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Summary
Background Uncertainty in patients’ COVID-19 status contributes to treatment delays, nosocomial transmission, and 
operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12–24 h and 
lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage 
(CURIAL-1.0) can provide rapid COVID-19 screening using clinical data routinely available within 1 h of arrival to 
hospital. Here, we aimed to improve the time from arrival to the emergency department to the availability of a result, 
do external and prospective validation, and deploy a novel laboratory-free screening tool in a UK emergency 
department.

Methods We optimised our previous model, removing less informative predictors to improve generalisability and 
speed, developing the CURIAL-Lab model with vital signs and readily available blood tests (full blood count [FBC]; 
urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and the CURIAL-Rapide model with 
vital signs and FBC alone. Models were validated externally for emergency admissions to University Hospitals 
Birmingham, Bedfordshire Hospitals, and Portsmouth Hospitals University National Health Service (NHS) trusts, 
and prospectively at Oxford University Hospitals, by comparison with PCR testing. Next, we compared model 
performance directly against LFDs and evaluated a combined pathway that triaged patients who had either a positive 
CURIAL model result or a positive LFD to a COVID-19-suspected clinical area. Lastly, we deployed CURIAL-Rapide 
alongside an approved point-of-care FBC analyser to provide laboratory-free COVID-19 screening at the John 
Radcliffe Hospital (Oxford, UK). Our primary improvement outcome was time-to-result, and our performance 
measures were sensitivity, specificity, positive and negative predictive values, and area under receiver operating 
characteristic curve (AUROC).

Findings 72 223 patients met eligibility criteria across the four validating hospital groups, in a total validation period 
spanning Dec 1, 2019, to March 31, 2021. CURIAL-Lab and CURIAL-Rapide performed consistently across trusts 
(AUROC range 0·858–0·881, 95% CI 0·838–0·912, for CURIAL-Lab and 0·836–0·854, 0·814–0·889, for CURIAL-
Rapide), achieving highest sensitivity at Portsmouth Hospitals (84·1%, Wilson’s 95% CI 82·5–85·7, for CURIAL-
Lab and 83·5%, 81·8–85·1, for CURIAL-Rapide) at specificities of 71·3% (70·9–71·8) for CURIAL-Lab and 63·6% 
(63·1–64·1) for CURIAL-Rapide. When combined with LFDs, model predictions improved triage sensitivity from 
56·9% (51·7–62·0) for LFDs alone to 85·6% with CURIAL-Lab (81·6–88·9; AUROC 0·925) and 88·2% with 
CURIAL-Rapide (84·4–91·1; AUROC 0·919), thereby reducing missed COVID-19 cases by 65% with CURIAL-Lab 
and 72% with CURIAL-Rapide. For the prospective deployment of CURIAL-Rapide, 520 patients were enrolled for 
point-of-care FBC analysis between Feb 18 and May 10, 2021, of whom 436 received confirmatory PCR testing and 
ten (2·3%) tested positive. Median time from arrival to a CURIAL-Rapide result was 45 min (IQR 32–64), 16 min 
(26·3%) sooner than with LFDs (61 min, 37–99; log-rank p<0·0001), and 6 h 52 min (90·2%) sooner than with PCR 
(7 h 37 min, 6 h 5 min to 15 h 39 min; p<0·0001). Classification performance was high, with sensitivity of 87·5% 
(95% CI 52·9–97·8), specificity of 85·4% (81·3–88·7), and negative predictive value of 99·7% (98·2–99·9). CURIAL-
Rapide correctly excluded infection for 31 (58·5%) of 53 patients who were triaged by a physician to a COVID-19-
suspected area but went on to test negative by PCR.

Interpretation Our findings show the generalisability, performance, and real-world operational benefits of artificial 
intelligence-driven screening for COVID-19 over standard-of-care in emergency departments. CURIAL-Rapide 
provided rapid, laboratory-free screening when used with near-patient FBC analysis, and was able to reduce the 
number of patients who tested negative for COVID-19 but were triaged to COVID-19-suspected areas.
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Introduction
Reducing nosocomial transmission of SARS-CoV-2 is a 
priority in safeguarding patient and health-care staff 
safety, particularly as inpatients are at greatest risk of 
severe illness and death.1,2 Although viral testing is 
mandated for all patients admitted to UK hospitals, long 
turnaround times and triage failure can cause delays to 
care, nosocomial transmission, and operational strain in 
the emergency department.3–5

The mainstay of testing for SARS-CoV-2 is batch-
processed laboratory PCR, which has imperfect sensitivity 
and requires specialist equipment.6,7 Turn-around times 
have shortened throughout the pandemic, typically to 
within 12–24 h in hospitals in high-income and middle-
income countries, but the interim uncer tainty about 

patients’ COVID-19 status might postpone safe transfers 
from the emergency department to SARS-CoV-2-free 
clinical areas and thereby contribute to nosocomial 
transmission.1,8 Novel rapid testing solutions have been 
adopted, including point-of-care PCR, loop mediated 
isothermal amplification, and antigen testing with lateral 
flow devices (LFDs), despite limitations in throughput 
and sensitivity.9,10 Where point-of-care PCR is available, its 
use is typically constrained to time-critical decisions due 
to supply concerns.11,12 Moreover, although LFDs are 
laboratory-free and highly specific (>99·5%),13 multiple 
reports have shown more limited sensitivity 
(about 40–70%),14,15 leading to the US Food and Drug 
Admin istration issuing a class 1 recall of the Innova 
SARS-CoV-2 rapid antigen test on June 10, 2021.16 A recent 

Research in context

Evidence before this study
A recent study estimated that 11·3% of patients in hospital 
with COVID-19 during the first pandemic wave contracted the 
virus after admission, recognising triage failure and long PCR 
turnaround times as contributors. Many works, using both 
conventional and artificial intelligence approaches, have aimed 
to improve COVID-19 triage safety. We searched PubMed and 
Google Scholar from inception up to Sept 30, 2021, for items 
in English, using the search terms “Covid-19”, “SARS-CoV-2”, 
“Emergency Department”, “identify” and “triage”, identifying 
15 200 items, of which 1870 reported use of artificial 
intelligence (additional search terms used were “Machine 
Learning” or “Artificial Intelligence”). Lateral flow testing has 
been widely adopted, but recent studies showed poor 
sensitivity for hospital triage (about 62%). Although many 
artificial intelligence studies reported promising results, two 
key reviews that, together, screened 40 000 titles, highlighted 
sector-wide methodological and reporting concerns. Few 
studies did adequate validation or showed added value in a 
real-world setting. In 2020, our group reported that an artificial 
intelligence test (CURIAL-1.0) rapidly identified patients 
attending the emergency department with COVID-19, using 
routine blood tests, blood gas, and vital signs collected 
within 1 h of presentation. The approach was highlighted in a 
Lancet Digital Health editorial, which called for diverse and 
inclusive evaluation alongside evidence of tangible clinical 
improvement.

Added value of this study
We present a multicentre validation and prospectively deploy 
an artificial intelligence screening model in a UK emergency 
department. To our knowledge, our study reports the shortest 
time from arrival in hospital to an artificial intelligence-driven 
COVID-19 screening result in a real-world clinical setting, using 
point-of-care blood testing to achieve results in a median 
45 min. High negative predictive values allow the model to be 
used as a rapid rule-out test, supporting time-critical decision 
making. An assessment of operational effects showed that the 

model correctly ruled out infection for 58·5% of patients who 
were triaged by a clinician or physician to a COVID-19-suspected 
area but went on to test negative by PCR.

Our multicentre validation used cohorts inclusive of all adult 
emergency admissions to four National Health Service trusts, 
showing consistent performance across the full length of the 
COVID-19 pandemic. We found no evidence of consistent 
biases by gender or ethnic group. Our study also validates a 
triage pathway that combines an artificial intelligence test with 
LFDs in the real-world clinical setting, showing that missed 
COVID-19 cases were reduced from 43 per 100 patients with a 
positive test when LFDs were used alone to 12 (a 72% 
reduction). Moreover, this integrated approach offers a 
framework for low-risk deployment of clinical artificial 
intelligence, using a pathway that is at least as safe as current 
practice by design. Together, our findings evidence the 
generalisability, efficacy, and real-world operational benefits of 
artificial intelligence-driven screening for COVID-19 in 
emergency care.

Implications of all the available evidence
Whereas competing screening approaches frequently require 
additional testing, the CURIAL models provide a rapid test-of-
exclusion for COVID-19 by use of readily available clinical data. 
Benefits include the potential to expedite transfers from the 
emergency department to COVID-19-free clinical areas, thereby 
reducing operational strain and nosocomial transmission 
among the inpatient population. The CURIAL models are 
rapidly scalable, near-universally applicable in the population of 
intended use, and extensively validated by use of real-world 
emergency department populations that are easily definable 
and reproducible. Moreover, the additional cost is negligible, 
and a high negative predictive value configuration allows 
targeting of confirmatory testing to subpopulations with 
higher risk of a positive test. This study contributes to a 
growing evidence base for responsible use of clinical artificial 
intelligence tools.

See Online for appendix
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study showed low sensitivity of LFDs (62%) when used 
for emergency hospital admissions,10 increasing the risk 
of triage failure.

The subjective assessment of routinely collected blood 
test results, which are typically available within 1 h of 
presen tation to hospitals in high-income and middle-
income countries, is widely used to guide preliminary 
triage. Although associations such as that between 
lympho penia and COVID-19 are well recognised, in 
isolation these have been shown to be insufficiently 
sensitive for use as a COVID-19 screening test.17 Many 
studies have characterised complex patterns of viral-
induced abnormalities in haematology bio chemistry 
panels,18,19 and multivariate clinical scores such as the 
Corona-score have been developed to support COVID-19 
triage in the emergency department.20 However, owing to 
limited specificity of individual predictors, artificial 
intelligence approaches applied to richer predictor sets are 
necessary to achieve clinically-acceptable performance.21

We have shown that an artificial intelligence screening 
test (CURIAL-1.0) rapidly identified patients attending 
the emergency department with COVID-19, using the 
routine blood test, blood gas, and vital signs collected 
within 1 h of presentation to the hospital.5 Strengths of 
the approach include the use of readily available and near-
universally collected data, thereby being widely applicable, 
and high negative predictive value (NPV) configuration to 
offer a rapid rule out. By contrast, alternative approaches 
to COVID-19 triage use radiological imaging, which is 
less readily available and involves patient exposure to 
ionising radiation,22 or infrequently requested laboratory 
predicting markers, such as IL-6.23,24 Although many 
studies have examined diagnostic applications of artificial 
intelligence for COVID-19, key reviews have highlighted 
sector-wide methodological and reporting concerns and 
called for rigorous evaluation within the clinical context 
of intended use.25,26

A 2021 editorial highlighted the promise of CURIAL-1.0 
to support patients with COVID-19, discussing the need 
for further evaluation to show benefits over standard of 
care in a real-world clinical setting.27 Moreover, recent 
advances in point-of-care testing include the availability 
of rapid haematology analysers, which offer results 
within 10 min,28 and their role within artificial intelli-
gence-driven COVID-19 screening remains unexplored.

In this study, we aimed to improve the time from 
arrival to the emergency department to the availability of 
an artificial intelligence result and evaluate the resultant 
models. To assess generalisability, we did external and 
prospective vali dations across emergency admissions to 
four UK National Health Service (NHS) trusts, and we 
compared performance with that of LFDs used in 
standard care. Lastly, we deployed a model alongside an 
approved point-of-care full blood count (FBC) analyser 
(OLO, SightDiagnostics, Tel Aviv, Israel) to provide 
laboratory-free COVID-19 screening in the John Radcliffe 
Hospital’s Emergency Department (Oxford, UK), 

assessing time-to-result and diagnostic performance in a 
real-world clinical setting.

Methods
Diagnostic models to identify patients presenting with 
COVID-19
We updated our previously described model, designed to 
identify patients presenting to hospital with COVID-19 
by use of vital signs, blood gas, and routine laboratory 
blood tests (CURIAL-1.0),5 with additional training data 
to encompass all COVID-19 cases presenting to Oxford 
University Hospitals (OUH; Oxfordshire, UK) during the 
first pandemic wave (to June 30, 2020; appendix pp 3–8). 
OUH consists of four teaching hospitals serving a 
population of 600 000 and provides tertiary referral 
services to the surrounding region. The routine blood 
tests used were FBC; urea, creatinine, and electrolytes; 
liver function tests (LFTs); coagulation; and C-reactive 
protein (CRP), owing to their ubiquity in emergency care 
pathways and rapid results, typically available within 1 h.

Next, we eliminated weakly informative predictors to 
improve generalisability (figure 1B). CURIAL-Lab, an 
updated model, uses a focused subset of routine blood 
tests (FBC; urea, creatinine, and electrolytes; LFTs; and 
CRP) and vital signs, eliminating the use of coagulation 
panels and blood gas, which are not universally 
performed and are less informative.5 Separately, we 
optimised for time-to-result and developed a minimalist 
model (CURIAL-Rapide) considering only predictors 
that can be rapidly obtained by the patient bedside (FBC 
and vital signs). We selected FBC due to the approval of a 
point-of-care haematology analyser with a time-to-result 
of 10 min (OLO) and explainability analyses showing that 
FBC components were most informative (eg, basophil, 
eosinophil, and neutrophil counts).5,28 The time line of 
model development, evaluation, and deploy ment is 
shown in figure 1A.

NHS Health Research Authority approval was granted 
for the use of routine clinical and microbiology data from 
electronic health records (EHRs) for development and 
validation of artificial intelligence models to detect 
COVID-19 (CURIAL; IRAS ID 281832). The study 
protocol for model development and external and 
prospective validation was approved by the NHS Health 
Research Authority (IRAS ID 281832) and sponsored by 
the University of Oxford. The OLO analysers were 
deployed in an OUH emergency department as service 
improvement with approvals from the point-of-care 
testing committee and trust approval for service 
evaluation and improvement (OUH Ulysses ID 6709). 

Evaluation for the second wave of the UK COVID-19 
epidemic at OUH
We evaluated the performance of CURIAL-1.0, 
CURIAL-Lab, and CURIAL-Rapide by use of an 
indepen dent prospective set of all patients presenting 
to emergency departments and acute medical services 
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at OUH during the second pandemic wave (Oct 1, 2020, 
to March 6, 2021; figure 1A, appendix p 2). To assess 
performance across calibrations, we did the analysis 
with thresholds set during training to achieve 
sensitivities of 80% and 90%. Additionally, we did a 
sensitivity analysis to assess susceptibility to imputation 
strategy, training the models with three independent 
imputation methods (median, mean, and age-based 

mean) and examining variance in performance during 
evaluation. Calibration was assessed by standard 
calibration curve analysis, with predictions grouped 
with quantile-based binning.

External validation at independent NHS trusts
We externally validated CURIAL-Rapide and CURIAL-
Lab, calibrated during training to 90% sensitivity, for 

Figure 1: Overview of study design
Overview shows the timeline of model development, evaluation, and deployment (A); successive elimination of less informative predictors from CURIAL-1.0 to optimise for generalisability (CURIAL-
Lab) and result-time (CURIAL-Rapide; B); and a proposed novel rapid screening pathway for COVID-19 in emergency departments, which combines lateral flow device testing with artificial intelligence 
screening (C). Routine blood tests and vital signs recordings are done on arrival to the emergency department, either using rapid point-of-care haematology analysers (about 10 min; CURIAL-Rapide) 
or the existing laboratory pathway (about 1 h; CURIAL-Lab). Real-time algorithmic analysis allows early, high-confidence identification of patients who are negative for safe triage to COVID-19-free 
clinical areas. Patients with positive CURIAL results are admitted to enhanced precautions (amber) areas, pending confirmatory PCR. Patients testing positive with a lateral flow test are streamed 
directly to COVID-19 (red) clinical areas. Arrow thickness represents patient flow. ALT=alanine aminotransferase. APTT=activated partial thromboplastin time. CRP=C-reactive protein. eGFR=estimated 
glomerular filtration rate. INR=international normalised ratio. NHS=National Health Service. p50=pressure at which haemoglobin is 50% bound to oxygen. *CURIAL-Lab used data collected from 
routine blood tests (full blood count; urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and vital signs, whereas CURIAL-Rapide used data that could be collected at the 
patient’s bedside (full blood count and vital signs). 

2020 2021
November December January February March April May November December January February March April MayJune July August September October

December, 2017, to April, 2020: model training population Additional training data

Deployment at John Radcliffe Hospital

Soltan et al (2020)

First vaccine approved in the UK

90% of patients older than 75 years vaccinated in the UK

External validation: University Hospital Birmingham NHS Foundation Trust

External validation: Portsmouth Hospitals University NHS Trust

Prospective validation: Oxford University Hospitals  NHS Foundation Trust

External validation: Bedfordshire Hospitals 
NHS Foundation trust

Performance evaluation: lateral flow 
testing (Oxford University Hospitals)

A

B C
Model:

Feature set Constituents CURIAL-1.0 CURIAL-Lab CURIAL-Rapide

Vital signs Heart rate, respiratory rate, oxygen 
saturations, blood pressure, 
temperature, oxygen delivery device 

Full blood count Haemoglobin, haematocrit, mean cell 
volume, white cell count, neutrophil count, 
lymphocyte count, monocyte count, 
eosinophil count, basophil count, platelets

Urea and electrolytes Sodium, potassium, creatinine, urea, eGFR 

Liver function 
tests and CRP

Albumin, alkaline phosphatase, ALT, 
bilirubin, CRP

Coagulation Prothrombin time, INR, APTT

Blood gas Base excess, bicarbonate, calcium, chloride, 
estimated osmolality, fraction 
carboxyhaemoglobin, glucose, haemoglobin, 
haematocrit, potassium, methaemoglobin, 
sodium, oxygen saturation, calculated 
lactate, calculated p5O, partial pressure 
carbon dioxide, pH, partial pressure oxygen

√ √ √

√ √

√ √

√

√

√

√

√

Patient arriving at hospital 
emergency department

Routine clinical data 
collection*

Lateral flow rapid 
antigen testing

Real-time algorithmic 
screening 
(CURIAL-Rapide or 
CURIAL-Lab)

Admit to enhanced 
precaution area for 
PCR adjudication 

Admit patient to 
COVID-19-free 
clinical area

Admit patient to 
COVID-19 clinical 
area

Point-of-care
10 min

Laboratory
1 h

Negative
(30 min)

Positive (10 min|1 h)

Negative 
(about 
12–24 h)

Positive 
(about 
12–24 h)

Negative 
(10 min|1 h)

Positive
(30 min)



Articles

 www.thelancet.com/digital-health   Vol 4   April 2022 e270

emergency admissions across three independent UK 
NHS hospital trusts by comparing model predictions with 
results of confirmatory molecular testing (SARS-CoV-2 
laboratory PCR and the point-of-care PCR devices 
SAMBA-II and Panther). Participating trusts were the 
University Hospitals Birmingham NHS Foundation Trust 
(UHB), Bedfordshire Hospitals NHS Foundation Trust 
(BH), and Portsmouth Hospitals University NHS 
Trust (PUH), serving a total population of about 
3·5 million. Cycle threshold (Ct) cutoff values for a 
positive molecular test result adopted local hospital 
standards. We evaluated the models for all patients aged 
18 years or older who had an emergency admission 
through emergency or acute medical pathways and 
underwent a blood draw on arrival during specified date 
ranges (shown in figure 1A). Screening against eligibility 
criteria, followed by anonymisation, was done by the 
respective NHS trusts. Patients who did not consent to 
EHR research, did not receive confirmatory testing for 
SARS-CoV-2, or had only an invalid confirmatory result 
with no subsequent valid result were excluded. For trusts 
where blood gas results were available for electronic 
extraction, we also evaluated CURIAL-1.0. Evaluation 
details are shown in figure 1A and in the appendix (pp 8–10).

Comparison with LFDs
To investigate the suitability of CURIAL-Rapide, 
CURIAL-Lab, and CURIAL-1·0 as rapid screening tests, 
we compared sensitivities and NPVs with the Innova 
SARS-CoV-2 antigen rapid qualitative test (Innova, 
Pasadena, CA, USA) used within standard-of-care for 
admissions to OUH during the second pandemic wave 
(Oct 1, 2020, to March 6, 2021; appendix p 5). From 
Dec 23, 2020, patients admitted to OUH from acute and 
emergency care settings (emergency department, 
ambulatory medical unit, and medical assessment unit) 
had LFDs done routinely alongside PCR testing. 
Nasopharyngeal swabs for both tests were collected by 
trained nursing or medical staff. LFDs were performed 
in the emergency or acute department and documented 
in the EHR. Swabs for PCR were transferred to the 
clinical laboratory in viral transport medium and tested 
by multiplex PCR (TaqPath, ThermoFisher, Waltham, 
MA USA), forming the reference standard for evaluation.

Combined algorithm to enhance the sensitivity of LFD 
testing
Next, we investigated whether our models could enhance 
the sensitivity and NPV of LFDs for COVID-19 during 
emergency admission. We proposed and retrospectively 
evaluated a novel clinical triage pathway (figure 1C), 
labelling patients as COVID-19-suspected if they had 
either a positive CURIAL model (CURIAL-Lab or 
CURIAL-Rapide) result or a positive LFD result. In our 
pathway, due to high specificity, patients with positive 
LFDs could be streamed directly to a COVID-19-positive 
clinical area, whereas patients with a negative LFD but 

positive CURIAL result would be managed in an 
enhanced-precautions area pending PCR adjudication. 
The pathway aimed to provide enhanced NPVs for 
patients receiving both negative LFD and CURIAL 
results, thus reducing the false-negative rate and 
supporting safe triage directly to a COVID-19-free clinical 
area. We retrospectively assessed the performance of this 
novel pathway for all unscheduled admissions to OUH in 
which patients received LFD and PCR testing, from 
introduction on Dec 23, 2020, to March 6, 2021 (figure 1A).

Prospective evaluation of CURIAL-Rapide in a 
laboratory-free clinical pathway
To prospectively assess the operational and predictive 
performance of CURIAL-Rapide in a laboratory-free 
setting, we deployed two OLO rapid haematology 
analysers in the John Radcliffe Hospital’s Emergency 
Department (Oxford), as part of an OUH-approved 
service evaluation (Ulysses ID 6907).28 We simultaneously 
aimed to improve routine clinical care by reducing the 
turnaround time for routine blood test results in the 
emergency department. The analysis plan and data 
requirements were determined prospectively and 
registered with the Trust service evaluation database.

The service evaluation operated from Feb 18, 2021, to 
May 10, 2021, between 0800 h and 2000 h. Eligible 
patients were older than 18 years, attending the 
emergency department with an acute illness and 
streamed to a bedded clinical area, and had consented to 
receive FBC analysis and vital signs as part of their care 
plan. We selected patients allocated to bedded clinical 
areas because non-ambulatory patients typically have 
higher acuity, thus being more likely to benefit from 
faster blood test results and having higher probability of 
admission. Patients were identified on arrival using the 
FirstNet system (Cerner Millennium, Cerner, North 
Kansas City, MO, USA).

Eligible patients were enrolled for additional laboratory-
free FBC analysis using OLO, which in conjunction with 
vital signs was used to generate CURIAL-Rapide 
predictions. OLO results were uploaded immediately to 
the EHR, making results available to clinicians and 
supporting routine care. We excluded patients with an 
invalid OLO result and no subsequent successful result, 
thereby ensuring data completeness. Routine 
SARS-CoV-2 testing was done in line with trust policies, 
with LFDs done in the department and paired multiplex 
PCR done on-premises in a dedicated laboratory.

We recorded patients’ arrival time to the hospital, 
measurement time of vital signs, and time-to-results for 
LFD, PCR, OLO, and laboratory FBC analysis. We also 
recorded the COVID-19 triage impression of the first-
attending junior or senior physician, as documented in the 
clinical notes using the green–amber–blue categorisation 
system adopted by Trust policy (green representing a 
patient whose illness has no features of COVID-19, amber 
representing an illness with features potentially consistent 
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with COVID-19, and blue representing laboratory-
confirmed COVID-19 infection).29,30 If the COVID-19 triage 
category had not been documented by the first-assessing 
physician, adjudication was done through review of notes 
using rules-based determination initially by trained 
medical students and verified by a practicing physician. 
Patients who had documentation of a new continuous 
cough, temperature of 37·8°C or higher, or loss or change 
in sense of smell or taste were adjudicated as an amber 
(COVID-19 suspected) stream, matching UK Government 
guidance on the definition of a possible COVID-19 case.6 
Patients who had PCR-confirmed COVID-19 in the 10 days 
preceding attendance were adjudicated to the blue 
(COVID-19 confirmed) stream. Patients with no features 
of COVID-19 and no documented clinical suspicion were 
adjudicated to the green stream.

We selected time-to-result as our primary outcome, 
recognising the role of rapid results in reducing 
nosocomial transmission. Performance measures were 
sensitivity, specificity, positive predictive value, and NPV 
for CURIAL-Rapide and LFDs, and area under receiver 
operating characteristic curve (AUROC) for CURIAL-
Rapide assessed against PCR results. Additional details 
are provided in the appendix (pp 10–12).

Statistical analysis
Model training followed a previously described protocol, 
controlling for age, gender, and ethnicity during training.5 
We queried relative feature importances, and we calcu-
lated SHAP (Shapley Additive Explanations) scores to 
understand the effects of individual predictors on model 
predictions. All predictions were generated by application 
to results of testing from first blood draw and vital signs 
and compared with confirmatory SARS-CoV-2 genome 
testing. We report model performances with sensitivity, 
specificity, positive predictive value, NPV, AUROC, and 
F1 score. We computed 95% CIs for sensitivity, specificity, 
and predictive values using Wilson’s Method31 and for 
AUROC using DeLong’s method.32

During prospective and external evaluation, we 
calculated and reported the proportions of missing data. 
Missing data were imputed as the training population 
median values. Patients with missing PCR results did 
not meet inclusion criteria and were excluded. To assess 
for biases by ethnicity, gender, and clinical severity, we 
did subgroup analyses in which group size was 
15 patients or more or 0·25% of the evaluation 
population. Comparison between model performance 
alone and the integrated clinical pathway for each model 
(figure 1C) was done with McNemar’s χ².

We estimated a suitable review point for the CURIAL-
Rapide and OLO deployment using Buderer’s standard 
formulas.33 Predicting a sensitivity of 80% (matching 
model calibration), specificity of 75%, and prevalence of 
COVID-19 at 15% among patients in the emergency 
department, a minimum sample size of 410 enrolled 
patients was estimated to determine sensitivity and 

85 patients to determine specificity (95% confidence and 
10% precision).34 Therefore, we planned to review model 
performance once 500 patients had been enrolled to 
allow for missing or invalid confirmatory tests.

Binary CURIAL-Rapide results (COVID-19 suspected 
and COVID-19 negative) were generated using OLO 
results and vital signs. Availability time for CURIAL-
Rapide was the later of OLO result time and vital signs 
recording time because both are required to generate a 
prediction. No imputation was done because the design 
ensured data completeness. CURIAL-Rapide predictions 
were not made available to the attending physician so as 
not to influence the clinical triage category or decisions 
to proceed to confirmatory testing for patients being 
discharged. The time-to-result for PCR, LFD, and 
CURIAL-Rapide tests were calculated as the time from a 
patient’s first arrival in the emergency department to the 
time of a test result being available, thus including 
sample acquisition time. Performance was assessed 
against a PCR reference standard.

For paired samples, time-to-result was compared 
between tests by one-tailed Wilcoxon Signed Rank test. 
We used Kaplan-Meier survival analysis with logrank 
testing to compare time-to-result by test type. Patients 
who did not have confirmatory testing at 72 h were 
excluded as missingness probably represented omission. 
Mean (SD) are presented for normally distributed data, 
and median (IQR) for data with a skewed distribution. 
The software used in this study is described in the 
appendix (pp 4, 12).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the manuscript.

Results
Our updated training set comprised 114 957 emergency 
presentations prior to the global COVID-19 outbreak 
(Dec 1, 2017, to Nov 30, 2019), considered as COVID-19 
free, and 701 patient presentations during the first UK 
pandemic wave with a positive SARS-CoV-2 PCR test 
(Dec 1, 2019, to June 30, 2021; appendix p 5). Similar to 
our previous findings, relative feature impor tance 
analysis showed that granulocyte counts (basophils and 
eosino phils), CRP, and oxygen requirements remained 
the highest-ranking features for CURIAL-1.0 (appendix 
p 13). SHAP analysis confirmed that CRP and granulocyte 
counts had the greatest influence on model predictions. 
Owing to removal of features that were weakly 
informative, predictor importances were similar between 
CURIAL-1.0 and CURIAL-Lab; however, granulocyte 
counts and respir atory rate had greater relative 
importance in CURIAL-Rapide, reflecting the reduced 
predictor set.

Between Dec 1, 2019, and March 31, 2021, 72 223 patients 
were included across four validation cohorts, of 
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whom 4600 had a positive confirmatory test for 
SARS-CoV-2 (appendix pp 3–10). Patients admitted to 
PUH and BH trusts had similar ages (69 years, IQR 34, 
for PUH and 68 years, 34, for BH; Kruskal-Walls p=0·94), 
whereas patients admitted to UHB were younger 
(63 years, 37, p<0·0001 for both; table 1). A higher 
proportion of patients admitted to UHB were women 
(5462 [53·1%] of 10 293) than those admitted to PUH 
(17 054 [45·0%] of 37 896) and BH (549 [46·7%] of 1177; 
χ² p<0·0001) and reported being of South Asian ethnicity 
(1357 [13·2%] UHB vs 170 [0·5%] PUH and 71 (6·0%) 
BH; χ² p<0·0001).

COVID-19 prevalence was highest in the BH cohort 
owing to the evaluation timeline spanning the second 
UK pandemic wave (11·1% vs 5·3% in PUH and 4·3% in 
UHB; Fisher’s exact test p<0·0001 for both). FBC testing, 
required by CURIAL-Rapide, was near-ubiquitously 
done (>98·5%). Feature summaries and data complete-
ness are reported in the appendix (pp 5–8).

For the prospective evaluation of CURIAL-Lab and 
CURIAL-Rapide, we included 22 857 patients attending 
OUH emergency and acute medical services during the 
second pandemic wave who met inclusion criteria, with 
2012 testing positive (8·8%; appendix p 6). At the 

80% sensitivity configuration, CURIAL-Lab performed 
similarly to CURIAL-1.0 (sensitivities of 72·9% for 
CURIAL-Lab and 73·6% for CURIAL-1.0, and specificities 
of 87·3% for CURIAL-Lab and 86·6% for CURIAL-1.0; 
McNemar χ² p=0·082), but better than CURIAL-Rapide 
(sensitivity 74·7% and specificity 78·6%; p<0·0001), 
representing a trade-off between time-to-result and 
performance. Both models achieved high NPV (>98%) 
across 80% and 90% sensitivity configurations and high 
AUROCs (0·843 for CURIAL-Rapide and 0·878 for 
CURIAL-Lab, appendix p 8).

We assessed sensitivity to imputation strategy, finding 
performance stability across multiple imputations 
(appendix p 8). Therefore, we selected a single imputation 
strategy for subsequent evaluation (population median). 
Assessing performance across clinically relevant severity 
subgroups, we found that the models were equally 
sensitive for patients discharged from the emergency 
department as patients admitted to hospital wards outside 
of the intensive care unit (ICU). However, sensi tivity was 
marginally superior for patients requiring ICU admission 
(appendix pp 16–17). Calibration curve analyses showed 
that all models were well calibrated, and that calibration 
was equivalent across models (appendix p 14).

Training–OUH (pre-pandemic and 
first wave cases, to 30 June 2020)

Prospective 
validation–OUH

External validation (admissions) LFD evaluation–
OUH (second wave 
admissions)

Laboratory-free 
deployment–JRH 
emergency 
department

Portsmouth 
Hospitals 
University NHS 
Trust

University 
Hospitals 
Birmingham NHS 
Foundation Trust

Bedfordshire 
Hospitals NHS 
Foundation Trust

Cohort Pre-pandemic COVID-19 cases Oct 1, 2020, to 
March 6, 2021

March 1, 2020, to 
Feb 28, 2021

Dec 1, 2019, to 
Oct 29, 2020

Jan 1, 2021, to 
March 31, 2021

Dec 23, 2020, to 
March 6, 2021

Feb 18, 2021, to 
May, 10, 2021

Patients 114 957 701 22 857 37 896 10 293 1177 3207 520

Positive COVID-19 
PCR or genome test

0 701 2012 (8·8%) 2005 (5·3%) 439 (4·3%) 144 (12·2%) 355 (11·1%) 10 (2·3%)

Sex

Female 61 587 (53·6%) 325 (46·4%) 11 448 (50·1%) 17 054 (45·0%) 5462 (53·1%) 549 (46·6%) 1621 (50·5%) 289 (55·9%)

Male 53 370 (46·4%) 376 (53·6%) 11 409 (49·9%) 20 839 (55·0%) 4831 (46·9%) 627 (53·3%) 1586 (49·5%) 231 (44·4%)

Age, years 60 (38–76) 72 (55–82) 67 (49–80) 69 (48–82) 63 (42–79) 68 (48–82) 70 (51–82) 76 (60–85)

Positive LFD ·· ·· ·· ·· ·· ·· 207 (6·5%) ≤10

Ethnicity

White 93 921 (81·7%) 480 (68·5%) 17 387 (76·1%) 28 704 (75·7%) 6848 (66·5%) 1024 (87·0%) 2491 (77·7%) 419 (80·6%)

Not stated 13 602 (11·8%) 128 (18·3%) 4127 (18·1%) 8389 (22·1%) 1061 (10·3%) ≤10 513 (16·0%) 80 (15·4%)

South Asian 2754 (2·4%) 22 (3·1%) 441 (1·9%) 170 (0·4%) 1357 (13·2%) 71 (6·0%) 65 (2·0%) ≤10

Chinese 284 (0·2%) * 51 (0·2%) 42 (0·1%) 41 (0·4%) ≤10 * ≤10

Black 1418 (1·2%) 25 (3·6%) 279 (1·2%) 187 (0·5%) 484 (4·7%) 36 (3·1%) 45 (1·4%) ≤10

Other 1840 (1·6%) 34 (4·9%)* 410 (1·8%) 269 (0·7%) 333 (3·2%) 29 (2·5%) 72 (2·2%)* ≤10

Mixed 1138 (1·0%) 12 (1·7%) 162 (0·7%) 135 (0·4%) 169 (1·6%) 13 (1·1%) 21 (0·7%) ≤10

Data are n, n (%), or median (IQR), unless otherwise specified. Population characteristics for OUH pre-pandemic and COVID-19-cases training cohorts, prospective validation cohort of patients attending OUH 
during the second wave of the UK COVID-19 epidemic, independent validation cohorts of patients admitted to three independent NHS Trusts, admissions to OUH during the second wave receiving LFD testing, 
and patients enrolled to the CURIAL-Rapide–OLO laboratory-free service evaluation at JRH. The derivation of OUH cohorts is shown in the appendix (p 5). Some n values of ten or lower are not given with 
precision to preserve deidentification. JRH=John Radcliffe Hospital. LFD=antigen testing with lateral flow device. NHS=National Health Service. OUH=Oxford University Hospitals. *Indicates merging for statistical 
disclosure control. 

Table 1: Summary population characteristics
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In the external validation of CURIAL-Rapide, CURIAL-
Lab, and CURIAL-1.0, 49 366 admissions across three 
external hospital groups met inclusion criteria (figure 2). 
Performance was consistent across trusts, with CURIAL-
Lab achieving marginally higher performance (AUROC 
range 0·858–0·881, 95% CI range 0·838–0·912) than 
that of CURIAL-Rapide (0·836–0·854, 0·814–0·889). 
The sensitivity of both models was higher when applied 
at PUH (84·1%, 95% CI 82·5–85·7, for CURIAL-Lab and 
83·5%, 81·8–85·1 for CURIAL-Rapide) than at BH 
(74·3%, 66·6–80·7, for both) at the expense of specificity 
(PUH 71·3%, 70·9–71·8, for CURIAL-Lab and 63·6%, 
63·1–64·1, for CURIAL-Rapide vs BH 84·8%, 82·5–86·9, 
for CURIAL-Lab and 81·8%, 79·3–84·0, for CURIAL-
Rapide; appendix pp 9–10), possibly reflecting differences 
in confirmatory testing methods at BH (SAMBA-II and 
Panther).

Both CURIAL-Rapide and CURIAL-Lab consistently 
achieved high NPVs, with the highest at UHB 
(98·8%, 95% CI 98·5–99·0, for both; prevalence 4·27%) 
and similar at PUH (98·6%, 98·4–98·7, for CURIAL-
Rapide and 98·8%, 98·6–98·9 for CURIAL-Lab; 
prevalence 5·29%). External validation of CURIAL-1.0 at 
OUH and BH, where blood gas results were available, 
showed that performance was similar to that of CURIAL-
Lab (appendix pp 9–10).

To assess for biases by gender or ethnic group, we did 
sub group analyses at each externally validating site 
(appendix pp 14–16). Rates of misclassification were similar 
between men and women, for both CURIAL-Lab and 
CURIAL-Rapide, at UHB (Fishers’ exact test p=0·73 for 

CURIAL-Lab and p=0·66 for CURIAL-Rapide) and BH 
(p=0·35 for CURIAL-Lab and p=0·66 for CURIAL-Rapide). 
Women were less likely than men to be misclassified by 
CURIAL-Lab at PUH (p<0·0001) but equally likely with 
CURIAL-Rapide (p=0·23). Using CURIAL-Rapide, patients 
recorded as being of South Asian, Black, or mixed ethnic 
groups were equally likely to be misclassified as patients 
from White ethnic groups at BH (p=0·76 for South Asian 
and p=1·00 for Black and mixed ethnic groups) and PUH 
(p=0·14 for South Asian, p=0·36 for Black, and p=0·33 for 
mixed ethnic groups), but were less likely to be misclassified 
at UHB (p<0·0001 for South Asian, p=0·032 for Black, and 
p=0·043 for mixed ethnic groups). These findings might 
reflect differences in the proportion of patients whose 
ethnicity was recorded as not stated, with BH achieving 
near-completeness in ethnicity recording (>99%), whereas 
UHB had 10·3% and PUH 22·1% of patients with no 
stated ethnicity data (table 1).

To compare CURIAL triage performance with lateral 
flow testing, we applied CURIAL-Rapide and CURIAL-
Lab to the first-performed blood tests and vital signs of 
3207 patients admitted to OUH and receiving LFD 
testing (figure 3, appendix p 5). One patient with an 
invalid result was excluded. The sensitivity of LFDs 
was 56·9% (51·7–62·0), and specificity was 
99·8% (99·6–99·9; appendix p 10).

CURIAL-Rapide and CURIAL-Lab were significantly 
more sensitive (78·0%, 73·4–82·0, for CURIAL-Rapide 
and 74·4%, 69·6–78·6, for CURIAL-Lab) than LFDs, and 
thus achieved higher NPVs (96·7%, 95·9–97·3, for 
CURIAL-Rapide and 96·5%, 95·7–97·2, for CURIAL-Lab 

Figure 2: Performance of CURIAL-1.0, CURIAL-Lab, and CURIAL-Rapide during external validation at three independent UK hospitals trusts
All models were calibrated during training to achieve 90% sensitivity. Error bars show 95% CIs. Numerical results are shown in the appendix (pp 9–10). AUROC=area under receiver operating 
characteristic curve. NHS=National Health Service.
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vs 94·9%, 94·1–95·6, for LFDs). By contrast, the models 
were less specific than LFDs (80·0%, 78·5–81·4, for 
CURIAL-Rapide and 88·4%, 87·2–89·5, for CURIAL-
Lab), thereby more safely excluding COVID-19 but at the 
expense of the false positive rate.

Integrating positive LFD results with CURIAL-Rapide 
and CURIAL-Lab, forming a combined clinical pathway 
(figure 1C), significantly improved triage sensitivity (to 
88·2%, 84·4–91·1, for CURIAL-Rapide and 85·6%, 
81·6–88·9, for CURIAL-Lab) and NPVs (to 98·2%, 
97·6–98·7, for CURIAL-Rapide and 98·0%, 97·4–98·5, 
for CURIAL-Lab), thereby reducing COVID-19 status 
misclassification (McNemar’s χ² p=0·0003 for CURIAL-
Rapide, p=0·0004 for CURIAL-Lab). AUROC was 
significantly improved to 0·919 (0·899–0·940) for a 
CURIAL-Rapide and LFD pathway, and to 0·925 
(0·905–0·945) for a CURIAL-Lab and LFD pathway. 
CURIAL-Lab performed similarly to CURIAL-1·0 
(p=0·86; appendix p 10).

For the deployment and operational evaluation of 
CURIAL-Rapide at OUH, 520 patients were enrolled to 
the OLO–CURIAL-Rapide service improvement between 
Feb 18 and May 10, 2021 (table 1). 436 patients received 
confirmatory PCR testing within routine care, and ten 
returned positive results (2·3%). This reflected the 
falling COVID-19 prevalence due to governmental 
restrictions and the UK vaccination programme.35 
348 patients received LFDs within routine care, with four 
positive results. Two patients with indeterminate PCR 
results were excluded from analysis, although both had a 
negative LFD result and were triaged by the assessing 
physician to a COVID-19-free clinical pathway. No 
adverse events were observed. A summary of OLO results 
and vital signs is shown in the appendix (pp 5–6).

Median time from registration in the emergency 
department to CURIAL-Rapide result was 45 min 
(IQR 32–64), 16 min (26·3%) sooner than for LFDs 
(Wilcoxon Signed Rank p<0·0001), and 6 h 52 min 
(90·2%) sooner than for RT-PCR results (p<0·0001; 
table 2). Kaplan-Meier survival analyses (figure 4A) 
showed that CURIAL-Rapide results were available 
sooner than LFD results (log-rank test, p<0·0001) and 
PCR results (p<0·0001). The median time-to-result for 
FBC was shorter with OLO (44 min, IQR 31–63) than 
with laboratory analysis (76 min, 58–100; p<0·0001), 
showing improvement to routine care.

CURIAL-Rapide results had a NPV of 99·7% (95% CI 
98·2–99·9), specificity of 85·4% (81·3–88·7), and 
AUROC of 0·907 (0·803–1·00; table 2). The point 
estimate of CURIAL-Rapide’s sensitivity was 87·5%, 
however 95% CIs were wide owing to the lower-than-
expected prevalence of COVID-19 (52·9–97·8).

In one presentation, a patient given a negative 
CURIAL-Rapide prediction went on to have a positive 
SARS-CoV-2 PCR test. However, the patient had a 
negative LFD result, did not have COVID-19 symptoms, 
and was triaged to a COVID-19-free clinical area. We 

noted that the individual had also been enrolled to the 
service evaluation 10 days before; on that occasion, they 
had a positive CURIAL-Rapide prediction and positive 
LFD and PCR tests. This case raises the possibility of a 
latent positive PCR result, detecting non-infectious 
residual viral fragments, on the date of the second 
presentation.36

Rates of COVID-19 status misclassification were 
similar between CURIAL-Rapide and physician judg-
ment (McNemar’s Exact test p=0·91). Moreover, of the 
53 patients who were triaged to a COVID-19-suspected 
(amber) pathway by the attending physician but went on 
to test negative by PCR, 31 (58·5%) had a negative 
CURIAL-Rapide prediction, showing that the artificial 
intelligence system could reduce operational strain by 
expediting exclusion of infection.

CURIAL-Rapide 
version 1.0

Innova SARS-CoV-2 
rapid antigen testing

First-attending 
physician triage

Laboratory 
RT-PCR

Time from patient 
arrival in emergency 
department to 
result

45 min (32–64) 61 min (36 min 45 s 
to 99 min)

·· 7 h 37 min 
(06 h 5 min to 
15 h 39 min)

Sensitivity 87·5% (52·9–97·8) 50·0% (21·5–78·5) 75·0% (40·9–92·9) ··

Specificity 85·4% (81·3–88·7) 100% (98·9–100·0) 85·1% (81·0–88·4) ··

Accuracy 85·4% (81·4–88·7) 98·9% (97·2–99·6) 84·9% (80·8–88·2) ··

Positive predictive 
value

11·9% (5·9–22·5) 100% (51·0–100·0) 10·2% (4·7–20·5) ··

Negative predictive 
value

99·7% (98·2–99·9) 98·9% (97·2–99·6) 99·3% (97·6–99·8) ··

AUROC 0·907 (0·803–1·000) ·· ·· ··

Data are median (IQR) or measure (95% CI). AUROC=area under receiver operating characteristic curve. 

Table 2: Operational and performance characteristics of CURIAL-Rapide, Innova SARS-CoV-2 rapid 
antigen testing, and clinical triage by the first-attending physician calculated against laboratory RT-PCR 
testing during OLO-CURIAL-Rapide service evaluation

Figure 3: Performance characteristics of Innova SARS-CoV-2 LFD (A), CURIAL-Rapide and CURIAL-Lab (B) 
calibrated during training to a sensitivity of 80%, and combined clinical pathways (C)
Combined clinical pathways consider either a positive CURIAL model (CURIAL-Rapide or CURIAL-Lab) result or a 
positive LFD test as a COVID-19 suspected case, at Oxford University Hospitals National Health Service Foundation 
Trust between Dec 23, 2020, and March 6, 2021. Error bars show 95% CIs. Numerical results are shown in the 
appendix (p 10). AUROC=area under receiver operating characteristic curve. LFD=antigen testing with lateral flow 
device. NPV=negative predictive value. PPV=positive predictive value.
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Discussion
National health policy recognises that effective in-hospital 
triage is necessary to safeguard patient and staff safety 
during a pandemic. However, logistical and perfor mance 
limit ations of current testing options for SARS-CoV-2 
contribute to treatment delays and operational strain, 
despite improvements in turnaround time. Although many 
hospitals have adopted LFDs for emergency admissions, 
we found a high false negative rate of 43 missed cases per 
100 PCR-positive admissions in this context (figure 3), 
highlighting a need for more sensitive solutions.37

In this study, we did a multicentre validation and 
prospec tive evaluation of our artificial intelligence 
screening models in a real-world emergency care 
setting. During validation, CURIAL-Lab and CURIAL-
Rapide performed consistently well across four hospital 
groups, with high negative predictive performance 
supporting their use to safely stream patients to 
COVID-19-free clinical areas. When combined with 
LFDs, our models’ superior NPVs improved triage 
sensitivity, thereby reducing missed COVID-19 cases 
by 72% with CURIAL-Rapide (from 43 missed cases per 
100 PCR-positive admissions to 12 per 100). In 
prospective deployment, CURIAL-Rapide achieved the 
fastest result-time to date for artificial intelligence-
driven COVID-19 screening in a hospital emergency 
depart ment, using laboratory-free haematology analysis 
to provide results 45 min from patients’ first arrival to 
the emergency department, and 26·3% faster than LFD 
results. Moreover, classification performance for 
CURIAL-Rapide was high. Together, our findings show 
the generalisability, efficacy, and real-world operational 
benefits of artificial intelligence-driven screening for 
COVID-19 in emergency care.

The strengths of our study include the extensiveness of 
our model validation, performed for more than 
72 000 patients across four hospital groups. The study 
populations included geographical spread, across three UK 
regions, and temporal spread, spanning the full length of 
the pandemic and thus including vaccinated patients, 
patients with SARS-CoV-2 variants, and the full observed 
range of prevalences. Another substantial strength was the 
use of external cohorts containing all unscheduled adult 
admissions, representing the populations of intended use 
and being easily definable and reproducible, thereby 
addressing sector-wide concerns of unrepresentative 
validation.25,26 Recognising concerns of bias, we analysed 
performance across subgroups by gender and ethnicity, 
finding that no individual group had consistently better or 
worse performance across the three external sites. 
Moreover, sensitivity was similar for patients discharged 
from the emergency department compared with those 
admitted to hospital wards (non-ICU), suggesting that 
patients attending the emergency department with lower 
COVID-19 severity were not at higher risk of a false 
negative result. As levels of predictor availability were high 
(>98·5% for FBC), we found that the models were widely 
applicable and not sensitive to imputation method for 
missing data.

To our knowledge, our study is the first to investigate 
and validate an emergency care pathway using an 
artificial intelligence test in parallel with LFDs, 
quantitatively assessing the improvements to sensitivity 
over current practice. Patients receiving a negative LFD 
and CURIAL result represent an important beneficiary 
population and would be streamed directly to COVID-19-
free clinical areas upon receiving results of the two tests, 
which are available much sooner than PCR results. 

Figure 4: Time-to-result from patient arrival in the emergency department (A) and performance against a PCR standard (B)
(A) Kaplan-Meier plots of time-to-result in h from patient arrival in the emergency department for CURIAL-Rapide, Innova SARS-CoV-2 LFD, and PCR swabs tests, 
alongside number of results awaited, CURIAL-Rapide results that were available sooner than LFD testing (log rank test, p<0·0001), and PCR test results (p<0·0001). 
(B) Receiver operating characteristic curve showing performance of CURIAL-Rapide, clinical triage done by the first-attending physician, and Innova SARS-CoV-2 LFD, 
against a PCR reference standard. LFD=antigen testing with lateral flow device.  
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Additionally, the pathway allows for prior itisation of 
rapid PCR testing capacity, where available but limited in 
supply, by identifying an enriched subpopulation with 
greater risk of a positive SARS-CoV-2 confirmatory test. 
Translational advantages of the combined approach 
include the potential for low-risk clinical deployment, 
with the pathway design ensuring that performance is at 
least equal to the use of LFDs alone.

An important strength of the CURIAL-Rapide 
deployment was its real-world setting and operational 
focus, prospectively evaluating time-to-result from arrival 
in the emergency department alongside performance 
metrics. We considered physicians’ impressions, finding 
that CURIAL-Rapide correctly excluded infection 
for 58·5% of patients who were clinically triaged to a 
COVID-19-suspected area but went on to test negative by 
PCR. This evaluation provides evidence for the 
operational benefits of the artificial intelligence, reducing 
delays in transfers to wards by way of faster results and 
potentially reducing the numbers of patients awaiting 
PCR results in enhanced-precautions areas. Moreover, 
CURIAL-Rapide’s laboratory-free approach can support 
time-crucial decision making and triage in remote care 
settings where laboratory facilities are less accessible.

Notable limitations of the validation include that it was 
solely UK based, and confirmatory testing protocol might 
have varied between laboratories. We considered the 
possibility that confirmatory results at higher Ct values 
might represent latent positive results, thereby penalising 
the apparent sensitivity of the CURIAL models; however, 
Ct values are not directly comparable between assays, 
and there is limited consensus on the threshold at which 
patients are no longer considered infectious.36 Therefore, 
we selected the locally adopted Ct cutoff for reporting 
positive clinical results, reflecting majority practice and 
safeguarding against optimistic performance reporting. 
We were unable to quantify the number of patients who 
were vaccinated as we could not link our deidentified 
hospital datasets with vaccination records.

The limitations of the CURIAL-Rapide deployment 
were that, although the a-priori enrolment target was 
achieved, the desired precision for sensitivity was not 
achieved due to falling disease prevalence associated 
with the UK vaccination programme and public health 
measures.38 However, the evaluation was sufficient to 
determine specificity, AUROC, and negative predictive 
value. As a service improvement, we used a convenience 
series, limiting OLO operation to daytime and evening 
hours (0800 h to 2000 h) for logistical reasons and 
enrolling only patients streamed to bedded areas who 
were more likely to benefit from rapid FBC testing. 
Moreover, although LFD testing was hospital policy, 
33% of enrolled patients did not have a coded result in 
the EHR, raising the possibility that these might have 
been recorded incorrectly.

In conclusion, the CURIAL solutions effectively screen 
patients requiring emergency admission for COVID-19. 

Strengths of the approach are its potential for rapid scale 
and near-universal applicability, requiring only routine 
tests done within 1 h of presenting to existing hospital 
care pathways. Consequently, CURIAL-Lab screening 
entails negligible additional cost and might permit 
reduction of routine PCR testing owing to high NPVs. By 
contrast, competing approaches require additional 
testing and are thus limited in applicability, have longer 
result-time, and entail higher costs.39 Where faster results 
are desirable, the CURIAL-Rapide approach eliminates 
the need for blood sample transportation and laboratory 
processing by use of a well established, robust, and 
affordable point-of-care test (OLO) already in clinical use 
across the UK (approximate inclusive cost of about £9 per 
sample [about US$12·50]). The CURIAL models are 
extensively validated by use of pragmatic, real-world 
emergency department popu lations, across multiple 
hospitals, and showed no consistent biases by gender or 
ethnic groups.

Our work shows generalisability, efficacy, and real-
world operational benefits of artificial intelligence-driven 
screening for COVID-19 in emergency care. Future work 
would assess international generalisability, evaluate 
clinician–model interactions, and assess sensitivity of 
model performance across vaccination types and 
infection with SARS-CoV-2 variants of concern. 
Learnings from the ongoing deployment of artificial 
intelligence systems into front-line care would guide 
subsequent translational strategies and identify barriers 
to their sustained adoption.40
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