0 %) being correctly identified.
In addition, the reference RRs obtained from those windows identified as high quality were
highly accurate and precise. The CPy and iCPs metrics demonstrate this further. The ImP
SQI achieved a CPs of 97.8 %, indicating the proportion of reference RRs obtained which had

an error of < 2 bpm. In addition, it achieved an iCP5 of 0.0 %, indicating that no reference
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TABLE 4.14: The performances of the novel impedance pneumography (ImP) signal quality
index (SQI), and the agreement SQI. Performances were assessed across the three clinical set-
tings in the RRest Dataset. Discriminatory performance was assessed using the sensitivity and
specificity of the SQI for identification of high quality signal segments. The performance of the
SQI for estimation of RRs was assessed using the bias and limits of agreement (2SD), coverage
probability (CPs, proportion of values within 2 bpm of the reference value), and inverse cov-
erage probability (iCPs, proportion of values differing by more than 5 bpm from the reference

value). Definition: CI - confidence interval
ImP SQI
Performance Clinical Setting
metric All Ventilated in Unassisted in Shortly before
ICU ICU ambulatory ward

Discriminatory performance
Sensitivity [%)] 74.0 70.9 73.5 76.7
Specificity [%)] 88.0 85.5 92.6 84.9

RR estimation performance
Bias [bpm] 0.0 0.0 0.0 0.1
(95% CI) (-0.1-0.1) (-0.3-0.2) (-0.2-0.1) (-0.3-0.4)
2SD [bpm] 19 1.7 1.2 2.4
(95% CI) (14 - 2.4) (0.9 - 2.5) (0.6 - 1.7) (1.3 - 3.6)
CP2 [%] 97.8 97.9 100.0 95.9
iCP5 [%] 0.0 0.0 0.0 0.0

Agreement SQI

Discriminatory performance

Sensitivity [%)] 48.6 45.2 57.0 45.0
Specificity [%)] 81.7 81.0 85.2 77.4
RR estimation performance

Bias [bpm] -1.1 -1.7 -1.2 -0.7
(95% CI) (-1.7 - -0.6) (-3.2--0.3) (-2.3--0.2) (-1.4-0.1)
2SD [bpm] 7.9 10.6 7.8 5.2

(95% CI) (5.8-9.9) (5.5 - 15.7) (4.1-11.4) (2.7-7.6)
CP2 [%] 79.5 714 75.2 89.1

iCP; [%)] 3.8 7.1 3.8 1.6
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RRs had an error of > 5 bpm. The robustness of these analyses are demonstrated by the total
number of high quality windows over which the reference RRs were assessed, which was 407
for the ImP SQI. Given its high performance, the ImP SQI will allow more robust conclusions
to be drawn from assessments of the performance of RR algorithms. It will allow differences
between RRs estimated using ECG- or PPG-based RR algorithms, and reference RRs, to be

largely attributed to poor RR algorithm performance, rather than poor reference RRs.

4.6.3 A Toolbox of RR algorithms

A key shortcoming of previous research into RR algorithms is the lack of benchmark implemen-
tations of algorithms. A toolbox of RR algorithms was designed and implemented to facilitate
comprehensive assessments of RR algorithms. Similarly to the novel datasets described above,
this toolbox has been used for the studies presented in this thesis, and is being made publicly
available at http://peterhcharlton.github.io/RRest ensuring that future researchers can

use standardised implementations of RR algorithms.

The toolbox is designed to evaluate the performance of a wide range of RR algorithms on

different datasets. It consists of five main parts:

e RR algorithms: Estimation of RRs from ECG and PPG signals using all possible com-
binations of the implemented techniques listed in Tables 4.4, 4.5, 4.7, and 4.8;

e Reference RR estimation: Estimation of reference RRs from either a reference respi-

ratory signal, or annotations of breath timings, or simultaneous RR measurements.

e Signal quality assessment: Assessment of the quality of ECG and PPG signals using

the algorithms described in Section 3.3;

e Respiratory signal quality assessment: Assessment of the quality of respiratory sig-

nals extracted from ECG and PPG signals;

e Statistical evaluation: Evaluation of the performance of RR algorithms using a range

of statistics.

The toolbox is designed to meet the wide range of needs of future researchers. It can be
used with a range of datasets, as it is compatible with all of the novel datasets described in

this chapter, and is also accompanied by scripts to re-format the MIMIC-II, CapnoBase, and
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Fantasia datasets for compatibility. This facilitates multi-dataset assessments of RR algorithms
covering a range of patient populations. Most parts of the toolbox contain implementations of
several analytical methods, allowing the user to use methods of their preference. For instance, a
total of 31 interchangeable techniques have been implemented for use at different RR algorithm
stages. Reference RRs can be estimated using a range of methods, including the agreement SQI
and novel ImP SQI described above. Three methods for assessment of the quality of respiratory
signals are provided. Five statistical metrics are automatically calculated for users to evaluate
algorithms. Researchers wishing to use the toolbox are directed towards a tutorial written to
allow the novice to quickly start using it [6], and the manual available on the project website.

Contributions of additional algorithms are welcomed.

The implementations of the 370 toolbox algorithms were assessed using the RRest-synth Dataset.
Each technique implemented for extraction of respiratory signals (X1 to Xa4 and Xp; to XB19),
and for estimation of RRs (Er; to Ery and ET1; to ETs5), was considered to be successfully im-
plemented if over half of the algorithms containing that technique were acceptably accurate.
Acceptably accurate was defined as an absolute error of < 1 bpm for at least 50 % of the simu-
lated signals for any of the three modulations, on either the ECG or PPG. The threshold of 50
% was chosen to ensure that algorithms which performed well for a subset of the trialled HR

and RR combinations were not excluded.

The Ers and Xg19 techniques were found not to be acceptably accurate. Eps performed poorly
at RRs outside of 12 - 20 bpm, which may be due to its bias towards identifying lower frequencies
as the RR. Xgg variably detected the end of the PPG pulse as either the time of the minimum
immediately before the diastolic peak, or the time of the diastolic peak, causing inaccuracies.

After exclusion of these techniques 314 algorithms remained for further analyses.

4.7 Final Remarks

Many wearable sensors do not currently monitor RR, despite its importance for early detection
of deteriorations. One potential solution is to estimate RR from the ECG or PPG, both of which
are commonly monitored by wearable sensors. In this review a systematic search strategy was
used to identify 140 publications describing algorithms to estimate RR from the ECG and PPG.
The review provides a summary of the proposed algorithms and a synthesis of the methodologies

used to assess them. The results led to the identification of three key limitations of previous
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assessments of RR algorithms for assessing their potential utility for incorporation into wearable

sensors to monitor acutely-ill patients:

e Previous assessments of RR algorithms have mostly been conducted on data acquired from

populations which cannot be considered to be representative of acutely-ill patients;

e The reliability of reference RRs used in most assessments was not assessed, meaning
the performances of RR algorithms were potentially reported as being poorer than they

actually were; and

e No standardised implementations of algorithms are publicly available, making it difficult

to conduct large-scale comparisons of algorithms.

These limitations were addressed by creating a toolbox of resources. The toolbox consists of:
novel datasets including some from acutely-ill patients; a novel signal quality index for obtaining
reference RRs from the ImP signal; and a toolbox of benchmark RR algorithms. These resources
will be used to conduct analyses in the remainder of this thesis, and are being made publicly

available for other researchers at: http://peterhcharlton.github.io/RRest.



Chapter 5

Extracting Respiratory Signals from
the Electrocardiogram and
Photoplethysmogram: Technical and

Physiological Determinants

This chapter presents a study to assess how technical and physiological factors influence the
quality of respiratory signals extracted from the electrocardiogram (ECG) and photoplethys-
mogram (PPG). Quality was assessed using the correlation between an extracted respiratory
signal and the reference respiratory signal. The following technical factors were assessed: PPG
measurement site (either the ear or finger); signal acquisition equipment type (either high fi-
delity laboratory equipment, or routine clinical equipment); type of input signal (ECG or PPG);
and, signal sampling frequency. The following physiological factors were assessed: age, gender,
respiratory rate (RR) and heart rate (HR). Recommendations based on the results are provided

regarding wearable sensor designs for RR estimation, and clinical applications.

5.1 Introduction

A fundamental step in estimation of RR from the ECG and PPG is the extraction of a respiratory
signal: a signal dominated by respiration. In the review of RR algorithms (Section 4.4.3), it was
found that respiratory signals can be extracted from the ECG and PPG using either feature- or

91
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FI1GURE 5.1: Extraction of respiratory signals using exemplary feature- and filter-based tech-
niques. Respiratory signals have been extracted from the PPG using a feature-based technique
in which pulse peak amplitudes are extracted, and a filter-based technique using the amplitude
of the continuous wavelet transform. In this study the quality of extracted respiratory signals
was assessed by calculating the correlation between each extracted respiratory signal and the
reference respiratory signal. Source: [7] (CC BY 3.0, DOI: 10.1088/1361-6579/aa670e)

filter-based techniques, as illustrated in Figure 5.1. The processes for extraction of respiratory
signals are demonstrated in Figure 5.2. This figure illustrates extraction of respiratory signals for
each of the three idealised types of respiratory modulation of the ECG and PPG: baseline wander
(BW), amplitude modulation (AM), and frequency modulation (FM) [10]. If the amplitude of
the respiratory signal is too small compared to underlying noise, then the signal may not be
distinguishable from the noise, preventing the precise estimation of RR. Thus, any factors which
reduce the amplitude of respiratory modulations may result in reduced respiratory signal quality,

affecting the estimation of RR from these signals.

The aim of the study presented in this chapter was to determine how the quality of respiratory
signals is affected by technical and physiological factors which may be encountered in the clinical
setting. Technical factors are those which are fixed during device design, such as the choice of
anatomical site at which to measure the PPG. It is important to understand the influence of
technical factors to optimise device design. In contrast, physiological factors cannot be controlled
for. The influences of physiological factors, such as age, can inform decisions on whether or not
particular RR algorithms are appropriate for use in wearable sensors for monitoring acutely-ill
patients. Quality was measured using the correlation between an extracted respiratory signal

and a reference respiratory signal (see Figure 5.1).

The chapter is structured as follows. Firstly, a review is presented of previous investigations
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FIGURE 5.2: Processes for extraction of respiratory signals. On the left from top are shown sim-
ulated ECG signals with no modulation, baseline wander (BW), amplitude modulation (AM),
and frequency modulation (FM). In the central column the Q- and R-waves have been iden-
tified (shown as dots), allowing feature-based modulation measurement of BW, AM and FM
(shown in red). On the right are the corresponding frequency spectra of idealised signals at
the cardiac frequency (w.) under the influence of each modulation. Filter-based modulation
measurement, consists of extracting signals dominated by the respiratory frequency. Note that
only BW is manifested in the respiratory frequency (w,) band. Source: [7] (CC BY 3.0, DOI:
10.1088/1361-6579/aa670e)

<

into the influence of technical and physiological factors on respiratory signals of the ECG and
PPG, and the subsequent performance of RR algorithms. In Section 5.3, the methods are
described for data collection, assessment of the quality of respiratory signals, and statistical
analysis. The results are then presented for each technical and physiological factor in turn. In
Section 5.5, the impacts of these factors on device designs and on the use of RR algorithms
in particular clinical scenarios are discussed. The RRest-healthy Dataset, respiratory signal
extraction algorithms, and analysis code used in this study are being made publicly available

at: http://peterhcharlton.github.io/RRest.

Postscript: A modified version of the study presented in this chapter has been published in
[7]. The methodologies differ slightly because: (i) the analyses of physiological factors were

also conducted using ECG signals from the Fantasia dataset in this version; and, (i) a few
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additional techniques were used to extract respiratory signals in [7]. Much of the content of this
chapter has been adapted or reproduced accordingly from [7] (CC BY 3.0, DOI: 10.1088/1361-
6579/aa670e).

5.2 Review of Previous Work

The previous work relating to each of the factors assessed in this study is now reviewed.

5.2.1 Technical factors

PPG probes can be positioned at a range of anatomical sites, including the finger, ear, fore-
arm, shoulder and forehead [319]. Of these, only finger and ear measurements are widely used
in clinical practice. The quality of respiratory signals extracted from the PPG may differ at
different sites because of the augmentation of the systolic portion due to arterial pressure wave
reflections [320], and the visco-elasticity of the arterial system [321]. Indeed, previous investi-
gations have shown that the amplitude of BW is greater when the probe is positioned at the
ear than the finger [319], [322]. However, further investigation is required to verify this finding
and determine the effect of measurement site on AM and FM signals. This may impact device

designers’ considerations of the site of PPG measurement for RR estimation.

The equipment used to acquire ECG and PPG signals may influence the quality of respiratory
signals. This is of particular concern with the PPG, since clinical monitors commonly output
a filtered version which has been optimised for display, which may differ from the measured
signal [323]. The processing procedures include auto-gain, auto-centre, and amplitude gain
functions [324]. These adaptive filters may function over a short time scale, comparable to that
of breathing, therefore potentially affecting extracted respiratory signals. Indeed, a recent study
reported that the AM signals extracted from PPG signals acquired from two clinical monitors
were not interchangeable [325]. Since monitors’ filtering characteristics are not usually published
[323], it is not clear how extracted respiratory signals are affected by this process. If high-fidelity
laboratory equipment results in higher quality respiratory signals than a clinical monitor, then
device designers may need to consider modifying the hardware in devices in order to extract

high quality respiratory signals prior to filtering.
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The type of input signal, ECG or PPG, may impact the quality of respiratory signals since
different physiological mechanisms cause the respiratory modulations in the ECG and PPG.
Therefore, the strengths of individual modulations may differ between the two signals, impacting
extracted respiratory signals. The physiological mechanisms have been reported previously in
[79] and [140], and were summarised in Table 4.1 (Section 4.2), although they are not fully
understood. FM-based RR algorithms have previously been found to perform better when
using the PPG rather than the ECG [326], [172], [191]. Further research is required to determine

whether one signal is superior to the other for measurement of respiratory signals.

The sampling frequency of the input signal may affect the quality of respiratory signals. This
is most important for the ECG signal since many of the feature-based respiratory signals are
calculated from measurements of the QRS-spike, which contains high frequency content. It
is intuitively appealing to use high sampling rates to ensure that respiratory modulations are
captured as precisely as possible. Indeed, several studies have used high-fidelity equipment
sampling the ECG and PPG at up to 1 kHz [327], [328]. However, it is desirable to be able to
use low fidelity equipment since it will make ECG- and PPG-based RR estimation more widely
accessible, particularly in resource-constrained settings. For instance, smart phones with PPG
sampling rates as low as 30 Hz [329] are widely accessible. However, any reduction in signal
quality due to lower sampling frequencies must be appreciated to allow appropriate equipment

to be selected for each clinical setting.

5.2.2 Physiological factors

Age may affect the quality of respiratory signals since some of the physiological mechanisms
which cause respiratory modulations of the ECG and PPG diminish with age. In particular,
respiratory sinus arrhythmia (RSA, which causes FM) and chest wall expansion (which is linked
to BW and AM) both diminish with age [141], [142], [143], [10]. Indeed, FM-based ECG
algorithms of RR have been found to perform worse in older subjects [168], [109], [256], [237].
However, a previous investigation into the effect of age on BW-based PPG algorithms of RR did
not find a difference in performance with age [235]. Further investigation is required to determine
the extent to which each respiratory modulation is affected by age. This is particularly important
given that many acutely-ill hospital patients are elderly, as shown by a median age of patients

in the LISTEN Dataset of 67.5 years (Chapter 3).
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It has also been suggested that gender may influence the quality of respiratory signals. The
amplitude of FM in the PPG has been observed to be greater in women than men [330]. In
contrast, the amplitude of BW in the PPG does not appear to be influenced by gender [235].
If the qualities of respiratory signals differ between women and men then potentially different

respiratory signals could be extracted for each gender.

It has also been reported that the amplitudes of respiratory modulations are affected by a
subject’s RR. This would be particularly significant if it results in a reduction in the performance
of RR algorithms at abnormally low or high RRs, since it is important to be able to detect these
extreme values to ensure patient safety [331]. RSA, the mechanism which causes FM, is reduced
above a certain corner respiratory frequency [332]. Furthermore, it has been observed that AM of
the PPG is reduced at increasing RRs [333]. It has been suggested that the reduced amplitude of
respiratory modulations at elevated RRs causes a reduction in the performance of RR algorithms
[188], [189], [334], [329], [327]. Another study found that FM-based ECG algorithms performed
worse at higher RRs, whereas AM-based algorithms performed better at higher RRs [111]. It
has also been proposed that there is a range of RRs within which RR algorithms perform best,
and that performance is reduced for RRs outside of this range. However, the exact range is

unclear, having being reported as 8-11 breaths per minute (bpm) [189], and 16-20 bpm [237].

5.3 Methods

The methods used for both data collection and signal processing have, in part, already been

described in [10]. Those relevant to this study are presented here.

5.3.1 Technical and physiological factors

The technical and physiological factors investigated in this study are listed in Table 5.1. The
investigations were carried out as follows. Firstly, the respective qualities of respiratory signals
extracted from finger and ear PPG signals were compared. The measurement site associated
with lower quality respiratory signals was eliminated from further analyses. Secondly, respira-
tory signals extracted from laboratory and clinical signal acquisition equipment were compared.
Similarly, the signal acquisition equipment associated with lower quality respiratory signals was
eliminated from further analyses. Finally, the influences of the remaining technical factors, and

the physiological factors, on respiratory signal quality were assessed.
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TABLE 5.1: Technical and physiological factors investigated in this study which may influence
the quality of respiratory signals extracted from the electrocardiogram (ECG) and photoplethys-
mogram (PPG).

Technical Physiological

PPG measurement site: finger or ear Age

Signal acquisition equipment: laboratory or clinical Gender

Input signal: ECG or PPG Respiratory rate (RR)
Sampling frequency Heart rate (HR)

5.3.2 Datasets

The primary dataset used in this investigation was the RRest-healthy Dataset [7]. This dataset
is described in detail in Section 4.6.1. Briefly, it contains data acquired from 41 young healthy
subjects (aged between 18 and 39 years old), and 16 elderly subjects (at least 70 years old), for
approximately 10 mins at rest. ECG, PPG and reference oral-nasal pressure respiratory signals
were acquired simultaneously. This dataset is suitable for the assessment of technical factors
since it contains signals acquired using both laboratory and clinical equipment simultaneously,
and using different PPG measurement sites. This dataset is also suitable for the assessment
of physiological factors since it contains data from young and elderly, and male and female

subjects.

The RRest-healthy Dataset was extended in two ways to allow the impact of sampling frequency
to be assessed. Firstly, ECG and PPG signals were downsampled incrementally from the original
sampling frequencies to 50 Hz for the ECG and 8 Hz for the PPG. The downsampled signals

were then interpolated at the original sampling frequency using cubic-spline interpolation.

A secondary dataset, the publicly available Fantasia dataset [302, 303], was used to assess the
generalisability of the results pertaining to a subset of technical and physiological factors. This
dataset contains data acquired from 20 young healthy subjects (21 - 34 years old), and 20 elderly
subjects (68 - 85 years old). The recordings contain simultaneous ECG and reference respiratory
signals at 250 Hz. The first 66.7 mins of each subject’s recording were used for analysis.
This dataset is suitable for assessing the physiological factors considered in this investigation.
However, it does not contain the range of signals provided by the RRest-healthy Dataset, so

was not used to investigate technical factors.
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TABLE 5.2: Demographic characteristics of the two datasets used in this investigation.

Characteristic Young Cohort Elderly Cohort

RRest-healthy Dataset

No. subjects 41 16

Age [years], med (lower - upper quartiles) 29 (26 - 31) 75 (72 - 78)

Female [%)] 51 56
Fantasia Dataset

No. subjects 20 20

Age [years], med (lower - upper quartiles) 26 (22 - 30) 73 (71 -77)

Female [%)] 50 50

TABLE 5.3: Data characteristics

Characteristic No. high quality 32 s windows per subject,
med (lower - upper quartiles)

RRest-healthy Dataset

Reference respiratory signal (ref) 19 (18 - 20)
Laboratory ECG and ref 19 (18 - 20)
Laboratory finger PPG and ref 18 (16 - 20)
Laboratory ear PPG and ref 19 (17 - 20)
Clinical ECG and ref 19 (18 - 20)
Clinical finger PPG and ref 19 (17 - 20)
Fantasia Dataset
Reference respiratory signal (ref) 72 (39 - 96)
ECG and ref 56 (33 - 91)

The demographic characteristics of the subjects in each dataset are provided in Table 5.2. Data
from each subject consisted of a median (lower - upper quartiles) of 20 (19 - 20) 32 s windows
in RRest-healthy, and 124 (124 - 124) 32 s windows in Fantasia. The number of high-quality
windows for each signal are given in Table 5.3. The reference values of RR in the RRest-healthy
Dataset were 16.5 (11.6 - 19.7) bpm, and 17.5 (14.6 - 19.1) bpm in the Fantasia Dataset. The
reference values of HR in the RRest-healthy Dataset were 64.0 (58.1 - 69.1) bpm, and 58.8 (55.0
- 63.4) bpm in the Fantasia Dataset.
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5.3.3 Quality assessment

ECG, PPG and oral-nasal pressure signals were segmented into adjacent windows of 32 s dura-
tion. The quality of each signal during each window was assessed using the methods described
below. Any windows in which any of the required signals were of low quality were excluded

from analyses.

The quality of ECG and PPG signals was assessed using the algorithm reported in [124], and
described in Section 3.3. The quality of the oral-nasal pressure signal in the RRest-healthy
Dataset was assessed by calculating its signal-to-noise ratio using a modified periodogram. Any
windows with a low signal-to-noise ratio were deemed to be of low quality, with the threshold
for exclusion set to eliminate windows in which breaths could not be identified visually. The
quality of the reference respiratory signal in the Fantasia Dataset was assessed using the SQI

designed and validated in Section 4.6.2.

5.3.4 Extraction of respiratory signals

Several techniques have been proposed for extraction of respiratory signals from the ECG and
PPG, as described in Section 4.4.3.1. In this study four filter-based techniques (Xa; to Xag4,
described in Table 4.4), and nine feature-based techniques (Xp; to Xpg, described in Table
4.5) were used to extract a wide range of respiratory signals. All techniques were used with
the RRest-healthy Dataset. However, techniques Xas to Xa4, and Xpg9 were not used with
the Fantasia Dataset since they were too computationally expensive to be used with the longer

recordings in this dataset.

Filter-based techniques, Xa1 to X a4, were implemented as described in Table 4.4, followed by
elimination of frequency content outside of the range of plausible respiratory frequencies by

band-pass filtering.

Feature-based extraction was conducted as follows. Very high frequencies were eliminated using
low-pass filters with -3 dB cut-offs of 100 and 35 Hz for the ECG and PPG, respectively. An
additional 50 Hz notch filter was used to eliminate mains interference in the ECG. Beat detection
was performed on the ECG using a QRS detector based upon the algorithm of Pan, Hamilton
and Tompkins [72], [73], and on the PPG using the Incremental-Merge Segmentation (IMS)

algorithm [74]. R-waves and pulse peaks were detected as the maxima at or between detected
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beats. QRS troughs were detected as the minima within the 0.10 s prior to R-waves [112],
and pulse troughs as the minima between pulse peaks [186]. One of the beat-by-beat features,
Xp1 to XBg, was obtained as described in Table 4.5. Features derived from ectopic beats were
eliminated using the algorithm described in [335]. The beat-by-beat features were generated
at a variable rate (the heart rate). The time-series of these features was re-sampled at 5 Hz
using linear interpolation since subsequent processing required a constant sampling frequency
[80]. Frequency content outside of the range of plausible respiratory frequencies was eliminated

by band-pass filtering.

The range of plausible respiratory frequencies was determined as follows. The lower cut-off
was fixed at 4 breaths per minute (bpm). The upper limit was set to 36 bpm to bisect the
maximum RR and minimum heart rate (HR) in the RRest-healthy Dataset (33 bpm and 40 bpm
respectively). This limit was also suitable for the Fantasia Dataset since the maximum RR and
minimum HR were 27 bpm and 40 bpm respectively) This ensured that the extracted respiratory

signals were not contaminated with cardiac frequency content.

5.3.5 Respiratory signal assessment

The quality of extracted respiratory signals was assessed as follows. Signals were segmented into
the 32 s windows defined during quality assessment. For each window, the extracted respira-
tory signals and simultaneous reference respiratory signal were re-sampled at 5 Hz using linear
interpolation, band-pass filtered between 4 and 60 bpm to remove non-respiratory frequencies,
and temporally aligned to account for any phase difference between the two signals. The quality
of each extracted respiratory signal was calculated as the correlation between that extracted
respiratory signal and the reference oral-nasal pressure signal (see Figure 5.1). The correlation
was calculated using Pearson’s linear correlation coefficient (CC) [330]. The remainder of the

methodology varied according to the particular factor being investigated as follows:

e Comparisons between subjects (e.g. young vs. elderly subjects) were performed using
subject-specific CCs. The subject-specific CC was found for each subject and for each
respiratory signal by calculating the median of the extracted respiratory signal’s CCs

from each of a particular subject’s windows.

e Comparisons between input signals (e.g. ear vs. finger PPG) were performed using

subject-specific differences in CCs. The subject-specific difference in CCs was found for
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each subject and for each respiratory signal by calculating the median difference between
the CCs for the extracted respiratory signal when extracted from a first input signal, and

the CCs for the extracted respiratory signal when extracted from a second input signal.

5.3.6 Statistical analysis

Statistical tests were performed using a significance level of o = 0.05. The Wilcoxon signed rank
test was used to compare simultaneously recorded signals, such as ear and finger PPGs. The
Wilcoxon rank sum test was used for results from independent groups, such as those acquired
from young and elderly subjects. When testing for trends, such as across a range of reference
RRs, the Mann-Kendall monotonic trend test was used, as described in [336]. Kendall’s rank
CC was reported for statistically significant trends as an indicator of the strength of the trend,
as described in [337]. This statistic indicates both the magnitude and direction of trends.
A value of zero indicates no trend. Positive values indicates positive trends, and vice-versa,
with values further from zero indicating stronger trends. The directionality of statistically
significant differences was determined by using a normal approximation to compute a z-statistic

corresponding to an approximate p-value, the polarity of which indicated directionality.

During the analysis of each factor, a statistical test was performed to identify any changes in the
quality of each respiratory signal. Since 12 signals were tested for the ECG, and 10 for the PPG,
this would usually increase the probability of a type I error (false rejection of a null hypothesis)
considerably. Therefore, a Holm-Sidak correction was made to ensure that the probability of a

type I error was fixed at 5% [338], [339].

Respiratory signals extracted from the ECG and PPG were ranked by identifying the signal
with the greatest median CC (control), and assessing the probability that each other signal’s

CCs originated from the same distribution as the control signal.

5.4 Results

5.4.1 PPG measurement site

A total of six out of eleven respiratory signals had significantly greater CCs, indicating higher

quality, when extracted from finger PPG signals than ear PPG signals. The remaining signals
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showed no significant differences. The results of the comparisons between finger and ear PPG

signals are provided in full in Table A.1 in the appendix.

5.4.2 Signal acquisition equipment

The respiratory signals extracted from laboratory and clinical signals were mostly comparable,
with the quality of a minority of signals differing significantly in favour of one set of recording
equipment. A total of three (out of 13) signals extracted from the ECG were of higher quality
when using clinical equipment. When using the PPG, five signals were of higher quality when
using clinical equipment, and two when using laboratory equipment (out of 11). Since neither set
of recording equipment provided consistently higher CCs, only clinical signals were considered in
the remaining comparisons to increase the clinical applicability of the conclusions. The results of
the comparisons between signals acquired from laboratory and clinical equipment are provided

in Table A.2 in the appendix.

5.4.3 Input signal: ECG or PPG

The subject-specific CCs of each respiratory signal extracted from the ECG and PPG are shown
in Figure 5.3. All respiratory signals were ranked more highly when extracted from the ECG
than the PPG. Indeed, all of the PPG-extracted respiratory signals had significantly lower CCs
than ECG(Xp2), the ECG-extracted respiratory signal with the greatest median CC. Despite
this, ECG and PPG signals were retained in the remainder of the analysis. This ensured the
results were applicable to situations where device design considerations or clinical conditions

enforce the use of one particular signal for practical, rather than performance-based, reasons.

These results also show that some techniques for extraction of respiratory signals performed
particularly poorly, namely: Xa4, X7 and Xpg. Furthermore, they indicate that feature-based
techniques mostly performed better than filter-based techniques for extraction of respiratory
signals (e.g. Xpo was ranked higher than Xa3). The results of specific comparisons between
feature- and filter-based techniques for extraction of the three fundamental respiratory modula-
tions are shown in Table A.3 in the appendix. Five out of six respiratory signals had significantly

greater CCs when extracted using feature-based techniques than filter-based techniques.
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FIGURE 5.3: Comparison of the qualities of respiratory signals extracted from the ECG and
PPG: Correlation coefficients (CCs) for each respiratory signal extracted from the ECG and
PPG. The respiratory signal with the greatest median CC, ECG(Xg2), was used as a control
against which each respiratory signal was compared in turn. Those with significantly lower
CCs than this control are indicated. Note that all of the signals extracted from the PPG had
significantly lower CCs than the best ECG-extracted signal. Outliers are shown by +.

5.4.4 Sampling frequency

Figure 5.4 shows the CCs of respiratory signals extracted from ECG and PPG signals at different
sampling frequencies. Filter-based respiratory signals (Xa; to Xa4) were largely unaffected by
sampling frequency. The CCs of all feature-based respiratory signals (Xp; to Xpg) extracted
from the ECG except one were significantly lower at reduced sampling frequencies, beginning
below 250 Hz. In contrast, CCs of feature-based respiratory signals extracted from the PPG

were not reduced until the sampling frequency was below 16 Hz.

5.4.5 Age

In the results from the RRest-healthy Dataset, the CCs of PPG(Xp3), a respiratory signal based
on FM, were significantly lower in elderly subjects than young subjects in the RRest-healthy
Dataset. The CCs of other respiratory signals based on FM, namely PPG(Xa3), ECG(Xa3)
and ECG(Xp3) were also substantially lower in elderly subjects, although these differences (p
= 0.04, p = 0.09 and p = 0.01 respectively) did not reach statistical significance, partly due
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