
Efficient Probabilistic Inference in the Quest for
Physics Beyond the Standard Model

Atılım Güneş Baydin,1 Lukas Heinrich,2 Wahid Bhimji,3
Bradley Gram-Hansen,1 Gilles Louppe,4 Lei Shao,5

Prabhat,3 Kyle Cranmer,2 Frank Wood6

1University of Oxford; 2New York University; 3Lawrence Berkeley National Lab
4University of Liège; 5Intel Corporation; 6University of British Columbia

{gunes,bradley}@robots.ox.ac.uk; {lukas.heinrich,g.louppe,cranmer}@cern.ch
{wbhimji,prabhat}@lbl.gov; lei.shao@intel.com; fwood@cs.ubc.ca

Abstract

We present a novel framework that enables efficient probabilistic inference in
large-scale scientific models by allowing the execution of existing domain-specific
simulators as probabilistic programs, resulting in highly interpretable posterior
inference. Our framework is general purpose and scalable, and is based on a cross-
platform probabilistic execution protocol through which an inference engine can
control simulators in a language-agnostic way. We demonstrate the technique in
particle physics, on a scientifically accurate simulation of the τ (tau) lepton decay,
which is a key ingredient in establishing the properties of the Higgs boson. High-
energy physics has a rich set of simulators based on quantum field theory and the
interaction of particles in matter. We show how to use probabilistic programming
to perform Bayesian inference in these existing simulator codebases directly, in
particular conditioning on observable outputs from a simulated particle detector
to directly produce an interpretable posterior distribution over decay pathways.
Inference efficiency is achieved via inference compilation where a deep recurrent
neural network is trained to parameterize proposal distributions and control the
stochastic simulator in a sequential importance sampling scheme, at a fraction of
the computational cost of Markov chain Monte Carlo sampling.

1 Introduction

Complex simulators are used to express stochastic generative models of data across a wide segment of
the scientific community, with applications as diverse as hazard analysis in seismology [1], supernova
shock waves in astrophysics [2], market movements in economics [3], and blood flow in biology
[4]. In these generative models, complex simulators are composed from low-level mechanistic
components. These models are typically non-differentiable and lead to intractable likelihoods, which
renders many traditional statistical inference algorithms irrelevant and motivates a new class of
so-called likelihood-free inference algorithms [5].

There are two broad strategies for this type of likelihood-free inference problem. In the first, one
uses a simulator indirectly to train a surrogate model endowed with a likelihood that can be used in
traditional inference algorithms, for example approaches based on conditional density estimation [6–
9] and density ratio estimation [10, 11]. Alternatively, approximate Bayesian computation (ABC)
[12, 13] refers to a large class of approaches for sampling from the posterior distribution of these
likelihood-free models, where the original simulator is used directly as part of the inference engine.
While variational inference [14] algorithms are often used when the posterior is intractable, they are
not directly applicable when the likelihood of the data generating process is unknown.

Preprint. Work in progress.

ar
X

iv
:1

80
7.

07
70

6v
1

 [
cs

.L
G

]
 2

0
Ju

l 2
01

8

Figure 1: An illustration of the framework, where the pyprob package in Python is controlling the
SHERPA simulator in C++ through the probabilistic programming execution (PPX) protocol.

The class of inference strategies that directly use a simulator avoids the necessity of approximating
the generative model. Moreover, using a domain-specific simulator offers a natural pathway for
inference algorithms to provide interpretable posterior samples. In this work, we take this approach,
extend previous work in universal probabilistic programming [15] and inference compilation [16]
to large-scale complex simulators, and demonstrate the ability to execute existing simulator codes
under the control of general-purpose inference engines. This is achieved by creating a cross-platform
probabilistic execution protocol (Figure 1) through which an inference engine can control simulators
in a language-agnostic way. We implement a range of general-purpose inference engines from the
Markov chain Monte Carlo (MCMC) [17] and importance sampling [18] families. The execution
framework we develop currently has bindings in C++ and Python, which are languages of choice for
many large-scale projects in science and industry, and it can be used by any other language pending
the implementation of a lightweight front end.

We demonstrate the technique in a particle physics setting, introducing probabilistic programming as
a novel tool to determine the properties of particles at the Large Hadron Collider (LHC) [19, 20] at
CERN. This is achieved by coupling our framework with SHERPA1 [21], a state-of-the-art Monte
Carlo event generator of high-energy reactions of particles, which is commonly used with GEANT2

[22], a toolkit for the simulation of the passage of the resulting particles through detectors. In
particular, we perform inference in the case of τ (tau) lepton particle decay in a realistic detector,
controlling the simulation within the standard SHERPA software with minimal modification and
extracting posterior distributions in agreement with ground truths. To our knowledge this is the
first time that universal probabilistic programming has been applied in this domain and in this scale,
controlling a codebase of nearly one million lines of code. Our approach is readily scalable to
more complex events and full detector simulators, paving the way to its use in the discovery of new
fundamental physics.

2 Particle Physics and Probabilistic Inference

Our work is primarily motivated by applications in high-energy physics (HEP), which studies elemen-
tary particles and their interactions using energetic events created in particle accelerators such as the
LHC at CERN. In this setting, the observed data are the result of interactions of particles generated in
a collision event and observed through particle detectors. From these observations, we would like to
infer the properties of the particles and interactions that generated them. Collisions happen millions of
times per second, creating cascading particle decays in complex detectors instrumented with millions
of electronics channels. These experiments then seek to filter the vast volume of (petabyte-scale)
resulting data to make discoveries that shape our understanding of fundamental physics.

The complexity of the underlying physics and of the detectors have, until now, prevented the commu-
nity from employing inference techniques. However, they have developed sophisticated simulator

1Simulation of High-Energy Reactions of Particles. https://sherpa.hepforge.org/
2Geometry and Tracking. https://geant4.web.cern.ch/

2

https://sherpa.hepforge.org/
https://geant4.web.cern.ch/

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

B
ra

nc
hi

ng
R

at
io

ντe
− ν̄e

ντµ
− ν̄µ

ντπ
−

ντK
−
ντπ
− π

0

ντK
− KS

ντK
− KL

ντπ
− KS

ντπ
− KL

ντK
− π

0

ντπ
− π

0 π
0

ντπ
+ π
− π
−

ντπ
− KS

π
0

ντπ
− KL

π
0

ντK
− π

+ π
−

ντπ
0 π

0 K
−

ντK
− K

+ π
−

ντK
− KS

π
0

ντK
− KL

π
0

ντπ
− KS

KL

ντπ
− KS

KS

ντπ
− KL

KL

ντK
− K
− K

+

ντπ
+ π
− π
− π

0

ντπ
− π

0 π
0 π

0

ντK
− π

0 π
0 π

0

ντK
S
π
− π

0 π
0

ντK
L
π
− π

0 π
0

ντK
− K

+ π
− π

0

ντπ
− η

ντK
− η
ντπ
− ηη

ντη
π
− π

0

ντπ
− π
− π

+ π
0 π

0

ντπ
− π

0 π
0 π

0 π
0

ντK
− π

0 π
0 π

0 π
0

ντπ
− π
− π

+ π
0 π

0 π
0

ντπ
− π
− π
− π

+ π
+ π

0

τ−

ντ

e/µ−

νe/µ

W−

τ−

ντ

π0

γ

γ

π−

W−

Figure 2: Top: branching ratios of the τ lepton, effectively the prior distribution of the decay channels
in SHERPA. Note that the scale is logarithmic. Bottom: Feynman diagrams for τ decays illustrating
that these can produce multiple detected particles.

packages such as SHERPA [21], GEANT [22], PYTHIA [23], Herwig++ [24], and MadGraph [25]
to model physical processes and the interactions of particles with detectors. This is interesting from
a probabilistic programming point of view, because HEP simulators are essentially very accurate
probabilistic algorithms implementing the Standard Model and the passage of particles through matter
(i.e., particle detectors). These simulators are coded in languages with unbounded recursion, and
performing inference in such a setting requires using inference techniques developed for universal
probabilistic programming that cannot be handled via more traditional inference approaches that
apply to, for example, finite probabilistic graphical models [26]. Thus we focus on creating an
infrastructure for the interpretation of existing simulator packages as probabilistic programs, which
lays the groundwork for running inference in scientifically-accurate models using general-purpose
probabilistic inference algorithms.

The τ Lepton Decay. The specific HEP setting we focus on in depth in this paper is the decay
of a τ lepton particle inside an LHC-like detector. This is is a real use case in particle physics
currently under active study by LHC physicists [27] and it is also of interest due to its importance to
establishing the properties of the recently discovered Higgs boson [19, 20] through its decay to τ
particles. Once produced, the τ decays to further particles observed within the detector according to
certain decay channels. The probabilities of these decays or “branching ratios” are shown in Figure 2,
which have been measured by other experiments and provide prior estimations for inference.

3 Related Work

3.1 Probabilistic Programming

Our work belongs in the family of sampling-based approximate inference techniques, which have
been conventionally based on importance sampling [28] and Markov chain Monte Carlo (MCMC)
methods [17] such as the Metropolis–Hastings (MH) algorithm [29]. These are computationally
inefficient on large-scale models, due to the difficulty in choosing correct proposal distributions and
handling increasing model dimensionality. Recent developments in inference algorithms, such as
variational methods [30], extensions that combine deep learning [31, 8], MCMC samplers based on
physical dynamics such as the No-U-Turn Sampler (NUTS) [32] and Stochastic Gradient Langevin
Dynamics [33], and methods that use deep neural networks to amortize the cost of inference [34]
such as inference compilation (IC) [16], have been targeting fast and scalable inference.

Probabilistic programming languages (PPLs) attempt to decouple inference algorithms from model
building, by creating a simple, yet expressive, syntax that allows one to take advantage of these
powerful inference algorithms on any probabilistic generative model expressed as a regular computer
program. Universal PPLs allow the expression of unrestricted probability models in a Turing-
complete fashion [35–37], and there is a recent trend in combining these with variational inference
and deep learning, leading to tools such as Pyro [38], ProbTorch [39], and Edward [40]. This is in

3

contrast to languages such as Stan [41] that target the more restricted model class of probabilistic
graphical models [26].

3.2 Data Analysis in High-Energy Physics

Inference for an individual collision event in HEP is often referred to as reconstruction [42]. Recon-
struction algorithms can be seen as a form of structured prediction: from the raw event data they
produce a list of candidate particles together with their types and point-estimates for their momenta.
The variance of these estimators is characterized by comparison to the ground truth values of the
latent variables from simulated events. Bayesian inference on the latent state of an individual collision
is rare in HEP given the complexity of the latent structure of the generative model. Until now,
inference for the latent structure of an individual event has only been possible by accepting a drastic
simplification of the high-fidelity simulators [43–58]. In contrast, inference for the fundamental
parameters is based on hierarchical models and probed at the population level. Recently, machine
learning techniques have been employed to learn surrogates for the implicit densities defined by the
simulators as a strategy for likelihood-free inference [59].

Currently HEP simulators are run in forward mode to produce substantial datasets that often exceed the
size of datasets from actual collisions within the experiments. These are then reduced to considerably
lower dimensional datasets of a handful of variables using physics domain knowledge, which can then
be directly compared to collision data. Machine learning and statistical approaches for classification of
particle types or regression of particle properties can be trained on these large pre-generated datasets
produced by the high-fidelity simulators developed over many decades. The field is increasingly
employing deep learning techniques allowing these algorithms to process high-dimensional, low-level
data [60–62]. However, these approaches do not estimate the posterior of the full latent state nor
provide the level of interpretability our probabilistic inference framework enables by directly tying
inference results to the latent process encoded by the simulator.

4 Probabilistic Inference in Large-Scale Simulators

In this section we describe the main components of our probabilistic inference framework, which
consists of (1) pyprob, a PyTorch-based [63] PPL and associated inference engines in Python, (2)
PPX, a probabilistic programming execution protocol that defines a cross-platform interface for
connecting models and inference engines implemented in different programming languages and
executed in separate processes, (3) pyprob_cpp, a lighweight C++ front end that allows the execution
of models written in C++ under the control of pyprob.

4.1 Designing a PPL for Existing Large-Scale Simulators

A shortcoming of the current state-of-the-art in PPLs is that they are not designed to directly support
existing codebases, severely limiting their applicability to a very large body of existing probabilistic
models implemented as domain-specific simulators in many fields across academia and industry.
A PPL, by definition, is a programming language with additional constructs for sampling random
values from probability distributions and conditioning values of random variables via observations
[15]. Domain-specific simulators in HEP and other fields are commonly probabilistic in nature,
thus satisfying the behavior random sampling, albeit generally from simplistic distributions such as
the continuous uniform. By automatically “reinterpreting” these existing codebases with a proper
rewiring of the (pseudo-)random number generator and introducing a construct for conditioning, we
can execute existing simulators under the control of general-purpose inference engines designed
for probabilistic programming. This enables the application of Bayesian inference techniques in
these simulators, essentially treating the existing simulator as a joint prior distribution of latent and
observed variables of a model, and obtaining posterior distributions over latent variables conditioned
on realizations of observed variables.

To realize our framework, we implement pyprob,3 a universal PPL specifically designed to control
models written not only in Python but also in other languages. Because the main inference technique
we use in this PPL is based on deep neural networks, we base our PPL on PyTorch [63], whose
automatic differentiation (AD) [64] feature with support for dynamic computation graphs has been

3https://github.com/probprog/pyprob

4

https://github.com/probprog/pyprob

crucial in our implementation. Our PPL currently has two families of inference engines: (1) MCMC
of the lightweight Metropolis–Hastings (LMH) [35] and random-walk Metropolis–Hastings (RMH)
[65] varieties, and (2) sequential importance sampling (IS) [66, 18] with its regular (i.e., sampling
from the prior) and inference compilation (IC) [16] varieties. The IC technique, where a deep
neural network is trained in an amortized inference setting to guide (control) a probabilistic program
conditioning on observed inputs, forms our main inference method for performing efficient inference
in large-scale simulators. The LMH and RMH engines we implement are specialized for sampling in
the space of execution traces of probabilistic programs, and provide way of sampling from the true
posterior—at a high computational cost.

A probabilistic program can be expressed as a sequence of random samples (xt, at, it)Tt=1, where
xt, at, and it are respectively the value, address, and instance (counter) of a sample, the execution
of which describes a joint probability distribution between latent (unobserved) random variables
x := (xt)

T
t=1 and observed random variables y := (yn)

N
n=1 given by

p(x,y) :=

T∏
t=1

fat (xt|x1:t−1)

N∏
n=1

gn(yn|x≺n) , (1)

where fat(·|x1:t−1) denotes the prior probability distribution of a random variable with address at
conditional on all preceding values x1:t−1, and gn(·|x≺n) is the likelihood density given the sample
values x≺n preceding observation yn. A PPL is a regular programming language equipped with
sample and observe statements [15] for sampling random variables with given prior probability
distributions and conditioning random variables upon particular observed values.

Once a model p(x,y) is expressed as a probabilistic program, we are interested in performing
inference in order to get posterior distributions p(x|y) of latent variables x conditioned on observed
variables y. In the sequential IS scheme, a weighted set of samples {(wk,xk)Kk=1} is used to construct
an empirical approximation of the posterior distribution p̂(x|y) =

∑K
k=1 w

kδ(xk − x)/
∑K
j=1 w

j ,
where δ is the Dirac delta function. The importance weights for a probabilistic program are expressed
as

wk =

N∏
n=1

gn(yn|xk1:τk(n))
Tk∏
t=1

fat(x
k
t |xk1:t−1)

qat,it(x
k
t |xk1:t−1)

, (2)

where qat,it(·|xk1:t−1) is known as the proposal distribution and may be identical to the prior fat (as
in regular IS). In the IC technique, we are training a deep neural network to receive the observed
values y and return a set of adapted proposals qat,it(xt|x1:t−1,y) such that their joint q(x|y) is
close to the true posterior p(x|y). This is achieved by using a Kullback–Leibler divergence training
objective

L(φ) := Ep(y) [DKL (p(x|y) || q(x|y;φ))] (3)

=

∫
y

p(y)

∫
x

p(x|y) log p(x|y)
q(x|y;φ)

dx dy

= Ep(x,y) [− log q(x|y;φ)] + const. , (4)

where φ represents the neural network weights. The neural network weights φ are optimized to
minimize this objective by continually drawing training pairs (x,y) ∼ p(x,y) from the probabilistic
program (i.e., the generative model, or the simulator). To simplify the task of training, only a subset
of all addresses (at, it) are handled by the neural network, and the remaining addresses are left to use
the prior fat as proposal during inference. The IC controlling of an address is exposed as a boolean
flag called control, which can be applied to individual sample statements or delimited regions of
the codebase. Expressed in simple terms, taking a desired outcome y from the probabilistic program
as its input, the neural network learns to control the random number draws of latents x during the
execution in such a way that makes the desired outcome likely.

The neural network architecture in IC is based on a stacked LSTM [67] recurrent core that gets
executed for as many time steps as the probabilistic trace length. The input to this LSTM in each
time step is a concatenation of embeddings of the observation fobs(y), the previously sampled value
f smp
at−1,it−1

(xt−1), the current distribution type f type(at), and the current address faddr(at, it). fobs

is a neural network specific to the domain (such as a 3D convolutional neural network for volumetric

5

inputs), f smp are feed-forward modules, f type are one-hot vectors denoting a prior distribution
type from the set of supported distributions, faddr are learned address embeddings optimized via
backpropagation for each (at, it) pair encountered in the program execution. The addressing scheme
at [35] is the main link between semantic locations in the probabilistic program and the inputs to
the neural network. The addressing scheme in Python is based on an analysis of Python bytecode
of the location where the PPL sample or observe statement is called, and in the PPX protocol
(Section 4.2) the addresses at are produced and supplied by the side hosting and executing the model.

The joint proposal distribution of the neural network q(x|y) is factorized into proposals in each time
step qat,it , whose type depends on the type of the prior fat . In the experiments presented in this paper
(Section 5) the system uses categorical and continuous uniform distributions in the prior, for which
we use, respectively, categorical and mixture of Kumaraswamy [68, 69] distributions as proposals
parameterized by the neural network.

A common challenge for inference in real-world scientific models, such as those in HEP, is the
presence of large dynamic ranges of prior probabilities for various outcomes. For instance, some
particle decays are much more probable than others (Figure 2), and the prior distribution for a particle
momentum can be steeply falling. Therefore some cases may be much more likely to be seen by
the neural network during training relative to others. For this reason, the proposal parameters and
the quality of the inference would vary significantly according to the frequency of the observations
in the prior. To address this issue, we apply a technique called “prior inflation” for automatically
adjusting the measure of the prior distribution during training to generate more instances of these
unlikely outcomes. This applies only to the training data generation for the IC neural network, and
the unmodified original model is used during inference, ensuring that the importance weights (Eq. 2)
and therefore the empirical posterior are correct under the unmodified real model.

4.2 A Cross-Platform Probabilistic Execution Protocol

To couple our PPL and inference engines with simulators in a language-agnostic way, we introduce
a probabilistic programming execution (PPX)4 protocol that defines a schema for the execution of
probabilistic programs. The protocol covers language-agnostic definitions of common probability
distributions and message pairs covering the call and return values of (1) program entry points (2)
sample statements, and (3) observe statements. The implementation is based on flatbuffers,5 which
is an efficient cross-platform serialization library through which we compile PPX into the officially
supported languages C++, C#, Go, Java, JavaScript, PHP, Python, and TypeScript, enabling very
lightweight PPL front ends in these languages—in the sense of requiring only an implementation
to call sample and observe statements over the protocol. We exchange these flatbuffers-encoded
messages over ZeroMQ6 [70] sockets, which allow seamless communication between separate
processes in the same machine (using inter-process sockets) or across a network (using TCP).

Besides its use with pyprob, the PPX protocol defines a very flexible way of coupling any PPL system
and model so that they can be (1) implemented in different programming languages and (2) executed
in separate processes and on separate machines across networks. Thus PPX is similar in spirit to,
and indeed inspired by, the Open Neural Network Exchange (ONNX)7 project for interoperability
between machine learning frameworks. Note that, more than a serialization format, PPX enables
runtime execution of probabilistic models under the control of inference engines in separate processes.
We are releasing this language-agnostic protocol as a separately maintained project, together with the
rest of our work in Python and C++.

4.3 Controlling SHERPA and the Standard Model

In this paper our target simulator is SHERPA [21], a Monte Carlo event generator of high-energy
reactions of particles, which is a state-of-the-art simulator of the Standard Model of particle physics
developed as an international effort within the HEP community. SHERPA, like many other large-scale

4https://github.com/probprog/ppx
5http://google.github.io/flatbuffers/
6http://zeromq.org/
7https://onnx.ai/

6

https://github.com/probprog/ppx
http://google.github.io/flatbuffers/
http://zeromq.org/
https://onnx.ai/

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

 px
ground truth
posterior

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

 py
ground truth
posterior

43 44 45 46 47
0.0

0.1

0.2

0.3

0.4

0.5
 pz

ground truth
posterior

0 1 2 3 4 5 6 7 8 9 10
number of EM particles

0
1
2
3
4
5
6
7
8

nu
m

be
r o

f H
AD

 p
ar

tic
le

s

1 0 1 2 3 4 5 6 7 8 9 1011
number of final state particles

0.0

0.1

0.2

0.3

0.4

0.5
ground truth
posterior

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
Decay Channel

ground truth
posterior

x

3210123y
3 2 1 0 1 2 3

z

0

2

4

6

8

10

12

14

Observation

x

3210123
y

3 2 1 0 1 2 3

z

0
2
4
6
8

10

12

14

Mean Simulated Observation

0 10 20 30
0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0.00

0.05

0.10

0.15

(a) IC proposal distribution of a selection of latents (9,600 traces).

2 0 2
0.00

0.25

0.50

0.75

1.00

1.25
 px

ground truth
posterior

2 0 2
0.0

0.2

0.4

0.6

0.8

 py
ground truth
posterior

43 44 45 46 47
0.00

0.25

0.50

0.75

1.00

 pz
ground truth
posterior

0 1 2 3 4 5 6 7 8 9 10
number of EM particles

0
1
2
3
4
5
6
7
8

nu
m

be
r o

f H
AD

 p
ar

tic
le

s

1 0 1 2 3 4 5 6 7 8 9 1011
number of final state particles

0.0

0.2

0.4

0.6

0.8

1.0 ground truth
posterior

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
Decay Channel

ground truth
posterior

x

3210123y
3 2 1 0 1 2 3

z

0

2

4

6

8

10

12

14

Observation

x

3210123
y

3 2 1 0 1 2 3

z

0
2
4
6
8

10

12

14

Mean Simulated Observation

0 10 20 30
0.00

0.05

0.10

0.15

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0.00

0.05

0.10

0.15

(b) IC posterior distribution of a selection of latents (9,600 traces).

2 0 2
0.0

0.2

0.4

0.6
 px

ground truth
posterior

2 0 2
0.0

0.2

0.4

0.6

 py
ground truth
posterior

43 44 45 46 47
0.0

0.2

0.4

0.6

 pz
ground truth
posterior

0 1 2 3 4 5 6 7 8 9 10
number of EM particles

0
1
2
3
4
5
6
7
8

nu
m

be
r o

f H
AD

 p
ar

tic
le

s

1 0 1 2 3 4 5 6 7 8 9 1011
number of final state particles

0.0

0.2

0.4

0.6

0.8 ground truth
posterior

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
Decay Channel

ground truth
posterior

x

3210123y
3 2 1 0 1 2 3

z

0

2

4

6

8

10

12

14

Observation

x

3210123
y

3 2 1 0 1 2 3

z

0
2
4
6
8

10

12

14

Mean Simulated Observation

0 10 20 30
0.000

0.025

0.050

0.075

0.100

0.125

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0.00

0.05

0.10

0.15

(c) RMH MCMC posterior distribution of a selection of latents (20,000 traces).

Figure 3: Proposal and posterior distributions of a subset of latent variables in the τ lepton decay
problem conditioned on the same observation. (See Figure 5 for the full latent structure.) In each
subfigure, the lower left and the two adjacent plots show the energies of the two most energetic
final state particles and their joint probability. To the right, the distribution of the originating
momentum components of the τ lepton and its decay channel are shown. In the middle we show
the event composition as characterized by the number of mainly electromagnetically interacting and
hadronically interacting final state particles as well as the number of decay products. To the right we
show the original observation as well as the mean simulated calorimeters generated during inference.
Vertical lines in histograms mark the ground truth values that generated the test observation.

scientific projects, is implemented in C++, and therefore we implement a C++ front end for PPX,
called pyprob_cpp.8

We couple SHERPA to pyprob_cpp by a system-wide rerouting of the calls to the random number
generator, which is made easy by the existence of a third-party random number generator interface
(External_RNG) already present in SHERPA. Through this setup, we can repurpose, with little effort,
any stochastic simulation written in SHERPA as a probabilistic generative model in which we can
perform inference using probabilistic programming techniques.

Differing from the conventions in the probabilistic programming community, random number draws
in C++ simulators are commonly performed at a lower level than the actual prior distribution that is
being simulated. This applies to SHERPA where the only samples are from the standard uniform
distribution U(0, 1), which subsequently get used for different purposes using transformations or
rejection sampling. In our experiments (Section 5) we work with all uniform samples except for
a problem-specific single address that we know to be responsible for sampling from a categorical
distribution for choosing the τ lepton decay channel. The modification of this address to use the
proper categorical prior allows an effortless application of the prior inflation technique (Section 4.1)
to generate training data equally representing each channel.

8https://github.com/probprog/pyprob_cpp

7

https://github.com/probprog/pyprob_cpp

Rejection sampling [71] sections in the simulator pose a problem for our approach, as they define
execution traces that are a priori unbounded; and since the inference network has to backpropagate
through every sampled value, this makes the training significantly slower. Rejection sampling is
key to the application of Monte Carlo methods for evaluating matrix elements [72] and other stages
of event generation in particle physics; thus an efficient treatment of this construction is primal.
We address this problem by implementing a novel trace evaluation scheme where during training
we only consider the last (thus accepted) instance ilast of any address (at, it) that fall within a
rejection sampling loop. During inference, we use this same proposal distribution qat,ilast in each
loop execution. In other words, this corresponds to training the inference network with the state that
concludes the loop (i.e., satisfies the acceptance criterion), effectively selecting proposal distributions
such that the rejection loop is concluded in as few iterations as possible. This scheme works by
annotating the sample statements within long-running rejection sampling loops with a boolean flag
called replace, which, when set true, enables the behavior described for the given sample address.

5 Experiments

An important decay of the Higgs boson is to τ leptons, whose subsequent decay products interact
in the detector. This constitutes a rich and realistic case to simulate, and directly connects to an
important line of current research in particle physics. During simulation, SHERPA stochastically
selects a set of particles to which the initial τ lepton will decay—a “decay channel”—and samples
the momenta of these particles according to a joint density obtained from underlying physical theory.
These particles then interact in the detector leading to observations in the raw sensor data. While
GEANT is typically used to model the interactions in a detector, for our initial studies we implement a
fast, approximate detector simulation for a calorimeter with longitudinal and transverse segmentation
(with resolution 20×35×35). The fast detector simulation deposits most of the energy for electrons
and π0 into the first layers and charged hadrons (e.g., π±) deeper into the calorimeter with larger
fluctuations. Given raw 3D calorimeter observations, we would like to infer primarily the decay
channel that the τ lepton followed and the initial momenta px, py , and pz . Using our framework, we
compute posterior distributions for the decay channel, initial momenta, and other latent quantities in
the model conditioning on various simulated observations with known ground truth. The discrete
variable for decay channel has a known prior distribution (Figure 2) given by the branching ratio of
the τ into 38 possible decay channels [73].

In Figure 3 we show inference results obtained from the IC and RMH MCMC engines, for a single
observation y sampled from the model joint prior p(x,y) by running the simulation. The IC proposals
are generated by an inference network trained with 1.6 million execution traces, and the IC engine
controls (i.e., makes proposals different from the prior for) 47 addresses,9 17 of these in replacement
(rejection sampling) mode, out of a total of 24,429 addresses. The RMH engine, by its very nature,
controls all addresses encountered in the simulation. During IC network training, 440 trace types
are encountered (Table 1), which represent the reoccurrence of the same sequence of addresses with
different actual sample values. Traces reach lengths up to 7,514 and 1,190 respectively when looking
at all and controlled-only samples (Figure 4).

As can be seen in Figure 3 (a), the network proposes values in agreement with the ground truth values.
Figure 3 (b) shows the posterior after importance sampling guided by these proposals: this shows
the correct posterior over particle decays was identified and also that related τ decays are shown
as possible alternatives with correct uncertainty, in agreement with RMH samples from the correct
posterior in Figure 3 (c). Furthermore, correlations between the final state particle momenta are well
reproduced. In order to make the RMH results for the test observation tractable, we start the chain
from the ground truth trace (i.e., eliminating the need for burn in), which would not be possible for
inference on real experimental data. This shows good agreement with the decay channel and event
composition posteriors obtained from the IC engine that has access to observation y only (i.e., did
not start from ground truth), and that would be used for fast inference with real experimental data.

The ability to connect posterior samples to the simulator code is a key advantage of our method in
scientific applications. This connection enables inference results to be interpretable in the context of
the physically-motivated latent process encoded by the simulator. Note that the posterior distributions

9The controlled addresses are those that fall within sections of the codebase deemed fundamental in the
solution of the τ decay problem, based on domain knowledge.

8

presented in Figure 3 do not show all of the posterior information this technique encodes. Probabilistic
programming gives us posteriors over the full space of execution traces covering the entire latent
structure of the simulator, which we show at different levels of detail in Figure 5. Table 2 provides
several examples of how the actual addresses (at, it) look like within C++, allowing us to pinpoint
all individual nodes in the codebase where the model behaves probabilistically. For instance, this
approach gives us the ability to inspect aspects such as the chain of particle decays and interactions
within the detector that led to particular posterior predictions, mirroring the standard task of event
reconstruction [74]. This capability is not present in inference techniques that do not have access to
the simulator, such as those solely based on neural networks.

6 Conclusions

Our work is the first step in subsuming the vast existing body of scientific simulators, which are
essentially accurate generative models with decades of development behind them in many instances,
into a universal probabilistic programming framework. The ability to scale probabilistic programming
to large-scale simulators is of fundamental importance to the field of probabilistic programming
and the wider modeling community. It is a hard problem that requires innovations in many areas
such as model–inference engine interface, handling of priors with long tails and rejection sampling
routines, addressing schemes, and IC network architecture, which make it difficult to cover in depth
in a single paper. A main limitation of the introduced technique, currently, is the need for domain
expert decisions in marking regions of codebase as controlled (only needed for the IC engine, and not
needed for MCMC), which can potentially be automated in future work.

Our advancement allows one to perform model-based machine learning with interpretability, meaning
that we understand the exact processes behind how the predictions are produced and the uncertainty
in each prediction. With this novel framework providing a clearly defined interface between existing
scientific simulators and probabilistic machine learning techniques, we expect to influence both
communities to perform research at the intersection of science and machine learning.

Acknowledgments

Baydin and Wood are supported under DARPA PPAML through the U.S. AFRL under Cooperative
Agreement FA8750-14-2-0006, Sub Award number 61160290-111668. Gram-Hansen is supported
by the UK EPSRC CDT in Autonomous Inteligent Machines and Systems. Cranmer, Louppe, and
Heinrich are supported through NSF ACI-1450310, PHY-1505463, PHY- 1205376, and the Moore-
Sloan Data Science Environment at NYU. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by
the Office of Science of the U.S.Department of Energy under Contract No. DE-AC02-05CH11231.

References
[1] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader, Alice-

Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke Liao, Karthikeyan
Vaidyanathan, et al. Petascale high order dynamic rupture earthquake simulations on heteroge-
neous supercomputers. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 3–14. IEEE Press, 2014.

[2] Eirik Endeve, Christian Y Cardall, Reuben D Budiardja, Samuel W Beck, Alborz Bejnood,
Ross J Toedte, Anthony Mezzacappa, and John M Blondin. Turbulent magnetic field amplifica-
tion from spiral SASI modes: implications for core-collapse supernovae and proto-neutron star
magnetization. The Astrophysical Journal, 751(1):26, 2012.

[3] Marco Raberto, Silvano Cincotti, Sergio M. Focardi, and Michele Marchesi. Agent-based
simulation of a financial market. Physica A: Statistical Mechanics and its Applications, 299
(1):319 – 327, 2001. ISSN 0378-4371. doi: 10.1016/S0378-4371(01)00312-0. Application of
Physics in Economic Modelling.

[4] Paris Perdikaris, Leopold Grinberg, and George Em Karniadakis. Multiscale modeling and
simulation of brain blood flow. Physics of Fluids, 28(2):021304, 2016.

9

[5] Florian Hartig, Justin M Calabrese, Björn Reineking, Thorsten Wiegand, and Andreas Huth.
Statistical inference for stochastic simulation models–theory and application. Ecology Letters,
14(8):816–827, 2011.

[6] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1–37,
2016.

[7] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

[8] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

[9] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 4743–4751. Curran Associates, Inc., 2016.

[10] Kyle Cranmer, Juan Pavez, and Gilles Louppe. Approximating likelihood ratios with calibrated
discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

[11] Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U Gutmann. Likelihood-free
inference by penalised logistic regression. arXiv preprint arXiv:1611.10242, 2016.

[12] Richard David Wilkinson. Approximate Bayesian computation (ABC) gives exact results under
the assumption of model error. Statistical Applications in Genetics and Molecular Biology, 12
(2):129–141.

[13] Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll,
and Christophe Dessimoz. Approximate Bayesian computation. PLoS Computational Biology,
9(1):e1002803, 2013.

[14] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[15] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic
programming. In Proceedings of the Future of Software Engineering, pages 167–181. ACM,
2014.

[16] Tuan Anh Le, Atılım Güneş Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning Research,
pages 1338–1348, Fort Lauderdale, FL, USA, 2017. PMLR.

[17] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov chain
monte carlo. CRC press, 2011.

[18] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

[19] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. A. Abdelalim, O. Abdinov,
R. Aben, B. Abi, M. Abolins, and et al. Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716:
1–29, September 2012. doi: 10.1016/j.physletb.2012.08.020.

[20] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo, T. Bergauer,
M. Dragicevic, J. Erö, C. Fabjan, and et al. Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Physics Letters B, 716:30–61, September 2012. doi:
10.1016/j.physletb.2012.08.021.

[21] T. Gleisberg, Stefan. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter.
Event generation with SHERPA 1.1. Journal of High Energy Physics, 02:007, 2009. doi:
10.1088/1126-6708/2009/02/007.

10

[22] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Baner-
jee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph.
Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortés-Giraldo,
G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Fol-
ger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli,
P. Guèye, P. Gumplinger, A.S. Howard, I. Hřivnáčová, S. Hwang, S. Incerti, A. Ivanchenko, V.N.
Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey,
A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi,
A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl,
I. Petrović, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristić Fira,
F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda,
S. Tanaka, B. Tomé, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke,
M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, and
H. Yoshida. Recent developments in GEANT4. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835
(Supplement C):186 – 225, 2016. ISSN 0168-9002. doi: 10.1016/j.nima.2016.06.125.

[23] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. Journal
of High Energy Physics, 2006(05):026, 2006.

[24] Manuel Bähr, Stefan Gieseke, Martyn A Gigg, David Grellscheid, Keith Hamilton, Oluseyi
Latunde-Dada, Simon Plätzer, Peter Richardson, Michael H Seymour, Alexander Sherstnev,
et al. Herwig++ physics and manual. The European Physical Journal C, 58(4):639–707, 2008.

[25] Johan Alwall, R Frederix, S Frixione, V Hirschi, Fabio Maltoni, Olivier Mattelaer, H-S Shao,
T Stelzer, P Torrielli, and M Zaro. The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simulations. Journal of
High Energy Physics, 2014(7):79, 2014.

[26] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[27] Georges Aad et al. Reconstruction of hadronic decay products of tau leptons with the ATLAS
experiment. Eur. Phys. J., C76(5):295, 2016. doi: 10.1140/epjc/s10052-016-4110-0.

[28] S Agapiou, O Papaspiliopoulos, D Sanz-Alonso, and AM Stuart. Importance sampling: Intrinsic
dimension and computational cost. arXiv preprint arXiv:1511.06196, 2015.

[29] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in
practice. CRC press, 1995.

[30] David Wingate and Theophane Weber. Automated variational inference in probabilistic pro-
gramming. arXiv preprint arXiv:1301.1299, 2013.

[31] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[32] Matthew D Hoffman and Andrew Gelman. The No-U-turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623,
2014.

[33] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[34] Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the 36th Annual Conference of the Cognitive Science Society, 2014.

[35] David Wingate, Andreas Stuhlmueller, and Noah Goodman. Lightweight implementations of
probabilistic programming languages via transformational compilation. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, pages 770–778,
2011.

11

[36] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.
Church: a language for generative models. arXiv preprint arXiv:1206.3255, 2012.

[37] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach to probabilistic
programming inference. In Artificial Intelligence and Statistics, pages 1024–1032, 2014.

[38] Bingham Eli, Jonathan P Chen, Martin Jankowiak, Theofanis Karaletsos, Fritz Obermeyer,
Neeraj Pradhan, Rohit Singh, Paul Szerlip, and Noah Goodman. Pyro: Deep probabilistic
programming. https://github.com/uber/pyro, 2017.

[39] N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations with
semi-supervised deep generative models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5927–5937. Curran Associates, Inc., 2017.

[40] Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and David M
Blei. Deep probabilistic programming. arXiv preprint arXiv:1701.03757, 2017.

[41] Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A Probabilistic Programming Language
for Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics, 40
(5):530–543, 2015.

[42] W Lampl, S Laplace, D Lelas, P Loch, H Ma, S Menke, S Rajagopalan, D Rousseau, S Snyder,
and G Unal. Calorimeter Clustering Algorithms: Description and Performance. Technical
Report ATL-LARG-PUB-2008-002. ATL-COM-LARG-2008-003, CERN, Geneva, Apr 2008.
URL https://cds.cern.ch/record/1099735.

[43] K. Kondo. Dynamical Likelihood Method for Reconstruction of Events With Missing
Momentum. 1: Method and Toy Models. J. Phys. Soc. Jap., 57:4126–4140, 1988. doi:
10.1143/JPSJ.57.4126.

[44] V. M. Abazov et al. A precision measurement of the mass of the top quark. Nature, 429:
638–642, 2004. doi: 10.1038/nature02589.

[45] Pierre Artoisenet and Olivier Mattelaer. MadWeight: Automatic event reweighting with matrix
elements. PoS, CHARGED2008:025, 2008.

[46] Yanyan Gao, Andrei V. Gritsan, Zijin Guo, Kirill Melnikov, Markus Schulze, and Nhan V. Tran.
Spin determination of single-produced resonances at hadron colliders. Phys. Rev., D81:075022,
2010. doi: 10.1103/PhysRevD.81.075022.

[47] J. Alwall, A. Freitas, and O. Mattelaer. The Matrix Element Method and QCD Radiation. Phys.
Rev., D83:074010, 2011. doi: 10.1103/PhysRevD.83.074010.

[48] Sara Bolognesi, Yanyan Gao, Andrei V. Gritsan, Kirill Melnikov, Markus Schulze, Nhan V.
Tran, and Andrew Whitbeck. On the spin and parity of a single-produced resonance at the LHC.
Phys. Rev., D86:095031, 2012. doi: 10.1103/PhysRevD.86.095031.

[49] Paul Avery et al. Precision studies of the Higgs boson decay channel H → ZZ → 4l with
MEKD. Phys. Rev., D87(5):055006, 2013. doi: 10.1103/PhysRevD.87.055006.

[50] Jeppe R. Andersen, Christoph Englert, and Michael Spannowsky. Extracting precise Higgs
couplings by using the matrix element method. Phys. Rev., D87(1):015019, 2013. doi: 10.1103/
PhysRevD.87.015019.

[51] John M. Campbell, R. Keith Ellis, Walter T. Giele, and Ciaran Williams. Finding the Higgs
boson in decays to Zγ using the matrix element method at Next-to-Leading Order. Phys. Rev.,
D87(7):073005, 2013. doi: 10.1103/PhysRevD.87.073005.

[52] Pierre Artoisenet, Priscila de Aquino, Fabio Maltoni, and Olivier Mattelaer. Unravelling tth via
the Matrix Element Method. Phys. Rev. Lett., 111(9):091802, 2013. doi: 10.1103/PhysRevLett.
111.091802.

12

https://github.com/uber/pyro
https://cds.cern.ch/record/1099735

[53] James S. Gainer, Joseph Lykken, Konstantin T. Matchev, Stephen Mrenna, and Myeonghun
Park. The Matrix Element Method: Past, Present, and Future. In Proceedings, 2013 Community
Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013):
Minneapolis, MN, USA, July 29-August 6, 2013, 2013. URL http://inspirehep.net/
record/1242444/files/arXiv:1307.3546.pdf.

[54] Doug Schouten, Adam DeAbreu, and Bernd Stelzer. Accelerated Matrix Element Method with
Parallel Computing. Comput. Phys. Commun., 192:54–59, 2015. doi: 10.1016/j.cpc.2015.02.
020.

[55] Till Martini and Peter Uwer. Extending the Matrix Element Method beyond the Born approxi-
mation: Calculating event weights at next-to-leading order accuracy. JHEP, 09:083, 2015. doi:
10.1007/JHEP09(2015)083.

[56] Andrei V. Gritsan, Raoul Röntsch, Markus Schulze, and Meng Xiao. Constraining anomalous
Higgs boson couplings to the heavy flavor fermions using matrix element techniques. Phys.
Rev., D94(5):055023, 2016. doi: 10.1103/PhysRevD.94.055023.

[57] Till Martini and Peter Uwer. The Matrix Element Method at next-to-leading order QCD for
hadronic collisions: Single top-quark production at the LHC as an example application. 2017.

[58] Davison E. Soper and Michael Spannowsky. Finding physics signals with shower deconstruction.
Phys. Rev., D84:074002, 2011. doi: 10.1103/PhysRevD.84.074002.

[59] Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan Pavez. A Guide to Constraining
Effective Field Theories with Machine Learning. 2018.

[60] Lily Asquith et al. Jet Substructure at the Large Hadron Collider : Experimental Review. 2018.

[61] Gulrukh Khattak Vitória Pacela Maurizio Pierini Jean-Roch Vlimant Maria Spiropulu Wei
Wei Matt Zhang Benjamin Hooberman, Amir Farbin and Sofia Vallecorsa. Calorimetry
with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-
Energy Physics, 2017. Deep Learning in Physical Sciences (NIPS workshop). https:
//dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf.

[62] Gregor Kasieczka. Boosted Top Tagging Method Overview. In 10th International Workshop
on Top Quark Physics (TOP2017) Braga, Portugal, September 17-22, 2017, 2018. URL
http://inspirehep.net/record/1647961/files/arXiv:1801.04180.pdf.

[63] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS 2017 Autodiff Workshop: The Future of Gradient-based Machine Learning
Software and Techniques, Long Beach, CA, US, December 9, 2017, 2017.

[64] Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learn-
ing Research (JMLR), 18(153):1–43, 2018. URL http://jmlr.org/papers/v18/17-468.
html.

[65] Tuan Anh Le. Inference for higher order probabilistic programs. Masters thesis, University of
Oxford, 2015.

[66] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, 2002.

[67] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[68] Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded
random processes. Journal of Hydrology, 46(1-2):79–88, 1980.

[69] Pablo A Mitnik and Sunyoung Baek. The kumaraswamy distribution: median-dispersion re-
parameterizations for regression modeling and simulation-based estimation. Statistical Papers,
54(1):177–192, 2013.

13

http://inspirehep.net/record/1242444/files/arXiv:1307.3546.pdf
http://inspirehep.net/record/1242444/files/arXiv:1307.3546.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
http://inspirehep.net/record/1647961/files/arXiv:1801.04180.pdf
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html

[70] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc., 2013.

[71] Walter R Gilks and Pascal Wild. Adaptive rejection sampling for gibbs sampling. Applied
Statistics, pages 337–348, 1992.

[72] Frank Krauss. Matrix elements and parton showers in hadronic interactions. Journal of High
Energy Physics, 2002(08):015, 2002.

[73] C Patrignani, DH Weinberg, CL Woody, RS Chivukula, O Buchmueller, Yu V Kuyanov,
E Blucher, S Willocq, A Höcker, C Lippmann, et al. Review of particle physics. Chinese
Physics C, 40:100001, 2016.

[74] Rainer Mankel. Pattern recognition and event reconstruction in particle physics experiments.
Reports on Progress in Physics, 67(4):553, 2004.

14

A Appendix

Table 1: Trace types encountered in the τ lepton decay model, identified according to the address
sequence contained in each trace. Only the first 36 most frequent trace types are shown out of a total
of 440 types encountered over 1,602,880 executions. Note that even when the address sequence is the
same, the sampled values in each trace of the same type would be different.

Freq. Length Addresses (showing controlled only)

0.106 72 A1, A2, A3, A5, A6, A32, A33, A31
0.105 41 A1, A2, A3, A5, A6, A499, A31
0.078 1,780 A1, A2, A3, A5, A6, A7, A8, A9, A10, A31
0.053 188 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A26, A31
0.053 100 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A99, A100, A101, A102, A31
0.039 56 A1, A2, A3, A5, A6, A499, A17, A18, A26, A31
0.039 592 A1, A2, A3, A5, A6, A499, A17, A18, A99, A100, A101, A102, A31
0.038 162 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A500, A99, A100, A101, A102, A31
0.030 240 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A26, A99, A100,

A101, A102, A31
0.029 836 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A99, A100, A101,

A102, A26, A31
0.027 643 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A99, A100, A101, A102, A31
0.023 135 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A44, A45, A26, A99,

A100, A101, A102, A31
0.023 485 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A44, A45, A99, A100,

A101, A102, A26, A31
0.019 316 A1, A2, A3, A5, A6, A32, A33, A17, A500, A99, A100, A101, A102, A31
0.014 68 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A26, A99, A100, A101, A102,

A31
0.013 422 A1, A2, A3, A5, A6, A32, A33, A17, A500, A20, A1496, A99, A100, A101, A102, A31
0.013 298 A1, A2, A3, A5, A6, A32, A33, A17, A18, A20, A21, A26, A31
0.013 283 A1, A2, A3, A5, A6, A32, A33, A17, A18, A20, A21, A26, A99, A100, A101, A102, A31
0.013 608 A1, A2, A3, A5, A6, A32, A33, A17, A18, A20, A21, A99, A100, A101, A102, A31
0.013 424 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A99, A100, A101, A102, A31
0.013 50 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A26, A31
0.013 204 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A99, A100, A101, A102, A26,

A31
0.013 252 A1, A2, A3, A5, A6, A32, A33, A17, A18, A20, A21, A99, A100, A101, A102, A26, A31
0.010 234 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A99, A100, A101,

A102, A31
0.010 58 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A41, A42, A26, A31
0.010 502 A1, A2, A3, A5, A6, A499, A17, A18, A20, A1496, A99, A100, A101, A102, A31
0.009 216 A1, A2, A3, A5, A6, A499, A17, A500, A20, A21, A99, A100, A101, A102, A31
0.009 1,053 A1, A2, A3, A5, A6, A499, A17, A18, A20, A1496, A26, A99, A100, A101, A102, A31
0.009 800 A1, A2, A3, A5, A6, A499, A17, A500, A20, A21, A99, A100, A101, A102, A26, A31
0.007 92 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A500, A26, A31
0.007 32 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A26, A31
0.007 78 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A99, A100, A101, A102, A510, A511,

A898, A31
0.006 120 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A20, A508, A99, A100, A101, A102, A31
0.006 118 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A99, A100, A101, A102, A510, A511,

A882, A883, A884, A885, A31
0.005 553 A1, A2, A3, A5, A6, A7, A8, A9, A10, A17, A500, A20, A21, A41, A42, A99, A100, A101,

A102, A26, A31

15

0 1000 2000 3000 4000 5000 6000 7000
Trace length

10 4

10 3
Fr

eq
ue

nc
y

(a) Distribution of trace lengths (all addresses). Min: 13, max: 7,514, mean: 383.58.

0 200 400 600 800 1000 1200
Trace length (controlled)

10 3

10 2

Fr
eq

ue
nc

y

(b) Distribution of trace lengths (controlled addresses only). Min: 6, max: 1,190, mean: 13.61.

0 100 200 300 400
Unique trace ID

10 6

10 5

10 4

10 3

10 2

10 1

Fr
eq

ue
nc

y

(c) Distribution of trace types, sorted in decreasing frequency.

Figure 4: Probabilistic trace statistics in the τ decay model automatically extracted from SHERPA
executions via PPX.

16

Table 2: Addresses in the τ lepton decay problem (C++). Only the first 6 addresses are shown out of
a total of 24,382 addresses encountered over 1,602,880 executions.
Address ID Full address

A1 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x45f; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A2 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x477; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A3 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x48f; ATOOLS:: Random:: Get(bool, bool)+0x1d5; probprog_RNG:: Get(bool,
bool)+0xf9]_Uniform_1

A4 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x8f4; ATOOLS:: Particle:: SetTime()+0xd; ATOOLS:: Flavour:: GenerateLifeTime()
const+0x35; ATOOLS:: Random:: Get()+0x18b; probprog_RNG:: Get()+0xde]_Uniform_1

A5 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gener-
ateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: eventtype::
code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: eventtype::
code&)+0x982; SHERPA:: Event_Handler:: IterateEventPhases(SHERPA:: eventtype:: code&,
double&)+0x1d2; SHERPA:: Hadron_Decays:: Treat(ATOOLS:: Blob_List*, double&)+0x975;
SHERPA:: Decay_Handler_Base:: TreatInitialBlob(ATOOLS:: Blob*, METOOLS:: Ampli-
tude2_Tensor*, std:: vector<ATOOLS:: Particle*, std:: allocator<ATOOLS:: Particle*> >
const&)+0x1ab1; SHERPA:: Hadron_Decay_Handler:: CreateDecayBlob(ATOOLS:: Parti-
cle*)+0x4cd; PHASIC:: Decay_Table:: Select() const+0x76e; ATOOLS:: Random:: Get(bool,
bool)+0x1d5; probprog_RNG:: Get(bool, bool)+0xf9]_Uniform_1

A6 [forward(xt:: xarray_container<xt:: uvector<double, std:: allocator<double> >, (xt:: lay-
out_type)1, xt:: svector<unsigned long, 4ul, std:: allocator<unsigned long>, true>, xt:: xten-
sor_expression_tag>)+0x5f; SherpaGenerator:: Generate()+0x36; SHERPA:: Sherpa:: Gen-
erateOneEvent(bool)+0x2fa; SHERPA:: Event_Handler:: GenerateEvent(SHERPA:: event-
type:: code)+0x44d; SHERPA:: Event_Handler:: GenerateHadronDecayEvent(SHERPA:: event-
type:: code&)+0x982; SHERPA:: Event_Handler:: IterateEventPhases(SHERPA:: eventtype::
code&, double&)+0x1d2; SHERPA:: Hadron_Decays:: Treat(ATOOLS:: Blob_List*, dou-
ble&)+0x975; SHERPA:: Decay_Handler_Base:: TreatInitialBlob(ATOOLS:: Blob*, METOOLS::
Amplitude2_Tensor*, std:: vector<ATOOLS:: Particle*, std:: allocator<ATOOLS:: Parti-
cle*> > const&)+0x1ab1; SHERPA:: Hadron_Decay_Handler:: CreateDecayBlob(ATOOLS::
Particle*)+0x4cd; PHASIC:: Decay_Table:: Select() const+0x9d7; ATOOLS:: Random::
GetCategorical(std:: vector<double, std:: allocator<double> > const&, bool, bool)+0x1a5;
probprog_RNG:: GetCategorical(std:: vector<double, std:: allocator<double> > const&, bool,
bool)+0x111]_Categorical(length_categories:38)_1

17

A1 A21.000000 A31.000000 A51.000000 A61.000000

A32
0.185532

A4990.321907

A7
0.492561

A330.185532

A31

0.185532

0.184407

A17

0.137500

A8
0.492561

A9
0.492561

A100.492561

0.137668

0.354894 A180.425876

A500
0.066518

A26

0.161567

A990.160741

A20

0.103568

0.213191

0.051943

A1000.330827 A1010.330827 A1020.330827 0.279202

0.051624

0.066518

A210.103568 A410.103568 A420.103568 0.051943

0.051624

(a) Latent probabilistic structure of the 10 most frequent trace types.

A1 A21.000000 A31.000000 A51.000000 A61.000000

A32

0.214341

A499

0.236521

A70.549138

A330.214341

A31

0.108138

A17

0.106203

0.107482

0.129040

A80.549138 A90.549138 A100.549138

0.080240

0.468898

A180.481685

A500

0.137180

A507

0.085276

A26

0.094170

A99

0.093688

A200.293826

0.270166

0.111037

A510

0.019275

A1000.532197 A1010.532197 A1020.532197

0.384006

0.112225

0.035966

0.023114

0.057910

0.056156

A210.292473

A1496

0.057330

A508

0.031144

0.061084

0.082379

A41
0.149009

A420.149256

A1504

0.007174

0.044890

0.050480
A44

0.053887

0.006886

0.047426

0.030964

A45

0.053887

0.026959

0.026927

0.018458

0.031450

0.007422

A511

0.055241

A8980.013458

A882

0.013129

A513

0.028654

0.024794

0.000814

0.001812

0.008189

0.007645

0.023499

A8830.035662 A8840.035662 A8850.035662

0.025174

0.000798

0.001849

0.007841

0.003435

0.003739

A5140.028654

0.009535

0.009740

A516

0.009379

A5170.009379

0.004775

0.004605

(b) Latent probabilistic structure of the 100 most frequent traces types.

A1 A21.000000 A31.000000 A50.998550

A4

0.001450

A61.000000

A32

0.211306
A499

0.236339
A70.552355

A33

0.211306

A31

0.105762

A17

0.105526

A12

0.000018

0.105108

0.131144

0.000087

A80.552355 A90.552355 A100.552355

0.078474

0.473881 A180.478186

A500

0.140128

A507

0.092325

A26

0.092102

A99

0.091610

A200.294413

A22
0.000048

A19

0.000013

0.267639

0.110983

A510

0.029007

A1000.535760

A101

0.535760

A102

0.535760

0.377693
0.112395

0.045672

0.022583

0.056650

0.060868

0.000026

A210.293394

A1496

0.061670

A508

0.039471

0.062422

0.082151

A410.148795

A47

0.000026

A420.149164

A1504

0.008525

0.046481

0.049987

A44

0.052696

0.006723

0.046386

0.039215

A45
0.052696

0.026373
0.026323

0.020626

0.032137

0.008894

0.000013

A511

0.074679

A8980.015199

A882

0.014963

A513

0.044517

0.031504

0.001821

0.002894

0.013079

0.001235

A516

0.000333

A904

0.000610

0.009996

0.029475

A8830.051068 A8840.051068 A8850.051068

0.031490

0.001771

0.002886

0.012893

0.001242

0.000235

0.000551

0.004267

0.004258

A5140.046994

0.000856

0.015196

0.014913

0.016030

A517
0.016598

0.007667

0.007533

0.001398

A905

0.002559

0.001141

0.000491 0.000528

A4124
0.000400

0.001450

A41250.000400 A41270.000400 A41280.000400

0.000316

0.000032

0.000052

A130.000105 A140.000105
A160.000087

A492

0.000018

0.000087

A240.000087 A250.000087

0.000018

0.000068 0.000019

0.000018

0.000039

0.000033

A490.000006

0.000006

(c) Latent probabilistic structure of the 250 most frequent traces types.

Figure 5: Interpretability of the latent structure of the τ lepton decay process, automatically extracted
from SHERPA executions via PPX. Showing model structure with increasing detail by taking an
increasing number of most common trace types into account. Note that the flow is probabilistic at
the shown nodes and deterministic along edges. Node labels denote address IDs (A1, A2, etc.) that
correspond to uniquely identifiable parts of model execution such as those in Table 2. Addresses A1,
A2, A3 correspond to momenta px, py, pz , and A6 corresponds to the decay channel in Figure 3.
Edge labels denote the overall frequency an edge is taken. Red: controlled node; green: controlled
node with replacement (“rejection sampling mode”); blue: observed node; yellow: uncontrolled node.

18

	1 Introduction
	2 Particle Physics and Probabilistic Inference
	3 Related Work
	3.1 Probabilistic Programming
	3.2 Data Analysis in High-Energy Physics

	4 Probabilistic Inference in Large-Scale Simulators
	4.1 Designing a PPL for Existing Large-Scale Simulators
	4.2 A Cross-Platform Probabilistic Execution Protocol
	4.3 Controlling SHERPA and the Standard Model

	5 Experiments
	6 Conclusions
	A Appendix

