
1

PTA: Finding Hard-to-Find Data Plane Bugs
Pietro Bressana, Noa Zilberman, Robert Soulé

Abstract—
Bugs in network hardware can cause tremendous problems.

However, programmable network devices have the potential to
provide greater visibility into the internal behavior of devices,
allowing us to more quickly find and identify problems. In this
paper, we provide a taxonomy of data plane bugs, and use the
taxonomy to derive a Portable Test Architecture (PTA) which
offers essential abstractions for testing on a variety of network
hardware devices. PTA is implemented with a novel data plane
design that (i) separates target-specific from target-independent
components, allowing for portability, and (ii) allows users to write
a test program once at compile time, but dynamically alter the
behavior via runtime configuration. We report 12 diverse bugs on
different hardware targets, and their associated software, exposed
using PTA.

Index Terms—debugging, testing, network programmability
(SDN/NFV/In-network computing)

I. INTRODUCTION

Bugs in network hardware can result in financial loss, se-
curity breaches, or significant downtime for essential services.
Unfortunately, despite extensive testing, these bugs can be very
difficult to find [1].

Example. As an example, imagine that a device drops packets
when the input traffic exceeds a certain rate. How would we
find and diagnose this bug? This sounds like it would be
a simple bug to catch. After all, we would certainly notice
packet drops. In reality, the bug—which we found in the
NetFPGA [2], [3] reference projects—was not discovered for
more than a decade after the platform had been introduced.

The root cause of the bug was that the input arbiter in
the design was not work-conserving, i.e., packets were held
in an input queue even when the output was idle. However,
the bug did not reveal itself on the NetFPGA 1G board with
4×1Gbps interfaces, or on the SUME board with 4×10Gbps
interfaces. It was only revealed when the design was ported
to a 2×100Gbps Alveo board. The bug in the design was
passed from one generation to the next, and the capacity of
the network interface masked the defect in the internal design.

So, how could we have found and fixed this bug sooner?
There are a few immediate observations that we can make.

First, the bug only appears when the traffic rate exceeded
a threshold, in this case, ∼40Gbps aggregate throughput on
SUME. So, software-based approaches like simulation or
emulation, which can slow the execution of a program by a
factor of 106 [4], would not help. Instead, we need a test
framework that can generate and receive traffic at line rate.

P. Bressana is with Intel Corporation, 8048 Zürich, Switzerland
N. Zilberman is with the Department of Engineering Science, University

of Oxford, Oxford OX1 3PJ, UK
R. Soulé is with the Department of Computer Science, Yale University,

New Haven, CT 06511 USA

Second, finding this bug requires internal access to the data
plane. Even if we could externally generate and send traffic to
the device under test at the target rate (e.g., using an Ixia [5] or
Spirent [6] platform), we need a way to distinguish a limitation
of the network interface from the inefficient implementation
of the input arbiter.

Third, we see that the same reference design was used
on several hardware targets, including NetFPGA 1G, 10G,
SUME, and Alveo. Writing tests is time intensive, and having
to repeat test-writing efforts for each target would be onerous.
Just as the reference design can be ported across targets, we
want the tests to be portable across hardware targets.

Although we have focused on an FPGA in this example,
similar bugs and observations hold for programmable ASICs,
although at greater scale. Consider trying to replicate the same
test scenario on a Tofino 2 ASIC, which has 128×100G ports.

Prior Work. Verifying, debugging, testing, and validating
network hardware is a well studied area. A range of software-
based approaches have been proposed, including simulation
or emulation and formal verification [7], [8], [9]. However,
none of these offer a comprehensive solution. Simulators or
emulators may not faithfully model actual deployments, and,
as already mentioned, cannot test scale-related bugs. And,
verifiers cannot catch several types of bugs, such as bugs
in the compiler, performance bugs, or bugs to due to under-
specification in the language.

Therefore, network operators often augment software-based
techniques with hardware-based testing. For this purpose,
equipment vendors such Ixia [5] and Spirent [6] sell highly-
specialized platforms, which can generate and receive traffic at
line rate. Unfortunately, these devices provide limited visibility
because they function as external black-box testers. Moreover,
the cost of such platforms is considerable. Prior research
efforts [10], [11] offer lower cost solutions with similar
intents, but they are limited, in terms of features, scale, and
performance, e.g., OSNT [10] does not scale beyond 4 ports,
and none of them work with non-Ethernet packets.

Problem and Approach. This paper addresses the problem of
how to develop a high-performance, comprehensive, portable
test framework for network devices. The key idea is to
leverage a portion of the resources in programmable network
hardware—including SmartNICs and programmable ASICs—
for testing. Programmable network hardware is an attractive
option for use with testing for two reasons. First, it can send
and receive traffic at high rates by design. Second, it can be
adapted for use-cases beyond traditional forwarding, such as
in-network computing [12], [13], [14], [15].

Challenges. Using programmable network hardware as testing
devices, rather than forwarding devices, presents a significant
challenge, because testing and forwarding are fundamentally



2

different. In particular, we identify three, high-level challenges:
(i) active vs. reactive logic, (ii) dynamic processing behavior,
and (iii) portability.

First, at the most basic level, forwarding devices are reac-
tive, meaning that they execute logic only on the arrival of an
incoming packet. In contrast, testing is an active process. A
tester generates test stimuli in the form of test packets, and
then checks a post-condition.

Second, testing devices require much more flexibility than
forwarding devices. When used for forwarding, the data
plane functionality of programmable NICs and switches only
changes in limited ways, e.g., it might forward packets out a
different port, depending on control plane configurations. But,
the forwarding pipeline is not altered during operation.

In contrast, exhaustive testing often requires significant
adaptation and permutation, dynamically changing the behav-
ior depending on the needs of the test. As an example, imagine
that we want to generate a variety of packets with different
header sizes, similar to how Dumitru et al. [16] check for
security exploits. Changing the data plane implementation
of the test program for every permutation would result in
significant overhead, in terms of compilation and installation,
which can take hours on some platforms.

Third, the test architecture must be portable across a range
of heterogeneous target devices. To provide portability, we
need to identify a set of abstractions that are flexible and
powerful enough to test for a variety of possible data plane
bugs, but can be generally implemented on a range of devices.
Contributions. To address these challenges, we propose a new
data plane architecture for data plane testing. We use the term
data plane architecture in the same way that it is used in the
P4 programming language [17]. It identifies the programmable
blocks and their data plane interfaces. Essentially, it is a
contract between a data plane program and a hardware target.

The P4 open-source community has begun to standardize
a few data plane architectures, including the Portable Switch
Architecture (PSA) [18] for network switches, and the Portable
NIC Architecture (PNA) [19] which models NICs. This paper
introduces the Portable Test Architecture (PTA).

Overall, this paper makes the following contributions:
• The requirements for PTA are derived from a taxonomy of

bug types in programmable network devices and we detail
bugs that we have found in commercial and open-source
software and hardware using the tool.

• Driven by the requirements of the bug taxonomy, PTA
offers a small but powerful set of abstractions to support
debugging.

• PTA has a novel data plane design that: (i) separates target-
specific from target-independent components, allowing for
portability, and (ii) allows users to write a test program
once at compile time, but dynamically alter the behavior
via dynamic re-configuration.

• PTA complements prior work on automatic test packet
generation [20], fuzz testing [21], [22], [23], and soft-
ware validation [8], by providing a framework for running
workloads generated by those tools on actual hardware. To
demonstrate how PTA can be used in conjunction with exist-
ing tools, we have developed a proof-of-concept integration

with P4v [8]. Users can extract assumptions and assertions
from an annotated P4 program, and map them to a hardware
test configuration.

• PTA uses programmable network hardware for testing,
which differs from traditional forwarding in key ways. We
present a set of lessons we’ve learned and assumptions that
were challenged in the design of the framework.

• PTA is publicly available under an open-source license [24].

Key Results. We have implemented PTA for two different
hardware targets: the NetFPGA SUME platform [3] and
the Barefoot Tofino ASIC. We have used the framework to
evaluate several P4 programs and two P4 compilers. Using
PTA, we were able to identify 12 diverse bugs. These bugs are
drawn from a broad spectrum of classes of bugs, demonstrating
that PTA provides a comprehensive testing solution. Moreover,
these bugs were in heavily-used, heavily-tested commercial
and open-source systems.

This paper extends our earlier conference paper [25] with a
more detailed description of the PTA reference design. It also
includes an expanded discussion of the bugs found with PTA.

II. REQUIREMENTS AND CONSTRAINTS

The design of PTA navigates the tension between develop-
ing an expressive framework that can test for a wide range
of bugs, but can be implemented on a diverse set of hardware
targets. Below, we discuss these requirements in more detail by
first developing a taxonomy of error types and then discussing
the constraints imposed by different hardware.

A. Data Plane Bug Taxonomy

A wide range of bugs can occur in network devices. These
bugs can be due to incorrect program logic (i.e., functional
bugs); or due to problems in compiler, target hardware archi-
tecture or others. Below, we provide a taxonomy of the types of
bugs that a test framework must be able to detect. These error
types provide requirements that motivate the design of PTA.
Note that although PTA can be used to test both fixed-function
and programmable hardware, our taxonomy highlights bugs
that may be unique to programmable network hardware (e.g.,
compiler bugs), and may not be comprehensive.

Functional Bugs. A functional bug is one in which the
functionality provided by the network device is not the same as
the functionality intended by the programmer. Functional bugs
can occur in both the data plane and in the control plane. An
example data plane bug would be not supporting IPv6 headers
where such functionality was supposed to be supported. An
example control plane bug would be not filling all the required
entries in a given size table.

Performance Bugs. Performance bugs are related to aspects
such as the maximum throughput or packet rate of a cer-
tain design, how certain packet sizes affect the throughput,
whether congestion control is handled properly, and more. For
performance testing, for example, the user must be able to
continuously fill the pipeline with packets of a certain size
and check that no packets are dropped or lost at the output.
Another performance aspect is the ability to mix packet sizes



3

in explicit ways, which exercise different parts of a design
(e.g., programmable data plane, schedulers, memory access).

Compiler Bugs. Although compilers are tested with scrutiny,
there may be bugs. There are at least two classes of compiler
bugs. The first class of errors regards functionality bugs, e.g.,
where a language feature is supported but the implementation
is missing, or the functionality is implemented incorrectly.
A second class of errors covers the compliance with the
programming language specification.

Under-Specification Bugs. The extent of a programming
language definition, and the diversity between target platforms,
leads to cases where the language specification is not detailed,
either intentionally [26] or not. This can lead to unexpected
or unintended behaviors, for example, if the specification does
not detail whether the initialization of a header should be to
zero, or if can remain unpopulated and random.

Architecture Bugs. Similar programs may target different
data plane architectures, and even perfect programs may be
susceptible to bugs in the underlying device architecture. One
immediate class of device architecture limitations is access
hazards to tables, such as read-after-write. A second class of
bugs uncovers limitations of the data plane architecture, such
as a proprietary module (e.g., an extern) that is not responding
within the expected time. Another class of bugs relates to the
integration of different modules in the architecture, such as a
mismatch in the connection of interfaces.

Security Vulnerabilities. Network devices can suffer from
security vulnerabilities just like any other device, and pro-
grammable network devices introduce new threat vectors.
Security vulnerabilities are commonly the result of a different
class of bugs, and are highlighted due to their importance and
the need for targeted tests. A test framework should allow
users to quickly and efficiently test a large number of such
security threats. One such example would be looking for the
“Meltdown” [27] equivalent of a programmable data plane:
can you craft a packet that would allow you to read the
contents of previous packets, various tables, or memories?
Another example is backdoors in the program, whether in
the original users code or introduced as a by-product of the
compilation process. The hardware test can reduce the security
risk by testing the deployed program as it runs on the platform.

B. Heterogeneous Targets

The diversity of data plane bugs implies that a testing
architecture should be flexible and expressive. However, the
design of the architecture is necessarily constrained by the
capabilities of the target hardware. We briefly summarize these
below. We focus our discussion on two devices that are on
opposite, extreme ends of the spectrum: FPGAs and ASICs.
Other types of network devices, such as those based on System
on Chip (SoC), fall between these two extremes [28].

FPGAs. Field Programmable Gate Arrays (FPGA) have a
given set of resources, but provide users with extreme flex-
ibility and full programmability. As long as a design does
not exhaust resources, and users can compile the design while
maintaining the constraints they set (e.g., on timing), FPGAs

can implement almost any logical operation, with different
levels of complexity.

ASICs. Like FPGA, ASICs also have a finite amount of
resources. But, in contrast to FPGAs, they have a set de-
vice architecture. While ASICs have become programmable—
significantly more so than in the past—their programmability
is constrained to the architecture. Note that CPU architectures
impose similar constraints, e.g., programming on an x86 CPU
is different from programming an ARM core or RISC-V. The
main advantages of switch ASICs over FPGA-based switches
is that they achieve much higher clock rate (and therefore
higher throughput), offer increased scale (e.g., number of
ports), and use resources more efficiently.

Constraints. These differences between hardware targets hin-
der portability. It is often said that P4 allows users to write
target independent programs. But, this is not true. A program
written in P4, like programs written in other languages, is tied
to the target architecture. Examples of architecture specific
properties include externs, initialized values (of registers,
memories and other stateful elements), and timestamp taking,
among others. Portability issues are not always a property
of complex hardware design. They can result from mundane
aspects, such as the number of bits assigned on the metadata
bus to indicate the egress port number (which may differ
between an 8-port switch and a 256-port one, in order to
minimize resource usage).

III. DEBUG ABSTRACTIONS

One of the main challenges in designing PTA is identifying
the core set of abstractions to support debugging. We adopt a
requirement driven design process. Based on the taxonomy in
the previous section, we systematically explored the necessary
abstractions for each of those classes of bugs. The set of
abstractions is intended to be minimal, so that it can be readily
supported by diverse hardware. At the same time, it is intended
to encompass the set of functions needed for testing.

To illustrate the process, we first walk through the running
example—i.e., the input arbiter bug from the NetFPGA refer-
ence project from Section I—before summarizing the complete
set of PTA debug abstractions.

A. Requirement Driven Design

So, how might a developer find and isolate the performance
bug in the input arbiter? Because the module is (incorrectly)
not work conserving, we clearly need to be able to generate
packets at data-path rate, creating controlled back-to-back
arrival events to the arbiter.

Many bugs (e.g., functional, compiler) would depend on
a particular data plane program, suggesting that the debug
framework needs a method to load a data plane image.
However, in this case, the bug is in the architecture of our
target device, and therefore independent from the data plane
program that we would load. To test the architecture, we need
access to the low-level abstractions offered by the hardware,
including the metadata bus, stateful ALUs, and any externs
provided by the architecture of additional hardware modules.



4

Abstraction Description

Load Image Load the image file to the target
Init Counters Initialise the counters in the target
Init Registers Initialise the registers in the target

Generate Packets Generate test packets
Collect Results Collect raw results from target’s registers

Table I: PTA’s user-facing abstractions.

Abstraction Description

Metadata Bus Layout of the metadata bus
Stateful ALU Architecture of the Stateful ALUs

Extern Architecture of the Extern modules
Register Read Interface for reading hardware registers
Register Write Interface for writing hardware registers

Table II: PTA’s back-end abstractions.

We need modules to initialize and check the values of
stateful elements, e.g., counters and registers. This allows us
to confirm the number of packets sent and processed by the
pipeline, and more generally, application specific logic.

Finally, to detect the presence of dropped packets (again at
line rate), we need a way to collect and inspect output packets.

B. Core Abstractions
By following this requirements driven design process, we

identify two classes of abstractions: user-facing abstractions
(Table I) and back-end abstractions (Table II). User facing
abstractions are used to specify the functionality of a test.
Back-end abstractions represent the target device’s architecture
.
User-Facing Abstractions. Users writing tests will be using
user facing abstractions, similar to functions. As these ab-
stractions are not target-specific, a test will be written only
once. The abstractions are used to load the program im-
age (Load_Image), initialize registers (Init_Registers)
and counters (Init_Counters) and to generate and collect
packets (Generate_Packets and Collect_Results).
Note that although packet generation is exposed via user-
facing abstractions, it is adapted to a target (e.g. to vary trans-
mission rate) using user transparent back-end abstractions.
Back-End Abstractions. Back-end abstractions are used to
specify a network-device target, and are called by any tests
using this target device. The back-end abstractions library in-
cludes both the layout of the metadata bus (Metadata_Bus),
that is used by PTA as a configuration channel, and the archi-
tecture specification of both stateful ALUs (Stateful_ALU)
and extern modules (Extern). Since the hardware com-
ponents of the framework are usually accessed through a
register interface, PTA provides two additional abstractions
for reading and writing registers (Register_Read and
Register_Write).

IV. PORTABLE TEST ARCHITECTURE

Building on the core abstractions, PTA provides a com-
prehensive hardware data plane testing solution. PTA is pro-
grammable, meaning that the tool can be customized to the

Figure 1: The proposed architecture: target specific infrastruc-
ture (light-blue), portable suite of P4 test programs (yellow)
and test-specific configurations (purple).

particular testing needs of the user for a diverse set of bugs. It
is also re-configurable, meaning that new tests can be run via
dynamic re-configuration (e.g., using register access), rather
than re-programming (e.g., requiring a new image file). PTA
allows for integration with existing tools, providing prior work
on automatic test packet generation [20], fuzz testing [21],
and software validation [8] with a path to run on hardware.
When used to test devices with programmable data planes,
PTA allows access to internal state, providing detailed fault
localization. PTA allows users to test network devices in real
time at full line rate, and test results are reproducible. We
expect PTA to be deployed out of band, i.e., in parallel to live
traffic. It does not incur additional latency or alter the traffic.

A. Overview

Imagine that a user wants to verify a certain data plane. We
assume that the user has some information about the data plane
functionality, e.g., the P4 program, but not all information of
the dataplane, e.g. hardware-target’s micro-architecture. The
user will need to devise a test plan that covers the range
of potential bugs, covered in Section II-A. Most of these
tests are generic (e.g., performance tests) while some are
use-case specific (e.g., P4-program specific functional tests).
Next, following this plan, imagine that the user wants to
verify that this data plane runs at line rate for different packet
sizes. To run this test, we need three components: a packet
generator, to inject packets into the data plane; an output
checker, to assert that post-conditions hold at the end of
the test; and a management component, to run the test. All
these components are illustrated in Figure 1, which shows the
high-level design of PTA. Both the generation and checker
modules are implemented in hardware, while the management
component is a set of software programs.

Even for this simple example, there are a range of parame-
ters and scenarios to be tested: How many packets should be
sent? What sizes should the packets be? At what rate should
be packets sent? And, at what rate do we expect the output
packets to arrive? What protocols are being used in the packet
headers? Hand-writing tests for each of these scenarios would
be tedious, and possibly error-prone.



5

To help reduce the burden, PTA separates tests into two
parts: the programmable part and the re-configurable part. The
programmable part can be thought-of as data plane specific.
Users can, for example, write a program to generate packets
with different protocol headers, and write a checker to validate
the emitted headers. The re-configurable part is test-specific.
It is a control plane configuration of the programmable part,
that allows users to change parameters such as packets sizes,
sending rates, etc.

The programmable part of a test can be divided into
infrastructure that is target-independent and target-dependent.
The target-independent infrastructure is written in P4, and
controls, for example, the definition of protocol headers. The
target-dependent infrastructure is the device-specific func-
tionality (e.g., generation of blank packets).

Note that although PTA’s programmable parts are imple-
mented in P4, the data plane under test does not need to be
written in P4. PTA can be used to test data planes designed
using a variety of different workflows and languages, including
high level synthesis, C/C#, and HDLs (e.g., Verilog).

It is important to stress that all of the components of PTA are
implemented inside the target network platform. This provides
PTA with several important advantages. First, it allows PTA to
test the data plane while avoiding the surrounding hardware,
including the network interfaces. A failure of a test can
guarantee that the cause is not in the interfaces but in the tested
data plane. Second, it enables testing the device at line rate and
at real time. Testing a device at line rate is challenging due to
the cost of external traffic generators (e.g., Ixia [5]), making
it outside the reach of many users. Thus, the internal data
path may have a certain speed-up over the external interfaces,
making it very hard to create and detect hazard scenarios such
as read-after-write in two consecutive clock cycles, or certain
cross-traffic scenarios that lead to consistency issues. Finally,
PTA allows users to test and debug their data plane in the
field, without additional equipment, and without changing the
physical settings.

B. Target-Independent Test Infrastructure

The target-independent infrastructure of PTA is a set of
P4 programs used for packet header generation and output
checking. Both components are implemented as a sequence
of match-action tables and a set of registers that change
control flow. The entries in these tables are re-configurable,
and provide the flexibility to support different tests.

PTA includes a set of default programs that developers may
use to generate packets with standard protocols (e.g. Ethernet,
IP, TCP, UDP, etc.) and to check for common conditions.
Thus, for many test scenarios, users need not write any P4
code themselves. To support custom protocols and to check
for data plane specific test scenarios (e.g., to generate a packet
with a Paxos protocol header [15] and test for a specific post-
condition), users can expand on these default programs for
custom-protocols using P4.

Packet Header Generator. The packet header generator takes
blank input packets, and turns them into stimulus packets
injected to the data plane under test. The P4 program defines

the protocols that need to populate the header and properties
of the contents. Because tests are written in P4, developers can
use any protocol that is implementable in P4, and can easily
add custom headers, different fields, change the ordering of
headers, and more. For example, an empty packet entering
the test header generator will be emitted as a standard TCP/IP
packet, with a certain sequence number and valid checksum.
Combined with a blank packet generator, the test header
generator will control packet size and contents, traffic pattern
(e.g., inter-packet gap), and may even intentionally craft illegal
stimulus packets. The output of the test header generator
connects to the input of the data plane under test.

Output Packet Checker. The output of the data plane under
test is connected to the output packet checker. The output
packet checker, implemented in P4 and shown in Figure 1,
can be programmed to expect specific values or sequences of
values within the returned packets. It compares these values
against the input traffic stream (e.g., to detect packet drop,
reordering, or other points of failure). The stages within the
checker’s stages support different types of functionality, such
as matching specific header fields, or comparing metadata bus
values. The outcome of each check is stored in a memory.
Typical types of stages include an ALU, that performs both
logic and arithmetic operations over headers and metadata, and
CAM and TCAM blocks that compute simple matches against
header and metadata fields. The number of received packets
is an example of a common functionality implemented using
counters.

C. Target-Dependent Test Infrastructure

P4-based data planes are packet driven, and do not generate
packets without a stimulus. For this reason, PTA uses a blank
packet generator that creates empty packets, feeding the test
packet generator’s P4 pipeline. By a blank packet, we mean a
packet with no header fields and no payload. The blank packet
generator is target specific. For example, some ASIC switches
(e.g., Tofino) already have a built in-packet generator, while
other devices (e.g., FPGA) require a dedicated implementation.
Even if a packet generator already exists within the device,
it varies in features and properties between devices, and is
therefore target specific.

Additional target specific infrastructure is focused on the
connectivity of PTA: connecting the output of the test packet
generator to the data plane under test, and connecting the
output of the data plane under test to the output packet checker.
This connectivity depends on the hardware architecture of the
device, where PTA is internal to the device. For example,
NetFPGA has a 256-bit wide AXI-4 streaming bus, and the
output of the test packet generator is connected to NetFPGA’s
input arbiter. On other devices, the bus type and width will
vary, as well as the connection points.

Finally, PTA includes 4 additional functions implemented
in hardware that are useful for testing: random number gener-
ation, counters, time-stamping, and a method to swap fields.
These are used as externs in the P4 programs.



6

D. Re-Configuration

To fully explore the parameter space for a test, PTA allows
users to re-configure tests. To re-configure a test, a user writes
a simple test script. The script allows users to change features
such as the packet rate burst length, the gap length between
packet transmissions, the packet sizes, the payload sizes, etc.
It also allows users to set initial meta data flags and fields.

All configurations updates are control plane changes that
happen dynamically at runtime. This allows users of PTA to
explore a wide variety of test scenarios without having to
recompile the test programs and install a new image—which
can take a long time for some targets.

E. Interactions with the Control Plane

PTA monitors the data plane, and can identify and verify
packets going to the control plane. It does not have direct
visibility into the control plane. However, the functionality of a
networked-program is a combination of the data plane program
and the control plane configuration. During tests, PTA treats
both as a single unit. A correctly programmed data plane with
a misconfigured control plane may lead to a test failure, for
example if a missing entry in a table leads to packet drop. In
this context, PTA can indicate why a test has failed (e.g., a
packet was dropped), but not what was the source of the failure
(i.e., data or control plane). As we describe in Section IX-B
(test#05), PTA successfully detects control plane related bugs.
Another advantage of PTA’s approach is that it further enables
testing different control plane configurations.

F. Management and User-Interface

While P4 programs define the type of packets that can be
generated by PTA, the management software defines the prop-
erties of the test. It is responsible for configuring the control
and data planes, triggering tests, collecting and processing
results, and declaring Pass/Fail. For this purpose, PTA includes
a set of Python libraries to help manage the tests.

Test packet generation is determined by configuring the
blank packet generator. This includes both information about
the generated packet stream (e.g., number of packets, packet
size, burst properties) as well as the input metadata accompa-
nying the packet (e.g., path through the generation data plane,
which headers to add).

Test results are specified using assertions. The management
software reads from the output packet generator the results of
the test (e.g. number of packets received), and compares them
to the expected values set as Pass criteria.

G. Test Generation

The definition of validation tests is always a challenging
task, which we address in Section X. In this section, we focus
on the generation of pre-defined tests.

First, PTA reuses verification tests as validation tests
through an automated integration with P4v, as discussed in
Section VI. This means that tests previous written and exe-
cuted for P4v are compiled and run on the hardware target
using PTA.

Figure 2: PTA Reference Design: test packet generator

Figure 3: PTA Reference Design: output packet checker

Aspects that can not be tested using verification tools, such
as P4v, must be written by the user. The user has a high
degree of freedom in test generation. PTA includes a test
library that allows users to specify test pre-conditions and
post-conditions in a Python scripts. These are automatically
translated to a configuration of PTA. Example test scripts are
provided in [24]. A lot of these tests, though not all, can be
defined once and then be reused as data plane programs change
or for regression tests (as is the case with the NetFPGA).

PTA supports some types of fuzz testing, such as random
payload or random header contents, and these were used in a
few functional tests described in Section IX-B.

PTA can generate any possible test packet sequence, as long
as all the headers of each generated test packet can fit in the
available stages of the test packet generator pipeline.

Although PTA is an open-loop framework, “stateful” testing
can be implemented using its Python test library. Each of the
example test scripts provided in the project repository [24]
could be extended to generate new sequences of test packes,
based on the outcome of previous checks, and for repeating
this procedure indefinitely.

The open-source nature of PTA means that users can also
change the hardware infrastructure to support new or different
tests that were not considered by the authors of this paper.

V. PTA REFERENCE DESIGN

As an initial design for PTA, we have developed the PTA
Reference Design, which emphasizes rapid deployment. The
PTA Reference Design includes both packet generator and
output checker programs, and allows users to “program-once



7

(data-plane), reconfigure-many-times (control-plane)” to run a
large set of tests over different data planes.

The PTA Reference Design supports both standard headers
(e.g., Ethernet, IPv4, etc.) and custom, user-defined headers, as
well as user-controlled metadata. Users can run different types
of tests (e.g., functional, performance) and tests generated
from PTA’s integration with P4V (§VI). In designing PTA
Reference Design, we adopted a requirements-driven approach
in which we examined prior work on programmable data
planes [29], [15], [30], [31], [32] to identify both common and
dedicated features, while attending to resource constraints.

Figures 2 and 3 present the concept of PTA Reference
Design, for the test packet generator and the output packet
checker, correspondingly. Each module is represented by a
single P4 program, supporting a range of match-action tables.
The entries within these tables are configurable and provide
the flexibility to support different test programs.

a) Reference Test Packet Generator: The reference test
packet generator contains match-action stages of three differ-
ent types: “standard” stages populate widely-used standard
headers; “custom” stages populate headers unique to the
program under test; and “metadata” stages set fields with
the pipeline’s metadata bus. Although custom headers can
sometimes fit within “standard” tables, they are often wide
or require significant resources [31], [15]. Therefore, the
test packet generator includes dedicated shallow and wide
“custom” tables to optimize the use of resources. Our reference
program is organized as three “standard” tables followed by
“custom” tables, which is the common case in the programs
we examined.

In PTA Reference Design, the metadata bus is used in a
unique way, indicating to each stage if it is “on” or “off”,
and choosing which header is generated at each stage (based
on values within the tables). The metadata bus settings are
read from a table, thus enabling many different pipeline
configurations using a single P4 program.

Note that there is a critical trade-off between flexibility and
available device resources. The flexibility provided by the gen-
erator increases with the number of stages, meaning that with
more resources, more headers and packet combinations can
be generated. Although this trade-off constraints scalability,
it keeps the design simple to implement and configure. The
reconfigurable component of the metadata bus is relatively
small, and does not consume many stages in the pipeline.
Most of the metadata bus is reserved for both the blank packet
generator and the data plane under test.

b) Reference Output Packet Checker: The packet checker
is required to handle not only headers, but also fields and bits
within headers. Moreover, the checker must handle operations
(e.g, AND) computed on values from headers and fields to
compare with an expected output. To provide maximum flex-
ibility, we prefer to make each pipeline stage more complex,
rather than increasing the number of pipeline stages. As in the
packet generator, stages can be turned on or off, but pipeline
stages look different. Figure 4 shows the design of the three
types of pipeline stages: “ALU”, “CAM” and “TCAM”. In the
figure, CAM and TCAM are depicted together, since there are
minimal differences in the two designs.

Figure 4: Components of the reference output packet checker

ALU stages, each made from three match-action stages, are
used for preparing values to be checked. Each of the first two
stages is used to load one operand, and the third stage executes
the operation and stores the result to a register. Operands
can be both header and metadata fields. Supported operations
include addition, subtraction, AND, OR and XOR.

CAM and TCAM stages are used to implement fast binary
and ternary matching, correspondingly. Each CAM/TCAM
stage is composed of a pipeline of two match-action stages,
one for selecting the header/metadata field and the second to
match and write the result to a dedicated metadata variable.
The second stage provides flexibility for the match operation,
since P4 requires that the field to be matched is known at
compile-time. Only the first stage is be configured by the
metadata bus. The second stage is configured through the
control plane before executing a test.

c) Example Configuration.: To illustrate the operation of
PTA Reference Design, assume a user program processing
packets with four headers: three standard headers (Ethernet,
IPv4 and UDP), and one proprietary header that includes
two fields. The program under test is supposed to XOR the
first application header field with the metadata field indicating
the network interface that received the packet and write the
result to the second application header field. Assuming PTA
Reference Design was already loaded on the platform, only
the test needs to be configured.

In order to generate the test headers, we configure the gen-
erator to use three “standard” tables to generate the Ethernet,
IPv4 and UDP headers, and one “custom” table to generate
the proprietary header. In this scenario, two of the “custom”
tables will not be used and will be turned off. A seventh table
will be used to generate a metadata bus that feeds the data
plane under test. The size of the blank packet generated is
configured as well.

At the checker, we map the XOR operation to the first ALU
(stage 1) and the related match to the first CAM (stage 2).
The ALU at stage 3 is turned off. We use the CAM at stage
4 to check that packets are correctly forwarded to the output
network interfaces. Using the control plane, we populate the
tables in the three active stages with the addresses of the fields
to match, the operation the ALU stage is supporting and the



8

index of the registers to which the results will be stored. In
stage 1 we select the first application header field as the first
operand and the metadata field indicating the network interface
that received the packet as the second operand. We set the
ALU to compute a XOR operation. In stage 2, we select the
metadata field containing the result of the XOR operation to
be matched against the table. Finally, we select the metadata
field indicating the network interface to which the processed
packet has been forwarded to be match against the table at
stage 4. The results of the checks compute at stages 2 and 4
will be written to registers.

d) Implementation.: PTA Reference Design is currently
supported on NetFPGA SUME. Because SDNet, used by P4-
NetFPGA [30], limits the minimum size of table to 64 entries,
and tables can not share memory, the reference program in-
stantiates multiple identical tables, leading to sub-optimal use
of resources. Consequently, the number of “custom” headers
supported is limited. An upcoming release of P4-NetFPGA
on Xilinx Alveo board is expected to solve these resource
limitations.

VI. INTEGRATION WITH A VERIFIER

There has been significant prior work on workload and
test case generation. This work covers a broad range of
techniques, including automatic test packet generation [20],
fuzz testing [21], and software validation [8]. PTA provides a
path for these tools to run their generated tests on hardware.
As a proof-of-concept about how such tools could integrate
with PTA, we developed a prototype P4v-to-PTA translator.

Many software verification tools, including P4v [8] and
Assert-P4 [9], are based on Hoare logic, which provides a
formal system for reasoning about the correctness of computer
programs. The central feature of Hoare logic is the Hoare
triple. A Hoare Triple is of the form {P} c {Q}, where P is
the precondition, Q is the postcondition, and c is the command,
i.e., a piece of code that changes the state of the computation.
A verifier can translate these assumptions and assertions into
logical formulas, and use an automated theorem-prover to
check if there is an initial state that leads to a violation.

The P4v-to-PTA translator parses an annotated P4 program
and automatically extracts the assumptions (i.e., the P s) and
assertions (i.e., the Qs). For each assumption, the tool collects
a list of test headers to be generated and identifies suitable
values for each field. It then generates the P4 code and
configuration for the test packet generator. For each assertion,
the tool generates the output packet checker’s data plane and
the accompanying configuration, as illustrated in Figure 5.

This process is fully automated. To test an annotated P4
program, a user simply needs to place the P4 code in a
specified folder. The PTA tool not only generates the test
generator and checker P4 programs for PTA along with the
associated configuration, but also compiles and runs the user’s
application on Tofino. Furthermore, the management scripts
collect test results and present them to the user. The entire
process is similar to the using the P4v command line tool,
but runs real, extensive hardware validation. We expand this
discussion in [24], by describing an example test program.

// omitting parser code


action all_subs() { 

subtract_from_field(h.s2, 4); }

table sub_tbl { actions { all_subs; } }


register check_reg_1 {

blackbox stateful_alu check_alu_1 {

 reg: check_reg_1;

 condition_lo: h.s2 <= 0;

 update_lo_1_value: register_lo + 1; }

action check_act_1() {

    check_alu_1.execute_stateful_alu(INDEX); }

table check_tbl_1 { actions {check_act_1;} }


control ingress { apply(sub_tbl); apply(check_tbl_1); }

// omitting parser code


action a1() {

subtract_from_field(h.s2, h.s3); }

table t1 { actions { a1; } }


control ingress {

 @pragma assume( 
h.s2 == 4 && h.s2 > h.s3) 
 apply(t1);

 @pragma assert(h.s2 <= 4) }

// omitting parser code


action set_hdr() {

 add_header(h);

 modify_field(h.s2, 4); 
 modify_field(h.s3, 3); }

table tbl_hdr { actions { set_hdr; } }


// omitting ingress code

Test Header Generator Data Plane Under Test 

Output Packet Checker 

Figure 5: Integration with P4v.

Using PTA as a runtime tester, we were able to identify
two bugs in the Barefoot Networks SDE compiler, related
to saturating integers (Section IX-A). These bugs would not
be caught by formal verification. The programs that suffered
from these bugs were logically correct, but still exhibited
unexpected behavior.

VII. IMPLEMENTATION

We have implemented PTA on two target devices: NetFPGA
SUME platform and Barefoot Networks’ Tofino ASIC. The
code base, which includes both the implementations, is open
source, and available on GitHub [24].

FPGA Implementation. An FPGA-based prototype is im-
plemented on the NetFPGA SUME platform [3] using the
P4→NetFPGA workflow [30]. It uses Xilinx’s SDNet[33]
2018.2 and supports P4 16.

PTA builds upon the NetFPGA SUME reference architec-
ture, which is composed of a data plane that processes traffic
arriving from four independent network interfaces and a host
(over PCIe). PTA taps to the architecture through a sixth input
interface and a sixth output interface. Our implementation of
PTA on NetFPGA follows the design outlined in Section IV.

ASIC Implementation. We also implemented PTA on Bare-
foot Networks’ Tofino, a 6.5Tbps programmable Ethernet
switch ASIC [34]. The Tofino ASIC provides either two or
four hardware packet processing pipelines, depending on the
ASIC model. The four pipelines of Tofino allow us to imple-
ment PTA using an architecture similar to the FPGA architec-
ture: the packet generator and checker are implemented within
separate pipelines, and the data plane under test is loaded
in a dedicated pipeline. We note that the current Barefoot
Networks SDE control plane software does not allow users to
manage different programs loaded on to different data planes.
This limitation is not inherent, and we expect the functionality



9

will be supported in future releases. However, as a temporary
work-around, we performed our debug experiments using three
switches instead of one. As P4v supports only P4 14, our
implementation of P4v-to-PTA supports only Tofino using
P4 14, extensively by Barefoot at time of development, and
not the P4 16-based P4-NetFPGA.

VIII. EVALUATION

Validation. We validate PTA independently from any data
plane under test, both on Tofino and on NetFPGA. The
validation uses external traffic generation (e.g., OSNT [10])
and capture tools (e.g., Endace DAG) to confirm assumptions
such as traffic rate and contents. Barefoot further confirmed
to us that the packet generator built inside the Tofino chip
runs at line-rate. We conduct a functional validation of PTA,
testing using both external and internal tools (counters, logic
analyzer) to examine each feature. Testing of programmable
data planes began only once the PTA infrastructure was tested.

Performance. We have evaluated and confirmed that both
NetFPGA SUME and Tofino-based programs run at line rate,
using the setup previously described and ranging packet sizes
from 64B to 1514B on NetFPGA. PTA implementation on
NetFPGA does not allow for congestion propagation into
PTA’s pipelines, meaning that any flow control indication leads
to packet drop outside the modules. For both NetFPGA and
Tofino, support for congestion control within the pipeline is
the same as for any other programmable dataplane [33]. We
showed these properties of PTA in Section IX-D, by testing
networked programs for line-rate and identifying bugs.

Resource Consumption. PTA introduces two new modules to
a device. On the generator side, NetFPGA programs required
between 2 and 4 pipeline stages, using one table and 1-2
externs, and Tofino implementations required 2 tables. On the
checker size, NetFPGA programs required between 5 and 7
pipeline stages, using two tables and 3-5 externs. On Tofino,
7 tables and 5 stateful ALUs were required in the checker. A
breakdown of these results is provided in [24].

We report the resources overhead introduced by PTA, but
caution that it is difficult to quantify resources in a meaningful
way, since the amount used depends on the program under
test and the compiler. For example, on NetFPGA the compiler
requires that all tables have least 64 entries, even if 16 entries
would be sufficient. A newer version of SDNet (2019.1), not
currently supported by NetFPGA, is more resource efficient.

On NetFPGA, representing an FPGA-based use case, the
resource overhead of PTA (i.e, average of logic and memory
use) never exceeded 15%, which was for the experiments with
NDP [35], compiled with SDNet 2018.2. In many cases (e.g.,
INT, Learning Switch) this number drops to 9%. The blank
packet generator required just 0.13% logic overhead, and no
memory. Detailed resource consumption is provided in [24].

On Tofino, PTA tested a data-plane program on one pipeline
using other pipelines. Since resources are not shared between
pipelines, PTA does not “take away” resources from the data
plane under test. ASIC resources are given, and PTA easily
fits, using the resources noted above.

Metric Device Property Example

Max # of headers in a single test PHV size 4Kb
Max # of checks in a single test # of Stateful ALUs 40
Max # of packets in a single test Counter width 4 billion

Max test speed Pipeline Bandwidth 1.6 Tbps
Max packet size Max Transmission Unit 1514 B

Table III: Additional Evaluation Metrics. Example values are
indicative of the proof-of-concept implementations.

Test Completion Time. The PTA run time includes four
components: platform setup (i.e., downloading an FPGA bit
file), configuration, test execution time, and results collection
and report. The test execution time is test-dependent, i.e., it
depends on how long a user wants to send traffic, the number
of parameters to explore, etc. For the tests that we ran on
NetFPGA, the average overall time was ∼110s, including
all four components, though for some tests this number was
reduced to ∼70s. Out of that, the platform setup time, which
is a one time process, is ∼20s, and test re-configuration,
including populating tables, is in the order of seconds. An
exhaustive performance test on NetFPGA SUME, which tests
throughput under each and every supported packet size, with
a billion packets per packet size, was ∼3000s.
Additional Metrics. Many of PTA’s performance metrics,
summarized in Table III, are a property of the hardware target,
not PTA. For example, the number of headers depends on the
size of the packet header vector (PHV), and the number of
verified aspects in a test (e.g., dropped packets, correct headers
checks) depends on the number of stateful ALUs in the device.

IX. BUGS FOUND

Our implementations of PTA enabled us to uncover bugs
within different programs and architectures, while covering
use cases discussed in Section II. Table IV provides a partial
list of tests run and bugs found using PTA. The table indicates
the name of the program we used for the data plane under
test, a brief description of the category of bug, the hardware
platform, and whether or not the test passed. Note that when
the program name is Any, it indicates that the bug was not
tied to a particular program. We discuss these particular bugs
as they highlight the diversity of test cases that PTA enables.

A. Compiler Checks

PTA was able to find or confirm three bugs in version
8.9.1 of the Barefoot SDE compiler. These bugs were found
when integrating with P4v, discussed in Section VI. In the
first bug, (test #01), the compiler generated incorrect byte
swapping code (e.g., between big and little endian). This bug
has been fixed in the 9.0.0 release of the SDE. The second
bug is related to “saturating” an attribute in header fields (test
#02); header fields marked as “saturating” always collapse to
their minimum value after a “subtract” operation is computed
on them. The third bug prevents the implemented data plane
from correctly processing “signed” header fields (test #03).
Although represented in two’s complement form, “signed”
fields are treated as unsigned numbers in the hardware, thus



10

1 // Parse packet headers by specifying state
2 // machine transitions.
3 parser Parser(packet_in b,
4 out Parsed_packet p,
5 inout sume_metadata_t sume_metadata) {
6

7 state start {
8 b.extract(p.ethernet);
9 transition select(p.ethernet.etherType) {

10 IPV4_TYPE: parse_ipv4;
11 default: reject;
12 }
13 } // Eliding IPv4 parser
14 }

Figure 6: Subset of a P4 program that reject non-IPv4 packets.
The behavior of the bold line is unspecified.

generating incorrect results. We reported these bugs to the
developer, and they have since been fixed.

B. Functional Tests

We discovered several functional bugs in multiple designs
implemented on NetFPGA SUME, including the Verilog and
P4 Learning Switch designs, and NDP [35]. First, packets
with invalid source MAC addresses pass through the data
plane and reach the output network interfaces, even though
they should have been dropped before traversing the pipeline
(test #04). This bug differs from the Parse Reject bug (test
#08), as the value within the header should be banned, not the
header itself. Furthermore, the issue is Ethernet compatibility,
not compatibility with the P4 specification. Second, we find
that, when the number of entries written to the MAC lookup
table exceeds the size of the table, the write pointer will wrap
around, and the first entry will be over-written (test #05).

When testing a P4 implementation of In-band Network
Telemetry (INT) [32] on NetFPGA, we detect some missing
functionality (test #06). This includes missing measurement of
switch hop latency, egress port utilization, or queue congestion
status. The design also does not report which rules matched
while traversing the data plane or provides information about
other flows traversing the same network queues.

A more serious bug in the implementation of INT is the
handling of packets with a large instructions count (test #07).
The INT specification [32] states that “a device would cease
processing an INT packet with an Instruction Count higher
than the number of instructions that it is able to support”.
In our test, we find that if more than five instructions are
requested, the program fails to set the Bottom-of Stack (BOS)
flag to the last (fifth) INT header.

C. Under-Specification Tests

Because different hardware targets have different capabili-
ties and features, they may exhibit different behavior. And, in
some cases, it would be unreasonable to force all targets to
have a uniform behavior, because doing so would add unnec-
essary complexity to a design, or add additional performance
overhead. For such situations, the language specification often
leaves the implementation details as up to the compiler.

One example of such behavior is illustrated in the snippet of
code in Figure 6, which shows the implementation of a parser
in P4 (test #08). It includes logic to extract the Ethernet header
and examine the type field of the Ethernet header. If the type
field indicates IPv4, the parser will transition to the parser
state for extracting IPv4 headers. Otherwise, the program will
drop the packet (i.e., reject).

The intention of this program is that any non-IPv4 packets
should be dropped. However, the behavior of the program
when compiled using P4→NetFPGA [30] might run counter
to user expectations—the packet is forwarded through the
programmable pipeline and out of the device.

The reason is because the P4 language specification leaves
the choice of how to implement a parser reject state up to the
architecture. The SDNet compiler [33] does not implement the
reject state as drop and P4→NetFPGA [30] does not use the
reject indicator provided by the SDNet-generated module.

Technically, forwarding the rejected packet is not a bug,
since the implementation is not contrary to the specification.
However, it does result in unintuitive behavior that might
surprise a developer. And, this behavior would not necessarily
be caught by verification tools like P4v [8] or Vera [7],
depending on how they model reject.

D. Performance Tests

We evaluate the performance of several P4 and HDL based
programmable designs built upon the NetFPGA infrastructure.
We first discuss bugs that are specific to a given program.
We then discuss bugs that are a property of the NetFPGA
infrastructure.

In the NetFPGA Reference Switch and NDP, we discover
a write-after-write hazard, where the lookup table is not able
to sustain subsequent entry updates with packet sizes of less
than 385B, due to the write access latency (test #09). When
the packet size is 385B or bigger, meaning 13 clock cycles or
more between two updates, the design functions as expected.

Running a similar test on the P4-based learning switch
resulted in a failure to support consecutive table updates at line
rate, regardless of packet size. The root cause to this limitation
is the separation of control and data planes, which means that
updates to the lookup table must go through the host by design,
a latency in the order of milliseconds.

An evaluation of the P4-based INT design on NetFPGA
yielded interesting performance results (test #10). We find that
the data plane can sustain the full internal throughput (50Gbps)
only with unaligned packet sizes (e.g., 65B, 97B), but not for
data path aligned packet sizes (e.g., 64B, 96B). We expect that
this issue is caused by the expansion of the packet within the
encrypted data plane module, beyond the INT header added
to the packet. This is also the explanation proposed to us by
the P4→NetFPGA designers.

E. Architecture Tests

A few of the bugs uncovered by PTA had to do with the
architecture of specific designs or with the underlying hard-
ware infrastructure (test #11). For example, initial throughput
testing of both HDL-based and P4-based learning switches



11

Test# Program Category Description HW Plat. Pass/Fail

01 Any Compiler Byte swapping Tofino Fail
02 Any Compiler Saturating Tofino Fail
03 Any Compiler Signed fields Tofino Fail
04 NDP, Switch (P4, Verilog) Functional Invalid MAC NetFPGA Fail
05 NDP, Switch (P4, Verilog) Functional Table wrap NetFPGA Fail
06 INT Functional INT features NetFPGA Fail
07 INT Functional Instructions count NetFPGA Fail
08 INT Underspecification Parser reject NetFPGA Fail
09 NDP, Switch (P4, Verilog) Performance Write hazard NetFPGA Fail
10 INT Performance Aligned packet sizes NetFPGA Fail
11 Any Architecture Input arbiter NetFPGA Fail
12 Any Security Meltdown NetFPGA/Tofino Pass/Pass
13 Any Security Read headers beyond NetFPGA/Tofino Fail/Pass
14 Switch (P4) Comparison Port MAC NetFPGA Fail
15 Switch (Verilog) Comparison Table wrap NetFPGA Fail

Table IV: A subset of the tests we ran and bugs found using PTA.

resulted in a large number of packet drops. The cause was
found in the arbiter at the input to the data plane, that turned
out not to be work conserving. An additional architecture
limitation was discovered at the output of the data plane, at the
output queues. Full rate traffic through the data plane under
test led to packet drops at the queues, which turned out to
be an intentional design choice by the NetFPGA team. They
designed the overall supported outputs queues throughput to
be circa 40Gbps. We note that PTA found this bug after the
platform had already been in use for more than 10 years. The
fix has supported 2 more recent NetFPGA-based projects.

F. Security Checks

In the course of working on this paper, we have conducted
several experiments, both on P4→NetFPGA and on Tofino,
trying to uncover security vulnerabilities. In our exploration,
we focused on one aspect of the P4 language, which is Unde-
fined Behaviors (Section G.2 of P4 Specification v1.1.0 [36]).
This includes aspects such as uninitialized variables, accessing
header fields of invalid headers, and accessing header stacks
with an out of bounds index.

First, we tried to identify the networking-equivalent of a
“Meltdown” [27] bug by attempting to infer the contents
of previous packets using malformed packets (test #12). In
principle, we try to infer the contents of the memory by
reading a value of a non-existing header in the packet, in an
attempt to use previously stored header contents. This is one
form of accessing header fields of invalid headers. Positively,
we find that the SDNet compiler returns a zero value for such
attempts, providing stateless operation between packets.

In another test, we attempted to read headers beyond the
end of the packet, with a similar motivation (test #13). In this
case the result was positive as well, with the Tofino switch
dropping the “aggressor” packet. SDNet does not allow such
operations either, invalidating all parsed bits of the offending
packet. This case is interesting, as it touches on the delicate
interface between compiler and architecture. Although SDNet
guards against such operations, P4→NetFPGA did not handle
the error indication from SDNet. Therefore, the unprocessed
and partially corrupted packet may still be emitted.

G. Comparing Designs

By comparing seemingly identical designs, we do not iden-
tify bugs, as these are covered by previous scenarios. However,
we do identify gaps in specification, behavior, or performance.
For example, we compare two implementations of a learning
switch: one written in Verilog, and one written in P4. Both
designs share the same NetFPGA infrastructure, and differ
only in the data plane module. Despite the similarity, we
find two differences in functionality. First (test #14), in the
P4-based design, two ports cannot be assigned to the same
MAC; once a Port-MAC binding has been learned, it cannot
be overwritten by other packets. In contrast, in the Verilog-
based design, after a Port-MAC binding has been learned, it
can be overwritten by other packets. Second (test #15), in the
Verilog-based design, overflow happens when exceeding the
table size and the first entry is overwritten without any notice
(as noted before). In the P4-based design, on the other hand, no
overflow happens when exceeding the table size. In principle,
such updates are expected to be silently dropped by the control
plane. This is a property of the closed-source compiler, which
we don’t have visibility to test.

H. Ethics and Corrective Actions

Ethical issues have been considered as part of this re-
search. We have focused on the handling of vulnerabilities and
weaknesses discovered in the different designs. Vulnerabilities
have been disclosed and discussed with code and platform
originators, which also helped us clarify what is considered a
bug, a known design limitation, or an unsupported feature. We
have further taken a positive approach and contributed code
fixes to open-source projects (e.g., NetFPGA), as a means to
improve their quality based on our findings.

The reject limitation found in P4→NetFPGA was reported
to the NetFPGA project and Xilinx Labs. Xilinx Labs have
proposed a work-around that enables users to support func-
tionality similar to reject in the pipeline, even though actions
as a result of reject is not implemented in the compiler.

We discussed the architecture and performance issues in the
NetFPGA Reference designs with the NetFPGA team. The
NetFPGA team indicated to us that they were aware of a



12

minimum-access latency limitation for table updates, but not
to the discovered extent. The authors of this paper have also
contributed a fix to the NetFPGA input arbiter module as part
of this work, as well as the packet generation module of PTA.

Bugs in the Barefoot Networks SDE were reported by
entering a ticket on the FASTER portal and via personal email
communication. All bugs reported in this paper have since
been fixed by the developers.

X. LESSONS LEARNED

In this section, we summarize some lessons learned through
our experiences with testing network data planes.

A. Extending the P4 Language

PTA is designed to provide a programmable test framework
with an internal view of a network device. However, this
internal view is hampered by the closed-source nature of
hardware solutions, e.g., modules generated by SDNet are
encrypted. Testing would be improved if users could set hooks
within the code or access the state or values of certain language
constructs. A hook “breaks” the data plane structure, since
it allows users to inspect status at a certain point within the
design. Such extensions to the P4 language would allow testing
in case of a failure, or when the pipeline is stuck.

Supporting watch-points and stepping through code are
required future contributions in the field of programmable
network devices. Some of the bugs introduced in this work,
such as the performance limitation identified in the INT
design, can not be easily tracked and tested today even by
compiler vendors, with full access to the code.

Such extensions to the language would benefit all, as the
debuggability of network devices in production environments
is one of the utmost concerns of service providers.

B. Under-Specification as a Source of Bugs

Because enforcing a uniform behavior on all hardware
targets is impractical, some functionality is compiler specific
(e.g., uninitialized values). Under-specification in the language
may lead to bugs (Section IX) or security vulnerabilities [16].

Another form of under-specification, i.e., in the interface
and division of responsibilities between the data plane and the
rest of the device, can also cause errors, as shown above (test
#08). Integration bugs are not uncommon in hardware design,
but the problem is exacerbated where different technologies
interface. This ranges from the integration of a programmable
pipeline within an otherwise fixed-function switch, as well as
with the integration of externs within P4 programs.

Attending to under-specification requires a closer integration
of end-to-end system components. While such an integrated
design is likely to reduce bugs, the disadvantage is that
portability may be restricted and design time may increase.

C. Writing a Test Suite

One of the challenges in testing a network device is creating
a comprehensive corpus of tests. Considering the bugs detected
by PTA, we identify three classes of tests.

The first class of tests is the “validation” list of tests.
This includes tests that were run during the design stage,
and need to be validated on a newly produced target, e.g.,
tests written for P4v and later translated by PTA. It also
includes traditional network tests, e.g., checking throughput
under different scenarios (test #10).

A second class of tests is tests generated in a response to
a bug discovered by a user, e.g., the byte swapping bug (test
#01). The goal of such a test would be to (i) validate that the
bug is fixed in a newer version of the program. (ii) be used as
part of regression tests in future releases (iii) test deployment
of bug fixes in the field. The last use case is a good example
of the usefulness of PTA, as it enables testing devices in the
field without physically connecting them to test equipment.

The third class of tests targets known potential points of
failure that are typically hard to test. An example is testing
saturation (test #02), which one would typically verify in a
block-level simulation, but would be hard to trigger as part
of traditional hardware validation without additional built in
self text (BIST) resources. PTA enables users to craft such
tests without per-test resource overhead and while specifically
targeting sensitive elements in the design.

As tests are target independent in PTA, we envision building
such an open-source corpus of tests for community benefit,
starting with the tests included in the PTA repository [24].

D. Coverage and Test Case Generation
One of the advantages of network tests is that they can

be run at line rate. On ASIC, that means exhaustive testing is
feasible, since billions of packets with billions of header values
can be tested every second. On the NetFPGA SUME platform,
the supported packet rate is about sixty million packets per
second. While these numbers are high, they are insufficient
to fully cover all potential cases. For example, to test all
combinations of 48bit source Ethernet MAC header, it would
take about eight hours on a switch capable of processing ten
billion packets per second. Testing the combination of both
source and destination MAC header would take ×248 longer.
As switches often need to drop packets where the source and
destination address are the same, or some forbidden MAC
addresses, this is not an imaginary scenario. Note that with
PTA, users can write such exhaustive tests, or write tests
using random field values (e.g., source and destination MAC
address), as well as specific scenarios (identical source and
destination MAC addresses). The advantage of PTA is that
there is no need to write new P4 code for these different
scenarios, just re-configure the test via register access.

E. Line-rate testing
Besides reducing the test exection time and enhancing cov-

erage through exhaustive testing, line-rate testing enabled two
categories of tests in PTA: architecture tests and performance
tests. Some architecture bugs, such as test #11, become visible
only when the traffic exceeds a certain rate. Otherwise, it
would be impossible to discover them. Performance bugs,
including test #09 and test #10, require line-rate testing for
pushing the performance of the data plane under test to its
maximum.



13

XI. LIMITATIONS OF PTA

Implementation. Our two implementations present different
facets of PTA. The implementation on NetFPGA uses P4 16,
demonstrates full integration with a device’s data plane, en-
ables in-field testing (e.g., for smartNIC applications), but
lacks the performance and realism of commercial ASICs. The
implementation on Tofino demonstrates the feasibility of using
PTA to detect bugs on commercial ASICs, and supports full
line rate, but does not support in-device integration (as the
ASIC’s architecture is fixed), nor in-field testing. As we show
in Section VIII, it does allow detecting data plane bugs.
Test Generation. With PTA, users must still define tests
themselves. PTA also helps map logical tests to physical
hardware tests, as in the case of P4v-to-PTA. The problem of
defining tests is a long standing research problem [21], [22],
[8] which is beyond the scope of this work.
Bugs in PTA. Despite best efforts, there is no guarantee
that PTA is bug free. To reduce the likelihood of bugs, we
separated PTA’s infrastructure from users’ data plane and
architecture, and validated it independently using external
tools (Section VIII). We note that a user program’s bug will not
affect PTA’s operation. Similarly, a bug in PTA will not affect
a user program. In this case, PTA’s result may be incorrect.
Portability. Porting PTA between targets requires implement-
ing the abstractions in Table II. Different targets require
changes to the hardware infrastructure, and validating again
PTA’s infrastructure (e.g., traffic generation performance and
correctness). It may also require control plane changes, as
interfaces differ between targets. However, this work demon-
strates the portability of PTA by presenting two prototypes,
targeting two different programmable network devices: an
FPGA-based card and and ASIC-based switch.

XII. RELATED WORK

PTA is related to programmable network programming
languages, network testing, and data plane verification.
Network Programming Languages. Developers specify the
packet-processing behavior of re-configurable ASICs using a
variety of domain specific programming languages. Examples
include Huawei’s POF [37], Xilinx Labs’ PX [38], Broadcom’s
NPL [39], and the P4 Consortium’s P4 [17]. PTA is imple-
mented in P4, but does not inherently depend on P4. It could
be ported to any of the above languages.
Network Testing. There has been significant prior work in
both industry and academia on testing fixed-function switches.
The most similar to PTA is the service activation test
(SAT) [40]. SAT, used by carrier Ethernet service providers,
is intended to ensure that network services are configured
as specified and meet the predefined Service Acceptance
Criteria (SAC). SAT uses packet injection as a means to test
the service, but it is closely defined and not programmable,
covering only a limited set of the aspects enabled by PTA.
More low-level approaches, such as ATPG [41], focus on
manufacturing faults rather than bugs. FPGA debug tools, such
as ILA [42], enable limited functionality testing, far less than
the tests described in this paper, and are timing-affecting.

Network Testing Using P4. In-band network telemetry
(INT) [32] and postcards [43] use programmable network
hardware for monitoring and network-level diagnostics. In
contrast, PTA focuses on detecting bugs on a device, in a
compiler, or in the logic of a data plane program. Moreover,
PTA is active, rather than passive, meaning that it will generate
specific packets to facilitate ad-hoc and exploratory analysis.
Data Plane Verification. Several recent projects explore P4
program verification, including Vera [7], P4v [8], and Assert-
P4 [9]. The details of the approaches differ, but essentially,
they all translate P4 programs and some control plane state
into a logical formula, and use techniques such as symbolic
execution [44] to check that correctness properties are not
violated (e.g., a header field in a packet is not accessed if it has
not been parsed). PTA complements these efforts by providing
runtime testing. PTA provides grey box testing, as often only
partial information exists on the data plane under test. Grey
box testing has been further motivated by prior works on router
and network level, such as NetSonar [45].

XIII. CONCLUSION

We have presented PTA, a portable test architecture for
testing data planes. PTA leverages both the P4 language
and hardware design to provide flexibility and visibility into
programmable network devices. We have built a prototype of
PTA, and used it to detect numerous hard-to-find bugs. PTA
addresses an urgent need for improved tools and techniques
for data plane testing and verification.
Acknowledgments. We thank the NetFPGA core development
team who helped us develop and debug PTA. We thank the
anonymous shepherd and reviewers, who helped us improve
this paper. We acknowledge the support from the Swiss
National Science Foundation (SNF) (project 407540 167173).

REFERENCES

[1] “Monitoring and Troubleshooting: One Engineer’s rant,” https://archive.
nanog.org/meetings/nanog53/presentations/Monday/Hoose.pdf, 2011.

[2] J. W. Lockwood, N. McKeown, G. Watson et al., “Netfpga–an open
platform for gigabit-rate network switching and routing,” in MSE. IEEE,
2007, pp. 160–161.

[3] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE Micro,
September 2014.

[4] K. Camera, H. K.-H. So, and R. W. Brodersen, “An integrated
debugging environment for reprogrammble hardware systems,” in
Proceedings of the Sixth International Symposium on Automated
Analysis-driven Debugging, ser. AADEBUG’05, 2005, pp. 111–116.
[Online]. Available: http://doi.acm.org/10.1145/1085130.1085145

[5] Ixia, “Ixnetwork,” https://www.ixiacom.com/products/ixnetwork, 2019.
[6] “Spirent,” https://www.spirent.com/, 2020.
[7] R. Stoenescu, D. Dumitrescu, M. Popovici et al., “Debugging

p4 programs with vera,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18, 2018, pp. 518–532. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230548

[8] J. Liu, W. Hallahan, C. Schlesinger et al., “P4v: Practical verification
for programmable data planes,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18, 2018, pp. 490–503. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230582

[9] L. Freire, M. Neves, L. Leal et al., “Uncovering bugs in p4 programs
with assertion-based verification,” in Proceedings of the Symposium on
SDN Research, ser. SOSR ’18, 2018, pp. 4:1–4:7. [Online]. Available:
http://doi.acm.org/10.1145/3185467.3185499

https://archive.nanog.org/meetings/nanog53/presentations/Monday/Hoose.pdf
https://archive.nanog.org/meetings/nanog53/presentations/Monday/Hoose.pdf
http://doi.acm.org/10.1145/1085130.1085145
https://www.ixiacom.com/products/ixnetwork
https://www.spirent.com/
http://doi.acm.org/10.1145/3230543.3230548
http://doi.acm.org/10.1145/3230543.3230582
http://doi.acm.org/10.1145/3185467.3185499


14

[10] G. Antichi, M. Shahbaz, Y. Geng et al., “Osnt: Open source network
tester,” IEEE Network Magazine, vol. 28, no. 5, pp. 6–12, 2014.

[11] Y. Zhou, Z. Xi, D. Zhang et al., “Hypertester: high-performance net-
work testing driven by programmable switches,” in ACM International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2019, pp. 30–43.

[12] R. Miao, H. Zeng, C. Kim et al., “Silkroad: Making stateful layer-4 load
balancing fast and cheap using switching asics,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2017, pp. 15–
28. [Online]. Available: http://doi.acm.org/10.1145/3098822.3098824

[13] X. Jin, X. Li, H. Zhang et al., “NetCache: Balancing Key-Value Stores
with Fast In-Network Caching,” in ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2017.

[14] ——, “NetChain: Scale-Free Sub-RTT Coordination.” in USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), Apr.
2018.

[15] H. T. Dang, P. Bressana, H. Wang et al., “P4xos: Consensus as a network
service,” IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp.
1726–1738, 2020.

[16] M. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy
p4 programs?” in ACM SIGCOMM Symposium on SDN Research, Jun.
2020.

[17] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming Protocol-
Independent Packet Processors,” SIGCOMM Computer Communication
Review (CCR), vol. 44, no. 3, pp. 87–95, Jul. 2014.

[18] “P416 Portable Switch Architecture (PSA),” https://p4.org/p4-spec/docs/
PSA.html, 2019.

[19] G. Brebner, “Extending the range of p4 programmability,” 2018,
keynote.

[20] A. Nötzli, J. Khan, A. Fingerhut et al., “p4pktgen: Automated
test case generation for P4 programs,” in Proceedings of the
Symposium on SDN Research, SOSR 2018, Los Angeles, CA,
USA, March 28-29, 2018, 2018, pp. 5:1–5:7. [Online]. Available:
https://doi.org/10.1145/3185467.3185497

[21] A.-A. Agape and M. C. Danceanu, “P4fuzz: A compiler fuzzer for
securing p4 programmable dataplanes,” Aalborg University, Tech. Rep.,
Sep. 2018. [Online]. Available: https://projekter.aau.dk/projekter/files/
281195651/Master Thesis Project P4 Fuzzer.pdf

[22] B. Shastry, M. Leutner, T. Fiebig et al., “Static program analysis as a
fuzzing aid,” in RAID’17, 2017, pp. 26–47.

[23] K. Thimmaraju, B. Shastry, T. Fiebig et al., “Taking control of sdn-based
cloud systems via the data plane,” in ACM SIGCOMM Symposium on
SDN Research, 2018, pp. 1–15.

[24] “Pta, blinded reporsitory,” https://github.com/pta-project-repo/
pta-artifacts, 2020.

[25] P. Bressana, N. Zilberman, and R. Soulé, “Finding hard-to-
find data plane bugs with a PTA,” in CoNEXT ’20: The 16th
International Conference on emerging Networking EXperiments and
Technologies, Barcelona, Spain, December, 2020, D. Han and
A. Feldmann, Eds. ACM, 2020, pp. 218–231. [Online]. Available:
https://doi.org/10.1145/3386367.3431313

[26] “Undefined behaviors - P416 Language Specification,” https://p4.org/
p4-spec/docs/P4-16-v1.0.0-spec.html#sec-undefined-behaviors, 2017.

[27] “Meltdown and Spectre,” https://meltdownattack.com, 2020.
[28] Y. Tokusashi, H. T. Dang, F. Pedone et al., “The case for in-network

computing on demand,” in Proceedings of the Fourteenth EuroSys
Conference 2019, ser. EuroSys ’19, 2019, pp. 21:1–21:16. [Online].
Available: http://doi.acm.org/10.1145/3302424.3303979

[29] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2018, pp. 125–139.

[30] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4-netfpga
workflow for line-rate packet processing,” in FPGA. ACM, 2019, pp.
1–9.

[31] T. Jepsen, L. P. de Sousa, H. T. Dang et al., “Gotthard: Network support
for transaction processing,” in ACM SIGCOMM Symposium on SDN
Research. ACM, 2017, pp. 185–186.

[32] “Inband network telemetry (int),” https://github.com/p4lang/p4factory/
tree/master/apps/int, 2017.

[33] Xilinx, “SDNet,” http://www.xilinx.com/products/design-tools/
software-zone/sdnet.html, 2014.

[34] Barefoot-Networks, “Barefoot tofino,” Jun. 2018. [Online]. Available:
https://barefootnetworks.com/products/brief-tofino/

[35] M. Handley, C. Raiciu, A. Agache et al., “Re-architecting datacenter net-
works and stacks for low latency and high performance,” in SIGCOMM.
ACM, 2017, pp. 29–42.

[36] “P416 Language Specification Version 1.1.0,” https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.html, Nov. 2018.

[37] H. Song, “Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane,” in Workshop on Hot Topics
in Software Defined Networking, Aug. 2013, pp. 127–132.

[38] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.

[39] “Introduction to nplspec,” 2019, https://github.com/nplang/NPL-Spec.

[40] M. E. Forum, “Carrier ethernet service activation testing (sat),
technical specification mef48,” https://www.mef.net/Assets/Technical
Specifications/PDF/MEF 48.pdf, 2014.

[41] P. Duhamel and J. Rault, “Automatic test generation techniques for
analog circuits and systems: A review,” IEEE transactions on Circuits
and Systems, vol. 26, no. 7, pp. 411–440, 1979.

[42] C. Stroud, E. Lee, S. Konala, and M. Abramovici, “Using ila testing for
bist in fpgas,” in Test Conference. IEEE, 1996, pp. 68–75.

[43] N. Handigol, B. Heller, V. Jeyakumar et al., “I know what your
packet did last hop: Using packet histories to troubleshoot networks,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014, pp. 71–85.

[44] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08, 2008, pp. 209–224. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855741.1855756

[45] H. Zeng, R. Mahajan, N. McKeown et al., “Measuring and trou-
bleshooting large operational multipath networks with gray box testing,”
Mountain Safety Res., MSR-TR-2015-55, 2015.

Pietro Bressana is a Cloud Software Architect at
Intel Corporation. He holds a bachelor’s degree in
Electronic Engineering and a master’s degree in
Computer Engineering, both from Politecnico di
Milano (Italy). He received his Ph.D. in computer
science from the Università della Svizzera italiana
(Lugano, Switzerland). As a Ph.D. student, he visited
the Networks and Operating Systems Group of the
University of Cambridge (UK).

Noa Zilberman is an Associate Professor at the
University of Oxford. Prior to joining Oxford, she
was a Fellow and an Affiliated Lecturer at the Uni-
versity of Cambridge. Her research interests include
computing infrastructure, programmable hardware
and networking. She holds a PhD Degree in Electri-
cal Engineering from Tel Aviv University, and is a
Senior Member of IEEE.

Robert Soulé is an Assistant Professor at Yale
University and a Research Scientist at Barefoot
Networks, an Intel Company. Prior to joining Yale,
he was an Associate Professor at the Università
della Svizzera italiana in Lugano, Switzerland. He
received his B.A. from Brown University, and his
Ph.D. from NYU. After his Ph.D., he was a post-
doc at Cornell University.

http://doi.acm.org/10.1145/3098822.3098824
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://doi.org/10.1145/3185467.3185497
https://projekter.aau.dk/projekter/files/281195651/Master_Thesis_Project___P4_Fuzzer.pdf
https://projekter.aau.dk/projekter/files/281195651/Master_Thesis_Project___P4_Fuzzer.pdf
https://github.com/pta-project-repo/pta-artifacts
https://github.com/pta-project-repo/pta-artifacts
https://doi.org/10.1145/3386367.3431313
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-undefined-behaviors
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-undefined-behaviors
https://meltdownattack.com
http://doi.acm.org/10.1145/3302424.3303979
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://barefootnetworks.com/products/brief-tofino/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://github.com/nplang/NPL-Spec
https://www.mef.net/Assets/Technical_Specifications/PDF/MEF_48.pdf
https://www.mef.net/Assets/Technical_Specifications/PDF/MEF_48.pdf
http://dl.acm.org/citation.cfm?id=1855741.1855756

	Introduction
	Requirements and Constraints
	Data Plane Bug Taxonomy
	Heterogeneous Targets

	Debug Abstractions
	Requirement Driven Design
	Core Abstractions

	Portable Test Architecture
	Overview
	Target-Independent Test Infrastructure
	Target-Dependent Test Infrastructure
	Re-Configuration
	Interactions with the Control Plane
	Management and User-Interface
	Test Generation

	PTA Reference Design
	Integration with a Verifier
	Implementation
	Evaluation
	Bugs Found
	Compiler Checks
	Functional Tests
	Under-Specification Tests
	Performance Tests
	Architecture Tests
	Security Checks
	Comparing Designs
	Ethics and Corrective Actions

	Lessons Learned
	Extending the P4 Language
	Under-Specification as a Source of Bugs
	Writing a Test Suite
	Coverage and Test Case Generation
	Line-rate testing

	Limitations of PTA
	Related Work
	Conclusion
	References
	Biographies
	Pietro Bressana
	Noa Zilberman
	Robert Soulé


