
Alasdair Paren1 Florian Jaeckle1 Leonard Berrada1 M. Pawan Kumar1,2 Andrew Zisserman1

1 Department of Engineering Science, University of Oxford, 2Alan Turing Institute

{aparen, florian, lberrada, pawan, az}@robots.ox.ac.uk

Binary Neural Networks

Machine Vision has undergone rapid development during the last 6 years with the state

of the art on a range of benchmarks being persistently improved by new techniques,

most leveraging convolutional neural networks (CNNs). Large CNNs require graphics

processing units (GPUs) to both train and run at inference time because of their

computational and memory load. However, the power, cost and space requirements of

GPUs prohibit the use of these techniques in many settings. In order to address this

issue and improve the applicability of CNNs to real world applications many CNN

compression techniques are being developed.

Quantization, where the weights, activations or both within the

CCN are quantized from floating point 32-bit numbers to a smaller number of bits, is one

of the most promising compression methods.

Our aim was to propose a novel optimization technique for binary neural networks that is

easier to use and produces better generalization. We used XNOR-Net as a starting

point.

Motivation

 Why binary neural networks?

Results

XNOR-Net (Rastegari et al., 2016)

XNOR-Net presents an extreme form of quantization where the weights (W) and

activations (I) are both binarized. Unlike earlier binary network methods XNOR-Net also
preserves magnitude information via a channel wise scaling factor (𝛼).

Performance

Due to the use of the non-continuous sign function in the forward pass of the network

it is not possible to train XNOR-Nets using standard stochastic gradient descent or

any of its variants. Two tricks are used:

• Approximate the gradients of the sign function using the “straight through estimator”

(Matthieu Courbariaux et al.)

• Accumulate the gradients in a second set of weights with full precision and binarize

the weights before each forward pass, this can be thought of as modified Mirror

Descent

𝐼 ∗ 𝑊 ≈ (𝐼𝐵 ⊕ 𝑊𝐵)𝛼 𝐼𝐵 = sign(𝐼) 𝑊𝐵= sign W , α =
1

𝑁
 |𝑊|

Binary Quantization

Here * represents a conventional convolution and ⊕ represents a bit wise

convolutions computed by using the XNOR and bit count binary operations.

Network Structure

In order to reduce information loss when quantizing, full precision weights are used for

the first and last layers of XNOR-Nets. Additionally, the following building block is used:

Training XNOR-Nets

XNOR-Nets almost match the performance of full precision networks on small scale

image datasets such as MNIST and CIFAR10. However, for largescale image data

sets, such as ImageNet, their performance is significantly worse ~18%.

Extensions

Many subsequent papers have extended on XNOR-Net; these papers can be grouped

into the following areas:

• Increase the number of bits used for quantization, either explicitly or by using

multiple binary bases

• Tailoring the network architecture to suit the binary weights and activations, these

include increasing the width and add additional residual connections

• Varying methods of including the scaling parameter

Deep Frank-Wolfe (Berrada et al., 2018)

𝑊𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2𝜂𝑡
𝑤 − 𝑤𝑡

2 + Τ𝑤𝑡
𝜌 𝑤 + ℒ 𝑓 𝐼𝑗 (𝑤)

𝑊𝑡+1 = argmin
𝑤∈ℝ𝑝

1

2𝜂𝑡
𝑤 −𝑤𝑡

2 + Τ𝑤𝑡
𝜌 𝑤 + ℒ Τ𝑤𝑡

𝑓 𝐼𝑗 (𝑤)

Optimizer for deep networks with an optimal step size calculation

We tried to improve the optimization procedure of the binary and ternary networks by replacing

Stochastic Gradient Descent (SGD) with the Deep Frank-Wolfe (DFW) algorithm. Unlike SGD, DFW

requires only a single hyper-parameter while yielding better generalization performances than most of

SGD's adaptive variants. DFW computes an optimal step-size in closed-form at each time-step which is

one of its main benefits.

DFW is based on a formulation which linearizes the model 𝑓 𝐼𝑗 and the regularization 𝜌 while

preserving the loss function ℒ :

Each step of stochastic gradient decent (SGD) can be thought of as solving the following proximal

problem:

Here 𝑇𝑤𝑡
[] is the Taylor expansion of a function around the current point 𝑤𝑡, 𝑓 𝐼𝑗 is the output of the

neural network on the 𝑗𝑡ℎ sample and 𝜂𝑡 is the step size. Deep Frank Wolfe (DFW) instead solves a

different proximal problem at each step where only the network not the loss function is linearized. This

gives a convex problem at each step. The dual problem is solved using Block Coordinate Frank Wolfe

which is a batch variant of conditional gradients.

DFW for Binary Neural Networks

In order to use DFW to optimize XNOR-Nets the above minimization was modified, to include

constraints on the value of w. The resulting proximal problem is a relaxation of the integer program

where the weights are constrained to be in the set {-1,1}. This optimization is then used in the place of

SGD or is variants in the XNOR-Net optimization scheme.

𝑊𝑡+1 = argmin
𝑤∈[−1,1]𝑝

1

2𝜂𝑡
𝑤 − 𝑤𝑡

2 + Τ𝑤𝑡
𝜌 𝑤 + ℒ Τ𝑤𝑡

𝑓 𝐼𝑗 (𝑤)

Trained Ternary Quantization (Zhu et al., 2017)

The ternary net proposed by Zhu et. al. reduces the weights of a neural network to ternary values

without any loss of accuracy. In fact the ternary networks obtained by Zhu outperform corresponding

real-valued networks on both Cifar10 and ImageNet. During training the floating point weights of each

layer, 𝑤 , are projected onto the subset of ternary weights using a threshold value Δ𝑙 ≔ t × max(| 𝑤 |):

The scaling coefficients 𝑊𝑙
𝑝
 and 𝑊𝑙

𝑛 are both 32-bit parameters and are trained together with the other

weights. The real-valued weights are updated using the gradients with respect to the ternary weights:

During inference, only the ternary weights and the real-valued scaling factors are used leading to a

16-fold decrease in the model size.

References
- Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, Ali Farhadi, XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks ECCV 2016

- Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David BinaryConnect: Training Deep Neural

Networks with binary weights during propagations Neural Information Processing Systems 2015

- Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. International

Conference on Learning Representations 2017

- Leonard Berrada, Andrew Zisserman, M. Pawan Kumar, Deep Frank-Wolfe For Neural Network

Optimization, in processigns ICLR 2019

Ternary Quantization Objective

We wanted to compare DFW against the Adam and SGD optimizers for quantized

neural networks, specifically XNOR-Nets and Trained Ternary Quantization Networks.

We used the cifar10 data set for our first experiments as it is relatively cheap to train on.

CIFAR-10
Number of classes: 10

Examples: “airplane”, “automobile”, “bird”, “cat”, “dear”, etc.

Model: ResNet20 with XNOR and Trained Ternary Quantization Variations

Loss: SVM

Optimizers: Adam, SGD with momentum, and DFW

Future Work

Further Testing of using XNOR-Nets

We aim to submit this work to CVPR, and hence more thorough testing of our method is

required especially on larger datasets such as ImageNet and using a variety of

architectures, including large state of the art models such as DenseNets and Wide

ResNets.
DFW for Quantized Networks

We’re currently working on generalizing the DFW algorithm to work on all quantized

networks. Some quantized networks, such as the ternary net, achieve the same

accuracy as the corresponding real-valued networks while still achieving a reduction in

memory space at inference time. In practice these might have a wider range of

applications than the XNOR-net.

Performance

Quantization Optimizer % Test Acc

Floating Point SGD w M 91.94

Ternary Network SGD w M 90.66

Ternary Network DFW 89.06

XNOR-Net Adam 72.89

XNOR-Net DFW 75.87

DFW for Binary Neural Networks is currently outperforming Adam for training XNOR-

Networks, and is ~1% off current state of the art optimizers for Trained Ternary

Networks.

