
Nested Compiled Inference for Hierarchical
Reinforcement Learning

Tuan Anh Le Atılım Güneş Baydin Frank Wood
Department of Engineering Science

University of Oxford
{tuananh, gunes, fwood}@robots.ox.ac.uk

1 Introduction

Probabilistic programming languages (PPLs) allow the representation of probability distributions as
computer programs by means of stochastic language primitives and conditioning of variable values
on observations [8, 7]. Probabilistic programs are generative models as they generate samples from a
joint distribution p(x,y), where x are latent variables and y are output (or observed) data. Inference
in PPLs amounts to computing the posterior p(x|y) conditioned on observed data. PPLs allow
decoupling model specification from inference, which can be handled by techniques including Markov
chain Monte Carlo [18], variational methods [19], expectation propagation [16], and sequential Monte
Carlo [20]. Inference is often computationally expensive. Amortized inference [5] strategies are
devised to store and reuse past inferences so that future inferences run faster.

2 Inference Compilation

We outline a framework [13] for using deep neural networks to amortize the cost of inference in
universal PPLs—languages such as Church [6], Venture [14], and Anglican [20] that are Turing-
complete and can represent any computable probability distribution [4]. We call this framework
“inference compilation” because our method, given only a probabilistic program, automatically
constructs a neural network architecture and trains it using a stream of training data from the
model, producing a specialized compilation artifact that subsequently performs efficient approximate
inference in the original model specified by the probabilistic program. This work can be seen from
two perspectives where we (1) incorporate deep learning techniques into probabilistic programming
to amortize the cost of inference, and, at the same time, (2) lay out a framework for using universal
PPLs for defining generative models in deep learning, where the specified neural networks are trained
using an “infinite” stream of synthetic data from the model, and we get supervision for free. Seen in
this light, our efforts reside at the intersection of Bayesian approaches and deep learning.

Sequential importance sampling. During inference, our technique uses compilation artifacts to
parameterize proposal distributions q(x|y;φ) in a sequential importance sampling scheme [1, 3],
where φ represents the trainable artifact weights.

Objective function. We use the Kullback–Leibler divergence DKL (p(x|y) || q(x|y;φ)) as
a measure of closeness between p(x|y) and q(x|y;φ) and minimize the loss L(φ) =

− 1
M

∑M
m=1 log q(x

(m)|y(m);φ) on execution traces (x(m),y(m)) ∼ p(x,y), m = 1, . . . ,M .

Training data. During compilation, minibatches of program traces (x(m),y(m)) are generated
on-the-fly from the probabilistic model and streamed to a stochastic gradient descent procedure using
Adam [11] for optimizing neural network weights φ.

Workshop on Bayesian Deep Learning, NIPS 2016, Barcelona, Spain.

�� �2 �3 �4 �5 �6

1

��5

1

��5

� = left

� = right

r =
�

1; if s6 visited

�
1; otherwise
r = � r = � r = � r = � r = �

��5
��5

1

��5

��5

1

��5

��5

1

��5

��5

1

��5

��5

Reward

Figure 1: The stochastic decision process.

Neural network architecture. Compilation artifacts comprise a non-program-specific stacked
LSTM [10] core and program-specific observation embedding, sample embeddings, and proposal
layers specified by the probabilistic program. The artifacts are implemented in Torch [2] and our
framework uses ZeroMQ [9] for interfacing with Anglican [20] during compilation and inference.
This setup allows distributed inference with GPU support across many machines.

3 Example

In our recent work [13] we demonstrate using PPLs for generative modeling in inverse graphics
(Captcha solving) and mixture models (identifying the number and parameters of components in an
observed mixture).

Here, we show how we can view hierarchical reinforcement learning (RL) [12] as a nested inference
scheme in probabilistic programming where we cast policy learning of intrinsic goals as inference
on what we call an inner query, which is used inside an outer query that performs inference over
sub-goal selection. We then “compile away” the inferential task of the inner query.

We formulate a stochastic decision process (Figure 1) that highlights the need for temporally
extended exploration (similar to Kulkarni et al. [12] and Osband et al. [17]), with states
S = {s1, s2, s3, s4, s5, s6} and actions A = {left, right, end}. The agent starts at s2. If the ac-
tion left is chosen, it moves to the left deterministically. The right action moves it to the left or right
with equal probability. The end action ends the execution of a current policy and ends the game if the
agent is executing the last policy.1 The game ends automatically if the agent reaches s1 regardless
of its action. The agent is rewarded with r = 0 for end states other than s1. Otherwise r = 1 or
r = 0.01 depending on whether s6 was visited or not.

As explored by Kulkarni et al. [12], this example illustrates the difficulties faced by current RL
algorithms on problems with sparse feedback. In the same spirit, we aim to decompose the problem
into smaller problems, which can be solved by a specialized controller that is then used inside a
meta-controller. In particular, we define an inner query named go-to, which during inference is
responsible for outputting the policy with reaching the goal-state being the intrinsic motivation.
This intrinsic motivation is enforced by placing an approximate Bayesian computation (ABC) [15]
likelihood over the last state of the simulation being the goal-state. We also simulate over all
possible start-state values from S. The query is written in Anglican2 as shown in the following
listing.

(defquery go-to [game goal-state]
(let [policy (sample policy-dist)]

(loop [start-state 1]
(if (< start-state 7)
(let [history (execute-policy game start-state policy)]

(observe (dirac (last history)) goal-state)
(recur (inc start-state)))))

policy))

1This policy change is a state change in a state space that is a Cartesian product of the agent and simulation
state spaces. Hence the stochastic decision process in Figure 1 can be thought of as one of many subprocesses—
each corresponding to the agent’s current active policy—of an underlying stochastic decision process with the
end action moving between them.

2More details and syntax can be found at http://www.robots.ox.ac.uk/~fwood/anglican/.

2

http://www.robots.ox.ac.uk/~fwood/anglican/

left right end

s6

s5

s4

s3

s2

s1

Goal state: s1

left right end

Goal state: s2

left right end

Goal state: s3

left right end

Goal state: s4

left right end

Goal state: s5

left right end

Goal state: s6

0.0

0.2

0.4

0.6

0.8

1.0

Actions

St
at

es

Figure 2: Policies from inference compilation of go-to with one particle; averaged over 100 runs.

s1 s2 s3 s4 s5 s6

Goal 2

s6

s5

s4

s3

s2

s1

G
oa

l1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: The empirical distribution over (goal-1, goal-2) from the outer query play run with
sequential Monte Carlo with 100 particles and the inner query go-to run with inference compilation
with one particle; averaged over 100 runs.

This is used inside an outer query3 named play, which does inference over the intermediate high-
reward goal goal-1 and the end goal goal-2 for the particular game dynamics specified by a given
game variable —which, in this experiment, has high-reward state s6 and terminal state s1. This query
returns two policies: one to reach the intermediate goal goal-1; and another to reach the end goal
goal-2. The query is written in Anglican as shown in the listing below.

(defquery play [game]
(let [goal-1 (sample (uniform-discrete 1 7))

goal-2 (sample (uniform-discrete 1 7))
policy-1 (sample ((conditional go-to) game goal-1))
policy-2 (sample ((conditional go-to) game goal-2))
history (execute-policy game 2 policy-1 policy-2)

(observe (factor) (get-reward history))
[goal-1 goal-2 policy-1 policy-2]))

Inference of the inner query is performed using our inference compilation framework. In Figure 2 we
can see that the compilation artifact allows us to identify reasonable policies using only one particle
of sequential importance sampling. In Figure 3, inference over the outer query using sequential
Monte Carlo with 100 particles returns an empirical distribution over the subgoals (goal-1, goal-2)
peaked at (s6, s1). Picking the maximum a posteriori policy pair (policy-1, policy-2), we obtain
0.17 average reward over 1000 runs.

The full theoretical underpinnings of the correspondence of our work to reinforcement learning are
left for future work.

3The implementation here uses the Anglican special form conditional that takes in a query and returns a
distribution object constructor, which, given the query parameter, returns a distribution object that represents the
conditional distribution for that query and can be sampled from like any other primitive distribution (e.g. normal).
For instance, (conditional go-to) is a distribution object constructor and ((conditional go-to) 5) is
a distribution object returning the posterior policy sampler for go-to with goal state s6.

3

References
[1] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters for

online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

[2] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A MATLAB-like environment for
machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

[3] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.
Handbook of Nonlinear Filtering, 12(656–704):3, 2009.

[4] Cameron E Freer, Daniel M Roy, and Joshua B Tenenbaum. Towards common-sense reasoning via
conditional simulation: Legacies of Turing in artificial intelligence. Turing’s Legacy: Developments from
Turing’s Ideas in Logic, 42:195, 2014.

[5] Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic reasoning. In Proceedings
of the 36th Annual Conference of the Cognitive Science Society, 2014.

[6] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. Church:
a language for generative models. arXiv preprint arXiv:1206.3255, 2012.

[7] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of Probabilistic Programming
Languages. http://dippl.org, 2014. Accessed: 2016-10-31.

[8] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic program-
ming. In Future of Software Engineering, FOSE 2014, pages 167–181. ACM, 2014.

[9] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

[11] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in Neural
Information Processing Systems 29, pages 3675–3683. 2016.

[13] Tuan Anh Le, Atılım Güneş Baydin, and Frank Wood. Inference compilation and universal probabilistic
programming. arXiv preprint arXiv:1610.09900, 2016.

[14] Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic programming
platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

[15] Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate Bayesian computa-
tional methods. Statistics and Computing, 22(6):1167–1180, 2012.

[16] Thomas P Minka. Expectation propagation for approximate bayesian inference. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 362–369. Morgan Kaufmann
Publishers Inc., 2001.

[17] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
DQN. In Advances in Neural Information Processing Systems 29, pages 4026–4034. 2016.

[18] David Wingate, Andreas Stuhlmüller, and Noah D Goodman. Lightweight implementations of probabilistic
programming languages via transformational compilation. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, pages 770–778, 2011.

[19] David Wingate and Theophane Weber. Automated variational inference in probabilistic programming.
arXiv preprint arXiv:1301.1299, 2013.

[20] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to probabilistic pro-
gramming inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics, pages 1024–1032, 2014.

4

http://dippl.org

	Introduction
	Inference Compilation
	Example

