## Supplemental Information

for

## High-Performance Triboelectric Nanogenerators Incorporating Chlorinated Zeolitic Imidazolate Frameworks with Topologically Tunable Dielectric and Surface Adhesion Properties

Jiahao Ye<sup>a</sup> and Jin-Chong Tan<sup>a\*</sup>

<sup>a</sup>Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.

\*Corresponding Author and Lead Contact, Email: jin-chong.tan@eng.ox.ac.uk



**Fig. S1.** a) FTIR spectra of ZIF-71 embedded PDMS films under different mass loadings (wt.%), compared with ZIF-71 nanoparticles. b) FTIR spectra of ZIF-72 embedded PDMS films under different mass loadings, compared with ZIF-72 nanoparticles. c) Superimposed FTIR spectra of ZIF-71/PDMS composites between 1192 cm<sup>-1</sup> and 1210 cm<sup>-1</sup>. d) FTIR spectra of ZIF-72/PDMS composites from 1182 cm<sup>-1</sup> to 1205 cm<sup>-1</sup>.



**Fig. S2.** a) XRD patterns of ZIF-71 embedded PDMS films under different mass loadings (wt.%), compared with ZIF-71 nanoparticles. b) XRD patterns of ZIF-72 embedded PDMS films under different mass loadings, compared with ZIF-72 nanoparticles.



**Fig. S3.** SEM micrographs of the top surfaces of ZIF-71/PDMS nanocomposite films, containing a) 0 wt%, b) 2 wt%, and c) 5 wt% of ZIF-71 filler loading.



**Fig. S4.** SEM micrographs of the top surfaces of ZIF-72/PDMS nanocomposite films, containing a) 0 wt%, b) 2 wt%, and c) 5 wt% of ZIF-72 filler loading.



**Fig. S5.** Dielectric constants of ZIF-71/PDMS films at room temperature from 4 Hz to 8 MHz. The dip around 5 MHz was an artefact when the LCR meter switches its frequency range.



**Fig. S6.** a) Open-circuit current, and b) transferred charge of Z71-TENG at different mass loadings under an oscillatory motion of 2 Hz.



**Fig. S7.** a) Open-circuit current, and b) transferred charge of Z72-TENG at different mass loadings under an oscillatory motion of 2 Hz.



**Fig. S8.** Comparison of a) open-circuit current, and b) transferred charge between Z72-TENG (1 wt%), Z71-TENG (2 wt%), and P-TENG under 2 Hz oscillatory motion with 16 N impact force.



**Fig. S9.** a) Open-circuit current, and b) transferred charge of Z72-TENG (1 wt%) at 16 N under different frequencies.



**Fig. S10.** a) Open-circuit current, and b) transferred charge of Z72-TENG (1 wt%) at 2 Hz subject to a varying impact force. c) Correlation between force and voltage for Z72-TENG.



**Fig. S11.** a) Example of a stable open-circuit voltage output under 2 Hz. b) Magnified view of a single peak's voltage signal.



**Fig. S12**. a) Voltage profiles of discharging a 47  $\mu$ F capacitor by four different electronic devices. b) Powering of a commercial calculator by Z72-TENG for operational times of 0, 15, and 30 s; note that the solar panel has been disconnected before testing.



**Fig. S13.** a) Illumination of 120 LEDs at 2 Hz by the electricity generated from Z72-TENG. b) Difference in illumination intensities of LEDs powered by PDMS-based TENG and Z71-TENG.



**Fig. S14.** Nanoscale surface characterisation of height topography, Young's modulus, and stiffness of neat PDMS, ZIF-71/PDMS, and ZIF-72/PDMS films.



Fig. S15. Durability of Z71-TENG after a continuous run over 5,000 contact-separation oscillatory cycles.



**Fig. S16.** Water contact angles of pristine PDMS, ZIF-71/PDMS and ZIF-72/PDMS films. Both ZIF-71/PDMS and ZIF-72/PDMS nanocomposites show improved hydrophobicity comparing with the neat PDMS film, increasing the water contact angle of PDMS film from about 100° to 104°.



**Fig. S17.** Changes in XRD patterns for (a) ZIF-71 and (b) ZIF-72 nanoparticles after 180 days. Both ZIF-71 and ZIF-72 show excellent structural stability under ambient conditions (temperature and humidity), where the XRD patterns were retained despite some peak broadening observed for ZIF-71 nanoparticles.

| Name of<br>device           | Polymer<br>matrix | Filler                                                    | Positive<br>layer | P-P<br>Voltage,<br>V <sub>oc</sub> | Current,<br>Isc | Max Power<br>Density           | Reference |
|-----------------------------|-------------------|-----------------------------------------------------------|-------------------|------------------------------------|-----------------|--------------------------------|-----------|
| Silver<br>Nanowires<br>TENG | PDMS              | AgNW                                                      | PFA               | 203 V                              | 22 μΑ           | -                              | [1]       |
| CNT–PDMS<br>TENG            | PDMS              | Aligned<br>CNT                                            | ITO               | 275 V                              | 54 μΑ           | 4700 mW m <sup>-2</sup>        | [2]       |
| 3D-<br>MXene/PDMS<br>TENG   | PDMS              | 3D-Mxene                                                  | Nylon             | 65 V                               | 0.6 μΑ          | -                              | [3]       |
| F-MOF TENG                  | PDMS              | KAUST-8                                                   | Al                | 530 V                              | 3.2 μΑ          | 520 mW m <sup>-2</sup>         | [4]       |
| Perovskite-<br>TENG         | PDMS              | Sr <sub>3</sub> CO <sub>2</sub> WO <sub>9</sub><br>(SCWO) | Al                | 300 V                              | 2.2 μΑ          | $305 \text{ mW m}^{-2}$        | [5]       |
| ZIF-TENG                    | PDMS              | ZIF-8                                                     | Cu                | 176 V                              | 16.3 µA         | 1764 mW m <sup>-2</sup>        | [6]       |
| SWCNT-IL-<br>PDMS TENG      | PDMS              | SWCNT<br>and<br>IL                                        | Teflon            | 90 V                               | 2.5 μΑ          | 117 mW m <sup>-2</sup>         | [7]       |
| Z72-TENG                    | PDMS              | ZIF-72                                                    | Al                | 1139 V                             | 19 µA           | <b>5028</b> mW m <sup>-2</sup> | This Work |

Table S1. Comparison of current results against the electrical outputs of PDMS-based TENG devices reported in the literature. Note: P-P denotes the peak-to-peak voltage.

## References

- 1. Kang, H., et al., *Mechanically Robust Silver Nanowires Network for Triboelectric Nanogenerators*. Adv. Funct. Mater., 2016. **26**(42): p. 7717-7724.
- 2. Wang, H., et al., *High performance triboelectric nanogenerators with aligned carbon nanotubes*. Nanoscale, 2016. **8**(43): p. 18489-18494.
- 3. Wang, D., et al., *Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications*. Compos. A: Appl. Sci. Manuf., 2020. **130**: p. 105754.
- 4. Guo, Y., et al., *Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators.* Nano Energy, 2020. **70**: p. 104517.
- 5. Sahu, M., et al., *Triple perovskite-based triboelectric nanogenerator: a facile method of energy harvesting and self-powered information generator.* Mater. Today Energy, 2021. **20**: p. 100639.
- 6. Wen, R., et al., *A composite triboelectric nanogenerator based on flexible and transparent film impregnated with ZIF-8 nanocrystals.* Nanotechnology, 2021. **32**(34): p. 345401.
- Zhao, X. and Z. Ounaies, A facile method to enhance the flexibility and triboelectric output of PDMS using ionic liquid-coated single-wall carbon nanotubes. Nano Energy, 2022. 94: p. 106908.