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Non-contact physiological monitoring of preterm infants in the
Neonatal Intensive Care Unit
Mauricio Villarroel1*, Sitthichok Chaichulee 1, João Jorge 1, Sara Davis2, Gabrielle Green2, Carlos Arteta3, Andrew Zisserman 3,
Kenny McCormick2, Peter Watkinson4 and Lionel Tarassenko1

The implementation of video-based non-contact technologies to monitor the vital signs of preterm infants in the hospital presents
several challenges, such as the detection of the presence or the absence of a patient in the video frame, robustness to changes in
lighting conditions, automated identification of suitable time periods and regions of interest from which vital signs can be
estimated. We carried out a clinical study to evaluate the accuracy and the proportion of time that heart rate and respiratory rate
can be estimated from preterm infants using only a video camera in a clinical environment, without interfering with regular patient
care. A total of 426.6 h of video and reference vital signs were recorded for 90 sessions from 30 preterm infants in the Neonatal
Intensive Care Unit (NICU) of the John Radcliffe Hospital in Oxford. Each preterm infant was recorded under regular ambient light
during daytime for up to four consecutive days. We developed multi-task deep learning algorithms to automatically segment skin
areas and to estimate vital signs only when the infant was present in the field of view of the video camera and no clinical
interventions were undertaken. We propose signal quality assessment algorithms for both heart rate and respiratory rate to
discriminate between clinically acceptable and noisy signals. The mean absolute error between the reference and camera-derived
heart rates was 2.3 beats/min for over 76% of the time for which the reference and camera data were valid. The mean absolute
error between the reference and camera-derived respiratory rate was 3.5 breaths/min for over 82% of the time. Accurate estimates
of heart rate and respiratory rate could be derived for at least 90% of the time, if gaps of up to 30 seconds with no estimates were
allowed.
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INTRODUCTION
The World Health Organization defines term pregnancy as a
delivery between 37 and 42 weeks of gestation.1 Gestational age
is often computed as the number of completed weeks of
pregnancy measured from the first day of the mother’s last
menstrual period.2,3 Preterm birth, the primary focus of this paper,
is defined as any birth prior to 37 weeks of gestation. Because the
physiology and outcomes of preterm infants vary broadly, preterm
birth is often subdivided as: late preterm, infants born between 34
and 37 weeks of gestation; moderate preterm, between 32 and
34 weeks; very preterm, between 28 and 32 weeks; and extremely
preterm, infants born less than 28 weeks of gestation.4

Preterm birth is a major global health problem. It is estimated
that more than one in ten of the world’s infants are born
prematurely.5 It is the second leading cause of death in children
under five years old6 and is the single most important cause of
death in the first month of life.4 Preterm infants, especially those
who are born very early, are often associated with motor and
learning disabilities or visual and hearing impairment, accounting
for approximately half of the disabilities in children and young
adults.4 Preterm infants are often admitted into the Neonatal
Intensive Care Unit (NICU) immediately after birth since they are
not fully developed and tend to have medical conditions that
require specialist care.7 Approximately one in seven babies born in
England, Scotland and Wales in 2017 required specialist neonatal
care.8 During the past decade, the number of admissions has
continued to rise by approximately 13% each year.8 Constant

nursing and medical supervision are provided to the infants until
they are strong enough and ready to be discharged from the
hospital. According to the last Neonatal Data Analysis Unit Report
in the United Kingdom,9 the median hospital length of stay for
extremely preterm infants is 93 days, 44 days for very preterm
infants and 13 days for moderate and late preterm infants.
Patients in the NICU are unstable and have fluctuating vital

signs. To monitor their physiological status, specialised medical
equipment is used depending on their unique needs.10 The
standard vital signs monitored usually include heart rate (HR),
respiratory rate (RR), blood pressure, temperature and peripheral
oxygen saturation (SpO2). A very low or high heart rate can
indicate an underlying condition such as infection, pain or illness.
Abnormal respiratory rate values are often associated with
hypoxaemia (low level of oxygen in the blood), hypercapnia (high
level of carbon dioxide in the blood) or acidosis (high level of
acidity in the blood).11

Continuous estimates of vital signs are typically provided by
standard monitoring equipment (see Fig. 1b). Heart rate is usually
computed from the Electrocardiogram (ECG). A pulse oximeter is
often attached to the patient’s ear, finger or toe (see Fig. 1c) from
which a Photoplethysmogram (PPG) signal is recorded and
estimates of heart rate and SpO2 are computed. Respiratory rate
is often computed from the Impedance Pneumography (IP)
waveform, obtained by measuring changes in the electrical
impedance of the patient’s thorax using the ECG electrodes.
Clinical staff also make manual measurements every 4 h or up to
every hour depending of the severity of the patient’s condition.
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Conventional vital-sign monitoring technologies require the
attachment of adhesive electrodes or transducers to the skin
surface. The skin of preterm infants is fragile and very sensitive,
especially for those born before 29 weeks of gestation when the
bond between the attached sensor and dermis could be stronger
than that between the dermis and epidermis.12 The attachment of
sensors may damage the skin and increase the risk of developing
an infection.13 Several technologies have been proposed for the
non-contact monitoring of vital signs from the neonatal popula-
tion, including methods based on capacitive-coupled electrodes,
radar, laser, thermography and the use of off-the-shelf video
cameras; a detailed summary can be found at.14–16

ECG monitoring using capacitive-coupled electrodes, first
introduced in the 1960s17 and 1970s,18 does not require direct
contact with the body and can enable the long-term monitoring
of cardiac activity. Although attempts to increase the distance
from the ECG electrodes to the subject being monitored have
been proposed, most of the research in non-contact ECG for the
neonatal population places the electrodes a few millimetres from
the infants. The electrodes are usually embedded into the
neonatal cot mattress,19 fabricated as a conductive fabric placed
on top of the mattress,20 threaded into clothing or into the fabric
covering the infant.21 Capacitive sensing is highly susceptible to
body motion as poor sensor coupling can greatly change the
capacitance and therefore negatively affect the recording of the
ECG and the estimation of heart rate.15,21

Two main types of radar systems have been proposed for the
recording of vital signs in the neonatal population: constant-
frequency continuous-wave (CW) and ultra-wideband (UWB). In a
typical CW radar system, a signal of known constant frequency is
continuously transmitted in the direction of the infant’s chest. The
transmitter is usually placed in front of the individual. As the chest
moves away or towards the transmitter during inspiration and
expiration, respectively, the reflected radar signal changes
frequency as a result of the Doppler effect. The resulting signal
modulated by the chest’s periodic motion can be used to estimate
respiratory rate. Heart rate can also be estimated by analysing
smaller chest wall movements due to the changes in position and
volume of the heart during a cardiac cycle. UWB pulsed radar
systems operate by generating a sequence of short pulses of finite
duration, typically a few nanoseconds. Radar technology has
several advantages, including the ability to penetrate through
different materials such as clothing or through obstacles such as
walls and mattresses, and it is not affected by ambient light
levels.22

Radar systems can be located typically within metres of the
subject.23 However, in a hospital environment, most of the
reported research places the radar devices only a few centimetres
away from the infant’s chest, typically attached to a tripod by the
bedside24 or on top of the bed.25,26 Since radar systems estimate
motion, it can be more difficult to measure the vital signs
accurately in the neonatal population than in adults,27 as infants
typically present more episodes of rapid movement. In practice,
motion artefacts from the physical movement of the subject can
result in interference in the radar’s output signal and may even be
at the same frequency as the heart rate or respiratory rate.28,29

Chest wall movements induced by the pumping action of the
heart, or by lung inflation when breathing, can also be measured
with a Laser Doppler Vibrometer (LDV). By directing a laser beam
onto a surface of interest, an LDV system can measure the
vibration amplitude and frequency due to the motion of the
surface.30 LDV prototypes have been used for the estimation of
respiratory rate and heart rate in newborn infants.31,32 Recent
developments can enable LDV systems to estimate heart rate,
respiratory motion and gross physical activity, even in the
presence of clothing.33 However, further research is needed to
improve the accuracy, reduce the complexity, size and cost of LDV
systems so that they can be implemented in a clinical
environment.15

A thermal imaging camera measures the radiation emitted by
objects in the long-infrared range of the electromagnetic
spectrum (8� 14 μm). Since the amount of radiation emitted by
an object increases with temperature, thermography can estimate
the distribution and changes in temperature across the whole
body.34 In the NICU, the estimation of respiratory rate is typically
based on the analysis of the small temperature variations around
the nose associated with the inspiration and expiration
phases.35,36 Thermography has also been used to monitor the
surface temperature of neonates37 and to study the evolution of
necrotising enterocolitis (a condition in which tissues in the
intestine become inflamed and start to die) and core temperature
in premature infants.38 To ensure measurement accuracy and to
reduce sensor-to-sensor variation, thermal imaging devices
require calibration against temperature-controlled reference
sources or industrial black body systems.39,40

With the cost of off-the-shelf digital video cameras continuing
to decrease as the technology becomes more ubiquitous, research
in non-contact vital-sign monitoring using digital camera sensors
in the visible and near-infrared spectrum (400 � 1000 nm) has
greatly expanded in recent years. It has been shown in the adult
population that heart rate can be measured by the analysis of

Fig. 1 Data acquisition setup for a typical recording session in our clinical study. a A video camera was positioned over a specifically-drilled
hole in the top surface of the study incubator. b Representative monitor used as a reference device to validate estimates computed from the
camera data. c Sample image recorded from the video camera showing the ECG electrodes attached to the chest and a pulse oximeter
attached to the patient’s left foot. Consent was obtained from the parents to use these images.
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subtle colour and volume changes on the skin surface recorded by
a video camera.41–43 Respiratory rate can be measured by the
analysis of the movement of the torso.43–45 Peripheral arterial
oxygen saturation has also been reported to be derived from
signals obtained from a video camera at different
wavelengths.46,47

Several studies have investigated the monitoring of vital signs
of infants in a clinical environment. Heart rate was computed from
7 preterm infants for 30 seconds using a webcam and ambient
light.48 A pilot study was carried out to investigate the estimation
of heart rate from 19 preterm infants during short and stable
periods between 1 and 5min.49 Heart rate and respiratory rate
estimation was previously reported for nearly 40 h of video
recorded from two preterm infants during daytime under ambient
light in the NICU.50 Other short studies have also been reported in
the literature.35,51–55

The use of non-contact monitoring technologies for monitoring
preterm infants can provide advantages over conventional vital-
sign monitoring techniques. They can be integrated into a patient
ward or a telemedicine system. In addition, they could be
expanded to provide other bedside assessments such the infant’s
physical activity, distress or pain. However, most of the research in
video-based non-contact vital-sign monitoring has so far been
performed over short-time periods (typically up to 5min per
recording) and under tightly controlled conditions with relatively
still and healthy subjects. There are many challenges that remain
before the technology can be deployed into clinical practice.29 A
summary of video-based non-contact vital-sign monitoring
methods can be found in refs. 14,56,57

We carried out a clinical study to evaluate the accuracy and the
proportion of time that heart rate and respiratory rate can be
estimated from preterm infants using only a video camera in a
clinical environment, without interfering with regular patient care.
The study consisted of the recording of 90 video sessions from 30
preterm infants, comprising a total recording time of approxi-
mately 426.6 h. It was carried out in the high-dependency area of
the NICU at the John Radcliffe Hospital in Oxford (see Fig. 1). Each
preterm infant was recorded under regular ambient light during
daytime for up to four consecutive days. Since preterm infants are
physiologically unstable, their vital-sign values can vary substan-
tially in a short time period.

RESULTS
The clinical study ran for 15 months from February 2014 to May
2015. Table 1 provides a summary of the demographics of the
patient population. A total of 90 sessions were recorded from 30
preterm infants. 18 out of 30 participants were male (60%). 18 out
of 30 infants were White British (60%). Fig. 2e, f show the
distribution of the corrected gestational age and of the weight of
the participants, collected during the first day of recording. The
corrected gestational age was computed by adding the number of
weeks since birth on the first day of video recording to the
gestational age at delivery. The range of corrected gestational age
was 27.6–36.4 weeks, with a mean of 30.7 weeks. The weight of
the infants varied between 830 and 1746 grams, with a mean of
1240 grams. Figure 2a–d show the distributions of vital-sign values
(heart rate, respiratory rate and SpO2) recorded from the Philips
patient monitor at 1 Hz over the entire clinical study.
The algorithms were developed and validated on half the study

participants (the training set) and then tested on the other half
(the test set). Table 2 gives a summary of the participant
demographics for the training and test sets. The video recording
information (date, time and duration) and patient demographics
(ethnicity, corrected gestational age and weight) were chosen to
be as balanced as possible between the two datasets. The training
set was used to develop algorithms for pre-processing the video

data and to optimise the global parameters of the vital-sign
estimation algorithms.
Using our proposed multi-task Convolutional Neural Network

(CNN), time periods during which the infant was present or absent
from the incubator were automatically detected from the video
recordings. Regions of interest (ROI) corresponding to skin were
segmented from each video frame. These ROIs were used to
extract cardiac-synchronous Photoplethysmographic Imaging
(PPGi) and respiratory signals, from which heart rate and
respiratory rate were estimated. Sample results for images
recorded under varying lighting conditions are shown in Fig. 3.
The results are shown together with the outputs from other
commonly-used colour-based skin filters.58,59 Three classifiers
were compared: Naive Bayes,60 Random Forests61 and Gaussian
Mixture Models (GMMs).62

The three baseline skin filters classify each pixel as a skin pixel
based solely on skin colours and provide a skin probability map,
which can be thresholded to a binary label. Using two-fold cross
validation on the data from 15 preterm infants included in the
training set (see Table 2), our proposed multi-task CNN model
achieved an accuracy of 98.8% for patient detection with an area
under the receiving operating curve (AUC) score of 98.2%. For skin
segmentation, the network yielded an average intersection-over-
union (IOU) score of 88.6% and a pixel accuracy of 98.1%.
Compared to the baseline colour-based skin filters, the proposed
multi-task CNN model achieved a 3.1% higher pixel accuracy and a
12.7% higher IOU score. The performance of the different
methods for patient detection and skin segmentation can be
found in the supplementary information 1 provided for this paper.
Our CNN network was extended to detect time periods of

clinical interventions and exclude them from the estimation
process. Action recognition in video has been widely studied in
the literature. A baseline method was developed based on the
two-stream convolutional architecture for action recognition
proposed by Simonyan and Zisserman63 and implemented using
the VGG-M-2048 model.64 This method yielded an accuracy of

Table 1. Summary of the population in the clinical study.

Description Value

Total number of patients 30

Total recording sessions 90

Total video length (hours) 426.6

Average recording time per session (hours)b 4.9 (±1:6)

Average recording time per patient (hours)b 14.9 (±5:7)

Corrected gestational age (weeks)b,c 30.7 (±2:0)

Gendera

Males 18 (60.0%)

Females 12 (40.0%)

Weight (grams)c 1240 (± 252)

Ethnicitya

White British 18 (60.0%)

White—any other background 2 (6.7%)

Asian or Asian British 2 (6.7%)

Black British or Black African 1 (3.3%)

Mixed—White and Asian 2 (6.7%)

Mixed—White and Black Caribbean 2 (6.7%)

Mixed—White British and Japanese 1 (3.3%)

Any other mixed background 2 (6.7%)

aN (percentage from total number of patients)
bmean (± std)
cOn the first day of recording
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92.4% on our clinical study data. To identify the occurrence of
clinical interventions, our proposed model fused information
processed by the patient detection and skin segmentation
network together with temporal information extracted from
multiple-frame optical flow. Different sliding-window configura-
tions and fusion strategies for the optical flow network were
investigated. The configuration of a 5-second sliding window with
1-second step size and a temporal context fusion method yielded
the highest performance with an accuracy of 94.5%. Detailed
analysis of the performance of the different methods can be found
in the supplementary information 2 provided for this paper.
The signal process algorithms to estimate heart rate and

respiratory rate proposed in this paper, were developed on the
data from half the participants (the training set) and evaluated on
the remaining half (the test set), see Table 2. The protocol also
required that video recording should not affect regular patient
care, with priority given to the work of the clinical staff.
Furthermore, the vital signs computed from the camera data
could only be compared if the heart rate and respiratory rate
values recorded by the reference monitoring equipment were
consistent with each other. For example, differences between the
heart rate computed from ECG and PPG can make the comparison
with the camera estimates invalid. Therefore, “valid camera data”
was defined as time periods for which the baby was present in the

incubator, no clinical interventions were being carried out and the
reference values for heart rate and respiratory rate derived from
different monitoring equipment were in close agreement with
each other (as described in refs. 65,66).
The original data consisted of 426.6 h of video recorded from

90 sessions. Ten recordings were discarded from the estimation
process due to: reference data not recorded because of
equipment malfunction (one session), patients undergoing blue-
light phototherapy treatment (five sessions), and video out of
focus due to video camera not properly calibrated at the start of
recording (four sessions). Therefore, the resulting analysis was
performed on only 80 sessions, corresponding to a total recording
time of 384.3 h. The data were split into 192 h for the training set
and 192.3 h for the test set.
Figure 4 shows the camera-derived heart rate and respiratory

rate estimates compared with their corresponding ground-truth
values for a 1-h sample period. The vital-sign estimates were
computed from a video recorded from a female preterm infant of
29-week gestation and 1024 g weight on the first day of recording.
For most of the segment, a good agreement is found between the
reference signals and the camera-derived estimates. Episodes of
short-term fluctuations are often associated with rapid infant
movement, spontaneous movement patterns such as body
stretching or other motion-related artefacts.67,68 The respiratory

Table 2. Summary of population demographics in the training and test sets.

Set Number of subjects Number of sessions Total time (hours)a Gender Ethnicityb

Male Female W B A WB WA O

Training 15 43 216.6 8 7 10 1 1 1 1 1

Test 15 47 210.0 10 5 10 � 1 1 2 1

Total 30 90 426.6 18 12 20 1 2 2 3 2

aPeriod during which both reference data and camera data were recorded simultaneously
bW White, B Black, A Asian, WB Mixed White & Black, WA Mixed White & Asian and O Other

Fig. 2 Distributions of vital signs for our clinical study. Above the histograms, a box plot bounds the 25% and 75% quartiles with whiskers
marking 9% and 91% quantiles. The middle lines indicate the median whereas a plus mark indicates the mean. a Heart rate from ECG, b heart
rate from PPG, c respiratory rate from IP and d oxygen saturation from the pulse oximeter. Distribution of e corrected gestational age and f
infant weight collected on the first day of recording.
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rate estimates varied between 20 and 100 breaths/min and
generally agree with the reference respiratory rate.
Figure 5 shows the process of computing heart rate using the

Autoregressive (AR) best model for a 60-min video recorded from
a male preterm infant of 28-week gestation and 1220g weight.
Manual minute-by-minute annotation of the typical patient and
clinical staff activity are presented, including periods of infant
motion, clinical interventions and changes in the ambient light.
The figure also shows the detail of the quality assessment for two
30-second PPGi windows, taken from periods during which the
infant was active (Fig. 5e) and was quietly sleeping (Fig. 5f). During
periods of patient movement, the quality of the PPGi signal was
automatically identified as poor and, therefore, a reliable heart
rate estimate could not be computed. In contrast, during period
for which the infant was less active, reliable heart rate estimates
with high accuracy could be computed.

Figure 6 compares the reference and camera-derived heart rate
using an algorithm based on AR best model. The mean difference
between the two measurements was 0.2 and 0.3 beats/min for the
training and test sets, respectively. A positive correlation was
found with a correlation coefficient of 0.86 for the training set and
0.93 for the test set. Similarly, Fig. 7 shows the respiratory rate
estimation comparison. The estimated values were distributed
across the expected physiological range for the neonatal
population, taken to be from 18 to 120 breaths/min. A positive
correlation was also found with a correlation coefficient of 0.85
and 0.89 for the training and test sets, respectively.
Table 3 summarises the results for all the vital-sign estimation

algorithms. For the process of heart rate estimation, 72.9% (139.9
h) of the total recording time (192.0 h) was considered valid for
the training set. For the test set, 63.6% (122.3 h) of the total
recording time (192.3 h) was considered valid. The AR best model
method slightly outperformed all the other methods, with a mean

Fig. 4 Vital-sign estimation for a sample 1-h recording from a 29-week female preterm infant with a weight of 1024 g on the first day of
recording. For most of the time, good agreement is found between the reference signal and the camera-derived estimates. Episodes of short-
term fluctuations are often associated with rapid infant movement.

Fig. 3 Comparison of skin segmentation algorithms under different lighting conditions. From top to bottom: a bright summer morning, an
afternoon during autumn, a winter morning, and a dark winter afternoon. a Original images, b images with brightness increased manually so
they can be displayed in this publication, c ground-truth segmentation. Results for the skin classifiers: d Naive Bayes, e Random Forests,
f Gaussian Mixture Models, and g the proposed multi-task CNN. The baseline skin classifiers did not perform well in low-light scenarios, over-
segmented the skin and generated false positives whose colours were similar to skin. The proposed multi-task CNN model produced more
accurate skin labels. Consent was obtained from the parents to use these images.
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absolute error (MAE) of 2.9 beats/min and 2.3 beats/min for the
training and test sets respectively and mean absolute deviation
(MAD) of 2.9 beats/min and 2.3 beats/min for the same datasets.
The AR best model method has a strict set of rules that discard
noisy time periods, hence its high accuracy comes at a cost of a
lower proportion of estimated time. For the rest of the methods,
MAE varied between 2.6 beats/min and 4.7 beats/min. Heart rate
was estimated for up to 69.1% and 79.4% of the total time the
video data were judged as valid in the training and test set,
respectively. In contrast, the poor quality of the reference
respiratory rate, as computed by the monitoring equipment,
severely restricted the time during which the process of
estimating respiratory rate from the video camera could be
evaluated. Only 37.1% (71.2 h) of the total recording time (192.0 h)
was considered valid for the training set. Similarly, 34.6% (66.4 h)
of the total recording time (192.3 h) was considered valid for the

test set. The MAE ranged from 4.5 breaths/min to 3.5 breaths/min
for the training and test sets, respectively.
Table 4 presents the vital-sign estimation results according to

the ethnicity of the patients recruited to the study. Compared with
the test set, the training set had a slightly wider range of ethnic
groups. Subjects in the non-White groups in the test set had
lighter skin tone than those in the training set. Generally, the
errors in heart rate estimation for patients with lighter skin tone
were lower than for the other ethnic groups.
Figure 8 shows the histogram of the periods for which heart

rate and respiratory rate could not be estimated. Most of the gaps
were less than 30 seconds. If gaps of up to 30 seconds were
allowed, the percentage of the estimated time with respect to the
valid time increased from 62.8% to 90.0% for the training set and
from 75.4% to 96.9% for the test set for heart rate. For respiratory

Fig. 5 Heart rate estimation for a sample 60-min period from a male preterm infant with a gestational age of 28 weeks and weight of
1220 g. a Video frames corresponding to the time in the plot below. b Timeline of typical patient and clinical staff activity, manually annotated
minute-by-minute by the authors. c Comparison of the reference heart rate and the camera-derived heart rate estimates computed using the
AR best model. d Signal quality assessment for the heart rate estimates for the entire period of 60 min. Detail of the signal quality assessment
for two 30-second PPGi windows taken from e a period during which the infant was active, and f a quiet period during sleep. Consent was
obtained from the parents to use these images.
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rate, it increased from 72.2% to 94.5% for the training set and from
82.5% to 96.5% for the test set.

DISCUSSION
This paper proposes non-contact algorithms for estimating heart
rate and respiratory rate from preterm infants in an unconstrained
and challenging hospital environment. The process involved the
extraction of cardiac and respiratory signals from the video
camera data via deep learning algorithms and the development of
robust techniques for the estimation of the vital signs. The
proposed multi-task deep learning algorithms performed three
tasks that provided essential information for the automatic
extraction of vital signs from a video camera in a hospital
environment: the detection of the patient in the video frame, the

automated segmentation of skin areas and the detection of time
periods during which clinical interventions were performed by the
attending hospital staff. Two open-source custom software
packages were developed:69 the first is a custom-built semi-
automatic code for labelling the skin regions of people in images;
and the second software code is for annotating the time periods
during which clinical interventions were present in videos.
The automatic detection of a patient in the video frame and the

accurate segmentation of skin regions are essential requirements
for the successful estimation of vital signs in a hospital
environment. The proposed multi-task CNN was able to locate
the infant and identify suitable time periods of vital-sign
estimation. It demonstrated robustness in tracking pose variations
and discarding areas in the image frame that corresponded to
other individuals such as parents or clinical staff. One potential

Fig. 6 Comparison between the reference and camera-derived heart rate estimates using the AR best model method for the training set
(top row) and test set (bottom row). The a Bland-Altman plot, b Histogram of the differences between the two heart rate estimates and
c Correlation plot show minimal bias and a positive correlation between the two measurements.

Fig. 7 Comparison between the reference and camera-derived respiratory rate for the training set (top row) and test set (bottom row).
The a Bland-Altman plot, b Histogram of the differences between the two respiratory rate estimates and c Correlation plot show minimal bias
and a positive correlation between the two measurements.
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disadvantage of our model is the difficulty of segmenting small
skin regions as the CNN architecture successively down-samples
feature maps in the network. By learning individual visual cues,
the proposed CNN can be expanded to recognise each individual
preterm infant and support the simultaneous estimation of vital
signs from multiple patients. This can be integrated into the
hospital information system or a telemedicine infrastructure,
lowering further the costs of implementation in a clinical
environment. Automatic patient recognition can be more
challenging to implement in other non-contact monitoring
technologies based on laser or radar where the location of the
target to monitor can be an issue.27

The proposed system was robust to the typical daytime
changes in lighting conditions of the hospital ward. Figure 3a
shows some examples of the original recorded images under
different levels of illumination, from a bright summer morning to a
dark winter late afternoon. Even under low-light conditions, the
proposed CNN was able to detect the patient, segment the skin
areas and compute the vital-sign estimates. In comparison, the
reference baseline algorithms performed poorly in low-light
conditions as colours were distorted and the difference between

skin and non-skin pixels became less distinguishable. The
proposed CNN network did not produce noisy or grainy skin
labels as it processed the whole image at once. Although the
proposed system was robust under low-light ambient conditions,
further research is needed to validate its accuracy under
completely dark ambient conditions such as during the night.
The system can use a video camera with an imaging sensor
sensitive to the near-infrared spectrum and a matching infrared
external illumination source that is not visible to the human eye
(above 800 nm). Indeed this is the approach used in the
commercial version of our system.70

Due to high melanin concentration, dark-colour skin absorbs
more energy, therefore less energy is reflected back from the skin
surface. This leads to a low signal-to-noise ratio for the signals
recorded from an individual with dark skin colour using optical-
based technologies such as video cameras. Although our
proposed system was robust to the different ethnicities of the
patients in our study, the population was comprised mostly of
light-skin preterm infants. Further research is needed to validate
the algorithms on dark-skin subjects. One advantage of radar-

Table 3. Summary of the vital-sign estimation results for all recording sessions.

Vital sign Dataset or algorithm Total recording
time (h)

Image and signal pre-processing (h, %)a Vital-sign estimation (h, %) Errorc

Poor reference Subject
absence

Clinical
intervention

Valid camera
dataa

Estimated timeb MAE MAD

Heart rate Training set 192.0 h 14.3 h, 7.4% 16.3 h, 8.5% 21.5 h, 11.2% 139.9 h, 72.9%

Beat counting " " " " " 96.7 h, 69.1% 4.1 4.5

FFT " " " " " 96.7 h, 69.1% 3.4 3.8

AR dominant pole " " " " " 96.7 h, 69.1% 4.7 4.8

AR best model " " " " " 87.8 h, 62.8% 2.9 2.9

Test set 192.3 h 20.1 h, 10.4% 27.9 h, 14.5% 22.0 h, 11.5% 122.3 h, 63.6%

Beat counting " " " " " 97.1 h, 79.4% 3.3 3.8

FFT " " " " " 97.1 h, 79.4% 2.6 2.8

AR dominant pole " " " " " 97.1 h, 79.4% 4.0 4.2

AR best model " " " " " 92.2 h, 75.4% 2.3 2.3

Respiratory rate Training set 192.0 h 106.6 h, 55.6% 16.3 h, 8.5% 21.5 h, 11.2% 71.2 h, 37.1% 51.4 h, 72.2% 4.5 3.8

Test set 192.3 h 104.3 h, 54.3% 27.9 h, 14.5% 22.0 h, 11.5% 66.4 h, 34.6% 54.8 h, 82.5% 3.5 3.0

aPercentage with respect to the total recording time
bPercentage with respect to the valid camera data
cbeats/min for HR and breaths/min for RR

Table 4. Vital-sign estimation results for all the recording sessions according to ethnicity.

Ethnicity Number of subjects Number of sessions Heart rate Respiratory rate

Error (beats/min) Estimated time (%) Error (breaths/min) Estimated time (%)

MAE MAD MAE MAD

Training set

White 9 25 2.5 1.9 65.3% 4.7 3.8 75.1%

Asian 1 1 3.3 1.8 73.4% 5.7 5.5 71.2%

Black 1 3 3.8 2.8 56.4% 4.1 3.5 59.6%

Mixed White & Asian 1 4 3.7 3.0 63.9% 4.2 3.8 67.3%

Mixed White & Black 1 2 5.6 5.2 48.6% 4.9 4.0 47.4%

Mixed Others 1 3 3.2 2.7 55.3% 3.8 3.2 61.7%

Test set

White 10 30 2.3 1.8 74.6% 3.5 3.0 85.2%

Mixed White & Asian 2 3 2.2 1.8 79.1% 3.9 3.6 80.3%

Mixed White & Black 1 5 3.3 2.4 60.8% 3.2 2.5 78.1%

Mixed Others 1 4 1.7 1.3 87.7% 3.3 2.9 81.3%
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based systems is that they are not affected by the colour of the
subject’s skin.
The multi-task CNN model exhibited similar performance to the

CNN models trained individually for a single task. The joint
network achieved an improvement of 1.7% in accuracy and 0.3%
in AUC score for patient detection and an improvement of 0.9% in
IOU score for skin segmentation compared to that of the single-
task networks. Similar results were observed in the multi-task
network of Gkioxari et al.71 As expected, the joint network did not
show a bias towards one individual task. The multi-task network
performed both tasks twice as fast as a cascade of two single-task
networks. Data augmentation was found to substantially improve
the performance of the network as well as the quality of
segmentation results. With data augmentation applied, 30.5%
and 11.4% improvements in IOU were observed for the single-task
model and the multi-task model, respectively. Without data
augmentation, the CNN produced coarser segmentation results.
This might be due to the small number of patients in our dataset,
making it difficult for the network to learn the generic structure of
the infants in the incubator.
By applying spatio-temporal fusion to the process of detecting

clinical interventions, we expected the convolution layers of the
patient detection and skin segmentation network to work as a
generic feature extractor. Surprisingly, the performance of the
spatio-temporal network was found to be lower than that of the
optical flow network before fusion. In addition, fusing information
from multiple frames performed worse than using just a single
frame. It is possible that the high-level convolutional features were
too specific to the original patient detection and skin segmenta-
tion tasks. They may not carry meaningful information for the
detection of intervention periods. By stacking the feature maps of
multiple video frames together, the network found it difficult to
learn, possibly because of the large numbers of free parameters.
Most false positives in the detection of clinical interventions
(incorrectly-identified clinical interventions) were found among
the following scenarios: infant very active or crying; position of the
camera adjusted by clinical staff; abrupt change in lighting
conditions when fluorescent lights were switched on or off, or
window blinds were opened or closed. Daylight illumination could
also change quickly when the sky went from clear to cloudy, and
vice versa. Other sources of error occurred when clinical staff near
the incubator cast shadows on the infant, or the incubator was
disturbed when clinical staff came to check equipment or to
manually record vital-sign values.
The changes in lighting conditions and the movement of the

camera or incubator caused abrupt changes in optical flow. False
negatives (clinical interventions missed) occurred in the following
scenarios: parents holding the infant in their arms during their
visits; clinical staff providing stimulation by touching the infant
with their hands not moving inside the incubator for a short time;
clinical staff’s hands not touching the baby during the

intervention; nursing staff holding a timer during manual
respiratory counting. The errors were likely to have been caused
by small changes in optical flow during the above scenarios, such
that the network misclassified an intervention event as a non-
intervention. A summary of the typical daily nursing activities in
the NICU can be found in the supplementary information 3
provided for this paper.
The use of the entire skin area allowed the estimation of vital

signs in a challenging clinical environment such as the NICU. Heart
rate and respiratory rate could be estimated with high accuracy
during quiet and stable periods. As expected, the estimation of
vital signs using a video camera was affected by several factors
such as motion artefacts, ambient light changes, interventions by
the clinical staff and other external factors. Random body
movements or other motion artefacts not only affect most
conventional vital-sign measurement methods (for example
Impedance Pneumography and ECG),29 but also significantly
affect all the other non-contact monitoring technologies.14–16

Most of the gaps for which vital signs could not be estimated by
our proposed system were shorter than 30 seconds, as shown in
Fig. 8. Our system provides the clinical staff with high-quality
estimates with minimal interruption and trends of the patient’s
physiology can be constructed for long periods of time. Overall,
the errors presented in this paper are consistent with our previous
results in the NICU population50 and with adults in dialysis.43

The complete multi-task CNN proposed in this paper runs in
realtime at the same rate of 20 fps as the recording video camera
on an Nvidia Titan 6 GB and at 60 fps on a Nvidia 1080Ti. Faster
performance can be achieved if needed with dual GPUs or by
reducing the size of the images recorded. The signal processing
algorithms to estimate vital signals require an initial delay of 8 and
10 seconds for heart rate and respiratory rate, respectively.
Following the initial delay, the estimates are computed on a
second-by-second basis. The results presented in this paper were
computed retrospectively using software developed using Matlab.
However, a realtime implementation was developed in the C/C++
programming language to run the algorithms on desktop
computers and mobile devices.
Most of the current work in non-contact vital-sign monitoring

using video cameras has been performed over short-time periods
(typically between 1 and 5min per recording), under tightly
controlled conditions with relatively still and healthy subjects.
Most of the studies that analyse the neonatal population in a
clinical environment record short videos from a small number of
participants (typically under 10). We evaluated the accuracy and
the proportion of time that heart rate and respiratory rate can be
estimated from 30 preterm infants in the clinical environment of
the NICU, without interfering with regular patient care. We
recorded 90 videos sessions, comprising a total recording time
of approximately 426.6 h, the videos correspond to only 30
preterm infants. Before video-based vital-sign monitoring is

Fig. 8 Gaps in time for the estimation of vital signs. Gaps in the heart rate estimates for a the training set and b the test set during valid time
periods. Gaps in the respiratory rate for c the training set and d the test.
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accepted and deployed in the clinical environment, studies with
larger numbers of infants are needed, with a comprehensive
range of ethnicity, gestational age, gender, skin colour and
neonatal complications.
Camera-based technologies are ubiquitous, low-cost and

capable of high performance. Non-contact monitoring using
video cameras has the potential to be expanded to monitor an
infant’s physical activity, distress, pain and to detect other adverse
clinical events such as apnoea (pauses in breathing) or
bradycardia (low heart rate). Apart from the monitoring of vital
signs, a video camera could also be used to monitor an infant’s
physical activity, distress and pain. Current procedures for pain
assessment are based on the subjective observations of changes
in vital signs, behavioural indicators and the infant’s state of
arousal.72,73 To continuously monitor these and other medical
conditions for 24 h each day, there is a need for imaging sensors
(with external illumination). In addition to non-contact vital-sign
monitoring, video camera technology and algorithms could be
used to evaluate these parameters objectively.

METHODS
Clinical study
Our clinical study was part of a research programme in the Oxford
University Hospitals NHS (National Health Service) Foundation Trust and
the Oxford Biomedical Research Centre (BRC). The research was compliant
with the relevant government and regulations of the Oxford University
NHS Foundation Trust. The study was approved by the South Central
Oxford Research Ethics Committee under reference number 13/SC/0597.

Study design and protocol. The clinical study was designed to run without
affecting regular patient care. Preterm infants who participated in the
study were required to be nursed in a designated study incubator in the
high-dependency area of the NICU at the John Radcliffe Hospital in Oxford.
The aim of the study was to monitor 30 preterm infants for up to four
consecutive days. The study protocol allowed the algorithms to be
developed on half the participants (15 patients) and to be evaluated on the
remaining half. The clinical team recruited the infants based on the British
Association of Perinatal Medicine’s Categories of Care 2011.74 The
participants were double-monitored with a digital video camera and the
standard patient monitoring devices. The study was performed during
daytime under regular ambient light conditions.
Participants needed to satisfy all of the following criteria: born less than

37 weeks of gestation; requiring high-dependency care; requiring continuous
monitoring of heart rate, respiratory rate and oxygen saturation; requiring to
be nursed naked. The study excluded any infants who presented life-
threatening conditions that prevented the continuous monitoring in the
high-dependency area of the NICU. Consent was required to be given by the
babies’ parents prior to any recording. Parents whose infants fulfilled the
inclusion criteria were approached by the study personnel (NICU clinicians)
and given full verbal and written information about the study.
All the standard patient monitoring and care were continued through-

out the study session. The setup of all the research equipment (video
recording and data storage) was designed to minimise the inconvenience
to clinical staff during the study. No additional sensors were attached to
the infants. Access to the incubator was not in any way restricted by the
position and location of the video camera and the associated equipment.
Video recording could be temporarily paused, or the video camera could
be temporarily covered, at the discretion of clinical staff, during some
clinical procedures such as phototherapy (for treating jaundice—yellow
appearance of the skin), intravenous (IV) cannulation or when the infants
were taken out of the incubator for cuddling by their parents (kangaroo
care). If the infants were to be transferred to another unit, video recording
was terminated and data were recorded until that point.

Instrumentation. Preterm infants were cared for in a designated Giraffe
OmniBed Carestation incubator (General Electric, Connecticut, USA). A
modification was made to the incubator by drilling a small hole in the top
plastic panel of the incubator’s canopy. This allowed a video camera to be
positioned inside the incubator’s chamber in order to film the infants
without reflection and attenuation from the perspex layer (see Fig. 1). The
modification to the incubator was approved by the Medical Research

Ethics Committee (MREC). After the modification was carried out, a series
of humidity and temperature tests were performed over a period of
2 weeks to ensure that the incubator was safe for clinical use and had the
same level of environmental control within the chamber as a standard
unmodified incubator.
The data acquisition system (see Fig. 1) consisted of a trolley carrying the

video camera and two recording workstations. One workstation was used
to record video from the camera, and the other for recording reference
vital signs from the patient monitor. A medical-grade keyboard and mouse
(Accumed - Accuratus, UK) were used with both workstations. These
devices complied with the IP67 standard for dust and water protection and
the JIS Z 2801 test for antimicrobial activity of plastics.
Video recordings were acquired using a JAI 3-CCD AT-200CL digital

video camera (JAI A/S, Denmark). The camera employs three Sony
ICX274AL 31/1.8” image sensors (Sony, Japan) to measure the light
intensity of each colour channel (red, green and blue) separately. The video
camera was equipped with a VS Technology SV-0614H lens (VS
Technology, Japan) which allowed full control of focal length and aperture.
Before, and occasionally during video recording, the attending clinical staff
were required to adjust these parameters to ensure that the infant was in
focus and that the brightness level was adequate. The video camera
system acquired 24-bit lossless colour images (8-bit per colour) at a
resolution of 1620 ´ 1236 pixels and at a rate of 20 frames per second. The
video was recorded using a frame grabber board with a Field
Programmable Gate Array (FPGA) integrated circuit (Xilinx, California,
USA). The video recording software was designed and developed by the
authors to work with the continuous transmission of large data streams
without image corruption or data loss. A typical 1-h recording produced
approximately 408 GB of data.
Reference vital signs (heart rate, respiratory rate and oxygen saturation)

were recorded using a Philips IntelliVue MX800 patient monitor (Philips,
Netherlands). The patient monitor was installed with a Philips IntelliVue
Multi-Measurement Module to record ECG and IP signals, and a Masimo
SET SpO2 Vuelink IntelliVue measurement module (Masimo, California,
USA) to record PPG. The patient monitor was connected to a workstation
via a serial interface. The ixTrend software (Ixellence GmbH, Germany) was
used to record the data streams generated by the Philips patient monitor.
The following waveforms were recorded: 1-lead ECG signal (at 500 Hz), IP
signal (at 64 Hz) and the PPG signal (at 125 Hz). The following physiological
parameters were recorded at a rate of 1 Hz: heart rate from ECG, heart rate
from PPG, respiratory rate from IP and SpO2 from the pulse oximeter.

Overview of the proposed framework
The proposed framework consists of two CNN models followed by signal
processing methods to compute heart rate and respiratory rate estimates.
The first multi-task CNN model analysed the input video to identify suitable
time periods for which the location of the patient within the video frame
could be detected and tracked. Areas of the video frame that contained
skin were subsequently segmented for further analysis. The outputs of the
first network were combined with a second CNN model with optical flow
for identifying time periods during which clinical interventions occurred.
These periods were discarded from the estimation process. Once the
location of the patient was computed, and quiet periods in the video
recordings were identified, several cardiac and respiratory signals were
extracted from each video frame. Methods to assess the quality of cardiac
and respiratory pulses are proposed so that periods of high activity or
motion artefacts could be excluded from the vital-sign estimation process.
Finally, heart rate and respiratory rate were estimated using data fusion
algorithms by analysing several regions of interest (ROI) across the
patient’s skin areas and along the upper torso.
The clinical study protocol allowed the algorithms to be developed only

on half the participants. The proposed CNN networks for patient detection,
skin segmentation and clinical intervention detection described below,
were developed and evaluated with a two-fold cross-validation procedure
using only the 15 preterm infants dataset labelled as “training” in Table 2.
In contrast, the signal processing methods to estimate vital signs were
developed using the 15 preterm infant dataset labelled as “training” and
evaluated using the remaining 15 preterm infant dataset labelled as “test”
as described in Table 2.

Patient detection and skin segmentation
The first proposed CNN network performed the joint task of image
classification and segmentation. For each video frame, the network
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computed a decision on whether the infant was in the scene, together
with the segmented skin regions if the infant was found. Our multi-task
network has a shared core network, implemented using the VGG-16
architecture,75 with two output branches: the patient detection branch,
implemented using global average pooling; and the skin segmentation
branch, implemented using hierarchy upsampling of image features across
the shared core network (see Fig. 9). The VGG-16 network was originally
developed for image classification and was previously trained on 1.3
million images of the ImageNet dataset. It has been recognised as a
generic feature extractor and has demonstrated good generalisation in
transfer learning.75

Our extension to the VGG-16 network followed that of the fully
convolutional network.76 Several modifications were needed to enable the
skin segmentation branch to perform pixel-level segmentation on the
output of the shared core network. All fully-connected layers in the VGG-16
network were converted into convolution layers by having them perform
convolution operations on the input data. These layers then produced a
spatial output map with the spatial coordinates preserved (see Fig. 9). The
last convolution layer was modified to produce 2-class-scoring outputs for
the skin and non - skin classes. Although a sufficiently large input image is
typically required to achieve accurate segmentation results,76 the spatial
resolution used by our network was limited by the amount of memory and
computational power required during training. The input images were
resized from their original resolution of 1620 ´ 1236 to 512 ´ 512 pixels.
The original aspect ratio of the images was maintained by adding black
pixels at the top and bottom of the image. The pixel-level skin
segmentation output was resized back to the original image resolution,
so that the vital-sign estimation algorithms could work on the original
colour images.
The patient detection branch was implemented using global average

pooling for classification, similarly to refs. 77,78 In our implementation, a
1 ´ 1 convolution layer with two outputs was added on top of the pool5
layer (the layer before the original fully-connected layers in the shared core
network). The 1 ´ 1 convolution layer performed a linear combination
across feature maps in order to reduce the size of the feature dimension.
The 1 ´ 1 convolution layer was followed by a global average pooling layer,
which averaged out the spatial information, resulting in an output vector
fed to a softmax layer. The patient detection branch therefore, produced a
2-output vector of class-scoring estimates related to the presence or the
absence of the infant in the video frame.
The skin segmentation branch was implemented using a fully

convolutional network for image segmentation which performed a series
of spatial upsampling steps from cross-network feature maps.76 It
employed convolutional transpose layers to project feature maps onto a
larger-dimensional space and produce pixel-level labelling of skin regions.
Our implementation followed that of Long et al.76 Given that the size of
the input to the network was 512 ´ 512 pixels, the feature maps of the last

convolutional layer in the shared core network had a spatial size of
16 ´ 16 pixels (a factor of 32 reduction of the input size). A 1 ´ 1
convolution layer with 2 outputs was first added on top of this layer to
produce a coarse prediction of non-skin and skin classes at a 16 ´ 16
pixels reduction. As the feature maps of the pool4 and pool3 layers in the
shared core network had a spatial size of 32 ´ 32 and 64 ´ 64 pixels,
respectively, a 1 ´ 1 convolution layer with 2 outputs was added on top of
each of these layers. This produced two additional predictions of skin and
non-skin classes at finer resolutions of 32 ´ 32 and 64 ´ 64 pixels
respectively.
The coarse prediction at 16 ´ 16 pixels was spatially upsampled

through a convolutional transpose layer with a factor of 2, producing a
finer prediction at 32 ´ 32 pixels. The resulting prediction was later fused
with the prediction of the pool4 layer at 32 ´ 32 pixels. Subsequently, in
the same manner, the prediction fused from these two layers, at 32 ´ 32
pixels, was spatially upsampled by a factor of 2, producing a finer
prediction at 64 ´ 64 pixels. The resulting prediction was then fused with
the prediction of the pool3 layer. This resulted in a prediction at a factor of
8 of the original resolution (64 ´ 64 pixels). Finally, a convolutional
transpose layer with a factor of 8 was added in order to obtain a final
prediction at the same spatial size as the input image (512 ´ 512 pixels).
The network was completed by a softmax layer, which produces per-pixel
class-scoring estimates. The skin segmentation branch was executed only if
the presence of the infant was identified by the patient detection branch.
To generate ground-truth data for training the proposed network, a

database was created consisting of positive images in which infants were
present (with pixel-level skin labels) and negative images in which infants
were absent. Three annotators were asked to label the video images. Due
to the large amount of data, we developed a custom open-source semi-
automatic annotation tool, available at ref. 69 To address the trade-off
between annotation effort and sufficient variation in the input images, one
video frame was extracted every 6 min corresponding to a total of 2269
images. The annotations of skin regions from the three annotators were
combined to form the positive images. Images were regarded as positive if
two or more annotators provided skin labels. With this criterion, 1718 out
of the 2269 images (76%) were labelled as positive. For each image, a pixel
was regarded as skin if at least two annotators agreed, otherwise the pixel
was marked as non-skin. The inter-annotator agreement was 96.7%.
To create the dataset of negative images, we used the nurses’ notes to

extract images during time periods for which the infants were taken out of
the incubator. These periods included clinical activities such as kangaroo
care, infant taken to another clinical study and video camera covered by
the nurses. For the 15 infants in the training set, these periods accounted
for approximately 23.5 h. Images were taken every 20 seconds, corre-
sponding to a total of 4227 images. The same annotation strategy as in the
previous step was used for the three annotators to classify all the images
as infant or non-infant. The images for which two or more annotators

Fig. 9 The proposed CNN model extended the VGG-16 network with two branches: skin segmentation branch, implemented using a fully
convolutional network; and a classification branch, implemented using global average pooling over feature maps. The network was
modified to evaluate the segmentation branch only if the classification branch found a preterm infant in the image. Consent was obtained
from the parents to use these images.
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agree were regarded as negative. With this scheme, 2885 negative images
were selected. The inter-annotator agreement was 99.47%. There were
several images where the ambient light in the NICU was very dimmed
(even darker than Fig. 3a), therefore some annotators overlooked an infant
in the scene. To create a balanced dataset, 1718 negative images were
randomly selected from the pool of 2885 negative images. Therefore, the
total dataset consisted of 3436 images (1718 positive images and 1718
negative images) and split equally between the training and test set.
Multiple variations of each training image were generated. We

employed three data augmentation techniques during training: rotational,
mirroring and lighting augmentation. The total number of the resulting
dataset was 44,668 images. CNNs have several degrees of translation and
rotation invariance as a result of the convolution and pooling processes,
which progressively increase the level of abstraction of the image.79 In
order to encourage the network to learn rotational invariance, seven
additional images were generated for each original image by rotating the
image at 45-degree increments between 0 and 360 degrees. In order to
encourage the network to learn the symmetry of the human body, two
additional images were generated by mirroring each original image with
respect to the centre of the image on the x-axis and y-axis.
By varying the lighting characteristics in each image, the network could

be made invariant to illumination changes from both natural and artificial
light sources. The augmentation was performed by converting the original
image into the Hue-Saturation-Lighting (HSL) colour space, scaling the
lightness component and then converting the image back into the RGB
colour space as in ref. 80 The average lightness component was calculated
for each training image. A lightness range was defined by the minimum
and maximum of the averages of the illuminant component computed
across all the images in the training set. The range was divided into four
uniform intervals and the mean of each interval was calculated. For each
image, if the average lightness fell in one of the four intervals, three
additional images were generated by scaling the lightness component in
the HSL space using the values calculated from the three other intervals.
The CNN network was trained jointly using a unified multi-objective loss

function composed from the two CNN models. Given an input image x, the
output ydet = {d0; d1} of the patient detection branch is a two-class
softmax probability vector. Suppose that B = {b0; b1} is a ground-truth
label where B = {1; 0} indicates the absence of the infant in the image and
B = {0; 1} indicates the presence of the infant in the image. The loss
function for the patient detection branch was defined as the multinomial
logistic loss of the softmax output:62

Lossdet ¼ �b0 logðd0Þ � b1 logðd1Þ (1)

Since the output of the skin segmentation branch was a pixel-level skin
label whose spatial size was equal to the input image size, the loss was
summed across all pixels. As the number of non-skin pixels was larger than
that of skin pixels, the contribution to the loss of the skin class was then
weighted according to the ratio of the number of ground-truth non-skin
pixels, Nnon�skin, to that of ground-truth skin pixels, Nskin. Given that P is a
set of pixels in the input image x, the output yseg = {s0; s1} of the skin
segmentation branch is a two-class softmax probability vector for each
pixel, where the subscripts 0 and 1 denote the non-skin and skin classes
respectively. L ¼ fl0; l1g is the ground-truth skin annotation where
l0; l1 2 f0; 1g. The loss function of the skin segmentation branch was
defined as:

Lossseg ¼ �
XP

i¼1

l0ðiÞ log ðs0ðiÞÞ � λ
XP

i¼1

l1ðiÞ log ðs1ðiÞÞ (2)

where the weighting factor λ is defined as:

λ ¼ Nnon�skin

Nskin
: (3)

The unified multi-objective loss function was defined as the weighted
sum of the two loss functions:

Lossðf ðxÞ;GxÞ ¼ αdetLossdetðydet; BxÞ þ αsegLosssegðyseg; LxÞ (4)

where Gx ¼ fBx ; Lxg are the ground-truth labels for patient detection and
skin segmentation labels, respectively, f ðxÞ ¼ fydet; ysegg is the output of
the network, αdet and αseg are weighting parameters, which are defined
based on the relative importance of the patient detection and skin
segmentation tasks, respectively, in the unified loss function.
The model was initialised with the original VGG-16’s weights, which hold

accumulated knowledge on edges, patterns and shapes learned from the
1.3-million images in the ImageNet dataset.75 All the new weight layers,

except for the convolutional transpose layers, were initialised using the
Xavier algorithm81 with zero bias. The Xavier initialisation process created a
reasonable range of weight values that were uniformly distributed across
the layers. Such an initialisation can lead to faster convergence during
training.81 The CNN network was implemented within the MatConvNet
framework decribed by Vedaldi and Lenc.82 The training was performed
using standard Stochastic Gradient Descent (SGD) optimisation in two
stages. The network was first trained for the skin segmentation task using
only the images containing the infant with annotated skin regions.
Training was done using the unified loss function (see equation 4) with the
parameters αdet ¼ 0 and αseg ¼ 1. The learning rates were scheduled to
start at 10�2 and reduced by a factor of 10 for every two epochs until
convergence, with a momentum of 0.90 and a batch size of 20. These
parameters allowed the training and validation losses to reduce gradually
and eventually converge to steady values. The network was subsequently
trained jointly for the patient detection and skin segmentation tasks using
the whole dataset. The individual loss functions for each task were
weighted equally: αdet ¼ 1 and αseg ¼ 1. The learning rate started at 10�4

and was decreased by a factor of 10 for every two epochs until
convergence, with a momentum of 0.90 and a batch size of 20.

Intervention detection
To detect the occurrence of clinical interventions, the information
processed in the patient detection and skin segmentation network was
combined with temporal information computed from the optical flow
between images in a time window (see Fig. 10). Optical flow comprises a 2-
dimensional vector containing the displacements of points between two
images in the horizontal and vertical directions.83

The original implementation of the two-stream network proposed
by63,84 computed the optical flow between consecutive frames. Our clinical
study consisted of 6 � 8 h per video session and contained over 32.5
million video frames. In order to identify periods of clinical intervention
during long video recordings, a sliding-window approach was used to
process the video sequence with a fixed window length T ¼ 5 seconds
and a step size τ ¼ 1 second, computing the optical flow between images
extracted every second. Given a T -second sliding window, Lþ 1 video
frames were extracted, one image every second. Therefore, L optical flows
were computed from Lþ 1 video frames. The horizontal and vertical
components of each optical flow vector were stacked together across
input channels, as suggested by Simonyan and Zisserman.63

The optical flow network was implemented upon the ResNet50 network
with 50 weighted layers, as proposed in ref. 85 (see Fig. 10). Even though
the number of weighted layers in the ResNet50 network was higher than
the VGG16 network used for patient detection and skin segmentation,
each layer in the ResNet50 was smaller and had fewer number of
parameters. The implementation of the optical flow network using the
ResNet50 network allowed the task to be performed with fewer
parameters and a lower amount of computational resources than the
VGG networks used in refs. 63,84 Instead of accepting a single RGB image,
the ResNet50 architecture was modified to accept a stack of 2L dense
optical flow components. The first convolutional layers were extended to
2L channels by stacking the spatial average of the first convolutional filters
across the channels. In order to maintain the aspect ratio of the videos in
our clinical study, the network was designed to take a 256 ´ 192 ´ 2L
volume as input. The input size was limited by the computation time and
the memory requirements for the workstation used to develop the
algorithms. The last fully-connected layer was modified to produce two
outputs for the intervention and non-intervention labels, and its filters
were re-initialised with the Xavier algorithm with zero bias.81 The dropout
ratio was changed to 0.85 as suggested in.84 The output of this network
was the classification score of intervention and non-intervention events.
The training of the intervention detection network required a dataset of

annotated intervention periods. To obtain training data, the start and end
time points of three mutually exclusive events were annotated in the video
dataset: intervention, non-intervention and infant absence. Three human
annotators were employed to label the dataset. All video sessions in the
15-infant dataset were annotated. Similar to the training data for the
patient detection and skin segmentation network, the periods during
which the infant was under phototherapy were excluded from the
annotation. The annotators were required to label the periods of
intervention, non-intervention and baby absence for a total of 214.0 h of
video. A specialised annotation tool was developed. Annotators were
asked to watch videos played at 30 times the original speed. This was to
ensure that the videos were seen by the annotators in a reasonable
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amount of time. They could navigate forward and backward in time.
Forward navigation was not allowed unless the video section had
previously been watched. The annotators were asked to mark the start
and end frame numbers in the video for sections during which medical
staff or parent(s) were present in the video frame (intervention), the baby
was present in the video frame without medical staff or parents (non-
intervention) and the baby was not present in the frame (infant absence).
The intervention labels provided by the three annotators were

combined based on the consensus among the annotators. Subsequently,
the annotations, which were performed at the frame level, were converted
into one-second labels using the consensus scores among the labelled
video frames for each second.
The Fleiss’ kappa inter-rater reliability of agreement between the three

annotators was 96.1%. Of the 214.0 h of annotated videos, 178.9 h were
marked as non-intervention, 16.7 h were marked as intervention and 18.4 h
were marked as baby absence periods.
We developed three fusion strategies for combining the information

from the patient detection and skin segmentation network with temporal
information from the optical flow network: (1) spatio-temporal fusion,
(2) multi-resolution temporal fusion and (3) temporal context fusion. The
spatio-temporal fusion strategy directly combined appearance information
extracted from RGB video frames with temporal information extracted
from the multiple-frame optical flow network. Several modifications were
made to integrate the two networks together. In the patient detection and
skin segmentation network, an additional 4 ´ 4 max-pooling layer was
added after the last convolution layer of the shared core network (see
Fig. 9) in order to produce an output with a 8 ´ 6 spatial size to match the
output of the optical flow network. In the intervention detection branch
(see Fig. 10), the outputs from the patient detection and skin segmentation
networks and the output from the optical flow network were fused
together through a series of concatenation and convolution layers as in
ref. 84 Concatenation is a process of stacking two or more feature maps
with the same spatial size together across channels. Both output feature
maps were stacked together and then convolved with a 1 ´ 1 convolution
layer with 512 feature channels, producing 8 ´ 6 ´ 512 feature maps. The
convolution layer performed weighted combinations of spatial and
temporal feature maps and reduced the dimension of the combined
feature channels. This layer could learn information corresponding to a
decision-making process from both networks. The network ended with a
global average pooling layer, 2-way fully-connected and softmax layers.
The use of global average pooling and fully-connected layers for
classification enforces the correspondence between feature maps and
categorical outputs.85 The last layer provided classification scores to
distinguish between non-intervention and intervention events.
Our second fusion strategy, multi-resolution temporal fusion, was based

on the network proposed by ref. 86 It used two input streams: the main
optical flow network which computed optical flows over the entire images
(full-frame optical flow); and the local optical flow network that computed
optical flows from cropped images containing only the patient area

(patient-cropped optical flow). A major advantage was that the multi-
resolution fusion could learn temporal information from both global and
local contexts. Since the main optical flow network processed a stack of
full-frame optical flows and the local optical flow network processed a
stack of patient-cropped optical flows, the feature maps from the last
convolution layers from both networks were not spatially aligned. Fusion
was performed through the concatenation operation, similar to the spatio-
temporal fusion, with additional steps to combine two feature maps with
different spatial sizes. In the intervention detection branch (see Fig. 9), the
output from each network was first passed through a global average
pooling layer to reduce its spatial dimension. The output from the average
pooling layer was later passed through a fully-connected layer with 512
outputs. Consequently, the outputs from the fully-connected layer of both
networks were concatenated across feature channels and then processed
through another fully-connected layer with 2 outputs. Finally, the last
softmax layer produced classification scores for intervention and non-
intervention events.
The third fusion strategy, the temporal context fusion, combined the

information from multiple-frame skin confidence maps with multiple-
frame dense optical flow. Unlike the two-stream spatio-temporal network,
where fusion occurred in the first layers, the temporal context fusion
approach used a new context network to process multiple-frame skin
confidence maps. These maps were provided by the patient detection and
skin segmentation network before being combined with the outputs of the
optical flow network. The skin confidence map was defined as the softmax
output of the skin segmentation branch of the patient detection and skin
segmentation network before applying a threshold to compute the skin
and background labels. The skin confidence maps over a video segment
contained the information related to the motion of the infant as well as
that of the clinical staff, if they were present in the image because an
intervention was being performed. The architecture of the context network
was similar to that of the optical flow network, but it instead accepted
multi-frame skin confidence maps with the same spatial size as the optical
flow data (256 ´ 192 pixels). We used the skin confidence maps of the
same Lþ 1 video frames that were used to compute the L optical flow
components. Hence, the context network processed a stack of Lþ 1
confidence maps, whereas the optical flow network processed a stack of 2L
optical flow components. A final decision was made in the intervention
detection branch based on the combination of information from both
networks. The intervention detection branch was implemented using the
convolution fusion approach84 similar to that of the two-stream spatio-
temporal fusion. The outputs before the global average pooling layer of
the context and optical flow networks were fused together through a
series of concatenation and convolution layers. The feature maps of both
networks were concatenated together along feature channels resulting in
8 ´ 6 ´ 4096 feature maps, followed by a 1 ´ 1 convolution layer with 512
outputs. The branch computed a decision on intervention and non-
intervention events through a series of global average pooling, 2-way fully-
connected and softmax layers.

Fig. 10 The intervention detection network consists of two input streams operating on 5-second sliding windows. The first input stream
(context stream) processed a stack of skin confidence maps, produced by the patient detection and skin segmentation network. The second
input stream (optical flow stream) handled a stack of dense optical flow. The outputs from both input streams were then combined to predict
the occurrence of a clinical intervention in a given time window.
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For each training iteration, video segments were sampled uniformly
across intervention and non-intervention classes to create a balanced
training set. The training was performed using standard Stochastic
Gradient Descent in two stages in order to reduce training time and
avoid overfitting. In the first stage, the main optical flow network was
trained with a momentum of 0.90 and a batch size of 24 samples. The
learning rates were scheduled to start at 10�3 and reduced by a factor of
10 for every 12,000 iterations until convergence. The same configuration
was used for the local optical flow network and the context network. In the
second stage, the patient detection and skin segmentation network was
integrated with the other network(s), and the intervention detection
branch was added to form a fusion network. For each fusion network
model, fine-tuning was performed with a momentum of 0.90, a batch size
of 12 and a learning rate of 10�5. The learning rate was decreased by a
factor of 10 for every 6000 iterations until convergence. Fine-tuning was
performed on only the layers added after fusion, as suggested in refs. 84,86

Evaluation protocol for the CNN models
An approach to obtaining predictive performance is cross-validation using
two independent folds. The training set of 15 patients (see Table 2) was
firstly divided into two groups, D1 and D2, such that one group had eight
subjects and the other group had seven subjects. The assignment to
different sets was based on a balance of choice between skin phenotype,
corrected gestational age and the number of positive images. For each set,
positive images were taken directly from the positive pool, and negative
images were randomly sampled without replacement from the negative
pool so that the number of positive and negative images were equal. A
model was first trained on D1 and validated on D2. Then, another model
was trained on D2 and validated on D1. The validation results from both
models were combined to produce the overall predictive performance. The
main advantage of this approach was that all images were used for both
training and validation.
For the patient detection and clinical interventions detection tasks, the

classifiers’ performance were described using the Receiver Operating
Characteristics (ROC) curve, accuracy, precision, true positive rate (TPR or
recall) and true negative rate (TNR or specificity). For the skin segmentation
task, a pixel-wise intersection-over union (IOU), which is the standard
metric for evaluating a segmentation algorithm, was used to describe the
segmentation performance. The IOU metric is defined as:

IOU ¼ yp \ yg
yp ∪ yg

(5)

where yp denotes a predicted segmentation result and yg denotes a
ground-truth label.

Reference physiological values
The Philips IntelliVue patient monitoring system used in our study
provided two heart rate measurements: one derived from the ECG,
recorded by the Philips measurement module; and the other derived from
the PPG, recorded by the Masimo pulse oximetry module. Ideally, the
monitor would report the same heart rate estimates from the two sources;
however, the measurement of a physiological process implies some degree
of error. The MAE between both heart rate estimates was 4.1 beats/min
with a MAD of 4.0 beats/min. Even though the heart rate estimates from
the two devices were highly correlated (correlation coefficient of 0.95),
large differences were found across the recording sessions, even when the
infants were quiet and had minimal motion.
There are several reasons for the discrepancies between the two

sources. Although the Philips IntelliVue monitor is an integrated modular
system, each measurement module uses its own internal clock for its
acquisition system. Different device manufacturers use their own
proprietary algorithms to estimate heart rate, which are usually not
disclosed, including different averaging or smoothing techniques. Both
manufacturers are compliant with the ANSI/AAMI EC13:2002 “Cardiac
monitors, heart rate meters, and alarms standard” standard,87 yet the
standard only requires the maximum heart rate measurement error to be
1% or 5 beats/min, whichever is greater. There are intrinsic differences
between the ECG and PPG signals; the ECG sensor measures the electrical
signals generated by the activity of the heart, whereas the PPG measures
changes in blood volume underneath the skin. The neonatal population
also presents different characteristics in comparison to the adult
population that require separate guidelines for the clinical interpretation
of the ECG88 and PPG.89 In our study, the two devices often produced

different values during physiological events such as bradycardia or apnoea.
Clinical interventions, changing measurement sensors or other motion
artefacts occurring when the baby moved a body segment to which a
sensor was attached (i.e. legs, arms or upper body), decreased the accuracy
of the heart rate estimates.
When two sensing devices are used, neither provides an absolute

correct measurement. Since the true value of the heart rate was not
known, a direct comparison between the camera-derived heart rate and
the heart rate values provided from either of the two reference devices
could lead to incorrect performance results. The average of the
measurements from two devices or methods is usually taken as the
representative values.90 Thus, a new robust reference heart rate can be
obtained by analysing the agreement between the measurements
provided by the two devices. These new gold-standard heart rate values
was used to compare the estimates computed from the video camera.
The signal quality of the reference data was not provided by either of

the manufacturers. Our proposed process started by identifying periods
during which the reference signals were of poor quality by computing
Signal Quality Index (SQI) metrics for the ECG and PPG waveforms
separately, using established algorithms validated using clinical databases
in the public domain. Subsequently, the new reference heart rate estimates
were calculated, on a second-by-second basis, as the mean of the two
heart rate measurements for which both values did not differ by more than
5 beats/min (as recommended by the ANSI/AAMI EC13:2002 standard87),
and for which the SQIs of the ECG and PPG were greater than 0.5.
The new reference heart rate was valid for 388.9 h, approximately 91.2%

of the total recording time of 426.6 h. The MAE was 0.9 beats/min and MAD
was 1.0 beats/min. with a high correlation coefficient of 0.99. Over 200.1 h
of 216.6 h (92.5%) were found to be valid in the training set. Similarly, over
188.6 h of 210.0 h (89.8%) were valid in the test set. These results imply a
good agreement between the ECG heart rate and PPG heart rate estimates
under the conditions described above. A detailed discussion on the
analysis of the estimates from the reference devices can be found at
refs. 65,66

The Philips IntelliVue patient monitor used in our study provided
respiratory rate estimates derived from the IP signal using proprietary
algorithms, without a corresponding quality measure. The IP signal is
known to be affected by noise and artefacts, which could lead to errors in
the estimation of respiratory rate.91,92 In sick newborn infants, the
movement of the upper body during active awake periods often causes
large motion artefacts in the IP signal, which prevents a reliable estimation
of respiratory rate.92,93 The shallow and irregular breathing patterns of
preterm infants make it difficult to measure respiratory rate using patient
monitoring equipment. In our dataset, large discrepancies were found
when comparing the respiratory rate reported by the patient monitor with
that computed by manual breath counting by the trained clinical staff.94,95

The respiratory rates provided by the patient monitor were not suitable to
be used as reference values for comparing with camera-derived estimates.
Therefore, a new gold-standard reference respiratory rate was needed.
Using the algorithms to assess the quality of the ECG waveform,

performed as part of the estimation of the reference heart rate, our
proposed system started by extracting three respiratory signals from the
ECG: ECG-derived respiration (EDR), respiratory sinus arrhythmia (RSA) and
R-peak amplitude (RPA). With the addition of the IP waveform, SQI metrics
were computed for the four respiratory signals using well-known
algorithms that have been extensively validated by the research
community on publicly available physiological databases. Subsequently,
respiratory rate was estimated from each signal using two methods: a
time-domain technique, by counting the number of breaths within a
window; and a frequency-domain method, by finding the frequency of the
dominant pole of an AR model. Two new respiratory rate estimates were
computed, one for each method, by combining the individual respiratory
rates for each individual signal with a data fusion algorithm. Finally, the
new reference respiratory rate was computed as the mean of the
combined respiratory rate estimates from both methods during which the
data were of good quality and their difference was less than 5 breaths/min.
The maximum error of 5 breaths/min has been used as a primary outcome
measure in many clinical trials involving the measurement of respiratory
rate that have been approved by the U.S. National Institutes of
Health (NIH).
The new reference respiratory rate was valid for over 189.0 h,

approximately 44.3% of the total recording time of 426.6 h. The MAE
was 2.2 breaths/min and MAD as 1.4 breaths/min, with a high correlation
coefficient of 0.98. Over 95.3 h of 216.6 h (44.0%) were found to be valid in
the training set. Similarly, over 93.7 h of 210.0 h (44.7%) were valid in the
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test set. The results are consistent with the values published in the
literature that vary between 29%91,96 and 32%.66 A detailed discussion on
the analysis of the estimates from the reference devices can be found at
refs. 65,66

Heart rate estimation
The framework presented in the previous sections provided accurate per-
frame skin segmentation from which a region of interest could be selected
to extract a PPGi signal and to compute heart rate estimates. The PPGi
signal contains cardiac pulsatile AC variations superimposed on a non-
pulsatile DC component. Tarassenko et al.43 showed that a skin ROI needs
to be large enough such that a PPGi signal with a strong cardiac
component can be obtained. The raw PPGi signal was derived by spatially
averaging all pixels in the whole skin area for the green colour channel for
each frame in the video. The raw PPGi signal was extracted from the raw
uncompressed video data stored at a resolution of 1620´ 1236 pixels and
at a rate of 20 frames per second. Let Gt be the green channel of a video
frame It at time t and St 2 f0; 1g be a skin label of It , where the subscripts
0 and 1 denote non - skin and skin classes, respectively. The raw PPGi
signal was defined as:

PPGiraw ¼ 1
Nskin

XNx

i¼1

XNy

j¼1

Gtði; jÞStði; jÞ (6)

where i and j are spatial coordinates, Nx and Ny are the number of rows
and columns in the image, respectively, and Nskin is the number of skin
pixels in the image. The raw PPGi signal was computed on a per-frame
basis such that the signal’s sampling rate was equal to the video frame rate
of 20 Hz.
The PPGi signal contained pulsatile components correlated with the

cardiac frequency as well as motion artefacts and often other sources of
noise. Since the raw PPGi signal extracted from the skin was sensitive to
disturbances such as motion artefacts and lighting changes, the signal was
first detrended in order to remove any non-pulsatile DC offset, and then
filtered to reduce frequency components outside the physiological range
of interest. The normal heart rate of preterm infants ranges from 90 to 180
beats/min,67 which is higher than that of healthy adults and full-term
infants. Analysis of the reference heart rates in the training set showed that
more than 99% of the values were concentrated in the range of 90–270
beats/min (1.5–4.5 Hz). Therefore, the raw PPGi signal was processed with a
cascade of a 40th-order low-pass Finite Impulse Response (FIR) filter with a
cut-off frequency at 4.5 Hz and a 60th-order high-pass FIR filter with a cut-
off frequency at 1.5 Hz.
A peak and onset detection algorithm based on Zong et al.97 and later

extended by Villarroel et al.66 was then applied to the PPGi signal to
identify salient points for each heart beat. The algorithm was modified for
the neonatal population by defining the duration of the upslope of the
pulse as a window of 150 ms, corresponding to three samples for a PPGi
signal with a sampling frequency of 20 Hz. The algorithm was shown to be
effective in detecting the peaks and onsets o pulsatile signals.66,97,98

Accurate peak and onset detection allowed the beat-by-beat assess-
ment of the quality of the PPGi signal. As an initial step, an activity index
was computed based on changes in the segmented skin area over
consecutive frames, corresponding to the movement of the subject. A
Bayesian change point detection algorithm was then applied to identify
step changes in the PPGi signal, often caused by sudden lighting condition
changes. The pulses occurring during the periods of high subject motion
and step changes were flagged as invalid. In order to further identify
whether each detected beat was of good quality, the algorithm performed
a beat-by-beat quality assessment by combining multiple analysis
methods: frequency bounding, clipping detection, amplitude thresholding
and multi-scale dynamic time warping. Finally, the SQI of each detected
beat was obtained as a combination of all these individual metrics. The
derivation of the SQI values for heart rate estimation can be found in the
supplementary information 4 provided for this paper.
Heart rate was computed using a running window of 8 seconds with a

step size of 1 second. The SQI value for each heart rate estimate was
calculated as the mean of the beat-by-beat SQI values for the respective 8-
second window. Heart rate estimation was performed using four
algorithms: beat counting, Fast Fourier transform (FFT), dominant pole of
an autoregressive model (AR dominant pole), and choosing the best model
order of multiple autoregressive models (AR best model).
To count the number of beats, the time window w of 8 seconds was first

expanded to include the peaks of the first and last beats. Heart rate was

then computed as:

HRðwÞ ¼ Nbeats � 60
Lexp

(7)

where Nbeats is the number of beats in the expanded window and Lexp is
the length of the expanded window.
The second method computed heart rate by identifying the dominant

frequency with the highest power in the Fast Fourier Transform (FFT) of the
PPGi signal. The heart rate estimates obtained from the FFT method were
affected by quantisation errors since the frequency resolution of the FFT
depends on the sampling rate (f s) and the number of samples used to
compute the FFT.
Autoregressive (AR) modelling was also used to identify frequency

content in the PPGi signal. Unlike the FFT technique, the AR model has no
frequency resolution limitations when applied to short-time series
segments. Heart rate was calculated by finding the dominant pole that
was located inside the angle (in radians) of interest, corresponding to a
heart rate range between 90 and 270 beats/min, in the z-transform of the
AR model. The choice of model order was a compromise between a higher
model order which can provide a better approximation but can also fit the
noise in the signal, and a lower model order, which may not be sufficient
to represent the signal.99 The algorithm used a fixed model order of 8,
which was found to achieve the lowest mean absolute error in the
training set.
A further algorithm to estimate heart rate from the PPGi signal was

implemented to choose the best model order in a range between 6 and
12. The choice of the best model order was made by comparing the
frequency of the dominant pole and the frequency of the highest peak of
the frequency response of the model. The frequency response of an AR
model of order p and noise variance σ2e is given by:99

Sðf Þ ¼ σ2e
jPp

k¼0 ake
�i2πfk j2 (8)

where ak are the coefficients of the AR model. The best model was
computed as the model for which the difference between the frequency of
the dominant pole and the frequency corresponding to the highest peak
of the frequency response (calculated using equation 8) in the frequency
band between 1.5 and 4.5 Hz was less than 1 beat/min. If more than one
model order met this criterion, the model with the highest amplitude of
the dominant pole was chosen. If no model met this criterion, the heart
rate for that time window was estimated by finding the highest peak of the
frequency response, as described by equation (8).
Once heart rate had been computed for every 8-second window, a

Kalman filter was applied similarly to refs. 100,101 The heart rate estimates
were adjusted based on their signal quality, reducing the effects of
transient changes of noise and motion artefacts.

Respiratory rate estimation
During each respiratory cycle, the infant’s chest and abdomen expand and
contract with breathing. This phenomenon causes movement of the body
that can be recorded by a video camera from areas containing exposed
skin or covered by tight-fitting clothing such as a nappy. The CNN for skin
segmentation was used as the first step in the extraction of twelve
respiratory signals divided in three groups. The first group consisted of
three respiratory signals derived from the PPGi signals extracted from each
of the video camera’s three colour channels. The second group comprised
four respiratory signals extracted from four properties of the patient’s
segmented skin area. The last group consisted of five respiratory signals
extracted from geometrical properties of an ellipse fitted to the skin area.
The PPGi signal, computed by averaging the colour over the skin

regions, contained both cardiac and respiratory information. The relative
size of the respiratory-correlated pulsatile component in the PPGi signal
depended on the gestational age (reflecting the size and developmental
stage of the infant) and the breathing pattern (shallow or deep breathing).
Three PPGi signals were extracted from the skin regions: PPGired, PPGigreen
and PPGiblue derived from the red, green and blue colour channels
respectively.
The contraction and relaxation of the muscles during respiration causes

the volume of the chest cavity to increase or decrease, resulting in motion
of the chest and abdomen.102 Respiratory signals can be acquired by
tracking these motion changes across the subject’s skin areas.103 Four
respiratory signals were extracted by computing the following shape
properties from the entire skin label for each video frame: area, perimeter
and the x and y coordinates of the centroid.104
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Although changes in the skin region properties over time could reflect
the motion of the subject, which in turn could be used to estimate
respiratory rate, small degrees of non-respiratory motion easily introduced
motion artefacts and corrupted the respiratory signals. Similarly, the
subject’s posture and clothing sometimes split the skin into smaller
regions, so the respiratory signal extracted from the properties of multiple
skin regions could contain abrupt changes from motion artefacts as well.
The result of skin segmentation often has an elliptical shape (see Fig. 3).
Changes in the shape of the ellipse over time as a result of breathing could
be used to extract a respiratory signal. If there were more than one
separate non-contiguous skin region, the upper body area, which had a
prominent respiratory motion usually corresponded to the largest
continuous region.103 Therefore, for each video frame, an ellipse was
fitted to the largest continuous skin region by matching the second central
moments of the skin region to the ellipse. Five respiratory signals were
then extracted from changes in: major axis length, minor axis length,
orientation, eccentricity and elliptical area.104

The respiratory signals extracted from the video data were inherently
noisy and were often contaminated by baseline drifts and high-frequency
noise. To remove these artefacts, each of the twelve respiratory signals was
detrended and filtered using a cascade of a 100th-order high-pass FIR filter
with a cut-off frequency at 0.3 Hz and an 80th-order low-pass FIR filter with
a cut-off frequency at 2.0 Hz. These filters encompassed respiratory rates in
the range of 18–120 breaths/min.
Once the respiratory signals had been extracted, two algorithms for

peak and onset detection were applied: the first one was based on the
mean average curve (MAC)105,106 and the second was based on the boxed
slope sum function (BSSF).97 Originally, the BSSF algorithm was designed
for detecting peaks and troughs in a cardiac signal. Several parameters
were changed to make the algorithm work with a respiratory signal.
Instead of using the typical duration of the upslope of the cardiac pulse for
computing the BSSF signal, the upslope duration of the respiratory pulse
was modified to 300 ms. To prevent multiple detections, a 500 ms
refractory period was applied. Both detection algorithms have high
accuracy but different sensitivities to different types of noise.101

The amplitude of each breath pulse generally depended on how much
the skin colour changed or how much the subject moved during
breathing. During a quiet and stable period, the amplitude of each peak
generally reflected the depth of each breath: shallow breathing resulted in
a low-amplitude waveform, while deep breathing resulted in a high-
amplitude waveform. Preterm infants generally have different breathing
patterns than those from term infants and adults as a result of weak ribs,
weak muscles, lack of surfactant (substance in the lungs that facilitates gas
exchange) and low respiratory effort.107

Respiration was more prominent when the subject was quiet with
minimal body motion. The primary aim of the signal quality assessment
was to provide a quality measure from 0 (poor quality) to 1 (good quality)
for each breath. For each of the twelve respiratory signal extracted, four
signal quality indices were computed based on the analysis of the patient
activity, a valid physiological breathing range, the agreement between
peak detectors and multi-scale dynamic time warping. The calculation of
the first two SQIs followed what was described in the previous section for
heart rate estimation. The derivation of the SQI for respiratory rate
estimation can be found in the supplementary information 5 provided for
this paper.
Following the signal quality assessment, the respiratory rate for each of

the twelve respiratory signals was estimated using a 10-second sliding
window with a step size of 1 second. Respiratory rate was therefore
reported every second. Prior to the estimation, the time window was
expanded to include the complete first and last breath pulses. Estimation
was performed by counting the number of breaths over the time window.
The final signal quality index of the respiratory rate was calculated as the
mean of the SQI values over the given window when the numbers of
breaths detected by both detectors were equal. When the numbers of
breaths detected by both detectors were not equal, the SQI was taken to
be 0, corresponding to a poor-quality window.
Once respiratory rate had been estimated for all respiratory signals, a

data fusion technique based on multiple Kalman filters (as for heart rate
estimation) was applied to combine the multiple respiratory estimates
from the same time window and produce a final respiratory rate and a final
signal quality index.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Supplementary material

Supplementary method 1: Patient detection and skin segmentation performance
The proposed CNN networks for patient detection and skin segmentation were developed and evaluated with a two-fold cross
validation procedure using images extracted only from the 15 preterm infants dataset labelled as “training” in table 2 of the
main paper. The proposed CNN models were compared with the performance of three colour-based skin classifiers1, 2 based on
Naive Bayes3, Random Forests4 and Gaussian Mixture Models (GMMs)5. The skin filters classify each pixel as a skin pixel
based solely on skin colours and provide a skin probability map, which can be thresholded to a binary label. The skin models
were trained on images that were converted to the Hue-Saturation-Lighting (HSL) colour space6 with white balance correction
applied7, 8. Patient detection was performed using the ratio of skin to non-skin pixels and the average probability of predicted
skin pixels to make a decision, as in the method described in3.

Supplementary table 1. Patient detection performance of the baseline skin filters and the proposed CNN models.

Model AUC Accuracy Precision Recall Specificity

Baseline skin filters
Naive Bayes 98.1 98.6 97.8 99.4 97.8
Random Forests 97.2 97.7 97.5 97.9 97.4
GMMs 98.8 97.1 97.8 96.4 97.8

CNN without data augmentation
CNN patient detection only 97.7 98.0 96.1 100.0 96.0
Multi-task CNN 99.7 98.2 96.6 100.0 96.5

CNN with data augmentation
CNN patient detection only 97.9 97.1 96.0 98.3 95.4
Multi-task CNN 98.2 98.8 97.6 100.0 96.8

All values are expressed as a percentage.

Supplementary table 1 shows the results for the patient detection network compared with the baseline skin filters. The
dataset without data augmentation consisted of a total of 3,436 images divided in 1,718 positive images (with an infant in the
video frame) and 1,718 negative images (without an infant in the video frame). As explained in the “Methods” in the main
paper, multiple variations of each image were generated using three data augmentation techniques: rotational, mirroring and
lighting augmentation. The total number of the dataset with data augmentation was 44,668 divided in 22,334 positive and
22,334 negative images. The datasets were split equally between the training and test sets. The Naive Bayes classifier achieved
the highest accuracy in the patient detection task among the baseline skin filters. It achieved 1.0% and 1.6% higher accuracy
than Random Forests and GMMs respectively. In term of the area under the receiving operating curve (AUC), GMMs obtained
the highest score (98.8%) followed by Naive Bayes (98.1%) and Random Forests (97.2%) respectively.
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Supplementary table 2. Skin segmentation performance of the baseline skin filters and the proposed CNN models.

Model Pixel Accuracy Intersection over Union

Mean (SD) Min Max Mean (SD) Min Max

Baseline skin filters
Naive Bayes 89.5 (8.3) 32.7 98.9 61.3 (17.4) 4.3 92.9
Random Forests 95.0 (4.6) 57.7 99.3 75.9 (16.1) 6.8 95.4
GMMs 93.4 (5.2) 47.5 99.1 71.2 (14.2) 16.8 94.7

CNN without data augmentation
CNN skin segmentation only 92.2 (3.4) 71.1 74.4 57.4 (15.2) 0.00 84.5
Multi-task CNN 96.2 (2.0) 75.9 98.9 77.2 (9.9) 4.8 92.9

CNN with data augmentation
CNN skin segmentation only 97.9 (1.2) 88.7 99.5 87.8 (6.0) 49.4 96.5
Multi-task CNN 98.1 (1.9) 75.6 99.6 88.6 (7.5) 39.0 97.0

All values are expressed as a percentage.
Performance evaluated only on positive images with the presence of a subject.

Skin segmentation was performed considering only the positive images with an infant present in the video frame. Sup-
plementary table 2 shows the results for the proposed skin segmentation networks. The dataset without data augmentation
consisted of 1,718 images, the dataset with data augmentation consisted of 22,334 images. Random Forests achieved the best
performance for skin segmentation, with 4.7% and 14.5% improvements in intersection-over-union (IOU) with respect to
GMMs and Naive Bayes respectively.

The multi-task CNN model trained with data augmentation outperformed the other models for the majority of the metrics in
both patient detection and segmentation tasks. For patient detection, the model achieved an accuracy of 98.8% and an AUC
score of 98.2%. For skin segmentation, the network yielded an IOU score of 88.6% and a pixel accuracy of 98.1%.
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Supplementary method 2: Intervention detection performance
Time periods of clinical intervention were detected by combining information processed in the patient detection and skin
segmentation network with temporal information computed from the optical flow between images over a sliding time window
of length T and step size τ . For each T -second sliding window, L optical flows were computed from L+1 video frames, each
one extracted every second. The horizontal and vertical components of each optical flow vector were stacked together across
input channels, as suggested by Simonyan and Zisserman9. The proposed clinical intervention network was developed and
evaluated with a two-fold cross validation procedure using only the 15 preterm infants dataset labelled as “training” in table 2
of the main paper, as stated by the clinical study protocol.

Supplementary table 3. Baseline performance of the two-stream architecture proposed by9

evaluated using a window length T = 10 seconds and a step size τ = 1 second.

Model AUC Accuracy Precision Recall Specificity

Spatial 84.1 76.4 77.0 75.2 77.5
Temporal, L = 10 95.3 87.8 84.1 93.3 82.4
Fusion network (Average) 95.4 89.3 86.3 93.4 85.2
Fusion network (SVM) 98.1 92.4 90.8 94.4 90.5
All values expressed as a percentage.

Supplementary table 3 shows the performance of the baseline implementation compared with reference methods devel-
oped based on the two-stream convolutional architecture for action recognition proposed by Simonyan and Zisserman9 and
implemented using the VGG-M-2048 model10. As suggested in9, the number of optical flow stacks L was set to 10. To be
comparable with the original implementation, we used a window length T = 10 seconds and a step size τ = 1 second. There
were a total of 129,608 windows, split equally on windows during which a clinical intervention occurred and windows during
which there were no clinical interventions. The results were consistent with those reported in9. The temporal network yielded
higher accuracy (87.8%) than the spatial network (76.4%). The fusion of both networks, using either averaging or a linear
Support Vector Machine (SVM), led to further improvement in the accuracy since they provided complementary information to
support the classification task. The SVM fusion network resulted in the highest accuracy of 92.4%, a 4.7% improvement over
the temporal network.

Supplementary table 4. Performance of the optical flow network with different sliding window configurations.

Window
AUC Accuracy Precision Recall Specificity

Total number
configuration of windows

T = 1 sec. , τ = 1 sec. 95.2 88.5 89.3 87.5 89.5 113,610
T = 5 sec. , τ = 1 sec. 97.4 92.2 91.7 92.8 91.6 121,426
T = 5 sec. , τ = 5 sec. 95.9 89.7 90.6 88.5 90.8 24,302
T = 10 sec., τ = 1 sec. 96.2 88.2 88.2 91.5 87.8 129,608
T = 10 sec., τ = 10 sec. 95.5 88.5 87.2 90.4 86.7 13,006
All values expressed as percentage.

Supplementary table 4 summarises the performance effects of using different sliding window configurations on the optical
flow network. The number of windows were different according to each configuration. If more than half a time window was
labelled as intervention by the annotators, the whole time window was marked as intervention. Therefore, there was more
training data available for longer windows even though the step size is the same (for example T = 1 sec, τ = 1 sec compared
with T = 10 sec, τ = 1 sec). The dataset was split equally on windows during which a clinical intervention occurred and
windows during which there were no clinical interventions. The configuration of a 5-second sliding window with 1-second step
size led to 92.2% accuracy and outperformed the other configurations. Increasing the size of the window length from 5 to 10
decreased performance.

Supplementary table 5 reports the performance of the local temporal network and the context network that were trained
individually and used for constructing the multi-resolution and temporal context fusion networks. These networks were
evaluated using a dataset containing a total of 121,426 time windows of length 5 seconds and a step size of 1 second, which
was the best performing configuration for the optical flow network, as reported in supplementary table 4.
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Supplementary table 5. Performance of the local optical flow network and context network
evaluated using a window length T = 5 seconds and a step size τ = 1 second.

Model AUC Accuracy Precision Recall Specificity

Local optical flow network
Fit cropping 96.6 90.5 89.8 91.4 89.6
Centre cropping 96.8 91.1 92.9 89.0 93.2

Context network
Skin heatmap stacking 95.9 89.7 89.6 89.9 89.5

All values expressed as a percentage.

Supplementary table 6 reports the classification performance for different fusion strategies evaluated using a dataset
containing a total of 121,426 time windows of length 5 seconds and a step size of 1 second. The temporal context fusion
method yielded the highest performance with an accuracy of 94.5%, a 2.3% improvement with respect to the optical flow
network alone. Multi-resolution temporal fusion, with either fit or centre cropping, gave marginal performance improvements.
In contrast, the spatio-temporal fusion method was unable to make effective use of spatial information extracted through the
patient detection and skin segmentation network.

Supplementary table 6. Performance of the different fusion approaches evaluated using a window
length T = 5 seconds and a step size τ = 1 second.

Model AUC Accuracy Precision Recall Specificity

Spatio-temporal fusion
Single frame 97.0 91.7 89.8 94.1 89.3
Multiple frames 96.0 90.5 90.4 90.8 90.3

Multi-resolution temporal fusion
Fit cropping 97.8 93.7 92.8 93.7 92.7
Centre cropping 97.7 92.9 94.5 91.1 94.7

Temporal context fusion
Skin heatmap stacking 98.2 94.5 94.4 94.7 94.4

All values expressed as a percentage.
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Supplementary method 3: Typical clinical interventions and nursing activities in the
NICU
Preterm infants experience routine clinical interventions several times a day in the Neonatal Intensive Care Unit (NICU). For
example: checking the normal functionality of medical equipment, changing a nappy, taking temperature readings, administering
medications or withdrawing blood from the heel for a blood gas test. During these events, clinical staff or parents actively
interact with the infant, causing motion artefacts that pose challenges to the estimation of vital signs from video camera data.
Supplementary table 7 summarises the activities carried out by the nurses in the care of the pre-term infants in the NICU.
Parents also visit their newborn baby regularly and often take the infant from the incubator for kangaroo care (skin-to-skin
contact with the parent).

Supplementary table 7. Typical daily nursing activities for pre-term infants in the NICU (Data provided by research nurses
at the John Radcliffe Hospital).

Frequency Event

At nurse shift handover (every 8−12 hours)
– Lift incubator cover to examine the infant.
– Examine nasogastric tube (NGT) placement.
– Examine central venous line (CVL).

As required

– Check emergency equipment.
– Check ventilation equipment.
– Check fluid infusion pumps.
– Replace electrocardiogram (ECG) leads.
– Replace nasal probes.

After bradycardia, O2 desaturation or apnoea – Provide tactile stimulation.
– Change infant position.

Every hour
– Remove fluid from the airways.
– Give nasogastric tube (NGT) feed.
– Record vital sign parameters.

Every 6 hours
– Take temperature and blood pressure.
– Change skin probe sites.
– Change infant position.

Every 12 hours – Take infant out of incubator for cuddles.

Every 6−8 hours, if under phototherapy – Heel prick for a blood test.Every 2−6 hours, if hypoglycemic

Every 6−12 hours – Give oral medication.

Every 4−12 hours – Give intravenous (IV) line medication.
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Supplementary method 4: Signal Quality Index for heart rate estimation
The assessment of the quality of the PPGi signal is of high importance as data corruption by subject movements and changes in
the lighting conditions presented considerable challenges for video analysis. The assessment of the quality of the PPGi signal
was extended from that described in11, 12 and further described in13. As an initial step, an activity index was computed based on
changes in the segmented skin area over consecutive frames, corresponding to the movement of the subject. A Bayesian change
point detection algorithm was then applied to identify step changes, often caused by sudden lighting condition changes, in the
PPGi signal. The pulses occurring during the periods of high subject motion and step changes were flagged as invalid. In order
to further identify whether each detected beat was of good quality, the algorithm performed a beat-by-beat quality assessment
by combining multiple analysis methods: frequency bounding, clipping detection, amplitude thresholding, and multi-scale
dynamic time warping. Finally, the signal quality index (SQI) of each detected beat was obtained as a combination of all these
individual metrics.

Suitable time periods for estimating heart rate from the video camera were defined when the movement of the infant was
minimal. Changes in the segmented skin area over time can be used as an indicator of the degree of subject motion. The
centroid (Cx, Cy) of skin regions was defined as the average location of the predicted skin pixels in the horizontal and vertical
directions. Motion M(i) at frame i was defined as the Euclidean distance between centroids for two successive frames:

M(i) =
√(

Cx(i)−Cx(i−1)
)2

+
(
Cy(i)−Cy(i−1)

)2
. (1)

The SQIact of the kth beat was taken to be 0 if the Euclidean distance between the kth beat and two beats both before and
after (5 beats in total) was higher than a threshold of 20 pixels, defined as:

SQIact(k) =

{
0 if ∃ i ∈ {bk−2, ...,bk+2} M(i)> 20
1 otherwise

(2)

where bk−2 and bk+2 denote the location of the entire (k− 2)th and (k+ 2)th beat respectively. The distance threshold
was set to 20 pixels, corresponding to a distance of approximately 1 cm measured by the ruler in the colour chart placed near
the subject (see figure 1c in the main paper). The camera was positioned approximately 30 cm away from the subject for all
recording sessions.

Abrupt changes in the PPGi signal occurred due to changes in subject posture or sudden changes in the lighting conditions,
for example: when the overhead light over the incubator was turned on or off; window blinds were opened or closed; or clinical
staff walked pass by the incubator. In order to detect the location of these step changes, a Bayesian change point detection
algorithms was applied to the PPGi signal14. Change point detection was performed on a window-by-window basis for different
window sizes of 5, 10 and 15 seconds and a step size of 5 seconds. All the change points detected were then merged together.
Given Pall(m) is the probability of a change point at m merged from the detections at multiple window sizes, the SQIcp of the
kth beat was defined as:

SQIcp(k) =

{
0 if ∃ i ∈ {bk−2, ...,bk+2} Pall(i)> 0.50
1 otherwise

(3)

where bk−2 and bk+2 denote the location of the (k−2)th and (k+2)th beats respectively. If a change point was detected at
the location of the kth beat, the SQIcp values of this beat and the two beats before and after were set to zero.

Frequency bounding determined whether the instantaneous HR fell within the physiological range of typical preterm infants,
taken to be within a range of 90 and 270 beats/min. Given that HRinst is the instantaneous heart rate of the kth beat, the SQIfreq
was taken to be 0 if the HRinst fell outside the valid physiological range:

SQIfreq(k) =

{
0 if HRinst(k)< 90 and HRinst(k)> 270
1 otherwise

. (4)

Clipping generally occurred as a result of motion artefacts. Signal clipping can be detected when the derivative of the signal
crosses a given threshold15. Given that Nlength(k) is the length of the kth beat and Nclipped(k) is the proportion of the derivative
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of the kth beat that crosses a clipping threshold of 0.1, the SQIclip of the kth beat was set to 0 when more than one-third of the
derivative was clipped:

SQIclip(k) =

{
0 if Nclipped(k)/Nlength(k) > 1/3
1 otherwise

. (5)

Amplitude thresholding was performed to determine whether the amplitude of each beat remained within three standard
deviations σw from the mean µw of the window w. The statistics were calculated locally for each 15-second moving window w.
The SQIamp of the kth beat at location bk was set to 0 if part of the beat was outside the valid range:

SQIamp(k) =


0 if ∃i ∈ {bk} PPGfilt(i)> µw +3 ·σw or

PPGfilt(i)< µw−3 ·σw

1 otherwise
(6)

Another quality metric was defined by measuring the similarity of the cardiac beats in the PPGi signal. Dynamic time
warping (DTW) is a time series technique used to determine a distance (or a degree of similarity) between two given time
series based on the best possible alignment between the two16. The DTW technique is suitable for the time series whose
characteristics may vary in time. For example, similarities in each cardiac cycle could be measured using the DTW technique,
even if heart rate was increasing or decreasing during the course of an observation. Each cardiac beat pulse can be warped
in the time domain to determine a degree of similarity, independent of temporal variations. The classical DTW algorithm is
computationally intensive as it needs to evaluate every possible warping path in order to obtain an optimal alignment. Fitriani17

and Salvador18 extended the algorithm to perform multi-scale warping by refining the search space for the optimal alignment
between the two time series from a coarse to a finer resolution. The multi-scale DTW technique was extended for assessing the
quality of pulsatile signals by determining the distance of the optimal alignment between each beat and a running beat template
computed over a time window.

To compute the signal quality based on the DTW method (SQIdtw), the PPGi signal was first divided into 15-second moving
windows with a step size of 5 seconds. Each window was assessed independently of each other. Multi-scale DTW is described
in more detail in11. The DTW distance was computed between each individual beat (Xk) and the average beat within the window
Yk. The SQIdtw was defined as:

SQIdtw(k) = 1−DTW (Xk,Yk)/100. (7)

SQIdtw ranges from 0 to 1, where a high value relates to a good-quality beat. On the training set, DTW values for good-
quality beats ranged between 5 and 20 with SQIdtw values greater than 0.80. On the contrary, poor-quality beats had much
higher DTYW distances and corresponding lower SQIdtw values.

Once all the individual SQI metrics for each beat had been calculated, the combined beat SQI (SQIbeat) for the kth beat was
derived by simply multiplying all the SQI metrics together:

SQIbeat(k) = SQIact(k) ·SQIcp(k) ·SQIfreq(k) ·SQIclip(k) ·SQIamp(k) ·SQIdtw(k). (8)
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Supplementary method 5: Signal Quality Index for respiratory rate estimation
The signal quality assessment employed a series of different measures to assign a signal quality index to each breath in the
respiratory signal. The algorithms presented in this appendix were extended from that described in11, 19 and further described
in13. Four signal quality indices were computed based on the analysis of the patient activity (SQIact), a valid physiological
breathing range (SQIfreq), the agreement between peak detectors (SQIpeak) and multi-scale dynamic time warping (SQIdtw). The
calculation of the first SQI followed what was described in the previous section for heart rate estimation.

Frequency bounding determined whether the instantaneous RR fell within the physiological range of typical preterm infants,
taken to be within a range of 18 and 120 breaths/min. Given that RRinst is the instantaneous respiratory rate of the kth breath,
the SQIfreq was taken to be 0 if the RRinst fell outside the valid physiological range:

SQIfreq(k) =

{
0 if RRinst(k)< 18 and RRinst(k)> 120
1 otherwise

. (9)

Unlike the estimation pipeline used for heart rate estimation, the assessment of quality of the respiratory signals was based
on the agreement between two peak and onset detection algorithms20. Peak agreement is a measure of how much the peaks
identified by the two peak-and-onset detectors agreed with each other over a given time window. Both detectors usually agreed
with each other when the respiratory signal was clean and disagreed in the presence of noise and artefacts. Agreement was
considered valid when the peaks identified by the two detectors were not located away from each other by more than 5 samples
(or 0.25 seconds – half of the duration of the highest frequency rate that could be estimated). The measure of peak agreement
SQIpeak for the kth breath was calculated as the ratio of the number of peaks in agreement over the total number of peaks
detected in a 10-second window, centred around the kth breath:

SQIpeak(k) =
NAgreed peaks

NAll peaks
(10)

The multi-scale dynamic time warping technique, used for heart rate estimation, was adapted and used to determine the
optimal alignment between each peak in the respiratory signal and the template calculated by averaging the nearby peaks
over a time window. Several modifications were needed to make it suitable for respiratory signals. Unlike PPGi signals, the
morphology of the respiratory signal varies greatly according to the subject’s breathing patterns. Preterm infants are known to
have spontaneous breathing patterns21. Some infants, for example, may have a short inspiration phase followed by a prolonged
expiratory phase; others may have a period of hold expiration followed by multiple expiratory flow peaks. The amplitude of each
breath in the respiratory signal mainly depends on the depth of breathing or the volume of air inspired into the lungs. Hence,
the criteria that were originally used for constructing a peak template from PPGi signals were too strict and not appropriate for
respiratory signals.

Multi-scale dynamic time warping was carried out using a 15-second moving window w with a step size of 5 seconds.
In order to measure the signal quality of each breath in the window, an average breath template was constructed. Once the
template was calculated, the DTW distance was computed for each breath in the time window w. Let DTW be the distance
between each breath and the window template, the SQIdtw was defined as:

SQIdtw(k) =

{
1−DTW (k)/10 if DTW (k)≤ 10
0 otherwise

(11)

When the window template could not be calculated, the SQIdtw of all breaths in the window w was set to 0 (poor quality).
This modification was needed as variations in respiratory rate were much greater than variations in heart rate.

Once all the signal quality measures were calculated, a combined signal quality index (SQIbreath) was computed for the kth
breath as:

SQIbreath(k) = SQIact(k) ·SQIfreq(k) ·SQIpeak(k) ·SQIdtw(k). (12)

SQIbreath was taken to be 0 (poor quality) during the periods of high subject motion (SQIact = 0) and abnormal instantaneous
respiratory rate (SQIfreq = 0). During a quiet and stable period, SQIbreath relied mainly on SQIdtw.
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