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Abstract—Machine learning is driving the evolution of al-
gorithmic trading, but the demands for fast execution speed
remain. Although both aim to increase profitability, embed-
ding more powerful machine learning approaches and lowering
trading latencies are hard to achieve simultaneously. Offloading
machine learning inference to programmable network devices,
also referred to as in-network machine learning, provides a
delicate balance between the two ends of this trade-off. In
this paper, we present LOBIN, providing machine learning
based market prediction using high-frequency market data feeds.
LOBIN builds limit order books and conducts inference within
programmable switches. Compared with server-based solutions,
LOBIN predicts future stock price movements with lower latency,
higher throughput, and a minor impact on machine learning
performance.

Index Terms—In-network computing, machine learning, pro-
grammable switches, P4, microstructure market data, limit order
books, time series prediction.

I. INTRODUCTION

Algorithmic trading has been growing over the past few
decades as financial firms automate processes traditionally
done by human traders. It uses computer algorithms to auto-
matically execute orders under preset trading instructions [1].
As an essential form of algorithmic trading, high-frequency
trading (HFT) is characterized by placing larger numbers of
orders within a minimum time and being able to react quickly
under changing market conditions [2]. The latency of the HFT
market participants has been measured in microseconds [3].

The rise of artificial intelligence further drives the growth
of high-frequency algorithmic trading, with machine learning
(ML) approaches becoming widespread in the field of HFT [4],
[5]. However, the increasing complexity of ML models used
also challenges existing trading systems, creating a demand
for latency reduction throughout the trading process.

A common HFT problem is predicting future price move-
ments from market microstructure signals, which has been
proven to be feasible and profitable [4]. There are a number
of previous works focusing on market forecasting utilizing
electronic limit order books (LOBs) combined with ML mod-
els [6]–[9]. For a particular stock, a real-time LOB is con-
structed from unmatched limit orders that are predetermined
with specific prices. It contains a wealth of information that
can be used as ML features [10].
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Fig. 1. General working scenario of LOBIN.

In-network computing offloads applications to run into
programmable network devices [11]. In-network ML, as a
specific type of in-network computing, deploys pre-trained ML
models within network devices and conducts inference there
for lower latency, higher throughput, and more efficient power
utilization [12], [13]. By design, in-network ML provides a
practical solution for reducing the latency of time-sensitive
financial applications, such as trading scenarios.

As nearly no previous works focus on time-sensitive ap-
plications of in-network ML, this paper provides an in-depth
study on the application of in-network ML to market predic-
tion using LOBs. We design and implement LOBIN, an in-
network prototype for future price movement prediction by
maintaining a LOB based on market-by-order (MBO) data
feeds. LOBIN stands for “Limit Order Books In Network”.
Figure 1 shows a general working scenario of LOBIN com-
pared with traditional solutions. Deployed on a Tofino [14]
hardware switch, Tofino 2 (emulation environment), and a
BMv2 [15] software switch model, LOBIN demonstrates the
feasibility of the solution. According to the evaluation results,
LOBIN can achieve a minimal loss of prediction performance
compared to server-based implementation while lowering la-
tency to the microsecond level.

The main contributions of this paper are as follows:
• We study the application of in-network ML to market

prediction from micro-structure data and provide a proof
of concept demonstrating its feasibility. This is the first of
its kind to practically explore time-sensitive applications
of in-network ML.

• We design and implement a prototype that builds and
updates LOBs in the programmable data plane based
on high-frequency market data feeds. We integrate the
workflow of building and updating LOBs with ML-
related processes, deploying it on both hardware and
software programmable network devices.



• We evaluate the prototype within a local networked-
system testbed in terms of both ML prediction perfor-
mance and networking performance. We compare differ-
ent ML models, different stock sections, and different so-
lutions including the benchmark running on servers. The
prototype presents the benefit of latency reduction and
the capability of maintaining ML-based functionalities.

II. BACKGROUND AND MOTIVATION

In this section, we provide background information about
basic concepts and related works from three different domains.
We also motivate the need for exploring the cross-cutting
area positioned at the intersection field of ML, programmable
networking, and financial modeling.

A. ML for Market Prediction

Centering on buying and selling assets in the marketplace,
financial trading is an area where the application of ML
approaches has become mainstream. Since financial time series
data are inherently non-stationary and nonlinear, containing
high noise [16], the applicability of traditional statistical
methods is often constrained when dealing with this type of
data. Aiming for profitability, ML models have been proven
to have the capability to help with almost every point in
the trading process, including forecasting price movement,
generating trading signals, optimizing order execution, and
making trading decisions [5].

Among all aforementioned tasks, predictions on stock mar-
ket price movement remain a big challenge because future
fluctuations are influenced by countless internal and external
factors, such as economic factors, investor sentiment, company
performance, and industry performance [17]. To perform better
in financial forecasting, researchers have applied and assessed
different ML approaches based on historical data to accom-
plish more accurate predictions [18]–[20].

ML model complexity is continuously growing, using mas-
sive financial data more efficiently, laying an increasingly high
burden on traditional processor-based platforms and leading to
a decrease in computational speed. However, in the scope of
HFT, intense competition among traders requires lightning-
speed real-time trade execution. Low latency is significantly
crucial for generating profits because many of them are
often based on short-lived opportunities such as cross-market
arbitrage and breaking news [5]. In today’s competition, a
small fraction of trading firms with the fastest HFT systems
continues to amass a large share of trading revenues [21].
Therefore, accelerating ML-based market prediction remains
a research challenge.

B. Network Devices for Trading Acceleration

To achieve lower latency, researchers focus not only on the
optimization of trading algorithms and strategies but also on
system-level solutions based on software design and hardware
implementation. To date, different network devices have been
used for trading acceleration, including application-specific
integrated circuits (ASICs), graphic processing units (GPUs),

or field-programmable gate arrays (FPGAs) [22]. Some studies
used FPGAs for accelerating market data feed processing or
trading applications, e.g. [23], [24] while others also utilized
customized network interface cards (NICs) and optimized soft-
ware for lower latency [25]. Significant progress was driven
by industry in developing hardware-based acceleration which
can support financial services applications, e.g. [26], [27].
However, none of the previous works has attempted to acceler-
ate ML-based market prediction for making trading decisions
within the network itself. Given the innovative benefits that in-
network computing and in-network ML can provide in terms
of latency reduction, they may become a potential solution for
this gap. If proven to be beneficial, a new generation of trading
systems may be derived in the future. Since ASICs can offer
superior performance such as fast processing speed compared
to their counterparts [28], we choose to use switching ASICs
for the lowest end-to-end latency.

C. In-Network ML

As the root of in-network computing, network programma-
bility has facilitated network evolution. The emergence of
software-defined networking (SDN) enabled networks to be
intelligently controlled through software applications [29].
A specialized language, Programming Protocol Independent
Packet Processors (P4), was developed for configuring how
network devices process and forward packets within the
data plane [30]. Protocol-Independent Switching Architecture
(PISA) serves as a common data plane programming model
in P4 based on a programmable match-action pipeline [31].

Some P4 targets, such as BMv2 and P4Pi, use standard CPU
to run packet forwarding programs [32], while some others are
based on hardware including FPGAs, switches, and NICs. P4
programs run on these target devices for packet forwarding and
computing, offering programmability within the data plane.
This provides a seedbed for offloading server applications to
programmable network devices, which drove the emergence
of in-network computing.

In-network computing offloads applications in part, or in
full, to the data plane. It takes advantage of lower overhead
in space, energy, and cost domain, as well as higher process
efficiency of network devices [11]. In-network computing
has been applied in several areas, including caching [33],
DNS [11], and distributed systems [34]. Some studies focused
on benefiting ML applications by offloading some parts of
ML functions into the data plane such as feature extraction
and weight aggregation [35], [36]. To date, a number of ML
models have been implemented in the field of in-network ML,
making its application to different fields possible [37], [38].
However, the range of in-network ML use cases is still limited
and needs further exploration and extension. In fact, most
relevant works focused on fields such as security and anomaly
detection [39], [40], and the domain of financial trading
is barely explored. Our previous work considered market
prediction, but only using stateless messages (MBO) [38]. Our
poster Linnet [41], proposed building LOBs, but only consid-
ered software switches, significantly different from resource-
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Fig. 2. Workflow of updating a LOB with MBO feeds.

constrained switch-ASIC. The work presented in this paper
fills these gaps.

III. OVERVIEW OF LOBIN

This section provides an overview of our solution, LOBIN,
with its key ideas and technical design explained.

A. Limit Order Books

Market by order (MBO) data is an order-based data feed
that provides the details of each trade instruction for a certain
stock [42]. It contains an order’s timestamp, unique identifier,
action (whether to add a new order, cancel an existing order,
or update the price or quantity for the existing order), side
(whether to buy or sell the given security), price, and quantity.
Implicitly derived from MBO data, LOBs present a collection
of unmatched limit orders which is waiting to be executed at
pre-specified or better price levels [43]. A limit order used to
buy an asset at or below a pre-specified price is also called
a bid order. In contrast, an ask order (or an offer) is to sell
an asset at or above a given price level [8]. In a LOB, the
two types of limit orders reside in the bid side and ask side
correspondingly. The midpoint of the highest bid price and the
lowest ask price is called the mid-price.

In most of today’s securities markets, bid orders and ask
orders are executed following the principle of price/time prior-
ity [44], [45]. This principle demonstrates how limit orders are
prioritized for execution. More specifically, orders are operated
firstly based on the best price, and if the specified prices of
multiple orders are the same, the priority is given to the earliest
one, breaking ties.

When a new order is to be executed in the matching engine,
the information it provides is used to determine how to update
the LOB. Figure 2 shows the workflow of updating the LOB
with MBO data feeds. Taking an ask order as an example to
illustrate the process, its limit price is compared to the best
bid price. If the price of the new order is higher, the new order
will be unmatched and reside at its price level of the LOB. If
the price of the new order is equal to or lower than the bid,
meaning that it crosses the bid-ask spread, it will be matched
with the unexecuted order(s) at the best bid price level. When

there is still some quantity of the new order remaining after
matching, the remaining quantity will be matched with the
unexecuted order(s) at the lower price level(s), as long as their
price is bigger or equal to the price of the limit order. If all
the unexecuted order(s) whose price level(s) is (are) higher
than the price of the new order has (have) been matched, the
remaining quantity of the new order will reside at its price
level as an offer. The best bid price and the best ask price
within the LOB are updated if needed – those changes result
in the volatility of the mid-price. Updating the LOB with a
bid order is similar.

Figure 3 illustrates how MBO data update a LOB using four
examples. The first column presents how a new ask order with
the price P4 updates a LOB. Since P4 is on the ask side, the
quantity of the order settles with the existing volume at P4.
Similarly, the second column shows that the size of a new bid
order with the price P1 resides at P1 of the LOB. The third
column demonstrates the situation when a new bid order with
a price higher than the best offer is used to update the LOB.
In the example, the price of the bid order is P5 while the
existing best offer is P4. The new order is matched with the
existing orders at P4 first, and then with the ones at P5 if the
unexecuted orders at P4 are not sufficient for matching. After
execution, the best offer becomes P5, and thus the mid-price
changes from the average of P3 and P4 to P4. Then in the last
column, the LOB needs to be updated with a new ask order at
the price P3. Since it equals to current best bid of the LOB,
the unexecuted orders that can be matched with it are only the
ones at P3. If they are not enough to match the whole quantity
of the new order, the remaining volume of it then resides at
P3 and P3 becomes the best offer. The mid-price then changes
to the average of P2 and P3 as the figure shows.

B. LOBIN’s Design

LOBIN accelerates stock price movement prediction
through the construction and updating of LOBs in the pro-
grammable data plane. For a given individual stock, when a
new MBO message is received, LOBIN updates the LOB. It
then extracts features, obtaining information on both price and
quantity from different levels on the bid and ask sides of the
LOB. The mid-price at each point in time is also used to create
labels, representing the direction of price changes.

Figure 4 shows the system architecture of LOBIN, including
components on the server, control plane, and data plane. In
the first step, running on a server, historical market data feeds
are used to train an ML model, using LOB-based features.
The trained model is mapped to the data plane, and table
entries are generated. The mapping includes generating a P4
program, which contains both the mapped ML inference model
and LOB-related logic: LOB construction and update, and
feature extraction. The generated P4 program is loaded to
the programmable data plane, while table entries are loaded
through the control plane. This design enables obtaining
prediction results directly within the data plane, based on the
trained ML model.
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IV. IMPLEMENTATION

We implement LOBIN using P4 on BMv2 and Intel Tofino
switch-ASIC. Both implementations are based on the same
concept: the LOB is initialized with an equal volume at
each price level, before transactions are executed. For each
incoming MBO, the LOB is updated. After each message, the
mid-price is computed based on the highest bid and the lowest
offer at that timestamp, and LOB status features are extracted
and used for ML inference.

Programmable data planes are limited by different con-
straints, such as limited amount of memory, limited number
of stages, and limited operation. This section explains using
pseudocode the update process of a LOB within a data
plane, and the solutions used by LOBIN to overcome the key
challenges to enabling the logic within switch hardware.

A. Behavioral Implementation

BMv2 is an open-source behavioral software switch main-
tained by the P4 workgroups that serves as a target. BMv2
can be used in different development environments, such as
P4Pi [32] and eBPF. It is often used as a reference switch
for functionality evaluation. As BMv2 is not as constrained as
switch-ASICs, it is used as the first P4 data plane target for
the general LOBIN process shown in Figure 2. Algorithm 1
presents the pseudocode of the updating process of a LOB
with a bid order. The algorithm of updating a LOB with an
ask order is similar, and omitted for brevity.

The algorithm uses three registers (Ra, Rb, and Rl) to store
the lowest ask price, the highest bid price, and current state of
the LOB (the current quantity at each price level), respectively.
These variables are stateful, and need to be maintained and
updated over time. Other variables in Algorithm 1 are user-
defined metadata, used as intermediates to update the LOB
state, as well as the lowest ask price and the highest bid price
if necessary.

B. Tofino Implementation
Intel Tofino is a P4-based programmable switch ASIC,

which utilizes the Tofino Native Architecture (TNA), an ar-
chitecture that is very similar to Portable Switch Architecture
(PSA) used in BMv2. Tofino offers a Tbps bit rate, with sub-
microsecond latency [46], which can potentially be deployed
at the network edge or access and provide LOB services.
However, similar to other hardware devices, it has strong
resource constraints such as the number of stages or the
amount of memory [47]. While BMv2 is suitable for P4
prototypes, using Tofino indicates the feasibility of using
commodity off-the-shelf devices in a real-world environment.

The constraints of Tofino’s ASIC design, mean that the
general solution previously described needs to be adapted to
the hardware. To overcome the limitations of the platform,
the process of updating the LOB with MBO data should be
modified. The main implementation challenges are:

• Lack of loops: LOBIN’s workflow requires loops for
several purposes. For instance, to locate maximum bid,
minimum offer, or when executing a new bid order which
needs to be served by multiple offer levels in the LOB,
due to its quantity. While loop unrolling is one solution,
its cost is resources and stage consumption is high.

• Cost of comparisons: LOB construction and mainte-
nance require a lot of price and order volume compar-
isons. For example, for an incoming offer, its price needs
to be compared with the best bid and the best offer. If an
offer is matched with a bid, their quantities need to be
compared, and any remaining unmatched quantity needs
to be handled. On hardware, each comparison consumes
a processing stage and reduces scalability.



Algorithm 1 Update a LOB with a new bid order (General)
1: - Rl: An array tracking LOB states (Register Array).
2: - Ra: Position of lowest ask price (Register).
3: - Rb: Position of highest bid price (Register).
4: - I: Position of price levels in LOB.
5: - Pa: Position of lowest ask price (Metadata).
6: - Pb: Position of highest bid price (Metadata).
7: - Po: Price level position of a new order.
8: - So: Size (unexecuted) of a new order.
9:

10: function UPDATEMINASK(I)
11: while Rl[I] == 0 do
12: I ← I + 1

13: Pa ← I ▷ Update the lowest ask price.
14:
15: function MAIN(Po, So)
16: Pa, Pb ← Ra, Rb ▷ Read values from registers.
17: if Po < Pa then ▷ If order resides in LOB.
18: Rl[Po]← Rl[Po] + So ▷ Update LOB.
19: if Po > Pb then
20: Pb ← Po ▷ Update the highest bid price.
21: else ▷ Order needs to be matched.
22: for I = Pa, . . . , Po do ▷ Iteration for matching.
23: if Rl[I] >= So then ▷ LOB order size at the

Ith price level is sufficient to match.
24: Rl[I]← Rl[I]− So ▷ Update LOB.
25: UPDATEMINASK(I)
26: break
27: else ▷ LOB order size at the Ith price level is

insufficient to match.
28: So ← So −Rl[I] ▷ New unexecuted size.
29: Rl[I]← 0 ▷ Update LOB.
30: if I == Po then
31: Rl[I]← So ▷ Unmatched size of the

new order resides in LOB.
32: Pb ← I ▷ Update the highest bid.
33: UPDATEMINASK(I + 1)
34: Ra, Rb ← Pa, Pb ▷ Write values back to registers.

• Registers access: LOB must maintain state over MBO
messages and be quickly updated, which requires the use
of registers. However, a register can be accessed only
once in the pipeline, and it is not allowed to read a register
at the beginning of the pipeline and then write an updated
value back at the end of the pipeline. To overcome this
challenge, recirculation can be used, with one pass for
reading and the second for writing.

In addition to the challenges above, the sequential call to
if − else conditions, as used in Algorithm 1, can easily
exceed the maximum number of pipeline stages. Consequently,
LOBIN’s processing flow is modified from a hierarchical
structure into a flatter, parallel design.

The key idea in the solution is using regular logic to update
the quantity at a single price level in the LOB, and operating

Algorithm 2 Update a LOB with a new bid order on Tofino
1: - F : Recirculation flag (1 if a recirculated message).
2: - Ph: Highest price level position in LOB (Constant).
3: - SI : Order size at the Ith price level in LOB.
4: - a, b, c: Temporary variables for comparisons.
5: - Other variable definitions are as in Algorithm 1.
6:
7: function OPERATION(I)
8: SI ← Rl[I] ▷ Read order size at the Ith price level.
9: a← I − Pa ▷ Distance from lowest ask price.

10: b← Po − I ▷ Distance from new order’s price.
11: c← So − SI ▷ Gap between new order’s unexecuted

size and LOB size at the Ith price level.
12: if a ≥ 0 and b > 0 and c ≥ 0 then ▷ Order size at

the Ith price level is insufficient to match new order.
13: SI ← 0 ▷ Update LOB size.
14: So ← c ▷ Update unexecuted order size.
15: else if a ≥ 0 and b == 0 and c > 0 then ▷ The

unmatched size of the new order resides in LOB.
16: SI ← c ▷ Update LOB size.
17: Pb ← I ▷ Update the highest bid price.
18: Pa ← I + 1 ▷ Update the lowest ask price.
19: else if a ≥ 0 and b == 0 and c == 0 then ▷ Order

size at the Ith price level is just enough to match.
20: SI ← 0 ▷ Update LOB size.
21: Pa ← I + 1 ▷ Update the lowest ask price.
22: else if a ≥ 0 and b ≥ 0 and c < 0 then ▷ Order size

at the Ith price level is more than sufficient to match.
23: SI ← SI − So ▷ Update LOB size.
24: Pa ← I ▷ Update the lowest ask price.
25:
26: function MAIN(Po, So)
27: if F == 0 then
28: Pa ← Ra ▷ Read the current lowest ask price

from register.
29: Pb ← Rb ▷ Read the current highest bid price

from register.
30: if Po ≤ Pb then ▷ If order resides in LOB.
31: Rl[Po]← Rl[Po] + So ▷ Update LOB.
32: else if Pb < Po < Pa then ▷ If order resides in

LOB and the highest bid price needs updating.
33: Rl[Po]← Rl[Po] + So ▷ Update LOB.
34: Pb ← Po ▷ Update the highest bid price.
35: else if Pa ≤ Po then ▷ Order matches.
36: for I = 0, . . . , Ph do ▷ Iteration for operation.
37: OPERATION(I)
38: F ← 1 ▷ Update recirculation flag.
39: else if F == 1 then
40: Ra ← Pa ▷ Write back the updated lowest ask

price to register.
41: Rb ← Pb ▷ Write back the updated highest bid

price to register.
42: for I = 0, . . . , Ph do
43: Rl[I]← SI ▷ Write back updated LOB size.



through all price levels using the same logic, regardless of the
current order’s price. The algorithm compares each price level
with the price of the new bid order and the current minimum
offer. It also compares the quantity of each price level with the
order size to be matched. Based on the comparisons’ results,
it decides if and how to operate on the current price level, as
well as if to update the best bid and the best offer.

Algorithm 2 shows the pseudocode of updating a LOB with
a bid order on Tofino. Updating an ask order follows a similar
process. While line 22 of Algorithm 1 and line 36 and 42 of
Algorithm 2 use for commands, these are only for illustration
purposes, and loop unrolling is applied in practice.

The P4 implementation of LOBIN integrates the LOB code
with ML inference code generated using Planter [38]. LOB
generation requires 622 lines of P4 code for BMv2 and 680
lines for Tofino. Automatically generated inference code varies
across ML models, but for example, a decision tree (DT)
model requires 390 lines for BMv2 and 165 lines for Tofino.
Architecture-related code requires less than 100 lines for both
targets. The implementation also supports Tofino 2, without
changes to either LOB or Planter code.

V. EVALUATION

The evaluation of LOBIN covers both aspects of ML
performance and system performance, in comparison with
server-based benchmarks.

A. Experimental Setup

An APS-Networks BF6064T-X Intel Tofino switch is used
for evaluation. The 64×100G ports switch runs SDE 9.4.0.
Software development, including support for Tofino 2, uses
SDE 9.9.0 running on a server. Server-based experiments,
including traffic generation, are conducted with two ASUS
ESC4000A-E10 servers, equipped with AMD EPYC 7302P
CPU and 256GB DDR4 RAM, using Ubuntu 20.04 LTS. Both
servers are connected to the switch using NVIDIA ConnectX-
5 100G NICs and direct attach cables.

The dataset used in this study is NASDAQ’s Historical
TotalView-ITCH sample data feeds [48]. MBO messages for
a number of NASDAQ stocks are extracted for the date
2019-03-27. In the data source, there are no available data
feeds spanning two or more consecutive days, so we use
data from a single date. An open-source tool [49] is used
for reconstructing MBO messages of one specific stock. The
Planter [38] framework is used for in-network ML deployment.

B. Prediction Performance

Model prediction performance is tested for several different
ML algorithms that are commonly used for forecasting future
stock price movement, including k-means (KM), k-nearest
neighbors (KNN), decision trees (DTs), random forests (RFs),
and extreme gradient boosting (XGB). A smoothing labeling
method [7] is used to draw more consistent signals from
highly-stochastic financial data feeds. Synthetic minority over-
sampling technique (SMOTE) is applied to address the class-
imbalance problem [50].

Three stocks are picked for the evaluation, representing
companies in the NASDAQ Composite index with the largest
market capitalization in three different sectors: Paypal (PYPL)
- financials, PepsiCo (PEP) - consumer staples, and Alphabet
(GOOGL) - communication services. Add-order messages of
these three stocks are used.

ML model training uses up to ten price level volumes of a
LOB and the mid-price as input features for server-based and
BMv2-based prediction. For Tofino-based prediction, six price
levels volumes and the mid-price are used, due to resource
constraints on the switch. Scikit-learn (sklearn) library [51] is
used for training and to run the prediction on the server. The
server-based benchmark is trained with unlimited-size models,
while the switch-based models are of limited size. The labels
are used to predict future mid-price movement (up, down, and
stationary) over the next 100 ticks.

To explore performance gains with resources’ scalability,
the prediction performance of Tofino 2 is emulated. Tofino 2
is less resource constrained than Tofino. As it has more stages,
it is possible to use larger LOBs, extract more features, and
utilize ML models that consume more stages.

Table I shows the experimental results in terms of accuracy
(ACC) and F1-score (F1), the most common evaluation metrics
measuring ML model prediction performance.

PYPL (Financials)
Tofino Tofino 2 BMv2 Server (Sklearn)

Model ACC F1 ACC F1 ACC F1 ACC F1
KM 31.15 26.55 45.25 31.15 60.97 25.25 65.00 37.59

KNN 49.32 22.02 52.47 28.83 68.44 27.09 70.25 53.55
DT 51.13 50.29 65.40 57.67 73.98 57.77 73.98 57.77
RF 54.51 50.54 62.36 56.38 74.10 57.84 74.43 58.25

XGB 55.42 55.85 62.36 56.28 73.76 58.54 74.55 59.32
PEP (Consumer Staples)

Tofino Tofino 2 BMv2 Server (Sklearn)
Model ACC F1 ACC F1 ACC F1 ACC F1
KM 33.70 22.66 43.43 22.60 39.52 34.28 45.30 39.59

KNN 40.50 31.67 65.15 26.31 52.60 38.70 65.92 49.71
DT 56.88 52.08 63.45 54.94 64.09 62.39 66.98 66.62
RF 58.26 53.81 67.13 59.55 64.35 62.89 67.43 67.19

XGB 58.71 58.69 67.31 60.83 67.74 66.48 67.77 70.12
GOOGL (Communication Services)

Tofino Tofino 2 BMv2 Server (Sklearn)
Model ACC F1 ACC F1 ACC F1 ACC F1
KM 55.95 23.92 58.98 24.73 62.36 27.06 63.46 52.94

KNN 55.59 23.82 60.97 25.25 64.45 26.13 69.30 61.17
DT 52.60 52.61 54.59 54.18 64.98 60.46 65.44 60.87
RF 53.06 53.50 54.79 54.33 65.33 56.80 65.44 65.33

XGB 58.86 56.13 63.16 63.24 66.64 63.45 77.50 68.09

TABLE I
EXPERIMENTAL RESULTS (%) OF ML PREDICTION PERFORMANCE.

The benchmark ML performance results, running on the
server, achieve performance comparable to previous (non-
network) studies that used similar features from LOBs for
the same prediction task [8]. Their test results, using different
neural networks, achieved F1-score ranging from 40.84%
to 76.58% with the prediction horizon being also 100. In
comparison, the results of our ML benchmarks are reasonable.
KM and KNN do not perform as well for some stocks because
of the low signal-to-noise ratio of their market data feeds.



As the results in Table I show, the average accuracy loss
of LOBIN when running on Tofino is 16.47%, with an
average loss of 15.60% for F1-score compared with server
benchmarks. The LOBIN solution running on BMv2 has an
average accuracy loss of 3.30% with an average F1-score
loss of 9.53%. Among all the ML models tested, tree-based
ensemble methods are the ones that perform the best in terms
of ML prediction with low accuracy and F1-score loss.

Tofino 2 has an average accuracy loss of 8.40% and an
average F1-score loss of 12.79% compared with the baseline,
an improvement relative to Tofino as two additional features
from a larger LOB can be supported. Consequently, LOBIN
can achieve better performance on Tofino 2 hardware.

To further explore LOBIN’s ML performance on different
targets, we compute the average accuracy and F1-score ratios
relative to a server baseline. As shown in Figure 5, the accu-
racy and F1-scores of Tofino for five models can respectively
achieve 75.63% and 71.83% of the ML benchmarks’ accuracy
and F1-scores. The accuracy and F1-score ratios for Tofino 2
are higher, being 87.87% and 76.61%, correspondingly. For
BMv2, the two ratios reach 94.95% and 82.37%. As LOBIN
uses fewer features and limited ML model sizes, while pro-
viding latency benefits, its performance is promising.

C. Relative latency and throughput

The latency of Tofino is under NDA, therefore we report
our measurements of pipeline and framework latencies relative
to Tofino’s reference switch (switch.p4). LOBIN’s relative
pipeline latency is computed based on data reported by SDE
and includes one recirculation per MBO message. LOBIN’s
framework latency is measured between two servers, with a
switch in the middle. The relative framework latency is the
ratio of the measured LOBIN latency to the measurement of
simple forwarding through the switch. Precision Time Protocol
(PTP) using ptp4l toolkit is used for the measurement.

As shown in Figure 6 (a), all of LOBIN’s models have
a similar or lower latency than the reference switch.p4. This
illustrates that even under resource constraints and with packet
recirculation, LOBIN still achieves comparable latency to
simple packet switching. While on framework level, the mea-
sured latency of LOBIN is higher than simple forwarding, as
Figure 6 (b) LOBIN provides more than 10% improvement
compared with the NASDAQ order-matching server bench-
mark [52] and achieves microsecond-level latency.

In a throughput test, packets are sent using DPDK 20.11.1
and PktGen 21.03.0. Two of the pipelines (32 ports) are
connected in a snake configuration, one port to the next in
the pipe, with recirculation through unused pipelines. LOBIN
achieves full 1.6Tbps (16×100Gbps) on each of the pipelines,
and 3.2Tbps in total.

VI. DISCUSSION

LOBIN makes a contribution to latency reduction of short-
term price predictions from LBO data By Design. Even in com-
parison with inference solutions using SmartNICs or FPGA,
LOBIN eliminates the latency of getting to the host, with
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Fig. 5. The average ratio (%) of accuracy and F1-score, Tofino, Tofino 2,
and BMv2 relative to the benchmark, for different models.
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Fig. 6. (a) The pipeline relative latency (R-Latency) on Tofino for different
models, measured for standalone ML and standalone switch.p4. (b) The
framework R-Latency on Tofino for different models. (Stock: PYPL).

minimal overhead beyond that of standard switch forwarding.
While LOBIN is implemented on Tofino, using low-latency
programmable switches can reduce latency further.

Prediction performance can be further improved using hy-
brid ML deployment, as proposed in [53]. This means that a
price-movement prediction in the switch will be labeled only
if the confidence level of the prediction is high. Otherwise,
the MBO would be sent to a server for prediction by a larger
model. Such a deployment can reduce latency for most trans-
actions, without compromising on prediction performance.

While LOBIN is proven to be feasible on hardware tar-
gets, canceling and updating orders are left for future work.
LOBIN’s hardware constraints also don’t allow an unbounded
increase in LOB size. This work may inspire more industry-
driven improvement of current programmable switches to
support such extensions.

VII. CONCLUSION

This paper presented a time-sensitive application of in-
network ML in financial trading. LOBIN, a prototype for
constructing and updating limit order books within the data
plane, was designed and deployed on programmable network
devices. The evaluation shows that LOBIN can maintain
high prediction accuracy compared with a benchmark while
achieving ultra-low latency. The automated implementation of
LOBIN makes it easy to explore new stocks, different datasets,
and other ML models. It is the first step toward true in-network
applications in financial trading.
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Itch50converter,” 2021. [Online]. Available: https://zenodo.org/record/
5209267

[50] N. V. Chawla et al., “SMOTE: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16, pp. 321–357,
2002.

[51] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[52] J. Bonart and M. D. Gould, “Latency and liquidity provision in a limit
order book,” Quantitative Finance, vol. 17, no. 10, pp. 1601–1616, 2017.

[53] C. Zheng et al., “IIsy: Practical in-network classification,” arXiv preprint
arXiv:2205.08243, 2022.

https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://blogs.vmware.com/networkvirtualization/2022/08/announcing-dpu-based-acceleration-for-nsx.html/
https://blogs.vmware.com/networkvirtualization/2022/08/announcing-dpu-based-acceleration-for-nsx.html/
https://blogs.vmware.com/networkvirtualization/2022/08/announcing-dpu-based-acceleration-for-nsx.html/
https://www.hpcwire.com/off-the-wire/amd-announces-new-alveo-x3-series-for-electronic-trading/
https://www.hpcwire.com/off-the-wire/amd-announces-new-alveo-x3-series-for-electronic-trading/
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_APS_BF6064X-T_V04.pdf
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_APS_BF6064X-T_V04.pdf
https://www.aps-networks.com/wp-content/uploads/2021/07/210712_APS_BF6064X-T_V04.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/PSXTVITCHSpecification_5.0.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/PSXTVITCHSpecification_5.0.pdf
https://zenodo.org/record/5209267
https://zenodo.org/record/5209267

	Introduction
	Background and Motivation
	ML for Market Prediction
	Network Devices for Trading Acceleration
	In-Network ML

	Overview of LOBIN
	Limit Order Books
	LOBIN's Design

	Implementation
	Behavioral Implementation
	Tofino Implementation

	Evaluation
	Experimental Setup
	Prediction Performance
	Relative latency and throughput

	Discussion
	Conclusion
	References

