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Abstract—Clinical time-series data retrieved from elec-
tronic medical records are widely used to build predictive
models of adverse events to support resource manage-
ment. Such data is often sparse and irregularly-sampled,
which makes it challenging to use many common machine
learning methods. Missing values may be interpolated
by carrying the last value forward, or through linear re-
gression. Gaussian process (GP) regression is also used
for performing imputation, and often re-sampling of time-
series at regular intervals. The use of GPs can require
extensive, and likely adhoc, investigation to determine
model structure, such as an appropriate covariance func-
tion. This can be challenging for multivariate real-world
clinical data, in which time-series variables exhibit different
dynamics to one another. In this work, we construct gen-
erative models to estimate missing values in clinical time-
series data using a neural latent variable model, known as a
Neural Process (NP). The NP model employs a conditional
prior distribution in the latent space to learn global uncer-
tainty in the data by modelling variations at a local level. In
contrast to conventional generative modelling, this prior is
not fixed and is itself learned during the training process.
Thus, NP model provides the flexibility to adapt to the dy-
namics of the available clinical data. We propose a variant
of the NP framework for efficient modelling of the mutual
information between the latent and input spaces, ensuring
meaningful learned priors. Experiments using the MIMIC
lll dataset demonstrate the effectiveness of the proposed
approach as compared to conventional methods.

Index Terms—Neural processes, Gaussian processes,
data interpolation, medical data, deep learning.
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|. INTRODUCTION

HE widespread use of electronic health record (EHR)
T systems has resulted in an increased acquisition of digital
clinical time-series data [1]. For each patient, various types
of data are routinely recorded during a hospital encounter and
stored in the EHR. This includes vital signs, lab test results, diag-
noses, and medications administered; resulting in sequences of
clinical observations describe a patient’s health trajectory. Such
data present an opportunity to use machine learning methods to
support clinical decision-making, such as via risk assessment
models [2], [3] or predicting the patient’s length of stay [4]-[6].

The measurement frequency of data varies significantly across
patients, between different clinical variables, and over time.
These observations are typically represented as a sequence of
discrete, fixed-width time steps resulting in sequences with miss-
ing values, where substantial sparsity is common in real-world
healthcare data [7]. In the past, various approaches have been
developed to address this issue in the clinical time series data [4],
[8]-[11]. One solution could be to remove the missing data an
use the observed data for analysis. This could result in per-
formance degradation, specially when missing rate is high and
inadequate samples are kept. Often, a data imputation method is
employed to substitute the missing values in the clinical time
series. Another solution is to fill in the missing values with
substituted values, which is known as data imputation. Most
existing works employ heuristics or unsupervised interpolation
techniques to estimate the missing values. Linear interpolation
or carrying the most recent value forward are generally applied
to deal with missing entries in data [4], [8], [12]-[14]. The most
common reason to use this method in clinical research is that
it conforms to the data collection methodology, e.g., generally
the measurements are taken by nurses when there is a change in
clinical measurements.

This approach results in unbiased estimates when the data is
missing complete at random and can still provide conservative
estimates in some conditions. For example, if the condition of
a patient is stable, there may not be many changes in clinical
measurements (recorded by nurses). Hence, there may not be
many clinical measurements recorded after an initial observation
where the measurements seems to be stable. Thus, this recorded
clinical observation can be carry forward till the next recorded
observation. Let us consider another case, when the patient is
expected to deteriorate in the future, in general, one expect some
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which are presented to a classifier.

changes in the vital signs. Since the measurements are taken
(by nurses) when there is a change in clinical variable, we are
likely to have an observation when that change occurs. Now,
if the measurement stays around the change in future too, it is
likely that there are no recorded observations and again one can
carry forward this to the next recorded observation. Although the
carry forward method of imputation, conforms to data collection
methodology it does not account for the uncertainty in the inter-
polated data and may result in bias and error [15]. To address this
non-parametric probabilistic methods such as Gaussian process
regression has proven to be a robust choice to model physio-
logical data [8]-[11]. One advantage of GPs is that they can be
optimized exactly by fine-tuning the hyperparameters (such as
the bandwidth of a Gaussian kernel), and this often allows a fine
and precise trade-off between fitting the data and capturing the
uncertainty. Although GPs can be well-tuned without much prior
knowledge, computation time for GP regression scales cubically
in the number of data points. Further, to capture a complicated
non-smooth function, one needs an approach that can scale to
large datasets and generalize non-locally. Recent advancements
in deep learning with application-specific architectures are more
attractive with respect to these two properties.

In this work, we propose using neural processes, a neu-
ral network-based probabilistic model which can represent a
distribution over stochastic processes, to model physiological
time-series data [16], [17]. To illustrate the applicability of the
NP model, we use it to extract regularly-sampled' observations
for each of the vital signs, which are then used as input features
to common benchmark tasks, namely predicting in-hospital
mortality, identifying deterioration, or classifying phenotype [4].
The block diagram depicting the proposed framework is de-
scribed in Fig. 1. As illustrated, the framework consists of two
main components: (i) a generative model to derive the regularly-
spaced samples for each of the vital signs and (ii) a classifier to
compute the probability of an adverse event. Similar to GPs [18],
NPs are probabilistic in nature as the model learns a distri-
bution over a wide class of non-linear functions and captures
uncertainty in its predictions. The main difference between NPs
and GPs is that an NP learns a data-dependent prior rather than
the user-defined prior associated with the mean and covariance
functions of the GP [16]. For any task, using a GP requires
an additional optimization procedure to identify the most suit-
able kernel and its corresponding hyperparameters. In contrast,
NPs are trained in an end-to-end manner and are completely
data-driven, which is appealing when handling complex multi
variate time-series data. Further, for effective modelling using a

Regularly-sampled here means that the all the observations are collected
across uniform time scale. For example, clinical variables like heart rate, tem-
perature etc. all are available at a particular time instance and are also estimated
uniformly across the time.

Block diagram of training in the proposed framework. NPs are employed on irregularly-sampled data to obtain regularly-sampled data,

NP, we proposed to use a modified objective function to render
it suitable for medical time-series modelling (see Section III).
We performed extensive experiments using a publicly-available
dataset to show that the proposed NP-based generative modeling
framework performs comparable to existing GP-based methods,
while offering the advantage of data-driven discovery of model
structure, as introduced above.

The main contributions of the paper are:

e Development and validation of an NP-based model for
clinical time-series data by learning a data-driven prior.

e Adopting a personalised training strategy through pre-
training a population-based model and fine-tuning for
individual patient data.

® Incorporation of Maximum-Mean Discrepancy (MMD),
in contrast to the conventional Kullback-Leibler diver-
gence objective function, during NP model training to
maximize information sharing between the latent and prior
distributions.

* Application of NP-based processing to common clinical
benchmark predictive tasks using a variety of deep learn-
ing classification methods on a public dataset (MIMIC III)
to allow for reproducibility.

The remainder of the paper is organized as follows: Section II
briefly reviews GPs and NPs; Section III describes the pro-
posed approach of employing an NP to derive regularly-sampled
vital-sign time-series; the experimental setup is discussed in
Section IV; experimental results are discussed in Section V;
and a conclusion is presented in Section VI.

Il. BACKGROUND

Consider a training data set O of a univariate time-
series variable consisting of {(z;,y;)}Y.;, C X x Y, withx =
{x;}N, € X asinputand y = {y;}}¥.; C Y as output. Let us
assume functions f : X — Y, such thaty; = f(z;), where f(.)
is the unseen true underlying function. The goal of inference with
a GP [19] or an NP [16] is to estimate the posterior distribution
over f(.) and employ it to estimate predictive densities at another
set of x* = {x;}7/_; C X unlabelled points, i.e., f(z;).

A. Brief Review of Gaussian Processes

This section provides a brief overview of GP regression, while
more details can be found in [19]. GP regression, a widely
accepted data-modelling technique in health informatics [9],
offers a probabilistic approach to modelling time-series data.
We assume that the underlying true function f(.) has a Gaussian
prior:

f@) ~ N(m(z), k(z,2")) M
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where m(x) is the mean function and k(z, ') is the covariance
function that describes the relationship between the observed
values at z and 2" using the input values (i.e., 2 and 2’). One most
commonly adopts the radial basis function (RBF) with additive
noise as the covariance function, as it has been shown to work
well with routinely-collected vital-sign data [20], defined as:

2
toa') = oo (- ) 4 odoea) @

where 6(x,2’) is the Kronecker delta function, [ is the length
scale, o, is the variance of the RBF, and o,, is the variance
of the additive Gaussian noise. We use O to denote the set of
GP hyperparameters. The values of the hyperparameters are
estimated by minimizing the negative log marginal likelihood
using the training data x and y:

log [p(ylx, ©)] = — 5y" Kty — 3 log |K| ~  log(2n)
3)
where K represents the similarity measure between pairs of
training values. Since y and y* are assumed to have a joint prob-
ability distribution [19], we obtain the posterior p(y*|x*, X,y),
where x* is the set of unlabelled data points, such that:

vy =KK'y 4)
with variance:
oc=K,, - K.K'KT ®)

where K, represents the covariates evaluated at all pairs of the
training and missing points, and K, represents the covariates
evaluated at all pairs of missing points.

B. Brief Review of Neural Processes

An NP is considered to be a parametric stochastic process
that defines distributions over f(.) for given inputs [16], [17].
The training procedure for NP involves splitting the input
data O into two sets: a context set {(z.,v.)}< ; and a tar-
get set {(z¢,y¢)}_; suchthat C,T C N, C U T = N, and
C N T = &, where @ is an empty set. The NP model is then
presented with C' context points to estimate the corresponding
function values for the T target points; i.e., y; = f (). In other
words, in an NP, the target set is conditional on the context set,
as will be detailed below. A model can accurately predict across
the entire dataset if it can learn a distribution that spans all of
the underlying functions assumed to generate the training data.

At test time, an NP takes into account the context set via a
finite-dimensional embedding of mappings from x to y, known
as the latent space [. This latent space [ is a random variable and
allows the NP to capture uncertainty over functions resulting in a
generative Bayesian model. The posterior distribution of [ from
the trained model is used as a prior to make predictions during
the test time.

In detail, the NP uses the following architecture [16]:

e Encoder e takes in pairs of (x, y) as input and produces a
representation b’ = e(z,y); e : X x Y — R™ is param-
eterised as a neural network.

® Aggregator o obtains an order-invariant global represen-
tation using a mean function as h = a(h!) = & SN h.
h is further used to parameterise the latent distribution
I~ N(u(h), Io(h)),l € R".

® Decoder d takes target locations x; and the sampled global
latent variable [ as input and outputs the predictions g, for
the corresponding values of f(x¢) =y, d: X x R" —
R¥ which is parameterised as a neural network.

The NP uses the encoder e followed by the aggregator to
estimate a a fixed representation h. € R” from context points
(¢, Ye). he is used to parameterise the latent distribution. The
next step involves concatenating a sample from the latent distri-
bution with target set {x; } resulting in the final latent embedding
x;. The decoder network d use this embedding as input to obtain
a sample from the predictive distribution of output of the target
set 4;. However, the latent distribution of the context set might
not match the underlying distribution of training data. Thus, a
latent distribution is also estimated using all the training data
{(z,v:)}X,, and a similarity metric is used among the two
distributions of context set and total training data in the loss
function [16]. These steps are iterated using a random subset as
context in different iterations.

The training of an NP is achieved by jointly optimizing the
overall loss function:

Lnp=Lg+alkr (6)

where L is the data error loss (or the expected log-likelihood
over the target set) as defined below for optimizing the neural
networks e and d, L1, is a regularizing loss, and « is a scaling
constant. The loss term L can be computed using the cross-
entropy between the original (y;) and the predicted (y;) output,
given the latent representation x, i.e.,

T
Lp = Zlogp(ytlwz) @)
t=1
The regularizing loss L aims to minimize the loss between
the true prior latent distribution of all data p(l | x1.n5,y1.N)
and the latent distribution of the context set p(l | z1.c, y1.c)-
Since the computation of these distributions is intractable, an
approximation is undertaken by using corresponding variational
posteriors ¢(I | z1.x5,y1.n) and ¢(I | 1., y1.c), respectively.
The regularizing loss is defined as:

q(l| z1.0,91.0)
q(l | T1:N, yl:N)
where the posteriors are parameterised as g(I | -) = N(p, 07).
The regularizer Lk, is the negative Kullback Leibler (KL)
divergence between (I | x1.n, y1.5) and ¢(I | x1.¢, y1.c)- This
formulation of KL divergence uses an approximate conditional
prior ¢(! | z1.c,y1.c) rather than a fixed standard Gaussian
prior, and is also learned during the overall training process.
Employing both Lz and L together, the overall objective
function of the NP becomes:
T
Eq(l\zlzN,ylzN) ZIng(yt | l7 th) + IOg

t=1

.EKL = log ®)

Q(l | xl:Cayl:C)
q(l ‘ xl:valzN)
€)
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[1l. NEURAL PROCESSES FOR MEDICAL
TIME-SERIES PREDICTION

In this work, we show that an NP can be used for function
approximation, and then to estimate missing values and resample
to a constant time grid, such that regular ML classifiers may
then be used. The vital signs for different individuals can vary
significantly depending upon various factors such as age or the
presence of various medical conditions. This makes the use of
a NP more suitable than a conventional GP, as the training data
are used to derive a data-dependent prior for the NP, without
the need to define a fixed prior. In addition, researchers using
sequence modeling methods, such as basic Long Short Term
Memory (LSTM) models, generally use data points that are
regularly-sampled across time.? Similar to the case with a GP,
this issue can also be addressed using an NP model by deriving
regularly-sampled data from the original irregularly-sampled
clinical data.

The NP model is similar to conventional variational models
such as autoencoders and has several limitations [21]. First,
the approximate latent distribution is often significantly dif-
ferent from the true distribution. It has been shown that the
objective function in eq. (6) tends to favour fitting the data
distribution (due to the KL divergence term) over performing
correct amortized inference between latent distributions [21],
[22]. Another problem is that of the issue of less informative
latent representations [23], in which the latent space may not be
a meaningful representation of the original space.

In order to address these issues, we extend NP inference with
an MMD-based regularizer [24], [25], instead of the canonically-
employed KL divergence, to perform better matching between
the latent and prior distributions. MMD compares the moments
from two distributions to quantify the similarity between them.
It is motivated by the notion that distances between distributions
can be represented as distances between mean embeddings
from these distributions. In addition, MMD has been shown
to improve the discriminative power of latent representations
as it encourages disentanglement [21]. It also acts as a pseudo-
measure that maximizes the mutual information between the
input and latent space. The use of MMD loss is popular in
various works such as variational lossy autoencoders [21], [23],
[26], information maximizing GANs [22], and representation
learning [27].

In its general form MMD is defined as [24]

A4@MQ)=§ggﬂhif00]—4EAf®H% (10)

where divergence M (p|l¢)=0 if p=¢q, only when
F={f,||fllar <1} is a unit ball in a Reproducing Kernel
Hilbert Space H [28], [29]. Hence, given samples ay ...ag ~ p
and by ...bp ~ ¢, and with a positive semi-definite kernel
K(-,-), under the unit ball assumptions on the evaluation

2Theoretically, sequence modeling methods can be used with irregularly
sampled data, however in practice, researchers prefer to use regularly sampled
data.

Algorithm 1: NP-Based Data Interpolation for Medical
Time-Series Data.

Input: X = [(z;,yi)k, i =1,...,N;k=1,...,K]
Output: §;, V;,j=1,...J.
NP training

1: For each epoch:

For each patient (k)

3 Randomly select set C' and T°

4 (zeyye), c€ C;

5 T, teT

6:  he + ale(xe,ye))s hn < ale(xs, yi))
7o le = N(p(he), Io(he)), bn < N(p(hy), I
8.

9

D

o (hn))
:I;t — d(l’t, l(»)
: Compute Loss in (9) and Update a() and d()
ata interpolation
10: I, < N(p(he), Io(he))
11: :I;j — d(l‘j,lc)

function, we have

M(pllg) = llpp — g
= Ep(a)p) [K(a,0)] = 2Ep(a),q0)[K(a, b)]
+ Eq(a),q[Kla, b)]

g ST
=3 ZZWaz,al ﬁzz:Wal,

? J

T T
1
+FZZ7<(bj,bj,) (11)
7
The training of our proposed NP model is achieved by jointly
optimizing the loss function:

Lnp=Le+aly, (12)

where L as before is the cross-entropy loss for optimizing the
data error loss in the encoder (e) and decoder (d) networks, Ly,
is the MMD loss, and «vis a scaling constant. We have considered
the Gaussian kernel of width ¢ for computing the MMD loss via
the kernel trick, such that

Al 2
K(a,b) = exp <ab||> (13)

20

However, other handcrafted positive semi-definite kernels
satisfying the Mercer’s theorem can also be employed, which
we defer to future work.

The overall model training uses the same strategy as the
standard NP model where the input data are split into two sets:
context set and target set. Algorithm 1 shows the proposed
algorithm for missing-value estimation in medical time-series
data using NP. The input of the algorithm is a time-series data
(zi,yi), i =1,..., N, where x; corresponds to the time axis
and y; is the respective time-series value. In addition, there are
certain time instances x;, j = 1,...,.J with missing data. The
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goal of this algorithm is to predict y; for respective x;, which is
achieved in two steps. The first step involves training a NP on
the available data («;, y;); here the data are randomly split into
context (., y.) and target set (x4, y;). An encoder network e is
employed on the context set and the total data to derive repre-
sentations which are further aggregated using an aggregator a to
derive h. and h,,, respectively. The aggregated representation b,
is used to derive a Gaussian distribution that is used to sample’
a representation /.. The representation [. is concatenated to the
target set z; and fed to a decoder network d to estimate the
respective output prediction values ¢, (only for the target set).
The same process is repeated for a number of epochs to train the
NP. The second step of this algorithm involves estimating the
missing values of the data at time instances x;, j =1,...,J.
This step involves sampling a representation /. from the Gaus-
sian distribution obtained using N(p(h.), Io(h.)). The repre-
sentation /. is concatenated with the time instance x; and passed
through the learned network d to estimate the respective data
value y;.

IV. EXPERIMENTAL SETUP

This section provides the description of the dataset and differ-
ent tasks used in the experimental study. The specification of GP-
and NP-based models for data interpolation are also discussed.
The description of different classifiers used in this paper is also
provided here.

A. Dataset

We evaluated the proposed framework using the MIMIC-III
database, which is the largest publicly-available clinical data
in an ICU setting [30]. The widespread use of the dataset by
a large community of researchers makes MIMIC-III a suitable
candidate to benchmark our method. MIMIC-III database con-
taining more than 31 million clinical events covering 42,276 ICU
stays of 33,798 unique patients. Each patient’s data has been
divided into separate episodes containing both time-series of
events, and episode-level outcomes [4]. MIMIC-III dataset have
17 clinical variables: heart rate (HR), systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean blood pressure
(MBP), respiratory rate (RR), temperature (TEMP), and oxygen
saturation (SpO-), capillary refill rate (CRR), fraction inspired
oxygen (FIO), Glascow coma scale eye opening (G-CSEO),
Glascow coma scale motor response (G-CSMR), Glascow coma
scale total (G-CST), Glascow coma scale verbal response (G-
CSVR), Glucose, pH, weight and height. Let us assume that
U represents these 17 variables in MIMIC III and V C U
represents the subset of seven vital signs: HR, SBP, DBP, MBP,
RR, TEMP, and SpOs. This study considers the subset V of
vital signs for NP-based proposed data interpolation. The rest of
the 10 variables (in subset U — V) in the MIMIC-III dataset are
highly sparse with a high degree of missingness, which prohibits

3Samples of the derived Gaussian distribution from h. and h,, are used to
match the two distributions using MMD.

modeling them meaningfully using GP/NP approaches. In our
experiments, we observed that when the sparsity of the features
is greater than 77%, carry forward work better than the proposed
approaches. Thus, for predictive modeling tasks, one may use
carry-forward for highly sparse variables where the proposed
method could not work effectively.

However, after interpolating the data, the regularly-sampled
data in “V is used also in downstream classification tasks (like
in-hospital mortality prediction). For these, downstream tasks
we also used the 10 variables in U — V which are not regularly-
sampled using the proposed NP based method. Hence, the 10
variables in U — V are re-sampled as suggested by Harutyun-
yan et al. [4]. Missing values in features U — V are interpolated
using the previous values if they existed, otherwise we used
the pre-specified normal values specified in [4]. Categorical
variables were encoded using a one-hot vector.

The train-test split in our experiments is 85%-15% with
patient level partitioning. We would like to clarify that in order to
avoid any potential data leakage, the proposed NP-based impu-
tation method uses the same train-test split as in the classification
tasks. Thus, the NP model is trained using the train set for the
classification task under consideration. The results are computed
with a 95% confidence interval, which is obtained by resampling
the test set K times with replacement. We set K = 1,000 for
decompensation, and K = 10,000 for in-hospital mortality and
phenotype prediction.

The number of time-stamped observations vary per patient
episode. Therefore, we train a single population-based NP model
using training data separately for each vital sign, considering
time-series with at least 40 recorded time instances. The number
of recorded time instances here (40) is obtained empirically.
One possible reason could that, the patients with more recorded
observations are generally more volatile, while patients with
fewer observations are generally less volatile. Thus, it is rela-
tively easy to model the variations when there is more data with
more recorded variations. For training, a random 70 — 30% split
for context and target set per example is used in each iteration
of model update, and for a test example all the available data
points are used as context set. The input to a NP-based model
is irregularly-sampled and the output is a regularly-sampled
time-series with an observation every six minutes, resulting in 10
time-steps per hour. Finally, the population-based model trained
on training data is fine-tuned to a single patient-specific model.
This is done in order to efficiently model the patient specific
dynamics. This strategy can be used to deploy the model as
retraining the personalised model in not expensive and can be
done inreal time. Although the deployment could be problematic
if we do not have any data to train the population based model. In
this case, one could collect some training data before building a
population based model. Alternatively, one could use an online
learning to update the model parameters if there is a continuous
stream of data.

One could model the data as multivariate time series in NP,
but since the data considered have varying sampling rates it
is difficult to model all the dependencies. Building models
which can capture multiple temporal dependencies directly from
multivariate-time series data is still an open problem. We found
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the same during our initial attempts with NP model and found
univariate modeling to be working the best.

B. Task Description

The time-series data are first modelled using the NP, and then
used as regularly-sampled input for several classification tasks to
demonstrate its utility. The tasks considered here are in-hospital
mortality, decompensation prediction, and phenotype classifica-
tion, as in previous studies [4] and described below:

¢ In-hospital mortality: In acute care settings, mortality is
a primary event of interest and early detection of at-risk
patients is of critical importance to improving patient care.
The task of mortality prediction is formulated as a binary
classification problem, where the target label corresponds
to patient’s death before hospital discharge. The sample
size for this task is 21,139 with around 13.23% mortality
cases and first 48-hour of data is used for modeling. All
ICU stays where length of stay is less than 48 hours or is
unknown are not used.

¢ Decompensation prediction: This involves estimating
whether there will be a rapid deterioration in the patient’s
health, within the next 24 hours. Following work in [4],
[31], decompensation is formulated as binary classifica-
tion with mortality in the next 24 hours at the current
timestamp as target label. These decompensation labels
are assigned hourly, starting at four hours after the ICU
admission and ending at patient discharge or mortality.
This result in a sample size of 3,431,622 with around
2.06% decomposition cases for this task.

e Phenotyping classification: This involves estimating
which of 25 acute care (including 12 critical) conditions
are presentin an ICU stay record [4], [32]. The diseases can
co-occur together and hence phenotyping is formulated
as a multi-label classification problem. The phenotype
classification is done using the full ICU stay data. This
is primarily due to the unavailability of timestamps about
the disease diagnosis in MIMIC-III. Thus, it is uncertain
when the patient first became symptomatic or was diag-
nosed or first became symptomatic. This methodology is
in line with the benchmarking done in literature [4] and
the sample size here is 41,902.

C. GP and NP Model Specification

As a baseline to compare the curve fitting performance of NP
we consider an equivalent GP method. For the GP experiments,
we adopted lognormal distributions as priors to constrain each
hyperparameter to be clinically meaningful [33]. The lognormal
distributions chosen as priors for [ were (u = 1.5,0 = 0.1)
for HR, RR, TEMP, and SpOs, and (x = 1.0,0 = 0.1) for
SBP. The lognormal distributions chosen as priors for o, were
(p = 3.5,0 = 0.1) for HR, SBP, and SpOs, (1 = 1.5,0 = 0.1)
forRR, and (;x = 0.5, 0 = 0.1) for TEMP. The lognormal distri-
butions chosen as priors for o, were (1 = 0.0,0 = 0.1) for RR,
(= 0,0 = 20)forTEMP, (x = 1.5, 0 = 0.1) for HR, SBP, and
Sp02

The NP architecture consisted of an encoder network with
three fully-connected layers having 150, 100 and 200 nodes with
ReLU activation [34]. Similarly, the decoder of the NP model
is also a three-layer network with 64, 128 and 64 nodes with
sigmoid activation. The dimensions of / and [ are m=80 and
r=100 respectively and 50% of the available time instances are
randomly selected to be context points at each epoch. All of
the hyperparameters for the proposed NP model were estimated
empirically, and an early-stopping method was used if the mean
and variance of the mean squared error on the target set were less
than 0.4 and 0.001, respectively. Some of the other experiment-
specific settings are described in respective sections.

D. Classification Models

The three tasks considered in this study involve classification
and to this aim we compare CNN, LSTM and CNN-LSTM
classifiers [35]. The trained NP/GP model is first used for data
interpolation using the vital signs in subset V, followed by
normalization into the range [-1,1] before being presented to
the classifier.

1) Classifier 1: The architecture of the LSTM classifier dif-
fered for individual tasks for a fair comparison with existing
methods in [4]. In particular, for mortality prediction the model
consisted of two layers; a bi-directional layer with 8 nodes fol-
lowed by a LSTM layer with 16 nodes. For the decompensation
and phenotyping tasks, the model consisted of one LSTM layer
with 128 and 256 nodes, respectively. In each model, LSTM
layers were trained using a dropout of 0.3. The final layer in
each model is a fully-connected dense layer with one node for
classification.

2) Classifier 2: The CNN classifier consisted of three 1D
convolutional layers each having 100 filters of size 3, stride 1
and zero padding. Note that the outputs of the second and third
CNN layer have an effective resolution of a layer with filters of
size 5 and 7, respectively. Hence, the outputs from these three
CNN layers were concatenated together to extract the temporal
features at different scales. The final features for classification
were obtained by first using a global average pooling layer to
aggregate feature maps followed by a dense layer of dimension
500.

3) Classifier 3: We also experimented with a combination of
CNN with LSTM where the multi-resolution output of the third
CNN layeris fed to an LSTM layer to make predictions at the last
time instance. In all models we use ReLLU activation function (ex-
cept the final fully-connected layer which employ tanh activation
function), orthogonal initialization, and the Adam optimizer. All
models were trained for 100 epochs using binary cross-entropy
loss with a batch size of 8.

The models were also compared with a standard logistic
regression classifier using the original data, as in [4] (labeled
as LR), and the last value carry forward (CF) interpolation
method. For LR based classifier, hand-engineered features as
described in [36] are used. For each vital-sign, six different
sample statistic features are computed on seven sub-sequences
(time-series), these features being: maximum, minimum, mean,
standard deviation, skew and number of measurements. The
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Fig. 2. Visualization of time-series modelling for vital signs for two patients using GP and NP models. (a), (c), (e) and (b), (d), (f) are GP/NP-

KLD/NP-MMD modeling for two exemplar patients. The horizontal axis represents the time from admission and vertical axis represents the heart
rate value. The original irregularly-sampled vital-sign measurements are shown with red markers (*) in the figure.

seven sub-sequences included the full time-series, the first 10%
of time, first 25% of time, first 50% of time, last 50% of time,
last 25% of time, and the last 10% of time. The CNN/LSTM
classifiers using GP-, CF- and NP-interpolated data of vital signs
are hereafter labeled as CNN/LSTM-GP, CNN/LSTM-CF and
CNN/LSTM-NP, respectively.

V. RESULTS

In this section, we compare the performance of the proposed
NP-based data interpolation approach with the GP-based tech-
nique. Further, we evaluate the effectiveness of the GP- and
NP-based interpolated data for different tasks considered in this
work.

A. Data Interpolation

Here, we compare the performance of the proposed NP-based
data interpolation model with KLLD and MMD loss functions.
In addition we also compare the NP-based model with the
GP-based model. The experimental results for data interpola-
tion experiments are shown using the train-test data for the
in-hospital mortality task.

1) Np-Kld vs Np-Mmd: In contrast to the conventional KL
divergence loss, the proposed approach uses the MMD loss for
training NP. In order to demonstrate its effectiveness, we train
two NP models using KL. and MMD. Based on experimentation,
a = 3 was adopted for the KL loss and o« = 100 was adopted
for the MMD loss, which are in line with the study presented
in [21] for training such latent models.

As an illustration, Fig. 2 shows case studies of visualization
of feature extraction from the original time-series data using
GP and NP approaches for two different patients. This figure
shows the mean and variance estimates obtained, where the
horizontal axis represents the time from admission and the
vertical axis represents the heart rate. We can observe that
the NP-KLD model tends to over-fit more than the NP-MMD
model. The NP-MMD model captured more variations while
avoiding over-fitting. Such behaviour indicates that the MMD-
based loss for NP prevents the model from over-estimating
variance in clinical time-series data, so as to keep the latent space
informative [21].

In order to estimate the modeling capabilities of the NP-KLD
and NP-MMD methods, we estimated the root mean squared
error (RMSE) on test data for different vital signs as summarized
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TABLE |
MEAN AND STANDARD DEVIATION OF THE RMSE FOR DIFFERENT VITAL
SIGNS USING CF, GP, AND NP WITH KLD AND MMD Loss
FUNCTION (FOR THE TESTING DATA)

Variable CF GP NP-MMD NP-KLD
HR 7.23+3.95 4.36+2.63 3.16+2.37 3.82+2.48
SBP 15.31+8.19 7.18+4.14 6.03+3.19 6.92+3.87
RR 5.14+2.58 3.27+1.96 2.14+1.17 2.90+1.87
DBP 15.43+9.39 7.28+4.53 6.17+4.81 6.89+4.03
SPO; 3.84+3.37 2.38+2.35 1.57+2.13 1.93+2.18
MBP 14.32+6.72 7.93+3.92 7.32+3.94 7914391
TEMP 0.52+0.74 0.17+0.67 0.14+0.44 0.16+0.52
CRR 0.21+0.37 0.49+0.52 0.53+0.57 0.57+0.53
FIO 0.15+0.32 0.45+0.71 0.48+0.79 0.47+0.61
G-CSEO 0.49+0.79 0.61+0.83 0.73+0.81 0.74+0.85
G-CSMR 0.73+0.76 0.79+0.92 0.83+0.97 0.84+0.93
G-CST 1.75+0.94 1.85+1.25 1.89+1.37 1.92+1.47
G-CSVR 0.63+0.81 0.78+0.89 0.85+£0.92 0.91+0.97
Glucose 51.47+20.18  52.16+30.26  53.79+35.52  54.83+37.29
pH 1.59+1.93 1.73+2.01 1.86+2.05 1.87+£2.18
Weight 11.49+6.73 12.91+8.47 13.84+8.73 13.95+9.05

in Table I. It can be observed that the mean RMSE is slightly
lower for the NP-MMD as opposed to NP-KLD.

2) Np vs Gp: The visualization of feature extraction from
the recorded vital-sign data using GP and NP approaches for
two different patients is also shown in Fig. 2. It can be observed
that the GP tends to learn a smoother curve with large variances
which are ultimately capturing the general trend in vital-sign
variations. On the contrary, the NP-based model with MMD
loss seems to result in a curve which captures more variations
than the GP-based model, while avoiding over-fitting.

The RMSE using GP-, NP and CF-based methods on the test
data for different vital signs is summarised in Table I. We have
not shown the results for height variable as this is highly sparse
and is not likely to change for the patient. It can be also be
observed that the mean RMSE for subset V is smaller for the
NP-based models than it is for GP or CF. However, for the rest,
CF method performs better, possibly because high sparsity in
subset U — V. Here, it is observed that the CF method performs
better when the sparsity of the features is greater than 77%.
When the sparsity is less than 77%, the NP model tends to follow
closely the periodic/oscillatory trends in time-series. This also
suggests that the NP will generally perform better than the GP
as the number of training instances within a time-series window
increases. NP as a machine learning model combines the infer-
ence speed of DNNs with predictive capability of GPs. Further,
NPs are easy to implement and can scale to larger datasets and
higher dimensions e.g., GP scales as O(n?) compared to O(n)
complexity in case of NP. As with any machine learning model
(compared to direct imputation like carry-forward) the majority
of computational load is governed by the training phase.

A trade-off between model performance versus amount of
training data can be achieved by carefully optimizing the regu-
larization loss in NP and we observed that NP with MMD loss
achieves this. The major challenge lies in training an NP-based
model with the best hyperparameter configuration, so as to
obtain the best classification accuracy. However, this can be
resolved using extensive architecture search. The modelling

TABLE Il

COMPARISON OF THE PROPOSED METHODS WITH VARIOUS APPROACHES

FOR MORTALITY PREDICTION

Model AUROC AUPRC

SAPS [37] 0.720 (0.720, 0.720) 0.301 (0.301, 0.302)
APS-III [38] 0.750 (0.750, 0.750) 0.357 (0.356, 0.357)
OASIS [39] 0.760 (0.760, 0.761) 0.311 (0.311, 0.312)
SAPS-II [40] 0.777 (0.776, 0.777) 0.376 (0.376, 0.377)
LR [4] 0.848 (0.828, 0.868) 0.474 (0.419, 0.529)
LSTM-CF [4] 0.855 (0.835, 0.873) 0.485 (0.431, 0.537)
SAnD [41] 0.857 0.518

LSTM-GP 0.859 (0.841, 0.879) 0.496 (0.439, 0.546)
LSTM-NP 0.868 (0.846, 0.883) 0.509 (0.449, 0.554)
CNN-CF 0.849 (0.827, 0.854) 0.473 (0.428, 0.523)
CNN-GP 0.851 (0.824, 0.863) 0.486 (0.429, 0.533)
CNN-NP 0.854 (0.837, 0.871) 0.499 (0.439, 0.538)
CNN-LSTM-CF  0.864 (0.842, 0.884) 0.493 (0.427, 0.542)
CNN-LSTM-GP  0.869 (0.8497, 0.886)  0.509 (0.445, 0.559)
CNN-LSTM-NP  0.875 (0.853, 0.895) 0.519 (0.454, 0.563)

The bold values represents best AUROC and AUPRC for different methods.

performance could be further improved using an end-to-end
learning framework which is out of scope of this work. Similarly,
other regularization loss functions proposed in context of various
latent generative models could also be explored with NP, which
we defer to future work.

B. Mortality Prediction

In this experiment, we evaluate the performance of deep learn-
ing classifiers with different interpolation techniques and com-
pare the results with various existing methods. For a fair compar-
ison, we follow the experimental setup of Harutyunyan et al. [4]
where the data collected in the first 48-hour interval are used as
input features. The metrics used to evaluate are the area under
the receiver operator characteristic curve (AUROC) and area
under the precision-recall curve (AUPRC). We compared the
CNN/LSTM models with scores obtained with clinical methods,
namely the Simplified Acute Physiology Score (SAPS) [37],
Acute Physiological Score (APS) III [38], Oxford Acute Sever-
ity of Illness Score (OASIS) [39], SAPS 1II [40], and the single-
task result in ‘Simply Attend and Diagnose (SAnD)’ [41].

The classification results are shown in Table II, where the NP
models employ MMD loss. It can be observed that both LSTM-
GP and LSTM-NP perform better than clinical methods, and
better than the LR and CNN/LSTM-CF models that make use
of the original raw data. This is as a result of efficient modeling
of the vital-sign as opposed to simple CF interpolation. The
mean AUROC for the combined CNN-LSTM-NP model is 0.875
which is the best among all the compared methods.

C. Decompensation Prediction

This experiment evaluates the performance of the proposed
NP-based interpolation method on the decompensation predic-
tion task. This task involves predicting a deterioration in the
patients’ condition in future. Thus, a binary label indicating a
patient’s death in next 24 hours is assigned to each hour of an ICU
stay, after first four hours of admission to ICU. Following the
existing setup, the number of instances in the train and test sets
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COMPARISON OF THE PROPOSED METHODS WITH VARIOUS APPROACHES

TABLE I

FOR DECOMPENSATION PREDICTION

Model AUROC AUPRC

LR [4] 0.870 (0.867, 0.873)  0.214 (0.205, 0.223)
LSTM-CF [4] 0.892 (0.889, 0.895)  0.324 (0.314, 0.333)
SAnD [41] 0.895 0.316

LSTM-GP 0.899 (0.892, 0.909)  0.332 (0.326, 0.340)
LSTM-NP 0.907 (0.893, 0.912)  0.342 (0.329, 0.351)
CNN-CF 0.883 (0.875, 0.891)  0.315 (0.302, 0.324)
CNN-GP 0.889 (0.879, 0.896)  0.325 (0.317, 0.331)
CNN-NP 0.897 (0.883, 0.908)  0.337 (0.323, 0.341)
CNN-LSTM-CF  0.899 (0.891, 0.903)  0.329 (0.319, 0.337)
CNN-LSTM-GP  0.905 (0.898, 0.912)  0.338 (0.329, 0.343)
CNN-LSTM-NP  0.913 (0.903, 0.917)  0.345 (0.331, 0.353)

The bold values represents best AUROC and AUPRC for different methods.

COMPARISON OF THE PROPOSED METHODS WITH VARIOUS APPROACHES
FOR PHENOTYPING

TABLE IV

Model Macro AUROC Micro AUROC
LR [4] 0.739 (0.734, 0.743)  0.799 (0.796, 0.803).
LSTM-CF [4] 0.770 (0.766, 0.775)  0.821 (0.818, 0.825)
SAnD [41] 0.766 0.816

LSTM-GP 0.773 (0.769, 0.777)  0.821 (0.820, 0.825)
LSTM-NP 0.776 (0.771, 0.779)  0.825 (0.818, 0.827)
CNN-CF 0.769 (0.761, 0.771)  0.819 (0.816, 0.821)
CNN-GP 0.770 (0.768, 0.776)  0.820 (0.819, 0.825)
CNN-NP 0.773 (0.769, 0.779)  0.823 (0.820, 0.825)
CNN-LSTM-CF  0.771 (0.769, 0.777)  0.823 (0.819, 0.826)
CNN-LSTM-GP  0.775 (0.771, 0.779)  0.823 (0.820, 0.826)
CNN-LSTM-NP  0.778 (0.772, 0.782)  0.826 (0.822, 0.829)

The bold values represents best AUROC and AUPRC for different methods.

were 2,908,414 and 523,208, respectively (with decompensation
rate of 2.06%) [4]. We use micro-average AUROC and AUPRC
to measure the performance [4].

Results of this experiment are shown in Table III which are
similar to those for the mortality prediction task, where we
employ LSTM, CNN and CNN-LSTM classifiers. It is evident
from the table that proposed NP-based interpolation technique
performs better than GP- and CF-based techniques across dif-
ferent classifiers employed.

D. Phenotyping

In this experiment, various deep learning based classifiers are
used to evaluate the performance for the phenotyping task. Here,
the train and test data consists of 35,621 and 6,281 ICU stays
with a full description of phenotypes described in [4]. Following
the existing works in [4], [36], the results are reported in form
of macro- and micro-averaged AUROC.

The data from the total ICU stay is used for this task, and
the results are shown in Table IV. It can be observed that the
GP-based interpolation yields better performance compared to
the CF-based interpolation. Similar to the results for mortality
and decompensation task, NP-based interpolation method out-
performs other existing methods in this task as well.

VI. CONCLUSION

This is the first study to introduce the use of NP models to de-
rive regularly-sampled data from highly-sparse and irregularly
recorded physiological time-series data. We have demonstrated
that the NP model can learn efficient representations for mor-
tality prediction, decompensation prediction, and phenotyping
classification tasks. The generative framework of the NP is reg-
ularized by maximizing a mutual information criterion between
the distributions of context and all the training points. The use
of this criterion maximizes the information between latent and
input space, by ensuring that the latent conditional prior distribu-
tion does not have vanishing variances. The experimental results
quoted earlier demonstrate the effectiveness of the proposed NP
model on different tasks of the MIMIC III dataset.

The results in this paper demonstrate how neural network-
based data interpolation methods may be preferred to conven-
tional approaches. The percentage gain in AUROC over last
value carry forward is rnage between 0.6%-1.6% for different
predictive modeling tasks considered in this work. The gains are
marginal and may not be clinically relevant. However, we would
like to clarify that only seven out of total 17 variables are used
for NP based interpolation (because of underlying data sparsity
issues with rest of the variables). We expect to have further
increment in performance if all the variables can be modeled
using the proposed method.

In future, we aim to model jointly the temporal dynamics
using a conditional generative approach and classification using
adeep learning architecture. It would also be worth exploring the
effect of various network architectural choices and optimization
strategies on the overall cost function and the latent representa-
tions in the proposed NP framework.
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