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Volcano-seismic event classification represents a fundamental component of volcanic
monitoring. Recent advances in techniques for the automatic classification of volcano-
seismic events using supervised deep learning models achieve high accuracy. However,
these deep learning models require a large, labelled training dataset to successfully train a
generalisable model. We develop an approach to volcano-seismic event classification
making use of active learning, where a machine learning model actively selects the training
data which it learns from. We apply a diversity-based active learning approach, which
works by selecting new training points which are most dissimilar from points already in the
model according to a distance-based calculation applied to the model features. We
combine the active learning with an existing volcano-seismic event classifier and apply the
model to data from two volcanoes: Nevado del Ruiz, Colombia and Llaima, Chile. We find
that models with data selected using an active learning approach achieve better testing
accuracy and AUC (Area Under the Receiver Operating Characteristic Curve) than models
with data selected using random sampling. Additionally, active learning decreases the
labelling burden for the Nevado del Ruiz dataset but offers no increase in performance for
the Llaima dataset. To explain these results, we visualise the features from the two datasets
and suggest that active learning can reduce the quantity of labelled data required for less
separable data, such as the Nevado del Ruiz dataset. This study represents the first
evaluation of an active learning approach in volcano-seismology.
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1 INTRODUCTION

Understanding the evolution of seismic activity prior to and during eruptions is critical for
understanding transitions in volcanic state (e.g., Power et al., 1994). Variations in the type of
volcano seismicity can reflect the underlying source processes associated with magmatic or
hydrothermal transport, and stress changes (Chouet and Matoza, 2013; McNutt and Roman
2015). Timely characterisation of the type of volcano seismicity (e.g., event types outlined in
Table 1) is therefore imperative for assessing evolving volcanic hazards, a task typically performed by
analysts in volcano observatories. Hence, the automatic detection and classification of volcano-
seismic event types would be valuable for reducing the workload of analysts during periods of
heightened volcanic activity (Scarpetta et al., 2005).
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Machine learning is a powerful tool in the processing and
study of volcano-seismic events and there have been advances in
their automatic detection and classification using supervised
machine learning approaches (e.g., Langer et al., 2006;
Apolloni, 2009; Malfante et al., 2018). Recent contributions to
the literature have explored the use of convolutional neural
networks (CNNs) for the purposes of volcano-seismic event
classification (e.g., Canário J. et al., 2020; Lara et al., 2021).
Rather than acting on a set of user-designed features, CNNs
operate by learning a series of filters to extract useful features
from the data and output a classification. Neural networks are
formulated from an input layer, a number of hidden layers which
transform the data, and an output layer from which predictions
are made. The resulting set of features is proposed to be more
robust of intra-class variability than a set of manually chosen or
hand-crafted features (Chan et al., 2015).

Supervised machine learning approaches require labelled data
for training and larger amounts of data are required for deep
learningmodels to acquire an accurate representation of the input
data (Hinton et al., 2012; Krizhevsky et al., 2012). Hence, the
labelling time required to curate a data volume large enough to
establish an automatic classification system can be significant
depending on the difficulty of the labelling task. Active learning is
the process by which a machine learning model chooses the
optimum data for training to achieve higher accuracy using a
smaller amount of training data (Settles, 2009). Labels for these
chosen training points are then assigned by an expert. Active
learning is useful for contexts in which obtaining labels for
unlabelled samples is difficult or time-consuming. For this
reason, active learning has previously been applied in
healthcare engineering with the motivation to develop tools
for automated classification of health-related data, whilst
minimising the time burden placed upon healthcare
professionals to label large quantities of examples for training
(e.g., Smailagic et al., 2018; Kiyasseh et al., 2020). This motivation

is shared in the volcano monitoring setting, where the manual
classification of events requires expert knowledge. During periods
of heightened volcanic activity, the time demands upon
observatory staff will increase, thus minimising the time spent
on manual classification for establishing an automatic classifier is
advantageous (Scarpetta et al., 2005).

We use an approach to active learning which has been
primarily applied to choose an optimum training dataset from
a large pool of unlabelled data. This problem is important for
volcano-seismology, where campaign-based monitoring may
mean that a glut of data is received at once. For volcanoes
which have had a long period of repose prior to eruption, the
seismic network may be sparse or non-existent (Moran et al.,
2008). During times of volcanic crisis, new seismic stations may
be installed within a seismic network, thus there may be no
backlog of previous data to train an automatic classifier upon.
Alternatively, digitisation of legacy data may also generate a large
volume of unlabelled data for which there is a time-burden for
digitising and verifying the associated labels (Thompson et al.,
2020).

Previous machine learning techniques in volcano seismology
have used transfer learning to make the most of limited labelled
training data. Transfer learning is the process of using knowledge
(e.g., model structure or weights) from a previous classification
task to obtain a model for a new classification task in which
limited or no training data is available (Pan and Yang, 2009).
Transfer learning schemes are generally more successful where
the size of the training dataset is small in comparison to the
previous classification task. Lapins et al. (2021) apply transfer
learning techniques for detecting phase arrivals at Nabro
Volcano, Eritrea and show that a model with feature
extraction layers based on an established seismic phase picking
model can be used to label seismic phases where only a limited
training set is available. Bueno et al. (2020) incorporate transfer
learning and uncertainty-based active learning to create a

TABLE 1 | Description of the volcano-seismic event types contained in the datasets used for this study.

Event
type

Typical frequency range Selected potential source
mechanisms

Dataset with
these
events
included

References for potential
source mechanisms

VT 5–15 Hz Brittle rock failure Nevado del
Ruiz, Llaima

Roman and Cashman (2006), Roman and Power,
(2011), Lahr et al. (1994)

LP 0.5–5 Hz Resonance of fluid-filled crack or conduit; magma-
hydrothermal interactions; magmatic degassing;
brittle melt fracture

Nevado del
Ruiz, Llaima

Chouet, (1996), Chouet et al. (1994), Lahr et al.
(1994), Neuberg et al. (2000), Thomas and Neuberg
(2012), Bean et al. (2014)

Hybrid High-frequency onset (>5 Hz)
with low-frequency decay
(0.5–5 Hz)

Brittle triggering event followed by conduit
resonance

Nevado del
Ruiz

Lahr et al. (1994), Neuberg et al. (2000), Neuberg
et al. (2006), Harrington and Brodsky, (2007),
Rodgers et al. (2016)

Tremor 1–12 Hz Extended magma movement, explosions Llaima Julian, (1994), Baptie et al. (2002), Neuberg et al.
(2000), Hellweg, (2000), Jellinek and Bercovici,
(2011)

Tectonic Over 5 Hz Non-volcanic brittle failure events e.g., local or
regional seismic events

Llaima Marzocchi et al. (1993), La Femina et al. (2004),
Canário et al., (2020b)
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program for volcano-seismic analysis and classification via a
model pre-trained on events from both Mount St Helens and
Bezymianny volcanoes. However, no analysis of the potential for
active learning to reduce the size of the training set in the field of
volcano-seismic event classification has yet been done.

In this paper, we present an active learning approach (after
Sener and Savarese, 2017) to select optimal training data. We then
combine this active learning approach with an existing volcano-
seismic event classification network SeismicNet (Canário J. et al.,
2020). We apply this method to two datasets of detected volcano-
seismic events which are fully labelled with analyst-reviewed
classifications (these event types are outlined in Table 1 and
reasons for selecting these datasets are discussed in Section 2.1):

(1) 5614 detected seismic events from the 2012 unrest and
eruption of Nevado del Ruiz Volcano, Colombia. These
events are labelled as VT, LP and Hybrid events by
analysts from the Servico Geológico Colombiano (SGC).

(2) 3592 detected seismic events from Llaima Volcano, Chile
over the 2010–2016 non-eruptive period (Canário JP. et al.,
2020). These events are labelled as VT, LP, Tremor and
Tectonic events by analysts from the Observatorio
Volcanólogico de los Andes del Sur (OVDAS). Canário
et al., 2020a used this dataset to train and test neural
network architectures for automatic event classification.

We evaluate the success of the active learning approach in
selecting the training dataset against an equivalent model trained
with randomly selected training points. We withhold the labels
from the training data until points are selected, where we add the

points and associated labels to the training dataset. After training
the model, we test the model performance on unseen data.

2 METHODS

2.1 Data
For this experiment we use two seismic datasets which are
annotated with analyst-reviewed labels. These labels are
withheld from the model during the active learning
experiment (outlined in Section 2.3) until a point is selected
to be included in the training dataset (through either active or
random sampling), and the process of labelling the waveforms is
simulated by providing the true labels to the model when they are
selected.

Table 1 summarises the frequency characteristics and
potential source processes of the event types which are
contained in the two datasets used for this study and
representative examples of these event types are plotted in
Figure 1. Volcano-tectonic (VT) events are characterised by
impulsive onsets and dominant frequencies above 5 Hz (Lahr
et al., 1994). They are thought to be brittle failure events that can
be triggered by mechanisms such as stress change from magma
intrusion (Roman and Cashman, 2006), or an increase in pore
fluid pressure due to volatile transport (Huppert and Sparks,
2016). Long Period (LP) events are characterised by an emergent
onset followed by a set of decaying harmonic oscillations, and are
typically concentrated within the frequency range of 0.5–5 Hz
(Lahr et al., 1994). The source mechanism of LP events can be
attributed to resonance of a fluid-filled crack or conduit (Chouet

FIGURE 1 | Representative examples of waveforms of each class from the datasets used in this study, where VT represents a volcano-tectonic event and LP
represents a long-period event. The VT, LP, tectonic and tremor examples are from the Llaima dataset, and the hybrid example is from the Nevado del Ruiz dataset. Each
waveform has an amplitude normalised to between 0 and 1 and the range of the x-axis in each panel is 64s (which corresponds to the length of the input waveform to the
model).
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1996; Neuberg 2000). These signals are also termed Low
Frequency (LF) events and can reflect a broader set of
potential source mechanisms including slow-rupture
earthquakes in unconsolidated edifice (Bean et al., 2014),
magma-hydrothermal interaction (Jolly et al., 2017) and
magmatic degassing (Rodgers et al., 2015a). Throughout this
manuscript we use the term LP as this is the term assigned within
the labelling schemes of the datasets used here. Hybrid events
(HB) contain a mixture of both VT and LP signals, typically with
a high frequency impulsive onset similar to a VT event and a
decay which is prolonged similar to an LP event (Lahr et al.,
1994). Potential source mechanisms for hybrid events include a
brittle-failure triggering event which induces conduit resonance
(e.g., Neuberg et al., 2006). Harrington and Brodsky (2007)
suggest that hybrids can be attributed to brittle failure events
with low rupture velocity which have undergone complex path
effects. Rodgers et al. (2016) identify families of repeating events
that transition from hybrids into LPs, suggesting similar source
processes with subtle changes over time in the triggering process.
Tremor events (TR) are a continuous low-frequency signal,
usually associated with fluid migration. Suggested source
mechanisms for tremor include sustained triggering of LP
events in magma conduits (Powell and Neuberg 2003),
restricted or choked flow of fluids in the sub-surface (Chouet
1996; Hellweg 2000; Lesage et al., 2006) or magma degassing or
fissure eruptions at the surface (Battaglia and Aki 2003; Nadeau
et al., 2011), In the Llaima dataset, the tectonic event type (TC)
includes events with a non-volcanic origin, such as regional or
local earthquakes (Canário JP. et al., 2020). Source mechanisms of
tectonic events are indistinguishable from VTs, i.e., brittle shear
failure due to stress changes, but these events can be distinguished
from VTs as being located outside of the volcanic network.
Cataloguing tectonic events is important for volcano
monitoring as interactions between volcanoes and regional
tectonic activity have been documented in many places
(Marzocchi et al., 1993; Linde and Sacks, 1998; La Femina
et al., 2004), and distal VTs may in some cases be considered
tectonic events and excluded from volcano-seismic catalogues
(Roman et al., 2008).

For this study, we trial the methods on two datasets from
Nevado del Ruiz, Colombia and Llaima Volcano, Chile. We
choose these datasets for trialling the active learning approach
for two reasons. Firstly, the datasets each contain a different
number of classes: the Llaima dataset contains 4 event types (VT,
LP, tremor and tectonic events) and the Nevado del Ruiz dataset
contains 3 event types (VT, LP and hybrid events). Hence, we can
test whether the active learning approach is more beneficial where
a greater number of event types are being classified. Secondly, the
datasets are from different types of volcanic activity: the Llaima
dataset is from 2010–2016 which is a non-eruptive period, and
the Nevado del Ruiz dataset is from 2012, which covers
precursory unrest and eruption from 22nd February 2012
onwards. This distinction is important for trialling an active
learning approach on seismic data from both non-eruptive
activity and heightened unrest as the spectral contents of
seismic events can vary during unrest and eruption (Rodgers
et al., 2016). For example, Buurman and West (2010) observe an

increase in events dominated by low frequency energy prior to
explosions during the 2006 eruption of Augustine Volcano. This
distinction allows us to test whether the active learning approach
performs better on events with greater variability.

2.1.1 Nevado del Ruiz Dataset
We use data from the 2012 eruptive period of Nevado del Ruiz
Volcano, Colombia, an ice-covered stratovolcano located within
the Andes (Londono, 2016). The 2012 eruption of Nevado del
Ruiz represented the first emission of ash since the 1985 eruption,
which caused over 25,000 fatalities when lahars inundated
surrounding communities, including the city of Armero (Lowe
et al., 1986; Naranjo et al., 1986). The data are from the vertical
component of the seismic station TOLZ. The dataset includes
5614 waveforms of three types: 2363 VT events, 2867 LP events
and 384 hybrid events. These events have been classified by
analysts at the Servicio Geológico Colombiano (SGC). The
waveforms have been filtered using a band pass filter to
include frequencies between 0.5 and 20 Hz. Each input
waveform is 64 s long, and shorter waveforms are padded with
0 values to reach this length. Seismic data from between
2005–2006 at Nevado del Ruiz have previously been used to
train and test an automatic classifier using Hidden Markov
Models, which achieved a classification accuracy of
approximately 88% (Cárdenas-Peña et al., 2013). This dataset
was significantly smaller than the dataset used here and involved
an extensive data pre-processing stage to extract frequency-based
features and select the features which would provide the greatest
information over time. This approach contrasts with our method,
in which very little pre-processing is required and no prior
knowledge about waveform properties from the whole study
period is used to optimise the approach. Long-term data from
Nevado del Ruiz from 2007–2014 were automatically classified
using a random forest classifier (Rodgers et al., 2015b). This study
used the full spectrogram as input vector and using ~7% of
analyst-labelled events for training achieved a classification
accuracy of approximately 77%. Hand-crafted features derived
from this catalogue of detected events have previously been used
to classify eruptive and non-eruptive activity during the 2012
eruption of Nevado del Ruiz (Manley et al., 2020).

2.1.2 Llaima Dataset
We use the dataset presented by Canário et al. (2020b) which
encompasses 4 event types (VT, LP, Tremor and Tectonic) from
2010–2016 at Llaima Volcano, Chile. The data are from the
vertical component of the seismic station LAV, with labels
from Observatorio Volcanológico de los Andes del Sur
(OVDAS). The total dataset size is 3592 waveforms, which
comprises 304 VT events, 1310 LP events, 490 tremor events
and 1488 tectonic events (e.g., regional events). Therefore, the
Llaima dataset is approximately 36% smaller than the Nevado del
Ruiz dataset. As described in Canário et al. (2020b) the
waveforms have been filtered using a band-pass filter to
include frequencies between 1 and 10 Hz and subsequently
normalised by the maximum value. Each input waveform is
64 s long, and shorter waveforms are padded with 0 values to
reach this length. This dataset was previously used for studying
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the performance of a range of neural network architectures by
Canário et al., 2020a and achieved validation accuracies of over
90% using the SeismicNet, though the models were not tested on
unseen data in their study.

2.2 Machine Learning Classification
We combine the active learning selection of training data with an
existing volcano-seismic event classifier. We use an existing
CNN-based volcano-seismic event classifier, known as
SeismicNet, proposed by Canário et al. (2020a), illustrated in
Figure 2A. The SeismicNet classifier is based on a similar
architecture designed for classifying waveforms from audio,
known as SoundNet (Aytar et al., 2016). The architecture
takes the raw waveforms as input rather than derived
information such as a spectrogram representation or wavelet
transform. We choose this classifier as it achieved comparable
results to other CNN-based approaches (e.g., Curilem et al., 2018;
Lara et al., 2021) but required significantly fewer pre-processing
steps, which is concordant with the aim of this study to develop a
method for the prompt labelling of a pool of unlabelled events.

This classifier is a Convolutional Neural Network (CNN), a
neural network which contains a number of layers which execute
convolutions on the input data and downsample (or downsize)
the signal. These layers act as the “feature extraction” process for
the CNN. Convolutional layers apply convolution over the data
with a given size (known as the filter size). These convolutions are
used in combination with pooling layers, which reduce the size of
the data, and dropout layers which are randomly set to 0 with a
given probability, and are used to increase the generalisability of a
model and prevent overfitting to the training data (Srivastava
et al., 2014). Finally, fully connected layers are used to compute

the final classification output of the model. We use the categorical
cross entropy loss function and the stochastic gradient descent
optimiser to fit the model. The models were implemented in
Keras v2.4.0 with a Tensorflow backend. The network
architecture is outlined in Figure 2A, with the parameters
shown for each layer. Before running the experiments, we
tested the model architecture, varying parameters such as
dropout and hyperparameters such as the model batch size
and number of epochs for training, and chose the parameters
which achieved the greatest validation accuracy in training. We
choose a model batch size of 16 and number of training epochs of
150 for the Nevado del Ruiz dataset and 200 for the Llaima
dataset.

2.3 Active Learning
Diversity-based active learning works on the principle that a
model will achieve better performance if more variation across
the training set is sampled by the model during the training
period. Because the extent of the variability in the training set has
been sampled during the model training period, in theory the
model will perform well on unseen testing data under the
assumption that the training data captures the full diversity of
the dataset. In contrast to diversity-based active learning,
uncertainty-based active learning schemes involve choosing
examples to be labelled based on the uncertainty of the model
in the given classification, thereby prioritising examples which lie
close to the boundary between classes (Jain and Kapoor, 2009).
However, for deep learning classifiers, the probability output of
the model is not representative of the model confidence (Gal and
Ghahramani, 2016) and therefore the classifier must be adapted
to a Bayesian framework to adequately quantify the uncertainty of

FIGURE 2 | (A) Illustration of the SeismicNet neural network architecture (Canário J. et al., 2020). For the convolutional layers “Conv”, figures in brackets refer the
number of filters, kernel size, strides and padding respectively. For the pooling layers “Pool”, the figure in brackets is the pool size. For the dropout layers “Drop”, the figure
in brackets is the dropout rate, where the two rates in the final dropout layers represents the rate for the Nevado del Ruiz dataset (0.55) and Llaima dataset (0.75), which is
the only model architecture parameter which was changed between the two datasets. For the fully connected layer, the figure in brackets represents the size of the
final dropout layer (1500) (B) Conceptual illustration of the KCenterGreedy algorithm (Sener and Savarese, 2017), where grey points represent points within the training
dataset and white points represent unlabelled points. Arrows represent theminimum pair-wise Euclidean distance in the feature space (n-spacewith dimensions equal to
the number of neurons in the final fully-connected layer i.e., 1500 in our study) of the furthest point from any currently within the training dataset.
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the classification. We therefore select a diversity-based method of
active learning such that the method can be combined with
previous classifiers.

We apply a core-set selection approach to active learning
after Sener and Savarese (2017), known as KCenterGreedy,
illustrated in Figure 2B. The KCenterGreedy method works by
selecting new data points which are the most dissimilar from
any data point within the current training set. Deep learning
models are formulated on batches of data, making labelling
single data points logistically challenging, and meaning that
obtaining a single label is not likely to significantly affect the
model performance. The KCenterGreedy algorithm is
implicitly designed to work on selecting batches of data. We
choose this algorithm as it is extensible to any CNN-based
classifier for volcano-seismic events.

Figure 3 illustrates the process of the active learning
experiment. The model is trained with an initial randomly-
chosen batch of labelled waveforms. The full set of unlabelled
data is then passed through the feature extraction layers of the
network to generate the features for the algorithm. Within the
feature space, the minimum pairwise Euclidean distance (a
measure of feature similarity) between all datapoints to a point
within the training set is then calculated. This calculation
results in 0 distance for points already labelled within the
training set. A new point which is the maximum distance away
from any labelled point is selected and added to the set of
labelled points. The minimum distances are then re-calculated
with this point included (as unlabelled points located near the
newly-chosen point may now be closer to a labelled point).

This process is repeated until the user-selected batch size is
reached and all the newly chosen points are labelled. The user-
selected batch size is the quantity of data selected in one active
learning cycle as illustrated in Figure 3. Next, the model is
retrained on all the data chosen so far and the AUC (Area
Under the Curve, a measure of the ability of a classifier to
distinguish between classes – see below) is re-evaluated. Once
all the training data have been selected, the model is then tested
on unseen data.

We split the full dataset into training, validation and testing
datasets with a split of 2/3, 1/6 and 1/6 of the dataset respectively.
For the models in this paper, the initial randomly-selected batch
of waveforms is chosen to be approximately 50% of the total
training size. We choose the active learning user-selected batch
size as 216 datapoints. Experienced volcano-seismic analysts can
classify in the region of hundreds of volcano-seismic events in a
day (e.g., Thompson et al., 2020). Therefore, we pick a figure for
selecting batches in the lower region of this estimate as a
reasonable quantity to be labelled at once before the models
can be re-trained with the new data included.

We compare the active learning experiment to an
experiment where the next batch is randomly-selected. The
performance metric we use to compare the performance of the
models is the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC, referred to as AUC). The
ROC curve is a plot of the False Positive Rate (FPR) vs the True
Positive Rate (TPR) of a model at various threshold values. The
AUC is computed by integrating under this curve, whereas
model accuracy is computed by setting a FPR threshold and

FIGURE 3 | Illustration of the active learning experiment presented here, where grey points represent points within the training dataset and white points represent
unlabelled points. Double-headed arrows represent the pair-wise Euclidean distance of points within the dataset (see Figure 2B).
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computing the percentage of examples which were correctly
classified. A higher AUC corresponds to a higher TPR at lower
FPR and therefore better model performance. For comparing
models, the AUC is a preferable metric to other metrics such as
the training accuracy as the AUC is independent of a threshold
which, in the case of accuracy, can vary between models.

3 RESULTS

To assess the results of the active learning frameworks described
in Section 2, we compare the model performance via the AUC
against the proportion of the dataset which is being used for
model training, where greater AUC corresponds to better model
performance. As illustrated in Figure 3, the model is trained with
a subset of labelled data points and new training points are added
to the labelled set either through active or random selection.
Hence, the proportion of labelled points increases over the course
of the experiment. We compare the active learning selection of
training data against a random selection of training data. For a

successful active learning approach, the models will achieve
higher performance at a lower proportion of training data
than the randomly-selected case.

3.1 Nevado del Ruiz Dataset
Figure 4 illustrates the active learning and randomly-selected
learning curves for models trained on the Nevado del Ruiz
dataset. Table 2 indicates the testing AUC and accuracy of the
model. The active learning model achieves greater training AUC
at a smaller proportion of the dataset used for training with an
AUC comparable to that achieved at the final training step
obtained with just approximately 60% of the training
datapoints labelled. The randomly-sampled model achieves
greater AUC than the actively-sampled model once
approximately 85% of the training data are labelled. However,
the active-sampling testing AUC of 0.8848 is greater than the
random-sampling testing AUC of 0.8626 when tested on the same
set of unseen datapoints. The final testing accuracy of the active
learning model, at 70.73%, is higher than the randomly-sampled
model at 68.27%. These testing accuracies are comparable to

FIGURE 4 | (A) Learning curves for the active model (blue) and random model (orange) for the Nevado del Ruiz dataset. The proportion of data is the amount of
labelled data which the model is trained on, and the training AUC is the final AUC for the model training. (B)Confusion matrices for the active model (top) and the random
model (bottom). Numbers indicate the number of events which were classified in each category, such that true positive or correct classifications are on the diagonal of the
matrix and misclassifications appear in the off-diagonal elements.

TABLE 2 | Testing performance (AUC and accuracy) for the models presented in this study.

Dataset Model type Testing AUC Testing accuracy (%)

Nevado del Ruiz Actively-sampled 0.8848 70.73
Randomly-sampled 0.8626 68.27

Llaima Actively-sampled 0.9898 93.32
Randomly-sampled 0.9332 94.82
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classification accuracies achieved on noisy seismic data (e.g.,
Cortés et al., 2021) but lower than those achieved for the less
noisy Llaima dataset.

Figure 4 contains the confusion matrix of both models. For
the actively-sampled model, the incorrect classifications are
primarily the erroneous classification of VT events as LP
events. For the randomly-sampled model the opposite occurs,
where LP events are primarily misclassified as VT events. Both
models classify the majority of hybrid events as LP events (though
hybrids represent a small proportion of the dataset), with the
random classifier failing to identify any hybrid events. Previous
automatic classifiers applied to Nevado del Ruiz data had a high
misclassification rate of hybrid events, and it was suggested that
discriminating between hybrid and LP events is particularly
difficult from observations made at a single recording station
(Cárdenas-Peña et al., 2013). Additionally, the a-priori
classification of hybrid events may be subject to human
analyst bias (Langer et al., 2006).

3.2 Llaima Dataset
Figure 5 illustrates the active learning and randomly-selected
learning curves for models trained on the Llaima dataset.
Table 2 indicates the testing results of the models. The
testing AUC of the active learning model, at 0.9898, is
better than the testing AUC of the randomly-sampled
model, at 0.9332. The testing accuracy is similar to the
training and validation accuracy reported by Canário et al.,
2020a, at 93.32% for the active learning model and 94.82% for
the randomly-sampled model. The active learning approach
achieves similar training AUC until approximately 60% of the

dataset is labelled, after which the randomly-selected model
achieves greater AUC. The models approach a similar training
AUC towards the end of model training.

Figure 5 includes the confusion matrix of the active learning
compared to the randomly-sampled case. The correct
classifications are similar between both models. For the active
learning model, misclassifications are primarily tectonic events
misclassified as VT events, and tremor events misclassified as
tectonic events. For the randomly-sampled case,
misclassifications of LP or tectonic events as VT are the main
source of wrong classifications.

4 DISCUSSION

4.1 Model Comparison
As discussed in Section 3, the models trained with actively-
sampled data achieved better training AUC than the models
trained with randomly-sampled data for the Nevado del Ruiz
dataset. The Nevado del Ruiz active learning model achieved
similar training AUCs at 55% of the data labelled to 100% of the
data labelled, indicating the potential of an active learning
approach to reduce the amount of labelling required for
training a model. However, the improvement for using the
active sampling was significantly smaller for the Llaima
dataset. To contextualise these results, we can investigate the
structure of the two datasets. Figure 6 is a 2-dimensional
projection of the features from the final model using
t-distributed Stochastic Nearest Neighbour Embedding
(t-SNE), with individual features coloured by the order in

FIGURE 5 | (A) Learning curves for the active model (blue) and randommodel (orange) for the Llaima dataset. The proportion of data is the amount of labelled data
which the model is trained on, and the training AUC is the final AUC for the model training. (B) Confusion matrices for the active model (top) and the random model
(bottom). Numbers indicate the number of events which were classified in each category, such that true positive or correct classifications are on the diagonal of the matrix
and misclassifications appear in the off-diagonal elements.
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which they are selected into the model. The t-SNE is a
probabilistic machine learning algorithm which is designed to
preserve the high-dimensional distance when the data are
projected into two dimensions, such that points which are
near in high-dimensional space remain near in the resulting
two-dimensional representation (Van der Maaten and Hinton,
2008). This projection is achieved by minimising the Kullback-
Leibler divergence of a high-dimensional joint probability and a
low-dimensional joint probability that a point would pick another
as its neighbour.

Figures 6A,D indicate some separability of the features based
on the true label for the Nevado del Ruiz dataset, though the LP
events show some overlap with both VT and hybrid events. There
is excellent separability of the features based on the true label for
the Llaima dataset. For the Nevado del Ruiz data, the hybrid
events plot in a similar space to the LP events when projected
which could explain the misclassification of hybrids as LP events
which was discussed in Section 3.1. Figures 6C,F represent the
point selection for the random models and we observe that the
colours are evenly distributed across the space, which is
consistent with the selection method as points are randomly
sampled.

Figures 6B,E represent the point selection for the active
learning models. For the Nevado del Ruiz active learning
model (Figure 6B), a greater concentration of dark blue
points (indicating earlier selection into the training set) is

observed in the primarily-hybrid and primarily-VT clusters.
This observation indicates that a greater proportion of
characteristic events of those classes are included at an earlier
stage in the experiment, which could explain the better
performance of the active learning model with less training
data. For the Llaima active learning model (Figure 6E), the
dark blue points (indicating earlier selection of the point into
the training set) are primarily in tremor events and at the edges of
the LP and tectonic clusters, with more red points concentrated in
the middle of the LP and tremor clusters. This observation could
explain the relatively poor performance of the active sampling on
the Llaima dataset early in the active learning experiment, as the
active sampler is primarily picking outliers of the event types and
tectonic events, which encompass a range of non-volcanic source
processes. These observations indicate that a diversity-based
active learning approach could be more beneficial for datasets
where the event types are less separable, such as the Nevado del
Ruiz dataset, as the active selection more efficiently samples the
characteristic events in each class than random sampling.

4.2 Applications for Active Learning
The active learning approach, such as that presented here, has
practical applications for volcano monitoring and volcano
seismology research. Seismic monitoring is one of the most
common and earliest-employed tools to be deployed as part of
a monitoring network (e.g., Tilling, 1989), and large seismic

FIGURE 6 | Visualisation of the final model features using a t-Distributed Stochastic Nearest-Neighbour Embedding projection (Van der Maaten and Hinton, 2008)
from the actively-sampled model for the Nevado del Ruiz (NdR) dataset (A–C) and Llaima dataset (D–F) with the individual point colours in each panel: (A) Points
coloured according to the Nevado del Ruiz labels as VT (red), LP (pink), hybrid (light blue). (B) Active-sampling model for Nevado del Ruiz with points coloured according
to when they were selected to be added to the model, with the seed batch (initial, randomly selected waveforms) coloured in light blue, the first 50% of points
selected into the model coloured in dark blue and the final 50% of points selected into the model coloured in red (according to legend in panel (F)). (C) Random-sampling
model to Nevado del Ruiz with points coloured in the same scheme as (B). (D) Points coloured according to the Llaima labels as VT (red), LP (pink), tremor (light blue),
tectonic (dark blue). (E) Active-samplingmodel for Llaima with points coloured in the same scheme as (B). (F) Random-samplingmodel for Llaima with points coloured in
the same scheme as (B). The x and y axes represent non-linearly scaled distances projected into a 2-dimensional space and thus have no units, and are not comparable
across axes.
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catalogues are created for most well-monitored volcanoes
(Newhall et al., 2017). Digitisation and curation of legacy
seismic data can yield a large quantity of previously-unlabelled
or analysed data, or inconsistently labelled data due to changes in
monitoring network, observatory staff and/or procedures
(Thompson et al., 2020). An active learning approach could be
used in these contexts to accelerate the process of event
classification to provide retrospective insights on the
characteristics of seismicity prior to eruptions. Alternatively,
active learning can be utilised at awakening volcanoes where
limited (or no) prior seismic catalogue is available, e.g., the re-
awakening of Chaitén Volcano, Chile in 2008 (Lara, 2009). In
such cases, an active learning approach running in real-time
would minimise the burden on observatory analysts and speed up
event classification tasks, which are both crucial aspects of
volcano crisis management.

The active learning framework presented here has the
advantage of not being intrinsically linked to any specific
classification scheme. Other methods, such as automated
classifiers trained on existing waveforms, might rely on a
consistent set of event types. However, depending on the
volcanic system being studied, the set of geologically-relevant
event types may vary. For example, glacially-derived seismic
events, also known as “icequakes”, are not always included
in classification schemes and can mimic other volcanic event
types (Thelen et al., 2013). Though icequakes are not always
included in analyst-reviewed catalogues, identifying and
monitoring the occurrence of these events is key for hazard
assessment as debris can be mobilised by water from glaciers
(Carrasco-Nunez et al., 1993). Rockfall events can be linked to
changes in volcanic activity. DeRoin and McNutt (2012)
analyse the occurrence of rockfall events at Augustine
Volcano, United States and found a greater occurrence of
rockfall events preceding the 2005 eruption, which they
attribute to higher ground instability due to increased
steaming at the summit. Timely identification of diverse
events such as icequakes or rockfalls is important so that
they may either be removed from the seismic record or
analysed for their relevance to volcanic activity. Unlike using
an existing classifier trained on data from other volcanic
systems, an active learning approach to classification can be
easily expanded to accommodate more event types based on the
geological setting and unique properties of the volcanic
environment.

4.3 Limitations
The active learning strategies presented here assume that the
labels provided by the human expert (also termed an “oracle” in
the field of active learning) are correct. This assumption may not
be perfect. Seismic waveforms can be modified depending on
external effects which may include path effects, such as the soil/
bedrock characteristics, or the station geometries. Indeed, Cortés
et al. (2021) suggest that the agreement between seismic analysts
is approximately 80%. Incorrect classifications are a source of
noise, and Linville et al. (2019) show that for a tectonic seismic
catalogue 70% of the machine learning classifier error may be
attributed to analyst error during event labelling. A full analysis of

the effect of oracle noise in our data is beyond the scope of this
study and, for the analysis presented here, we do not distinguish
error due to analyst mislabelling and error due to
misclassification by the machine learning model.

This study has involved the use of single-station data for
classifying seismic events. In practice for many volcanoes, a
seismic network comprising multiple stations is used for
monitoring volcano-seismic activity. The analyst-reviewed
labels used as the ground-truth labels may therefore be made
with reference to multi-station information. As discussed above,
path and site effects can modify waveforms and therefore
inclusion of waveforms from multiple stations for event
classification could mitigate this effect. The approach
presented here could be extended to include waveforms from
multiple stations as channels of input into the CNN. This multi-
channel input approach has previously been applied to use a 3-
channel waveform as input for seismic phase arrival detection
(Lapins et al., 2021). Using channels from a variety of station
locations in the network (for example, a combination of summit
and distal stations) could mitigate against the location-specific
events which include, but are not limited to, the attenuation of
high-frequency seismic energy within the waveform (e.g., Clarke
et al., 2021).

Additionally, we have not considered any change in event
classes during this study, using events which are from a limited
time range. Cárdenas-Peña et al. (2013) used Hidden Markov
Models to classify seismic activity at Nevado del Ruiz data and
select features by choosing the set of features which contained the
most time-varying information. We do not make any
adjustments to our model for the time-dependent variation of
seismicity. We suggest that, if models are trained over a longer
period than presented here (e.g., 10s of years), examples are
selected from the full extent of the period covered by the training
dataset to account for any variability over time.

5 CONCLUSION

We present an application of active learning to volcano-seismic
event classification. We apply a method of active learning
designed to select an optimum training dataset from a large
pool of unlabelled training data. We combine this active
learning with a CNN-based volcano-seismic event classifier
and apply the model to two volcano-seismic datasets from
Nevado del Ruiz, Colombia and Llaima, Chile. For both
datasets, the active learning models achieve greater model
performance when tested on unseen data than models
trained using randomly-selected data. The active learning
approach to data selection achieved greater training AUC at
a smaller fraction of data for the Nevado del Ruiz dataset;
however, for the Llaima dataset the gain from using an active
learning approach was significantly smaller. To contextualise
these results, we compare the separability of features for both
dataset and suggest that the diversity-based active learning
approach presented here can provide particular utility in
accelerating model performance for datasets where the event
types are less separable, as at Nevado del Ruiz. We discuss the
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potential applications of an active learning approach, which
include the analysis of large amounts of unlabelled data from
legacy datasets, rapid event classification at awakening
volcanoes with no prior catalogue, or where volcano-specific
event types (such as rockfall events) are widespread to the
random selection of training data.
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