Supporting Information

for

Nanoconfinement of Tetraphenylethylene in Zeolitic Metal-Organic Framework for Turn-on Mechano fluorochromic Stress Sensing

Yang Zhang, a Tao Xiong, a Annika F. Möslein, a Samraj Mollick, a Vishal Kachwal, a Arun Singh Babal, a Nader Amin, b and Jin-Chong Tan*, a

a Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.

b Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

*Corresponding author
E-mail: jin-chong.tan@eng.ox.ac.uk
Figure S1. DFT simulation results of TPE monomer and its vibrations at 1073.98 cm$^{-1}$, 1233.80 cm$^{-1}$, 1436.83 cm$^{-1}$, and 1485.72 cm$^{-1}$. The infrared vibrational frequencies are obtained at the B3LYP/6-311G* level of theory and implementing an empirical scaling factor of 0.97.
Figure S2. ATR-FTIR spectra of TPE, TPE@ZIF-71 and ZIF-71. The predicted TPE spectrum was obtained from DFT calculations at the B3LYP/6-311G* level of theory and implementing an empirical scaling factor of 0.97.
Figure S3. TGA results of TPE, TPE@ZIF-71 and ZIF-71. The wt.% of TPE : ZIF-71 = (97.181 – 96.944) : 96.944 = 0.237 : 96.944
Figure S4. Solution 1H NMR of TPE@ZIF-71 where the guest/host peaks used for integration are indicated as TPE and dcIm, respectively. The guest loading calculated is 1 TPE for every 146 cages of ZIF-71.
Figure S5. The configuration of the TPE dimer calculated from DFT simulation and its maximum molecular size. The structure is obtained at the B3LYP-D3/6-311G* level of theory.
Figure S6. TPE/ZIF-71 pellet prepared using a physically-mixed powder of TPE and ZIF-71, and TPE@ZIF-71 pellet prepared under a nominal pressure of 346.6 MPa, their colors viewed in ambient light, and their fluorescence observed under a 365-nm UV lamp. The wt.% of TPE and ZIF-71 used to prepare the physically-mixed samples was based on the TGA results in Figure S3. Blue dots in the physically-mixed powders indicate the TPE molecules are not distributed uniformly, resulting in closer intermolecular interactions and a feeble caging effect, which allows for additional nonradiative decay channels and gives weak emission after pressure.
Figure S7. Peak positions of TPE@ZIF-71 and its pellets in the region of 490 – 590 cm⁻¹, as determined from Gauss fittings (in OriginPro).
Figure S8. Upper row: XRD patterns of TPE@MIL-68(In) and TPE@UiO-67; Lower row: TPE@MIL-68(In), TPE@UiO-67, and TPE@ZIF-71 pellets prepared under a nominal pressure of 346.6 MPa, their colors viewed in visible light (left), and their fluorescence under a 365 nm UV lamp (right).
Figure S9. Turn-on type mechanofluorochromic behavior of TPE@ZIF-71/PU fibers and TPE@ZIF-71/PVDF membranes. Note: the samples here are to demonstrate its sensing properties and engineering application potential. More rigorous research will be conducted as follow-on studies.
Table S1. Values of time constants (τ_i), normalized pre-exponential factors (a_i), and fractional contributions ($c_i = \tau_i \cdot a_i$) of the emission decay of TPE suspension, ZIF-71 and TPE@ZIF71 powders upon excitation at 362.5 nm ($R_t = \sum a_i e^{-t/\tau_i}$, R_t is the quantity/counts at time t).

<table>
<thead>
<tr>
<th>Sample</th>
<th>λ_{obs} [nm]</th>
<th>τ_1 [ns]</th>
<th>a_1</th>
<th>c_1 [%]</th>
<th>τ_2 [ns]</th>
<th>a_2</th>
<th>c_2 [%]</th>
<th>τ_3 [ns]</th>
<th>a_3</th>
<th>c_3 [%]</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE</td>
<td>450</td>
<td>0.71</td>
<td>0.029</td>
<td>12.85</td>
<td>2.44</td>
<td>0.027</td>
<td>40.94</td>
<td>5.77</td>
<td>0.013</td>
<td>46.21</td>
<td>1.098</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>0.71</td>
<td>0.024</td>
<td>9.40</td>
<td>2.44</td>
<td>0.028</td>
<td>37.18</td>
<td>5.77</td>
<td>0.017</td>
<td>53.43</td>
<td>1.132</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>0.71</td>
<td>0.020</td>
<td>7.78</td>
<td>2.44</td>
<td>0.025</td>
<td>32.99</td>
<td>5.77</td>
<td>0.019</td>
<td>59.23</td>
<td>1.119</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>0.71</td>
<td>0.019</td>
<td>6.74</td>
<td>2.44</td>
<td>0.023</td>
<td>29.22</td>
<td>5.77</td>
<td>0.022</td>
<td>64.05</td>
<td>1.087</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>0.71</td>
<td>0.017</td>
<td>5.71</td>
<td>2.44</td>
<td>0.022</td>
<td>25.55</td>
<td>5.77</td>
<td>0.025</td>
<td>68.74</td>
<td>1.111</td>
</tr>
<tr>
<td>ZIF-71</td>
<td>427</td>
<td>0.49</td>
<td>0.072</td>
<td>37.08</td>
<td>1.75</td>
<td>0.027</td>
<td>50.06</td>
<td>4.79</td>
<td>0.003</td>
<td>12.86</td>
<td>1.154</td>
</tr>
<tr>
<td></td>
<td>437</td>
<td>0.49</td>
<td>0.066</td>
<td>33.48</td>
<td>1.75</td>
<td>0.029</td>
<td>51.67</td>
<td>4.79</td>
<td>0.003</td>
<td>14.85</td>
<td>1.144</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>0.49</td>
<td>0.062</td>
<td>29.73</td>
<td>1.75</td>
<td>0.031</td>
<td>52.26</td>
<td>4.79</td>
<td>0.004</td>
<td>18.01</td>
<td>1.116</td>
</tr>
<tr>
<td></td>
<td>457</td>
<td>0.49</td>
<td>0.060</td>
<td>27.98</td>
<td>1.75</td>
<td>0.030</td>
<td>50.66</td>
<td>4.79</td>
<td>0.005</td>
<td>21.36</td>
<td>1.097</td>
</tr>
<tr>
<td></td>
<td>467</td>
<td>0.49</td>
<td>0.056</td>
<td>25.09</td>
<td>1.75</td>
<td>0.032</td>
<td>50.64</td>
<td>4.79</td>
<td>0.006</td>
<td>24.27</td>
<td>1.110</td>
</tr>
<tr>
<td>TPE@ZIF-71</td>
<td>426</td>
<td>0.49</td>
<td>0.062</td>
<td>33.43</td>
<td>1.75</td>
<td>0.029</td>
<td>51.61</td>
<td>4.79</td>
<td>0.003</td>
<td>14.96</td>
<td>1.136</td>
</tr>
<tr>
<td></td>
<td>436</td>
<td>0.49</td>
<td>0.065</td>
<td>30.42</td>
<td>1.75</td>
<td>0.032</td>
<td>52.92</td>
<td>4.79</td>
<td>0.004</td>
<td>16.66</td>
<td>1.009</td>
</tr>
<tr>
<td></td>
<td>446</td>
<td>0.49</td>
<td>0.058</td>
<td>27.37</td>
<td>1.75</td>
<td>0.031</td>
<td>52.50</td>
<td>4.79</td>
<td>0.004</td>
<td>20.13</td>
<td>1.093</td>
</tr>
<tr>
<td></td>
<td>456</td>
<td>0.49</td>
<td>0.057</td>
<td>25.10</td>
<td>1.75</td>
<td>0.032</td>
<td>51.18</td>
<td>4.79</td>
<td>0.005</td>
<td>23.72</td>
<td>1.073</td>
</tr>
<tr>
<td></td>
<td>466</td>
<td>0.49</td>
<td>0.053</td>
<td>22.94</td>
<td>1.75</td>
<td>0.033</td>
<td>50.49</td>
<td>4.79</td>
<td>0.006</td>
<td>26.57</td>
<td>1.062</td>
</tr>
</tbody>
</table>
Table S2. Quantum yield (QY) of TPE suspension in a solution of water: THF = 99:1, ZIF-71 powder, TPE@ZIF-71 powder, and pellets.

<table>
<thead>
<tr>
<th>Sample</th>
<th>QY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE suspension in solvent</td>
<td>35.64%</td>
</tr>
<tr>
<td>ZIF-71</td>
<td>3.06%</td>
</tr>
<tr>
<td>TPE@ZIF-71</td>
<td>4.12%</td>
</tr>
<tr>
<td>Pellet (86.65 MPa)</td>
<td>4.49%</td>
</tr>
<tr>
<td>Pellet (173.30 MPa)</td>
<td>5.87%</td>
</tr>
<tr>
<td>Pellet (259.95 MPa)</td>
<td>6.08%</td>
</tr>
<tr>
<td>Pellet (346.60 MPa)</td>
<td>6.35%</td>
</tr>
</tbody>
</table>
Table S3. Values of time constants (τ_i), normalized pre-exponential factors (a_i), and fractional contributions ($c_i = \tau_i \cdot a_i$) of the emission decay of TPE@ZIF-71 pellets upon excitation at 362.5 nm.

<table>
<thead>
<tr>
<th>Pelleting pressure [MPa]</th>
<th>λ_{obs} [nm]</th>
<th>τ_1 [ns]</th>
<th>a_1</th>
<th>c_1 [%]</th>
<th>τ_2 [ns]</th>
<th>a_2</th>
<th>c_2 [%]</th>
<th>τ_3 [ns]</th>
<th>a_3</th>
<th>c_3 [%]</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.65</td>
<td>430</td>
<td>0.54</td>
<td>0.062</td>
<td>30.69</td>
<td>1.92</td>
<td>0.029</td>
<td>50.79</td>
<td>5.64</td>
<td>0.004</td>
<td>18.52</td>
<td>1.057</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>0.54</td>
<td>0.057</td>
<td>27.08</td>
<td>1.92</td>
<td>0.030</td>
<td>50.41</td>
<td>5.64</td>
<td>0.005</td>
<td>22.51</td>
<td>1.103</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>0.54</td>
<td>0.052</td>
<td>24.33</td>
<td>1.92</td>
<td>0.029</td>
<td>47.76</td>
<td>5.64</td>
<td>0.006</td>
<td>27.91</td>
<td>1.082</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>0.54</td>
<td>0.050</td>
<td>21.33</td>
<td>1.92</td>
<td>0.029</td>
<td>44.90</td>
<td>5.64</td>
<td>0.008</td>
<td>33.77</td>
<td>1.062</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>0.54</td>
<td>0.047</td>
<td>19.24</td>
<td>1.92</td>
<td>0.029</td>
<td>41.33</td>
<td>5.64</td>
<td>0.009</td>
<td>39.43</td>
<td>1.230</td>
</tr>
<tr>
<td>173.30</td>
<td>440</td>
<td>0.56</td>
<td>0.050</td>
<td>21.48</td>
<td>2.23</td>
<td>0.029</td>
<td>49.93</td>
<td>5.75</td>
<td>0.006</td>
<td>28.58</td>
<td>1.137</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>0.56</td>
<td>0.046</td>
<td>18.43</td>
<td>2.23</td>
<td>0.029</td>
<td>46.48</td>
<td>5.75</td>
<td>0.009</td>
<td>35.09</td>
<td>1.054</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>0.56</td>
<td>0.042</td>
<td>16.07</td>
<td>2.23</td>
<td>0.028</td>
<td>42.37</td>
<td>5.75</td>
<td>0.011</td>
<td>41.56</td>
<td>1.135</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>0.56</td>
<td>0.040</td>
<td>14.10</td>
<td>2.23</td>
<td>0.027</td>
<td>38.43</td>
<td>5.75</td>
<td>0.013</td>
<td>47.48</td>
<td>1.118</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>0.56</td>
<td>0.037</td>
<td>12.46</td>
<td>2.23</td>
<td>0.026</td>
<td>34.53</td>
<td>5.75</td>
<td>0.015</td>
<td>53.00</td>
<td>1.211</td>
</tr>
<tr>
<td>259.95</td>
<td>445</td>
<td>0.57</td>
<td>0.043</td>
<td>17.34</td>
<td>2.24</td>
<td>0.031</td>
<td>48.97</td>
<td>5.77</td>
<td>0.008</td>
<td>33.69</td>
<td>1.157</td>
</tr>
<tr>
<td></td>
<td>455</td>
<td>0.57</td>
<td>0.037</td>
<td>14.21</td>
<td>2.24</td>
<td>0.030</td>
<td>45.72</td>
<td>5.77</td>
<td>0.010</td>
<td>40.07</td>
<td>1.159</td>
</tr>
<tr>
<td></td>
<td>465</td>
<td>0.57</td>
<td>0.034</td>
<td>12.36</td>
<td>2.24</td>
<td>0.029</td>
<td>41.88</td>
<td>5.77</td>
<td>0.013</td>
<td>45.76</td>
<td>1.091</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>0.57</td>
<td>0.032</td>
<td>11.06</td>
<td>2.24</td>
<td>0.027</td>
<td>37.06</td>
<td>5.77</td>
<td>0.015</td>
<td>51.87</td>
<td>1.165</td>
</tr>
<tr>
<td></td>
<td>485</td>
<td>0.57</td>
<td>0.031</td>
<td>10.07</td>
<td>2.24</td>
<td>0.026</td>
<td>33.16</td>
<td>5.77</td>
<td>0.017</td>
<td>56.77</td>
<td>1.029</td>
</tr>
<tr>
<td>346.60</td>
<td>451</td>
<td>0.59</td>
<td>0.040</td>
<td>15.59</td>
<td>2.27</td>
<td>0.031</td>
<td>47.52</td>
<td>5.81</td>
<td>0.010</td>
<td>36.90</td>
<td>1.096</td>
</tr>
<tr>
<td></td>
<td>461</td>
<td>0.59</td>
<td>0.034</td>
<td>13.03</td>
<td>2.27</td>
<td>0.030</td>
<td>44.04</td>
<td>5.81</td>
<td>0.011</td>
<td>42.93</td>
<td>1.078</td>
</tr>
<tr>
<td></td>
<td>471</td>
<td>0.59</td>
<td>0.032</td>
<td>11.76</td>
<td>2.27</td>
<td>0.028</td>
<td>40.00</td>
<td>5.81</td>
<td>0.013</td>
<td>48.24</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td>481</td>
<td>0.59</td>
<td>0.030</td>
<td>10.35</td>
<td>2.27</td>
<td>0.027</td>
<td>35.85</td>
<td>5.81</td>
<td>0.016</td>
<td>53.80</td>
<td>1.091</td>
</tr>
<tr>
<td></td>
<td>491</td>
<td>0.59</td>
<td>0.028</td>
<td>9.31</td>
<td>2.27</td>
<td>0.026</td>
<td>32.85</td>
<td>5.81</td>
<td>0.018</td>
<td>57.84</td>
<td>1.187</td>
</tr>
</tbody>
</table>
Table S4. A comparison of the sensitivity of pure TPE versus TPE@ZIF-71. Note: when observed at the same peak wavelength, TPE@ZIF-71 only requires a nominal pressure of ~347 MPa, which is one-tenth of the pressure required for TPE at matching wavelength.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pressure [MPa]</th>
<th>Peak Wavelength [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE</td>
<td>3500</td>
<td>472[1]</td>
</tr>
<tr>
<td>TPE@ZIF-71</td>
<td>346.6</td>
<td>471</td>
</tr>
</tbody>
</table>
References