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Healthcare Applications
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Abstract—AI healthcare applications rely on sensitive
electronic healthcare records (EHRs) that are scarcely
labelled and are often distributed across a network of the
symbiont institutions. It is challenging to train the effec-
tive machine learning models on such data. In this work,
we propose dynamic neural graphs based federated learn-
ing framework to address these challenges. The proposed
framework extends Reptile, a model agnostic meta-learning
(MAML) algorithm, to a federated setting. However, un-
like the existing MAML algorithms, this paper proposes a
dynamic variant of neural graph learning (NGL) to incorpo-
rate unlabelled examples in the supervised training setup.
Dynamic NGL computes a meta-learning update by per-
forming supervised learning on a labelled training example
while performing metric learning on its labelled or unla-
belled neighbourhood. This neighbourhood of a labelled
example is established dynamically using local graphs built
over the batches of training examples. Each local graph is
constructed by comparing the similarity between embed-
ding generated by the current state of the model. The in-
troduction of metric learning on the neighbourhood makes
this framework semi-supervised in nature. The experimen-
tal results on the publicly available MIMIC-III dataset high-
light the effectiveness of the proposed framework for both
single and multi-task settings under data decentralisation
constraints and limited supervision.

Index Terms—Federated learning, multi-task learning,
semi-supervised learning.

I. INTRODUCTION

W ITH the advent of informatisation of medical institu-
tions, there is an explosion in the availability of digi-

tised healthcare data such as genetic data, electronic healthcare
records (EHRs), and medical research data [1]. Machine learning
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(ML) models can be trained with this healthcare data to perform
various tasks such as developing precision medicine, assisting
medical practitioners in diagnosis and predicting physiological
deterioration during critical care [2]. Generally, healthcare data
is distributed among a network of symbiont institutions. The
utilisation of all of this distributed data is essential to train a
reliable and effective ML model. However, the digitised health-
care data often contain private information, and the leakage of
this data may compromise the patients’ privacy. To avoid such
scenarios, strict standards such as the General Data Protection
Regulation (GDPR)1 and the Data Protection Act (DPA)2 are in
place to restrict access to sensitive healthcare records. As a result,
collecting the distributed healthcare data at a third-party-owned
centralised location to train ML models is not always feasible.
Hence, ML applications are required to strike an equilibrium
between data privacy and data analysis.

A large amount of healthcare data is generated every day
but obtaining labels for this rapidly generating data is either
unfeasible or highly resource-intensive. Hence, the amount of
available labelled training data is significantly less than the un-
labelled data. As a result, the unsupervised and semi-supervised
ML methods have garnered significant interest for many health-
care applications [3]–[6]. The unsupervised methods mostly
include representation learning [7] and clustering [8] to identify
the latent patterns, whereas semi-supervised methods incorpo-
rate both labelled and unlabelled data in the learning process.
Previous studies have shown that semi-supervised methods help
in learning more robust and generalised models when the la-
belled data is scarce [9], [10]. Thus, there is a requirement of new
techniques that incorporate the unlabelled data in the training
process to complement supervised learning.

In this work, we concentrate on EHRs and machine learning
(ML) tasks associated with critical care. Generally, these EHRs
reflect a common set of features that are essential to perform
multiple critical care tasks [11]. For example, the same EHRs can
be used to train ML models for mortality prediction, decompen-
sation prediction and patient phenotyping. Hence, it makes sense
to train a single model performing multiple tasks. By considering
the nature of EHRs and the other challenges, we aim to propose
a ML framework that has the following characteristics:

1[Online]. Available: https://gdpr-info.eu/
2[Online]. Available: https://www.gov. UK/data-protection/
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� Training using the distributed data: EHRs are sensitive
and must not be shared with the other symbiont institu-
tions (clients) or the third-party servers. The framework
must be able to alleviate challenges associated with this
decentralised nature of training data.

� Semi-supervision: The framework must be able to exploit
the vast amount of unsupervised data to learn better mod-
els.

� Multi-tasking: The framework must be able to train models
for multiple tasks simultaneously. In comparison to the
multiple single-task models, the concurrent training of
multiple tasks leads to a reduction in client-server com-
munication. The decreased client-server communication
also lowers the chances of data-leakage or membership
inference attacks.

To address the aforementioned aspects of healthcare applica-
tions, we propose a federated learning [2], [12] framework that is
semi-supervised in nature and can be trained for multi-tasking.
This work extends Reptile [13], a first-order model agnostic
meta-learning (MAML) algorithm, to the federated setting such
that deep learning models can be trained effectively on the dis-
tributed data. The security protocols such as secure multi-party
computation [14] or differential privacy [15] can easily be in-
corporated in the proposed framework. Moreover, Reptile allows
the proposed framework to train a shared global model targeting
multiple similar tasks. The latent representations learned by
the model for a particular task may also be relevant for other
tasks. Hence, the shared or simultaneous training may help in
improving generalisation across all tasks. Apart from that, the
parameters of the trained global model provide an informed
parameter initialisation for training models on new unseen but
similar tasks. In comparison to the random initialisation, this
informed initialisation may result in faster convergence and
better performance (see Section V).

Reptile and other MAML algorithms [16] are designed for
supervised few-shot learning, and primarily focus on obtaining
a shared model that can be adapted to new tasks with a few
gradient updates. However, in most of the healthcare application,
a significant amount of data (though unlabelled) is available for
training. As a result, few-shot learning and fast-adaptation to new
similar tasks may not be a priority. Instead, we are interested
in obtaining the shared model that can exploit the common
meaningful representations across multiple tasks to improve
performance. Hence, the proposed framework utilises Reptile to
learn this common representation across multiple similar tasks.
The faster adaptation to new tasks is just a beneficial side-effect
of Reptile.

As discussed earlier, we are interested in obtaining a shared
model while effectively utilising the unlabelled data to aid super-
vised learning across multiple tasks (in a federated setting). For
this purpose, we propose a new variant of neural graph learning
(NGL) [17] that is more suitable for federated or distributed
data setting. NGL is a regularisation-based semi-supervised
training mechanism that allows the neural networks to exploit
the unlabelled examples for better training. In the existing for-
mulation of NGL, the labelled examples are accompanied by
their neighbours (labelled or unlabelled), defined by an input

graph, to regularise the training process. Along with supervised
training, NGL also tries to minimise the deviation between
an example and its neighbours in an embedding space (see
Section II for more details). This behaviour of minimising the
variation among semantically similar examples is analogous
to metric learning [18]–[20]. Hence, NGL enforces the same
semantic meaning i.e. class label on the entire neighbourhood.
This behaviour is useful if the neighbourhood examples are
unlabelled as semantic meaning is propagated from labelled
example to its neighbouring examples. Though NGL is an effec-
tive semi-supervised learning method, it requires a synthesised
graph as an input to the training algorithm. Generally, graphs
are synthesised by measuring the similarity between embedding
(of both labelled and unlabelled training examples) learnt using
an unsupervised representation method such as auto-encoders
(AE) [17]. Hence, training AE is an overhead and in case of
decentralised data, a federated learning algorithm such as feder-
ated averaging [21] is required to train them. Besides the training
of the main model (associated with the target tasks), training
an AE further increases the threat of membership inference
and other adversarial attacks by exposing more information
(gradient updates or entire model states) over the client-server
communication channels [22]. Hence, the requirement of input
graphs or the training of representation models makes NGL
undesirable in a decentralised or federated setup.

This work addresses the shortcomings of NGL by proposing
its dynamic variant that does not require any synthetic input
graph. The proposed variant dynamically creates a local graph
over a batch of training examples. The embedding used to
establish similarity between the input examples are obtained
from an intermediate layer of the main model itself. Since the
main model is guided by supervised learning, these embedding
are semantically meaningful and can help in creating effective
local graphs or neighbourhoods. The local graphs are created at
each client, and this whole dynamic setup does not result in any
increment in the client-server communication while reaping the
benefits of NGL. More details about the proposed dynamic NGL
are in Section III. The proposed framework employs dynamic
NGL and hence, the unlabelled examples, in a task-specific
manner to compute meta-updates to train the shared model at
the server.

The major contributions of this paper are listed below:
� This paper introduces a new federated learning frame-

work for semi-supervised multi-tasking. To the best of our
knowledge, this is one of the few federated learning studies
that directly targets the multi-tasking and exploits the
unlabelled data to improve the classification performance.

� This paper introduces a dynamic variant of NGL that
allows any federated learning framework to perform semi-
supervised learning without compromising the data pri-
vacy of the clients. To the best of our knowledge, no other
study has attempted to modify NGL in such a manner.

� This paper proposes to address the task heterogeneity
associated with multi-tasking by utilising either the global
or the local task-specific layers (see Section III for details).

� The experimental evaluation on the publicly available
MIMIC-III dataset shows that the proposed dynamic
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NGL based federated framework exhibits either better
or comparable performance against state-of-the-art semi-
supervised federated learning frameworks.

The rest of this paper is organised as follows: Section II dis-
cusses the existing federated meta-learning and semi-supervised
federated learning frameworks. In Section III, we describe the
proposed framework. Experimental setup and results are dis-
cussed in Section IV and V, respectively. Finally, Section VI
concludes this paper.

II. RELATED STUDIES

In this section, first, we discuss the existing studies related to
federated and semi-supervised federated learning frameworks.
Then, we provide a brief description of NGL. Finally, we analyse
the major differences between the proposed framework and the
existing methods.

A. Federated Learning

Recently, federated deep learning has been explored for
many healthcare applications, such as diagnosing Parkinson’s
disease [23], predicting adverse drug reactions [24] and early
stroke prediction [25]. FL involves training a global ML model,
using data distributed across different clients, in a decentralised
manner. Most of the existing studies utilise federated averaging
(FedAvg) algorithm [21] to train deep learning models in a
distributed or federated setting. In FedAvg, during each round
of training, the server asks the clients to train the local models
using the corresponding local data. These local models are then
averaged by the server to obtain a global model.

To address the statistical heterogeneity of the distributed data,
Arivazhagan et al. [26] proposed to divide the model as the
shared and the personalisation layers. The shared layers are
global and are trained using FedAvg. On the contrary, per-
sonalisation layers are client-specific and are trained on the
local data. This framework alleviates the requirement of explicit
personalisation as the personalisation layers at each client make
the trained models sensitive to the local data.

B. Federated Meta-Learning

MAML [16] and its first-order variants such as Reptile [13]
can be interpreted as centralised case of FedAvg [27]. In MAML,
task-specific models are used to compute meta-updates to train
a shared global model. This behaviour of MAML is analogous
to FedAvg as the local models in FedAvg are equivalent to
the task-specific models of MAML. Hence, MAML algorithms
are naturally suited for FL. Chen et al. [28] extended MAML
to a federated setting to train a model over distributed data.
The experimentation in this study showed that the federated
MAML could achieve better performance than FedAvg. Apart
from training the global model, meta-learning has also been used
for user personalisation. Since MAML can adapt a model using
a few gradient updates, it can be used for rapid personalisation
of a global model. Jiang et al. [27] exhibited this behaviour by
successfully personalising a FedAvg trained global model using
Reptile.

C. Semi-Supervised Federated Learning

Semi-supervised FL methods consider one of the following
two scenarios [29], [30]:

� Data at the server: In this scenario, a few labelled exam-
ples are available at the third-party-owned server whereas
the clients only have unlabelled examples. It is a common
use-case of semi-supervised FL as it is unrealistic in most
of the cases to expect a client to have the labelled data.

� No data at the server: In this scenario, the server has no
data and is mainly associated with managing the training
of the global model. On the other hand, both unlabelled
and labelled examples are available at the clients. This
use-case is mainly suited for healthcare application where
the semi-supervised FL has to deal with the sensitive
healthcare data such as EHRs. The access to this data is
restricted by strict government guidelines and any data
leakage makes the clients (medical institutions) liable to
lawsuits. Hence, it is reasonable for the third-party-owned
server to not have any access to the raw data. Here, the
clients or medical institutions are expected to provide
some labelled examples for the training. In this work, we
are only interested in “no data at the server” and all further
discussions are centred around this scenario.

In practice, any state-of-the-art semi-supervised method [31]–
[33] can be used at clients for training the local models. In com-
parison to the supervised training, these methods can improve the
performance of local models and hence, the global model. Two
prominent semi-supervised methods i.e. Yalniz et al. [31] and
Xie et al. [32] follow the student-teacher framework. Broadly, in
these frameworks, the teacher is trained with supervised data and
is used to generate pseudo-labels for the unlabelled examples.
These pseudo-labels are then utilised by the student to aid the
learning performed with the labelled examples. In addition to
these approaches, a few studies have specifically exploited the
federated setting to propose semi-supervised methods. One such
prominent framework is proposed by Jeong et al. [30]. This
method introduced inter-client consistency to generate pseudo-
labels and to induce regularisation in the training process using
the unlabelled examples. The inter-client consistency loss is
a combination of cross-entropy loss (computed using pseudo-
labels) and KL-divergence among outputs generated by different
client models for an unlabelled example. The server stores the
local models (sent by clients) and forwards a subset of these
stored models (called helper models) to a client along with the
global model parameters. The ensemble of these helper models
is used to obtain pseudo-labels for each unlabelled example and
enforcing the inter-client inconsistency.

D. Neural Graph Learning (NGL)

As discussed in Section I, NGL [17] is a regularisation-based
semi-supervised mechanism for training deep learning models.
NGL exploits the semantic relationship between the labelled and
the unlabelled examples to regularise the training. Along with
the training data, NGL also requires an input graph G(V, E) cap-
turing the semantic relationships among the training examples.
Each training example (labelled or unlabelled), x, is represented
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Fig. 1. An illustration of the metric learning performed by the second
term term of NGL loss function (2). α and ζ are the labelled examples
that act as anchors and NGL tries to minimize the deviation among their
respective neighbourhoods.

by a vertex, vx ∈ V , in G(V, E). The two vertices vx and vz ,
corresponding to examplesx and z, are connected by a weighted
undirected edge e(vx, vz) if these two examples are semantically
similar. The weight, wxz , on this edge represents the measure of
similarity between the two nodes. The neighbourhood of a given
vertex, vx, is a set of all vertices connected to vx in G(V, E):

Nx = {vz ∈ V : e(vx, vz) ∈ E}. (1)

Given a labelled example x (with label y) and its neighbour-
hood Nx defined in G(V, E), the NGL loss function can be
defined as:

LNGL(ŷ, y,Nx) = LCE(y, ŷ) + α
∑

z∈Nx

wxzD(f l(x), f l(z)).

(2)
Here ŷ = f(x) is the prediction generated by neural network

f(). LCE represents the cross-entropy loss function3 and D()
represents the Euclidean distance. f l(x) represents the hidden
representation or embedding generated by the first l layers of f()
for input x. wxz represents the weight on e(vx, vz) and α is a
user-defined scalar to decide weightage of the second term in the
loss function. Note that the neighbourhood examples (z ∈ Nx)
can either be labelled or unlabelled.

The NGL loss function, defined in (2), is a combination of
both supervised loss (first term) and unsupervised loss (second
term). By minimising the first term, NGL tries to assign the
correct label to the labelled examples. On the other hand, the
minimisation of the second term decreases the deviation among
a labelled example and its neighbours in the embedding space.
Fig. 1 illustrates this behaviour. Each labelled example acts
as an anchor that attracts the neighbouring examples towards
itself. Since the neighbourhood of an example is semantically
similarly to it, the second term of NGL loss function tries to
minimise the distance among the semantically similar examples
in an embedding space. This behaviour is analogous to metric
learning [18]–[20] where neural networks are trained to learn an
embedding space that is characterised by lower intra-class and

3LCE can be replaced with any other loss function.

higher inter-class variation. Hence, we can claim that second
term of the NGL loss function is performing metric learning.

Since NGL loss function makes no assumption about the
neighbourhood, it can be used to perform both supervised or
semi-supervised learning. The second term enforces the same
latent representation on the entire neighbourhood. The same rep-
resentation may result in similar predictions by neural network
f(). These similar predictions support the hypothesis that the in-
put and its neighbouring examples are highly likely to belong to
the same class as they exhibit high similarity among themselves.
This behaviour is of particular interest in the semi-supervised
cases where the neighbourhood of a labelled example can con-
tain the unlabelled examples. In supervised cases, the second
term purely acts a data-dependent regularisation mechanism.

E. Comparison With the Proposed Framework

The proposed framework is similar to meta-learning algo-
rithms (such as Reptile and MAML) and federated learning algo-
rithms (such as FedAvg and federated MAML) as it exploits meta-
learning for multi-tasking and federated learning for overcoming
the data decentralisation. However, the proposed framework is
different from the existing methods due to following:

� federated MAML, Reptile and MAML are completely su-
pervised, whereas, the proposed framework can incorpo-
rate the unlabelled examples in the learning process.

� federated MAML and other federated learning methods are
not designed or evaluated for multi-tasking. In contrast to
these methods, the proposed framework directly targets
the multi-task learning.

Federated MAML vs the proposed framework: The proposed
framework utilises Reptile for meta-learning. In comparison to
MAML [16], the classification performance of Reptile has been
found to be less sensitive to batch sampling, batch size and the
number of training iterations in some experimental setting [13].
As a result, in comparison to federated MAML, Reptile may
allow the proposed framework to utilise more local training
iterations at each client without worrying about batch sampling.
More local iterations may result in decreased client-server com-
munication by achieving near-optimum performance in fewer
communication rounds.

NGL vs dynamic NGL: As discussed in Section I, NGL
requires an input graph built over the training examples. On the
other hand, this work proposes and utilise a dynamic variant
of NGL in the proposed federated multi-tasking framework.
This dynamic NGL doesn’t require any explicit graph and it
establishes the semantic relationships among examples during
training dynamically. No existing study has targeted to overcome
the requirement of the input graph in NGL. More details are in
Section III.

III. DYNAMIC NGL BASED FEDERATED REPTILE

This section elaborates the proposed dynamic NGL based fed-
erated Reptile (NGL-FedRep) framework. Here, we first describe
the problem statement. Then, we discuss the dynamic NGL.
Finally, the overall framework is presented.
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Fig. 2. An illustration of client-server interaction in the proposed frame-
work.

A. Problem Statement

The healthcare data is distributed among the multiple medical
institutions that act as clients or nodes. At each client, the local
data can be a mixture of both labelled and unlabelled examples.
A client is not allowed to share the data with the other clients or
with the server to preserve the data privacy. The aim is to process
this distributed data to learn a shared global model at the server,
which can perform either a single task or multiple related tasks.
Fig. 2 illustrates the problem statement graphically.

Unlike the other common use-cases of FL where clients are
the handheld devices [27], the medical institutions (in a symbiont
network) are usually significantly fewer in number, less-prone
to drop-off and have adequate computational resources.

B. Dynamic Neural Graph Learning (NGL)

Dynamic NGL targets to overcome the requirement of an
input graph in the existing formulation of NGL. The purpose
of the input graph is to define the semantic relationships among
the training examples and to exploit these relationships for
regularisation or semi-supervision. Instead of utilising the input
graph, the proposed dynamic NGL exploits the semantic or
class-specific clustering observed during supervised training of
deep learning models for establishing relationships among the
training examples.

Supervised training of deep learning models results in se-
mantic or class-specific clustering in an embedding space
obtained after the models’ penultimate layer (before soft-
max/classification layer). As the training progress, these clusters
become more and more mutually exclusive. In the terminal
stages of training, the within-class or within-cluster variation be-
comes negligible as all embedding of a particular class collapse
to a point represented by their mean. This behaviour is known
as variability collapse and has mathematically been proven
by Papyan et al. [34]. Dynamic variant of NGL exploits this
semantic clustering as representation learning to create graphs.
However, instead of using a single graph over all the training
examples, dynamic NGL creates a graph for each batch of

training examples. Since the graph captures local relationships
among examples of a batch, it is referred to as local graph.

For stochastic gradient descent (SGD) based training, the
available training examples are sampled into batches having b
labelled examples. If we are dealing with semi-supervision, each
batch is also augmented with c unlabelled examples. Before each
round or epoch of training, dynamic NGL generates a local graph
for each batch as discussed below:

� Let f l() represents the first l layers of the model f(). The
current state of f l() (or f()) is used to obtain embedding
for all examples in the batch as: Ex = f l(x) where x is
one of the examples in the batch.

� Compute cosine similarity between embedding of each
pair of examples in the input batch:

Cxy =
Ex ·Ey

||Ex|| × ||Ey|| . (3)

� Cosine similarity between embedding pairs is exploited
to create the local graph G(V, E) where each example
in the batch forms a vertex. Two vertices vx and vy
(corresponding to examples x and y) are connected by
an undirected weighted edge e(vx, vy) if cosine similarity
Cxy between their embedding is greater than a pre-defined
threshold τ . The cosine similarity Cxy is also regarded as
weight wxy on this edge.

Since we are creating a new local graph for a batch before each
epoch, these graphs are regarded as dynamic in nature. As the
training progresses, the embedding generated by f l() becomes
more meaningful, and hence, the semantic structure captured
by the local graphs also becomes more accurate. Once a local
graph has been created, dynamic NGL and NGL are identical.
Dynamic NGL exploits this local graph to compute NGL loss
(as defined in (2)) and gradient updates to train the model.

Note that we have to use the embedding generated by penul-
timate layer to witness variability collapse [34]. Hence, f l() is
restricted to contain all but the last (softmax/classification) layer
of f().

C. Proposed Framework: Dynamic NGL Based FedRep

Algorithm 1 documents the proposed framework (NGL-
FedRep). It has two components: server and client-side process-
ing, as described below:

1) Server-Side Processing: The server is concerned with
initialising the shared global model and selecting clients for
training. During each round of training, the server forwards
the latest parameters of the shared global model to the selected
clients. Each client performs the local training and computes
the parameter updates for the global model. These parameter
updates are forwarded to the server where they are aggregated
and applied on the shared global model.

2) Client-Processing: For task t, each client k possesses a

labelled dataset DL
t ={(xi, yi)}|D

L
t |

i=1 and an unlabelled dataset

DU
t ={xi}|D

U
t |

i=1 . During a round of training, the client k receives
the global model from the server and performs the following
operation:
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� A local model is initialised with the parameters or weights
(θ) of the global model; let, Wt represents the parameters
of the model for task t.

� For each task t, a set of batches containing the labelled
and unlabelled examples are sampled from DL

t and DU
t .

� A dynamic graph is created for each training batch.
� NGL loss is computed and gradient updates are obtained

for updating Wt. The updated parameters are represented
by W ′

t .
� The updated task-specific models are used to compute the

meta-updates for training the global model as:

Φ =
1

T

T∑

t=1

(W ′
t −Wt). (4)

Here T is the total number of tasks. In the end, Φ is
forwarded to the server, where it is used to update the
global model.

NGL based training updates the initial parameter (θ or Wt)
of a task-specific model to W ′

t by applying a series of gradient
updates. Intuitively, we can represent this overall training as
a single parameter update that is obtained using the gradient:
∇θt = θ −W ′

t . We can aggregate all T task-specific gradients
to obtain meta-gradient as:

∇θ =
1

T

T∑

t=1

(θ −W ′
t) = θ − 1

T

T∑

t=1

(W ′
t) (5)

Hence, a meta-gradient appears to move the initial parameter
(θ) in the direction of the average of the trained task-specific
models. As a result, the framework is able to train over all
the tasks simultaneously. A series of the meta-gradient based
updates will move θ to a final configuration that is in proximity of
the near-optimal parameters of each task-specific model. Since
the global model parameters are near the optimal parameters of
each task, only a few-gradient updates are required to obtain the
optimal task-specific models.

D. Overcoming Task Heterogeneity

Task heterogeneity is a common problem in multi-tasking.
The tasks that rely on similar latent representation may require
a few task-specific layers. For example, in computer vision,
scene classification and object detection may benefit from the
same latent representations describing the objects. However, two
CNNs performing these two tasks require different last layer.
The proposed framework addresses such cases by considering
models as a combination of the common layers and the task-
specific layers. The parameters of the common layers and the
task-specific layers (for task t) are represented as θc and θt,
respectively. The common layers are global and are shared across
all clients and tasks. These layers are trained globally at the
server using meta-updates provided by clients. On the other
hand, the task-specific layers (θt) can either be trained globally
at the server using meta-updates provided by clients or locally
at each client. Both these cases are discussed below.

� Global task-specific layers: This scenario is similar to Al-
gorithm 1 and only differs in computation of meta-updates
for the common layers (θc) and T task-specific layers
(one for a separate task). The server initialises θc and
{θt}Tt=1. During each round of training, the server for-
wards the latest parameters of all the layers to each client
and receives separate meta-gradients for θc and {θt}Tt=1.
The corresponding meta-gradients are aggregated and are
applied to obtain the updated parameters for the common
layers and T task-specific layers:

θc = θc + η
∑

∀k∈K
(Φc

k), θt = θt + η
∑

∀k∈K
(Φt

k). (6)

Here Φc
k and Φt

k represents the meta-gradient for θc and
θt by client k. Also, K is a set of the clients.

At client-side, a model ft() (for task t) is initialised with
the common layers parameters θc and the corresponding
task-specific layer parameters θt. The ft() is trained and
the parameters are updated to θc′t and θt′. This model
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initialisation and training is performed all T tasks. The up-
dated parameters are used to compute the meta-gradients
as:

Φc =
1

T

T∑

t=1

(θc′t − θc), Φt = θt′ − θt. (7)

The common layers meta-gradient is computed by ag-
gregating the changes in θc that are induced by each task-
specific training. On the other hand, the meta-gradients
for task-specific layers are only the function of the corre-
sponding tasks.

� Local task-specific layers: In this mechanism, the task-
specific layers are local and are trained at the clients
only. The server is only concerned with the updating θc.
It forwards the latest θc to each client and receives the
meta-gradients Φc

k from each client. The θc is updated
by aggregating meta-gradients as discussed in (6). At the
client-side, the common layers of model ft() are initialised
with θc provided by the server and the task-specific layers
are initialised by the client itself. The client trains all
the task-specific models and computes meta-updates Φc

as discussed in (7). The meta-updates are forwarded to
the server, while the updated local layer parameters are
stored at the client for the next round of training. In the
next round, these parameters are retrieved by the client
to initialise the task-specific layers. Along with handling
the difference in nature of tasks, the use of these local
layers also help in personalising NGL-FedRep to the local
data [26]. However, this mechanism is not able to fully
utilise the data distributed across different clients.

IV. EXPERIMENTAL SETUP

In this section, we describe the dataset, model architectures
and experiments used for the performance evaluation of the
proposed framework.

A. Dataset

The performance of the proposed framework is evaluated
on the publicly available MIMIC-III dataset [35]. It is a large
database that contains information on patients admitted to criti-
cal care units at a tertiary care hospital. Data includes vital signs,
medications, laboratory measurements, fluid balance, hospital
length of stay, survival data, and more. As described in [11], this
data is pre-processed to create sub-datasets for four different
tasks4. In each sub-dataset, an example is an evenly spaced
time-series where different clinical measurements resulting in
76 features are sampled at each time-step. In this work, we have
specified a time-step of one hour. The four tasks are described
below:

� In-hospital mortality prediction: This is a binary classifi-
cation task that deals with predicting in-hospital mortality
based on the first 48 hours of ICU stay. The corresponding

4Benchmarking code available at https://github.com/YerevaNN/mimic3-
benchmarks is used.

sub-dataset contains 18,342 negative (no mortality) and
2,797 positive (mortality) examples.

� Decompensation prediction: This is also a binary classifi-
cation task that deals with predicting whether the patient’s
health will deteriorate in the next 24 hours. The cor-
responding sub-dataset contains 3,360,926 negative (no
deterioration observed) and 70,696 positive (deterioration
observed) examples.

� Phenotype classification: This is a multi-label classifi-
cation task that deals with identifying which acute care
conditions such as acute cerebrovascular disease and
acute renal failure are present in a given patient’s ICU
stay record. There are 25 different conditions considered
for this task, and their details can be found in [11]. The
phenotype classification sub-dataset contains 41,902 ex-
amples.

� Length-of-stay prediction: This task deals with predicting
the remaining length of stay in ICU at each hour. The
remaining length of stay is quantified into ten classes such
as less than a day, one to seven days of the first week, over
one week but less than two, and over two weeks. Hence,
it is regarded as a multi-class classification problem. The
length-of-stay prediction sub-dataset contains 3,451,346
examples that are distributed unevenly among 10 classes.

B. Experiments

We designed three experiments to evaluate different aspects
of the proposed framework:

� FL for single task scenarios: The proposed framework
(NGL-FedRep) is trained for the tasks of mortality pre-
diction, decompensation prediction and phenotype clas-
sification separately. The performance of NGL-FedRep is
compared against widely used federated averaging (Fe-
dAvg) [21] algorithm. Apart from that, the performance
of both NGL-FedRep and FedAvg is compared to the
centralised neural network training. The main purpose of
this experiment is to analyse the impact of decentralisation
of training data on classification performance.

� FL for Multi-tasking: NGL-FedRep is trained for tasks
of mortality prediction, decompensation prediction and
phenotype classification simultaneously. The performance
of each task is compared to the performance of the task-
specific centralised neural networks. The performance of
local and global mechanisms to train the task-specific
layers is also compared.
The parameters of the trained common layers are further
used for initialising the length-of-stay prediction model.
This model is trained in a centralised setup, and its perfor-
mance is compared to a randomly initialised model. Note
that in both scenarios, the task-specific layer is randomly
initialised.

� Semi-supervised FL and semi-supervised multi-task FL:
The datasets considered in this study are entirely labelled.
Hence, to highlight the impact of dynamic NGL on the
proposed framework, we only consider 10%, 25% and
50% of the available training examples as labelled, and
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Fig. 3. Model architectures used for the tasks of (a) mortality predic-
tion, (b) decompensation prediction, (c) phenotype classification and
(d) length of stay prediction.

the rest of examples are regarded as unlabelled. The per-
formance of NGL-FedRep is compared to a non-graph
version of the proposed framework (FedRep). This ver-
sion only utilises the available labelled data, and act as a
baseline for supervised training in data-scarce scenarios.
Moreover, the performance of NGL-FedRep is compared
with off-the-shelf semi-supervised methods such as Yalniz
et al. [31] and Xie et al. [32]. These methods are incor-
porated in the proposed framework (instead of dynamic
NGL) to train the local models at each client. Apart from
that, the semi-supervised FL method proposed by Jeong
et al. [30] (see Section II for details) is also used as a com-
parative method.The performance of baseline methods is
compared against the proposed framework in both single
and multi-task scenarios.
Note that NGL-FedRep with global layers (not the local
layers) is used in this experiment.

C. Data Distribution, Models and Parameter Setting

Data distribution: For each task, the available data is dis-
tributed among 20 clients in a non-IID manner. At each client,
10% of the data is used for validation. On the remaining data,
five-fold cross-validation is used to create five train-test datasets.
In the semi-supervised experiment, only 10%, 25% and 50%
of the total training examples at each client are considered as
labelled. The testing is performed at a client and the predictions
on all the test examples (across all the clients) are used to
compute the performance metrics.

Models: The model architectures for each task are almost
similar, and they only differ in the last dense layer. Fig. 3
illustrates the model architectures used in this study. The binary
cross-entropy is used as the supervised loss function (first term in
(2)) for in-hospital mortality prediction, decompensation predic-
tion and phenotype classification. Similarly, for length-of-stay
prediction, categorical cross-entropy is used as the loss function.
In multi-task scenario, LSTM layer is regarded as the common
layer (θc) and is shared across all the tasks. On the other hand, the
last dense layers of each model are regarded as the task-specific
layers (θt).

Parameter setting in NGL-FedRep: During each round of
training, all 20 clients are selected for obtaining meta-updates.

A fixed step-size, η=0.15, is used to update the global pa-
rameters. At a client, the task-specific models are trained on
every available example in each round. The training data is
presented in batches of 16 examples. In the case of supervised
training, the neighbourhood examples defined by the dynamic
graphs are always labelled. In semi-supervised experimentation,
each batch contains 8 labelled and 8 unlabelled examples. For
batch creation, the available labelled examples are stratified
into batches of 8 examples. The 8 unlabelled examples are
randomly sampled from all the available unlabelled data (with
replacement) and are appended to each batch of the 8 labelled
examples. The parameter α = 0.2 and embedding generated
after LSTM layer are used in dynamic graph creation and the
second term of the NGL loss function ( (2)). For dynamic graphs,
a fixed threshold of τ = 0.9 is used on cosine similarity to create
edges between two examples. At each client, Adam optimiser
with a fixed learning rate ofβ = 0.001 is used to train all the local
models. All these values are fine-tuned to provide maximum
performance on the validation examples.

Parameter details in comparative methods: The parameter
setting to train the local models such as optimizer and learning
rate (discussed above) are the same in all the comparative
methods. In Yalniz et al. [31], the same task-specific model
architectures are used as the teacher and the student models.
To implement Xie et al. [32], we used the model architectures
shown in Fig. 3 as the noisy student. However, to implement
the teacher models, the dropout layers were removed from the
architectures. In Jeong et al. [30], we used three helper models
to implement inter-client consistency. All the parameters used in
these comparative studies are also fine-tuned on the validation
examples.

V. EXPERIMENTAL RESULTS & DISCUSSION

In this section, we present and discuss results obtained during
single and multi-task experimentation. We also compare the
performance of the proposed method with different comparative
methods.

A. FL for Single Task Scenarios

Fig. 4 depicts the average loss (across all clients) observed dur-
ing training of the proposed framework (NGL-FedRep) and the
existing FL methods. This figure highlights that the average loss
decreases during training. Along with the existing FL methods,
NGL-FedRep is also effectively able to train on the distributed
data. Fig. 5 illustrates the performance of NGL-FedRep and other
methods on the test examples. Following inference can be drawn
from the analysis of this figure:

� The best classification scores exhibited by NGL-FedRep
are comparable to the performance of centralised neural
networks on all three tasks. Along with overcoming the
constraints of data distribution, NGL-FedRep also per-
forms better than FedAvg and federated MAML on all three
tasks.

� During later rounds of training, FedAvg shows over-fitting
for the decompensation prediction. In contrast, NGL-
FedRep does not exhibit such behaviour. This can be
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Fig. 4. Average loss observed across all clients during training of
NGL-FedRep, FedAvg and federated MAML under single task scenario.
The variance represents the average training loss variations observed
across all folds.

Fig. 5. Performance of NGL-FedRep trained models in single task sce-
nario. The average performance (across five-folds) during each round of
training is presented here.

attributed to the regularisation imposed by dynamic neural
graph learning in NGL-FedRep.

� The performance of FedAvg and federated MAML is
comparable for mortality and decompensation prediction
tasks. However, federated MAML failed to converge prop-
erly for the task of phenotyping (see training loss curve
depicted in Fig. 4(c)). As discussed in Section II, the
performance of MAML and hence, federated MAML, is
highly sensitive towards batch sampling, batch sizes and
number of batches used for updating the local models in
each round of training [13]. The slow or non-convergence
of federated MAML could be due to any of these factors.

Effect of the number of batches: As discussed earlier, at each
client, we use all the available local batches to train a local model
during each round of training. This is in contrast to meta-learning
algorithms where only a few batches are used for training the
local models at a time.

To analyse the impact of the number of batches, we used 5,10
and 20 batches for training the local models. Fig. 6 documents
the performance of NGL-FedRep as a function of the number
of batches. The analysis of this figure makes it clear that a
large number of batches used for the local training results in
better performance. Moreover, by comparing Fig. 5 and Fig. 6,
it is clear that using all of the available local batches leads to
near-optimum performance in only a few rounds of training.
As discussed in Section II, this reduces the required number of
interactions between clients and the server.

Fig. 6. Effect of decreasing the number of batches for updating local
models at clients during each round of training.

Fig. 7. Performance of NGL-FedRep in multi-tasking scenario. The
average performance across five-folds is presented here.

Fig. 8. Effect of initialisation schemes on the length-of-stay prediction.
For each scheme, five Kappa scores represent the performance across
five folds.

B. FL for Multi-Tasking

Fig. 7 shows the performance of NGL-FedRep trained for
mortality prediction, decompensation prediction and phenotyp-
ing simultaneously. Analysis of this figure highlights that NGL-
FedRep with global task-specific layers (NGL-FedRep Global)
performs comparably to the centralised task-specific neural
networks on all three tasks. On the other hand, NGL-FedRep
with local or personalised task-specific layers (NGL-FedRep
Local) exhibits comparable performance for the task of decom-
pensation prediction but shows lower classification scores than
NGL-FedRep Global for mortality prediction and phenotyping.
At each client, the available training data for mortality prediction
and phenotyping is significantly less than the data available
for decompensation prediction. This may have hindered the
effective training of the task-specific layers in NGL-FedRep
Local.
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Fig. 9. Performance of NGL-FedRep and other comparative methods in single task semi-supervised federated setting. The error bars represent
the confidence interval of scores obtained across five-folds.

Fig. 10. Performance of NGL-FedRep and other comparative methods in multi-task semi-supervised federated setting. The error bars represent
the confidence interval of scores obtained across five-folds.

Fig. 8 depicts the performance for the task of length-of-stay
prediction. The model is trained using dynamic NGL in a
centralised setup. Before training, the global layer i.e. LSTM
layer of the model (Fig. 3) is initialised using parameters ob-
tained from the trained NGL-FedRep Global. This initialisation
is referred to as “informed intialisation” because the trained
parameters encapsulate the useful latent representations learned
from similar tasks. The analysis of Fig. 8 shows that informed
initialisation results in better performance than the random
initialisation.

C. Semi-Supervised FL: Single and Multi-Tasking
Scenarios

Fig. 9 and Fig. 10 illustrate the bar-plots signifying the per-
formance of different comparative methods at different levels of
supervision in single and multi-tasking scenarios, respectively.
Following inference can be drawn from the analysis of these
figures:

� The performance of NGL-FedRep and other compara-
tive methods is comparable in both single and multi-task
scenarios. This justifies the utilisation of multi-tasking
for EHR-based healthcare tasks. The similarities between
these tasks allows us to train task-specific models simul-
taneously.

� In all cases, the semi-supervised methods show improve-
ment over the supervised framework (FedRep). In particu-
lar, NGL-FedRep outperform FedRep by a noticeable mar-
gin in all cases. This indeed highlights that the proposed
dynamic NGL can exploit unlabelled examples to improve
the supervised training.

� At 10% and 25% supervision, NGL-FedRep and Jeong
et al. [30] show a noticeable improvement over Yalniz
et al. [31] and Xie et al. [32] in the classification perfor-
mance. However, at 50% supervision, their performance
is comparable to NGL-FedRep and Jeong et al. [30].

� The performance of NGL-FedRep and Jeong et al. [30]
is comparable in most cases. However, Jeong et al. [30]
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TABLE I
COMPARISON OF THE CLIENT-SERVER INTERACTIONS IN NGL-FEDREP

AGAINST STATE-OF-THE-ART IN EACH ROUND OF TRAINING

An interaction is defined as a single transfer of the weight updates or the model
parameters between a client and the server.

exhibit slightly better performance than NGL-FedRep at
10% supervision. NGL-FedRep relies on the semantics of
the embedding to create meaningful dynamic graphs. At
very low supervision, these semantics and graphs may not
be as meaningful as at the higher level of supervision. This
may have resulted in a slight decrement in the performance
of NGL-FedRep at 10% supervision.

� Although performance of Jeong et al. [30] and NGL-
FedRep is comparable, the client-server communication
required in Jeong et al. [30] is greater than NGL-FedRep.
Table I tabulates the client-server communication required
in both methods during multi-tasking. In Jeong et al. [30],
the server transfers a set of 3 helper models (along with
the aggregated model updates) to the clients for forcing
inter-client consistency. This leads to the following disad-
vantages:

� Larger client-server interactions result in an increased
training time, specially if we are training a larger model.
This problem can exaggerate itself if the network is too
slow or the number of clients is very large [36].

� The helper models are client-specific models. When these
models are transferred to other clients, it undermines
the privacy setting. The other clients can exploit these
client-specific helper models to extract sensitive patient
information using the in-membership attacks [37].

D. Ablation Studies: Impact of τ and α in NGL

The semi-supervision is infused in the proposed framework
by dynamic NGL. The structure of local graphs and the impact of
the unlabelled examples on the training is greatly influenced by
both τ andα. In dynamic NGL, τ is used as threshold over cosine
similarity between two embedding to connect these examples
by an edge in the local graph (see Section III-B). On the other
hand, α scales the contribution of the second term in the NGL
loss function ( (2)). In this subsection, we analyse the impact of
these parameters on the performance of NGL-FedRep in semi-
supervised multi-task setting. For simplicity, we only consider
the cases with 10% supervision. Apart from the target parameter
(i.e. either α or τ ), the same parameter setting (discussed in
Section IV) is also used in this analysis.

We vary α from 0 to 0.4 and analyse the variation in per-
formance. Fig. 11 illustrates the results of this experiment. The
analysis of this figure highlights that on average, the best classi-
fication scores are obtained atα = 0.2. At lower or higher values
ofα, a decline in performance is observed. Asα is increased, the

Fig. 11. Effect of α on the performance of NGL-FedRep in semi-
supervised multi-task setting.

Fig. 12. Effect of τ on the performance of NGL-FedRep in semi-
supervised multi-task setting.

contribution of second term or the unlabelled examples increases
in the loss function. A larger contribution may have undermined
the supervised signal (or the contribution of the first term) and
resulted in lower performance. On the other hand, a very small
α leads to little or no contribution from the unlabelled examples
in the training process.

Similarly, we vary τ from 0.75 to 0.99 and analyse the
performance of NGL-FedRep. Fig. 12 illustrates the results of
this experiment. The average performance across all tasks peaks
at τ = 0.9. The increment or decrement in τ around 0.9 exhibits
a drop in performance. If we use a very high value of τ such as
0.99, the resultant local graphs may not have enough edges. As
a result, the number of examples in the neighbourhood of any
labelled example would be very less and the framework wouldn’t
be able to exploit the unlabelled examples in the training. In
contrast, a lower value of τ such as 0.75 results in too many
edges in the local graph. This may result in semantically less
similar examples in the neighbourhood of a labelled example.
Both these cases lead to lower classification performance.

VI. CONCLUSION

In this paper, we presented a federated model agnostic meta-
learning framework for multi-tasking in healthcare applications.
We exploited meta-learning to learn a common representation
across three different critical care tasks to perform effective
multi-tasking. To perform semi-supervision, we proposed a new
dynamic variant of neural graph learning (NGL) that does not
require any input graph and can effectively utilise the unlabelled
data to aid the supervised learning. The experimental results on
MIMIC-III showed that the proposed framework is capable of
overcoming the constraints imposed by data decentralisation and
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limited supervision to exhibit a respectable classification per-
formance. Future work may involve incorporating the privacy-
preserving mechanisms such as secure multi-party computation
and differential privacy in the proposed framework.
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