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Abstract: Non-invasive foetal electrocardiography (NI-FECG) has become an important prenatal
monitoring method in the hospital. However, due to its susceptibility to non-stationary noise sources
and lack of robust extraction methods, the capture of high-quality NI-FECG remains a challenge.
Recording waveforms of sufficient quality for clinical use typically requires human visual inspection
of each recording. A Signal Quality Index (SQI) can help to automate this task but, contrary to adult
ECG, work on SQIs for NI-FECG is sparse. In this paper, a multi-channel signal quality classifier
for NI-FECG waveforms is presented. The model can be used during the capture of NI-FECG to
assist technicians to record high-quality waveforms, which is currently a labour-intensive task. A
Convolutional Neural Network (CNN) is trained to distinguish between NI-FECG segments of high
and low quality. NI-FECG recordings with one maternal channel and three abdominal channels
were collected from 100 subjects during a routine hospital screening (102.6 min of data). The model
achieves an average 10-fold cross-validated AUC of 0.95± 0.02. The results show that the model
can reliably assess the FECG signal quality on our dataset. The proposed model can improve the
automated capture and analysis of NI-FECG as well as reduce technician labour time.

Keywords: foetal ECG; convolutional neural network; signal quality

1. Introduction

Foetal cardiac monitoring is an important step in ensuring a positive outcome at
birth and to identify factors that negatively affect the health status of the foetus. Early
monitoring may prevent permanent damage to the foetus and intrauterine death [1–5].
The gold standard for foetal cardiac monitoring is invasive foetal ECG (I-FECG) using a
trans-vaginal electrode placed on the scalp of the foetus [6–8]. While this provides a good-
quality recording comparable with adult ECG due to the direct contact of the electrode
with the foetus, it can only be used during labour and comes with additional disadvantages
such as the risk of passing infection. Non-invasive methods are therefore preferable as
they impose less of a burden on the mother and foetus and they can be used for long-
term monitoring even outside of the hospital. Non-invasive monitoring methods used
in clinical practice include non-invasive foetal electrocardiography (NI-FECG) [2,3,9–14],
foetal echocardiography (FECHO) [15–17], foetal magnetocardiography (FMCG) [18–20]
and cardiotocography (CTG) [21–23]. Of these methods, FECHO and FMCG can provide
morphologically accurate FECG recordings with high SNR, but they require expensive
hardware and skilled personnel, and are not suitable for long-term monitoring. CTG is
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a commonly used method in clinical practice that uses a single ultrasound transducer to
measure the foetal heart rate. It is cheap and easy to use, but it only measures the heart rate
time series. NI-FECG is a promising prenatal monitoring method that is cheap and easy
to use and has the potential to make morphologically accurate recordings, but the signal
needs to be processed in order to obtain the FECG. An additional downside of NI-FECG
is that signal quality is dependent on the gestational period because the vernix caseosa
electrically shields the foetus. As the vernix caseosa starts to dissolve, approximately from
week 38, signal quality starts to improve. It therefore has a wider applicability towards the
end of the third trimester [24].

Non-invasive foetal electrocardiography (NI-FECG) is technologically similar to adult
electrocardiography (ECG) [9]. Conventional ECG electrodes placed on the abdomen
capture foetal cardiac activity. Figure 1a shows an example of a signal captured with
NI-FECG. It is the sum of the maternal ECG (Figure 1b) and the foetal ECG (Figure 1c). It
is impossible to measure either component individually using electrodes placed on the
mother’s body, making it difficult to obtain a ground truth using non-invasive methods.
CTG can be used as a reliable reference for the heart rate, but it does not provide the
full signal. It is possible to capture the maternal ECG individually elsewhere on the
body, but a simple subtraction of this signal from the abdominal mixture will not lead
to the extraction of the FECG as the maternal component in the abdominal mixture is a
non-linearly transformed version of the maternal ECG captured elsewhere on the body.
The abdominal mixture is further corrupted by noise sources such as uterine and foetal
movement. These noise sources are non-stationary, which often results in changing signal
conditions throughout the recording. Signal quality is also dependent on the positioning of
the foetus relative to the electrodes. Electrodes are typically placed in a way that covers
a large area of the abdomen to increase the chances of capturing the foetal ECG in one of
the leads. It is not uncommon for the foetus to move during a recording in such a way
that causes the foetal component in the abdominal mixture to disappear entirely. These
factors combined often result in a low and varying signal-to-noise ratio (SNR), making the
extraction of FECG from the abdominal mixture a challenging task.

0 1 2 3 4 5
Time [s]

(a) Abdominal mixture

0 1 2 3 4 5
Time [s]

(b) Maternal ECG component

0 1 2 3 4 5
Time [s]

(c) Foetal ECG component

Figure 1. Example of NI-FECG. The abdominal mixture (a) contains both a maternal (b) and a foetal
(c) component. The foetal component has a lower SNR than the maternal component. The figures
depict an ideal case. In practice, the SNR is typically worse.

Because of the above-mentioned challenges, the majority of recent research efforts in this
area are focused on the extraction of raw FECG by solving the signal-separation problem,
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or on the detection of foetal QRS (FQRS) complexes in the abdominal mixture [2,3,10–14].
The main limiting factor is that there is no general method that works for all NI-FECG signals,
and models often need to be hand-crafted for each dataset [25]. Most works in this area
also begin from a dataset in which it is known that the FECG is present with sufficient SNR.
The question of how to deal with varying SNR remains largely unanswered by the current
state of NI-FECG research.

Signal quality indices (SQI) have been shown to improve performance of signal-
processing techniques for adult ECG and other physiological signals with a low or varying
SNR. Li et al. [26] presented a set of SQIs derived from adult ECG and blood pressure (BP)
measurements. The statistical characteristics of each waveform are used in combination
with a Kalman filter to improve adult ECG heart rate (HR) estimation. The effect of
including SQIs is an increased robustness of the HR estimation method in the presence
of high levels of noise and during periods of extreme bradycardia and tachycardia. A F
Pimentel et al. [27] presented a similar multimodal approach with SQIs derived from ECG
and BP measurements to construct a HR estimation method using a hidden semi-Markov
model. Johnson et al. [28] proposed an improved HR estimation method using an ECG SQI
based on the agreement between two distinct R peak detectors. SQIs can also be used in a
more straightforward way to determine the acceptability of collected ECG records in noisy
environments, as shown by Clifford et al. [29]. Features were derived from the ECG to train
a traditional supervised machine learning model to classify the signal quality. This method
provides real-time feedback and prompts the user to make adjustments to the recording
setup until the quality is sufficient so that an automated algorithm or medical expert can
make a diagnosis. Similarly, Behar et al. [30] use SQIs and a traditional machine learning
classifier to determine the signal quality during periods of arrhythmia, which leads to a
reduction of false alarms.

Despite considerable advances in adult SQIs, work on a quality index for NI-FECG is
sparse. The work by Andreotti et al. [31] was the first to propose an SQI specifically for NI-
FECG. Using 45 features derived from 5 s abdominal mixture segments, a Naive Bayes (NB)
classifier was trained to classify the foetal signal quality (FSQI) into five quality levels.
The ground truth was annotated based on visibility of the FECG and perceived SNR.
The model achieved a Cohen’s κ = 0.44± 0.03 (moderate) and Krippendorff’s coefficient
α = 0.65± 0.04 (good). The posterior probability outputs of the NB model were then further
used to improve a foetal heart rate (FHR) detection method based on Kalman filtering. This
showed that—analogous to work on adult ECG—traditional machine learning methods can
be used to estimate FSQI as well as improve performance of an upstream FECG application.
To the best of our knowledge, it remains the only NI-FECG SQI in the literature to date.
Deep learning approaches for foetal ECG processing are similarly sparse in the literature.
Zhong et al. [32] presented a method to detect the foetal QRS in single-channel NI-FECG
using a Convolutional Neural Network (CNN). Lee et al. [33] presented a similar approach
on multi-channel NI-FECG. Zhong et al. [34] presented a method for the extraction of
FECG using a residual convolution encoder–decoder network. Work on deep learning
approaches for foetal SQIs is, to the best of our knowledge, absent in the literature.

The main contribution of this manuscript is to improve on the performance of the
existing FSQI and eliminate the requirement of extensive feature engineering and hand-
crafted methods. In [31], the majority of features are derived from the extracted FECG
signal. Feature quality is therefore limited by the performance of the extraction algorithm,
which can vary greatly depending on signal conditions [12,25]. We propose a method
that estimates FSQI directly from the multichannel abdominal mixture by leveraging the
automatic feature extraction properties of Convolutional Neural Networks (CNN). The
remainder of this manuscript is structured as follows: first, the dataset and labelling
procedure are discussed, followed by an overview of the proposed method, neural network
architecture, and the evaluation methodology. The proposed deep learning model is
benchmarked to the existing FSQI [31] with traditional machine learning models. After the
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reporting of the classification scores follows a discussion on the results and their clinical
relevance. Finally, the conclusions are drawn.

2. Materials and Methods
2.1. Data and Labelling Procedure

The NI-FECG recordings used in this work were obtained from a private retrospective
dataset collected at Wuhan Children’s Hospital, Wuhan, China from 2014–2019. Recordings
were taken as part of a routine prenatal screening with pregnancies at various gestational
ages. Each record consists of 1 maternal chest channel and 3 abdominal channels. Record-
ings are variable in length and typically in the range of 1–3 min. The sample rate is 1 kHz.
Figure 2 shows the electrode configuration. The maternal chest lead (M) is placed over the
5th intercostal space on the left anterior axillary line (V5 position). The abdominal leads
(A1, A2, A3) are placed on the lower abdomen with the centre lead A2 positioned over
the pubic symphysis. The abdominal reference lead (re f ) is placed over the fundus of the
uterus. An additional ground lead (gnd) is placed level with the reference lead on the right
mid-axillary line.

A1 A2 A3

M

refgnd

Figure 2. The NI-FECG electrode configuration used in this work.

From the larger retrospective dataset, 100 recordings from unique singleton pregnan-
cies were randomly selected for this work. Each recording was labelled as a whole and
assigned a quality class label of good (1) or bad (0). Preference was given to recordings with
a consistent perceived signal quality to ensure correct labelling over the whole recording.
Recordings with inconsistent signal conditions were discarded. The label was assigned by
the study’s data engineers based on the visibility of the FECG and perceived SNR in the
abdominal channels (hospital clinicians were consulted on the decision process). In the
hospital, the main criterium for signal quality is the ability to manually measure the foetal
heart rate (FHR), and this approach was copied in the labelling process. Recordings where
the FECG was sufficiently visible in at least 1 abdominal channel to manually determine
the FHR were labelled as good quality. When the FECG was not visible or had low SNR
such that the FHR was no longer reliably measurable, the recording was labelled as bad.
While this is a coarse annotation, it reflects the procedures in the hospital where the same
visual inspection is done after each recording. This yielded 56 recordings of good quality
and 44 recordings of bad quality, for a total of 50.5 min of good data and 52.1 min of bad
data. Figure 3 shows an example of a single abdominal channel segment of good and
bad data. The maternal R peaks are labelled with a blue circle, and the foetal R peaks are
labelled with a red cross. A larger version of this plot showing all 4 channels can be found
in Appendix A.
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0 0.5 1 1.5 2 2.5
−1

0

1

Time [s]

(a) Good quality (FECG clearly visible, high SNR)

0 0.5 1 1.5 2 2.5
−1

0

1

Time [s]

(b) Bad quality (No FECG visible, only MECG)

Figure 3. Examples of good- and bad-quality segments. Only the first abdominal channel is shown.
Blue circle: maternal R peak, red cross: foetal R peak.

2.2. Data Preprocessing

The data were first normalised to a minimum and maximum amplitude of −1 and +1,
respectively. The normalised output xn for input signal xn is given by:

xn = 2 · xn − xmin
xmax − xmin

− 1 (1)

Each normalised channel was filtered with a 3rd order Butterworth bandpass filter
with a passband of 3–100 Hz to suppress the baseline drift and unwanted high-frequency
noise. Bandpass filtering is a commonly used preprocessing step for NI-FECG [2,3,10–12],
and the passband of 3–100 Hz is the same as what was used in [31]. Recordings were then
segmented into 2.5 s windows with 0.1 s overlap. A window length of 2.5 s was used, which
yields segments that typically contain 4–6 foetal R peaks and 3–5 maternal R peaks, which
is sufficient to measure the heart rate. After segmentation, the dataset consisted of 1212
good segments and 1251 bad segments for a total of 2463 (a segment contains the maternal
channel and 3 abdominal channels). Using the short-time Fourier transform (STFT), each
channel was converted into a two-dimensional (2D) time-frequency representation. An
80-point Fourier transform with an equal length Hamming window and a time-step of
25 were used. The output image has a dimension of 40 × 126, and its values were scaled
to a standard greyscale range of [0, 128]. Figure 4 shows an example of a single-channel
segment of NI-FECG (with a good-quality ground truth label). The large maternal R peaks
are visible with the smaller foetal R peaks in between.

0 0.5 1 1.5 2 2.5
Tim e [s]

500

400
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Figure 4. Time–frequency representation of an abdominal ECG segment (single-channel) with a good
ground truth quality label.

2.3. Signal Quality Prediction

Figure 5 shows the high-level neural network architecture. The network consists of
4 parallel convolutional paths, one for each ECG channel. The network is fed with the
time-frequency image segments of each channel (2.5 s per segment). The CNN outputs its
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feature maps to a fully connected layer that is flattened and concatenated with the other
CNN outputs. This is fed into a single output neuron with sigmoid activation to produce
the predicted class probabilities ŷ for the given input segment. The loss function for the
network is binary cross-entropy, and the optimiser is Adam with lr = 0.0005. The model
was implemented using Keras v2.2.4 on TensorFlow v2.0.0.

Figure 6 shows the detailed architecture of the CNN path for a single channel. It
consists of 3 equal pairs of Conv2D layers (filter and kernel sizes are shown in the figure).
To minimise the loss of gradients during back-propagation, bypass connections are placed
around each pair of Conv2D layers. The input of each bypass connection is summed
with the output of every second Conv2D layer, and the sum is used as the input for the
next Conv2D layer. To match the shape of the bypass connection to the output it is being
summed with, a Conv2D layer with kernel of 1× 1 and a matched filter size is placed in the
bypass path. The last layer is a fully connected layer with 24 neurons. The output of this
layer is flattened and concatenated with the other channels’ output, as shown in Figure 5.
The stride for all Conv2D layers in the network is 1 × 1, and the activation is ReLu. Batch
normalisation is performed after each Conv2D layer (not shown in the figure). A diagram
showing the full network overview can be found in Appendix A.

concat
time-frequency

Maternal 
ECG

Abdominal 
ECG 1

Abdominal 
ECG 2

Abdominal 
ECG 3

CNN path 1

CNN path 2

CNN path 3

CNN path 4

ŷ (good|bad)

Figure 5. Neural network architecture for NI-FECG signal quality prediction.

40x126 40x126x6 40x126x6
40x126x12 40x126x12

40x126x24 40x126x24
40x126x24

kernel: 12x12 kernel: 12x12

kernel: 7x7 kernel: 7x7

kernel:4x4 kernel:4x4

40x126x12

kernel:1x1

40x126x24

kernel:1x1

Conv2D Conv2D
Conv2D

Conv2D

Conv2D Conv2D

Conv2D

Conv2D

Fully
Connected

Figure 6. Detailed architecture of the CNN path for one channel. The network contains four of these
in parallel.

2.4. Performance Evaluation

Nested 10-fold cross-validation (CV) was used for training and testing with a 5-fold
inner CV for validation. Figure 7 illustrates the nested CV procedure. The entire dataset
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was first partitioned into 10 equally sized folds. Stratification was used to ensure an
equal distribution of good and bad labelled data in each fold. The outer CV loop began
by holding out one fold for testing while the remaining folds move on to the inner CV
loop. The inner loop partitioned these data into 5 equally sized folds. One was held out
for validation, and the remaining folds were used for training. The neural network was
trained for 200 epochs with a batch size of 28 and evaluated on the validation fold at each
epoch. The layer weights of the epoch with the highest area under the receiver operating
curve (AUC) were stored. The inner loop repeated itself until each fold had been used for
validation once, and the layer weights with the highest AUC out of the 5 training runs were
selected and loaded into the model. The inner loop was exited and the testing fold held out
by the outer CV loop is evaluated on the trained model. The performance on the test fold
was stored and this concludes one iteration of the outer CV loop. The outer loop repeated
itself 10 times, rotating the testing fold each time. To minimise possible bias introduced
by the partitioning of the data, the outer CV was repeated 100 times with randomised
folds. The final model performance score was obtained by averaging the test results over
all iterations of the outer CV (1000 total).

10-fold outer CV

5-fold inner CV
training

validation

testing

Figure 7. Illustration of the nested cross-validation procedure.

The proposed neural network was benchmarked to the existing NI-FSQI based on
feature engineering and traditional machine learning [31]. Features were calculated from
the extracted FECG signal, including a set of commonly used signal metrics such as standard
deviation, skewness, kurtosis, and newly proposed metrics based on the morphology of
the extracted FECG signal and its detected QRS complexes. FECG extraction from the
abdominal mixture was done with the TSpca method from [35], which was also used in [31].
Table 1 shows the complete list of benchmark foetal SQI features. For the implementation
details, refer to the articles cited in the reference column. Because performance of different
QRS detectors can vary depending on signal conditions, five different detectors were
applied (maxsearch, jqrs, P&T, gqrs, wqrs) and feature calculation was duplicated on
each detector’s output. This resulted in a total of 45 features. The code for these features
was made available as part of the open source FECGSYN toolbox [36]. This code was
used to extract features from the normalised NI-FECG segments—the same segments
that were used for the proposed neural network prior to taking the STFT (as discussed
in Sections 2.1 and 2.2). The extracted features were then used to train the following
machine learning models: Naive Bayes (NB), Support Vector Machine (SVM) with linear
and Gaussian kernel and Random Forest (RF). Scikit-learn v0.23.1 was used. The same
nested cross-validation procedure with 10-fold outer and 5-fold inner CV, as outlined above,
was performed. In the inner CV loop, model hyper-parameters were tuned using a grid
search. The complete list of grid parameters can be found in Appendix A. The model
was trained with all combinations of hyper-parameters defined by the grid and evaluated
on the validation fold, and the best performing combination of hyper-parameters was
stored. Analogous to the neural network evaluation strategy, the best-performing hyper-
parameters out of the 5 inner CV iterations were loaded into the model before evaluating
the trained model with the outer CV test fold. The nested CV procedure was repeated
100 times, and the average performance was calculated.
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Table 1. Benchmark foetal SQI features [31,37].

Cat. SQI Mult. Description Ref.

Ti
m

e

stdSQI no standard deviation of signal: std(x(t)) =
√

E[(x(t)− x(t))2] [26,29]
sSQI no third movement (skewness): sSQI = E[(x(t)−x(t))3]

std(x(t))3
[26,29]

kSQI no fourth moment (kurtosis): kSQI = E[(x(t)−x(t))4]
std(x(t))4

[26,29]

Fr
eq

ue
nc

y pSQI no relative power in the FQRS complex: pSQI = 1−
∫ 15 Hz

5 Hz |X( f )|2d f /
∫ 45 Hz

5 Hz |X( f )|2d f ,
where X( f ) = F (x(t)) is the Fourier transform of x(t).

[26,29]

basSQI no relative power of baseline (bandwidth modified to [0, 3]Hz to include most of the

uterine contraction artefacts: basSQI =
∫ 3 Hz

0 Hz |X( f )|2d f /
∫ 100 Hz

0 Hz |X( f )|2d f )

[26,29]

D
et

ec
ti

on
-b

as
ed

bSQI no percentage of beats commonly detected by two different QRS detectors. The F1 metric
is used.

[11,26,29]

iSQI yes percentage of beats detected on current lead that were detected on all other leads. [26,29]
rSQI no regularity of obtained FQRS intervals rSQI = 1− Nout/Nd , where Nout is the number

of outliers (FHRV>30bpm) and Nd the total number of detections in the segment.
[28,38]

cSQI no morphology conformity measure for FQRS similarity. Negative correlations were
set to zero. [31,37]

xSQI no extravagance of FQRS peaks compared to its surroundings [31,37]

FE
C

G
-s

pe
ci

fic

mxSQI yes analogous to 1− xSQI considering the amplitude of MECG complexes residuals
(100 ms window around MQRS reference annotations of ±50 ms) in comparison with
surrounding extracted abdominal signals.

[31,37]

mpSQI yes relative spectral power of the first five harmonics of the MHR (mpSQIa) or all
harmonics in the interval [0.5, 10] Hz (mpSQIb)

[31,37]

mcSQI yes spectral coherence calculated between available signals. Two variants are applied:
mcSQIa uses MECG and FECG and mcSQIb abdFECG and FECG.

[31,37]

miSQI yes similar to iSQI between current FQRS detection and MQRS reference:
miSQI = 1− iSQIMQRS,FQRS, aims at exposing falsely detected MQRS residuals

[31,37]

Mult.: refers to the method requiring multiple channels or not (including MECG chest lead). Except for the time
domain metrics, all outputs belong to R ∈ [0, 1]. Cat.: category. Ref.: reference.

3. Results

Table 2 shows the results of the nested CV for the proposed neural network (CNN-
FSQI) and the benchmark machine learning models (NB, SVM, and RF). The CNN-FSQI
outperformed the benchmark on all metrics. While the RF and SVMrbf had similar average
precision as the proposed CNN-FSQI approach, accuracy and recall were lower for the
former. The proposed model has a significantly higher recall than all the benchmarks.

Table 2. Cross-validation results of the proposed model (CNN-FSQI) and the benchmark traditional
machine learning models trained with the FSQI features from [31,37]. Bold shows the highest
performance per column. [avg. ± std.].

Accuracy Precision Recall F1 AUC

CNN-FSQI 0.94± 0.02 0.94± 0.03 0.94± 0.03 0.94± 0.02 0.95± 0.02
NB 0.83± 0.01 0.88± 0.02 0.76± 0.02 0.82± 0.02 0.88± 0.01

SVMlinear 0.81± 0.02 0.86± 0.03 0.73± 0.04 0.79± 0.03 0.88± 0.02
SVMrbf 0.87± 0.01 0.91± 0.03 0.81± 0.02 0.86± 0.01 0.92± 0.01

RF 0.86± 0.01 0.92± 0.03 0.77± 0.01 0.84± 0.01 0.92± 0.02

Table 3 shows the performance of the proposed CNN-FSQI model when including or
excluding the maternal channel. The same 10-fold nested CV procedure was used, but only
a single repetition was performed and the folds were fixed between experiments.
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Table 3. Performance comparison of including or excluding the maternal channel in the proposed
model (CNN-FSQI). Ten-fold cross-validation results from a single repetition are shown. [avg ± std].

Input Accuracy Precision Recall F1 AUC

M A1 A2 A3 0.94± 0.02 0.94± 0.04 0.93± 0.06 0.93± 0.02 0.96± 0.02
A1 A2 A3 0.92± 0.04 0.92± 0.05 0.93± 0.04 0.92± 0.04 0.93± 0.04

M: Maternal channel. Ai : Abdominal channel i.

4. Discussion

The results in Table 2 show that the proposed neural network can predict the NI-FECG
signal quality with good performance. The CNN-FSQI achieves an average accuracy of
0.94± 0.02 and outperforms the NB model as proposed in [31]. The authors in [31] state
that one of the improvements to the NB model would be a feature-selection step, which
was omitted because the focus was on the development of an NI-FECG SQI, rather than
fine-tuning of the machine-learning method. In order to allow a direct comparison with
the aforementioned work, feature-selection was also omitted in the benchmark model.
However, it is implicitly performed in the RF model during construction of the trees, where
it selects the optimal features at the leaves. While the RF outperforms the NB, the proposed
CNN-FSQI still outperforms the RF on all metrics.

Table 3 shows that inclusion of the maternal channel has an insignificant impact on
model performance. The initial hypothesis for including the maternal channel was that
it could contain information about the overall signal conditions such as the correct or
incorrect positioning of the electrodes, a shared noise component, etc. However, this is
evidently not the case for the dataset, or the model does not have the capacity to pick it
up. In future work, the model could benefit from a mechanism to learn this information
(e.g., attention). In a hospital environment where the maternal channel is available, it can
be included for a slight boost in performance, but in situations where the maternal lead
is not available (e.g., home monitoring devices) it can be omitted with a minimal impact
on performance.

On average, the model has a false prediction rate of 0.71 False Positive (FP) and
0.71 False Negative (FN) per minute of NI-FECG data (1 FP and 1 FN every 84.55 s or
34 segments). The confusion matrix with the total number of predictions over all repetitions
of the CV procedure can be found in Appendix A. In the hospital where the data were
recorded, routine recordings were typically 1–3 min in length and never more than 5 min
due to time and manpower constraints. The current FP and FN rate is low enough that for
a typical recording the false detections can be cancelled out by a simple majority voting
algorithm when determining the signal quality for the whole recording.

Figure 8 shows examples of true and false predictions (only the first abdominal channel
is shown). Note that the good quality class is the positive label, and the bad quality is
the negative label. For the True Positive (TP) case (Figure 8a), the foetal R peaks are easy
distinguishable from the maternal signal. The True Negative (TN) case (Figure 8b) is
similarly obvious. While the noisy component of the signal may contain the foetal ECG, it
is indistinguishable by eye from the noise. The FP case (Figure 8c) appears to have been
caused by the presence of several R peaks that appear to be of foetal origin. The position of
the R peaks, however, cannot be clearly determined, and the segment was therefore given a
ground truth label of bad. The FN is a borderline case (Figure 8d), and the model likely
failed due to the low amplitude of the foetal R peaks. The segment has a ground truth label
of good because the FHR can still be visually determined despite the low FECG amplitude.
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Figure 8. Examples of true and false predictions. Only the first abdominal channel is shown.
The ground truth foetal R peaks are labelled with a red cross.

The quality of the ground truth labels is an obvious limiting factor of the proposed
method, since its performance can only be as good as its labels. Furthermore, the choice
was made for a coarse labelling into two classes rather than a finer-grained labelling with
multiple quality classes as performed in [31]. The reason for this was to simulate the
same process that is currently followed in the hospital where the dataset was collected.
During and after each recording, a technician performs a preliminary assessment of the
signal in order to accept or reject it for diagnostic purposes. The main criterium is the
ability to manually place markers on the foetal R peaks to measure the FHR. The same
approach was taken during the ground truth annotation procedure in this work. Like in the
hospital, this process can be subjective and there will inevitably be signals with a borderline
quality where the ground truth is unclear. In future work, the method could benefit from
the inclusion of a third unclear label for these borderline cases. This could also help to
improve the interpretability of the results. The sigmoid activation of the model’s output
layer produces a score between 0 and 1 that represents the model’s confidence that the
input segment is of the good class. If the score is low, it is considered to be bad. Scores in
the middle are those where the model cannot discriminate the class (e.g., the borderline
cases). A threshold of 0.5 is used to assign the final binary class label, but the score can
also be interpreted as a probability. With the current model and training data, however,
the scores assigned to the test predictions are polarised; i.e., all scores are smaller than 0.01
or larger than 0.99, with no predictions in between. While this indicates that the model is
good at discriminating the classes, it does not allow us to interpret the score as a probability,
nor does it provide information about the borderline cases. In future work, interpretability
could be improved if the model produced a score where values at the edges correspond to
the bad and good classes, while unclear segments are located in the middle.

Another limitation of the work is the relatively small dataset. While the total number
of 2.5 s segments was 2463, the number of subjects is only 100. Furthermore, the model’s
capability to distinguish good from bad signals is limited by the available examples in the
training set. For example, if a situation occurs that causes the signal quality to degrade that
has not been seen during training, the model may not correctly identify it. In the current
training dataset, most of the bad examples are signals where the foetal ECG has a low
SNR, as this is the most common occurrence in the hospital. The number of signals that
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contain varying signal conditions throughout the recording such as uterine contractions
or movements of the foetus is limited. In future work, these situations should be further
examined. The cross-validation procedure does help to minimise bias introduced by
partitioning of the data and illustrates the generalisation ability of the model. Figure 9
shows the accuracy and loss during training. Figure 9a shows the best repetition (based
on test AUC) obtained over all rounds of the CV procedure (as outlined in Section 2.4).
Figure 9b shows the worst repetition. Both the training and validation graphs converge and
reach a plateau after 150 training epochs. The results indicate that the model generalises
well on our dataset with minimal overfitting, but further clinical evaluation on more
subjects is required.
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(a) Best case (test AUC = 0.98)
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(b) Worst case (test AUC = 0.84)

Figure 9. Training graphs for the best (a) and worst (b) repetitions of the CV procedure.

In order to get an idea about the clinical applicability of the model, a clinician was
asked to assign ground truth labels to a subset of the test segments. The clinician’s labels
were then compared to the model’s predictions. This served two purposes: the first was
to see whether the clinician’s ground truth labels are in agreement with those given by
the study’s data engineer. The second was to see if the model’s assessment of the signal
quality is in agreement with the clinician’s. The worst-performing fold of the outer 10-fold
CV procedure based on AUC was chosen as the subset. This resulted in a subset where
the model produced 41 TP, 49 TN, 14 FP and 4 FN. Of the TP and TN, 20 were randomly
sampled from each without replacement. All FP and FN were included. The clinician
labelled this subset as good, bad or unclear. The third unclear label was included here
to get insight into the borderline cases. Table 4 shows the clinician’s ground truth labels
against the True and False prediction cases based on the data engineer’s ground truth
labels. For the TP and FN case, the clinician was in agreement with all cases. For the
FP case, the clinician agreed nine times with the data engineer’s label that the prediction
should have been bad. Only in one case did the clinician disagree. The remaining four
cases were unclear. For the TN case, the clinician agreed seven times that the segment was
bad and disagreed two times. The remaining 11 times were unclear. These results show
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that the clinician was in agreement with the model for the majority of predictions, which
underlines the clinical applicability of the model. Furthermore, it shows that the model
tends to classify the unclear cases as being of bad quality. When the goal is to reliably
produce clinically useful recordings, it is preferable to reject the borderline case and redo
the recording, rather than accept it only to find out later that the recording is useless.

Table 4. Number of ground truth labels given by the clinician compared to the evaluation based on
the labels given by the study’s data engineer. Evaluation was done on the worst-performing fold of
the nested 10-fold CV procedure.

Good
(Positive)

Bad
(Negative)

Unclear

TP 20 0 0
FP 1 9 4
TN 2 7 11
FN 4 0 0

The proposed method can be used to improve the quality of NI-FECG recordings in
the hospital. Adult ECG recording sessions have a low turnaround time in the hospital
in part due to the use of SQIs in the recording machine. The machine will alert the
technician if something is wrong with the recording or if the quality is insufficient, and the
technician only needs to perform a minimal visual inspection of the waveform to ensure
its quality. For NI-FECG, on the other hand, the technician needs to perform a more
time-consuming visual inspection and manually highlight the foetal R peaks to get the
heart rate. Because the NI-FECG quality is dependent on foetal and electrode positioning,
the technician should monitor the waveform at the start and during the recording to ensure
that the foetal ECG is present. Due to manpower and high occupancy rates (in the case of
the hospital where our data were recorded) this inspection is not always performed. This
often results in waveforms where the foetal ECG is not visible. The proposed method can
give an automated warning to the technician if the signal quality is insufficient, so that
changes can be made to the electrode configuration or the recording can be stopped to
not waste time and manpower. The method also has an application potential in NI-FECG
home-monitoring devices, where the device has to work autonomously for longer periods
of time. An SQI can tell the user if the device is worn correctly or if adjustments have to
be made.

5. Conclusions

In this work, a deep learning approach for NI-FECG signal quality prediction was
presented. The model was evaluated on a private dataset collected in the hospital and
benchmarked to traditional machine learning methods. The proposed model outperformed
the benchmark and results indicate that the model is in agreement with clinician-assigned
ground truth labels. In future work, the model can be further improved by an improved
labelling procedure with finer-grained labels and more clinician input, as well as expanding
the dataset.
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Appendix A

Table A1. Grid search parameters for the SVM with linear kernel.

Parameter

C 0.1 1 10 100 1000

Table A2. Grid search parameters for the SVM with Gaussian (rbf) kernel.

Parameter

C 0.1 1 10 100 1000
γ 1 0.1 0.01 0.001 0.0001 auto scale

Table A3. Grid search parameters for the RF.

Parameter

max_depth 10 20 30 40 50 60 70 80 90 10 None
max_features auto sqrt
min_samples_leaf 1 2 4
min_samples_split 2 5 10
n_estimators 50 100 200 400 600 800 1000 1200 1400 1600 1800 2000

113,881good

good

7319

bad

7325bad 117,775

Tr
ue

Predicted

Figure A1. Confusion matrix of the CNN-FSQI cross-validation results. It shows the total number of
predictions summed over all repetitions of the outer 10-fold CV.
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foetal R peak.



Sensors 2022, 22, 3303 15 of 17

?×40×126 ?×40×126 ?×40×126 ?×40×126

Reshape

target_shape = 40, 126, 1

Reshape

target_shape = 40, 126, 1

Reshape

target_shape = 40, 126, 1

Reshape

target_shape = 40, 126, 1

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

Conv2D

activation = relu

filters = 6

kernel_size = 12, 12

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Add Add Add Add

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Conv2D

activation = relu

filters = 12

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 12

kernel_size = 7, 7

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Add Add Add Add

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Conv2D

activation = relu

filters = 24

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 1, 1

padding = same

Conv2D

activation = relu

filters = 24

kernel_size = 4, 4

padding = same

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

BatchNormalization

axis = 3

Add Add Add Add

Dense

units = 24

Dense

units = 24

Dense

units = 24

Dense

units = 24

Flatten Flatten Flatten Flatten

Concatenate

axis = -1

Dense

activation = sigmoid

units = 1

mecg fecg1 fecg2 fecg3

class_out

Figure A3. The full neural network architecture.
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