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Abstract
The task of decision-making under uncertainty is daunting, especially for problems with significant complexity.

Healthcare policy makers globally are making decisions with challenging constraints and they have limited tools to
help them make data-driven decisions. In this work we frame the process of finding an optimal malaria policy as
a stochastic multi-armed bandit problem, and implement three agent based strategies to explore the policy space.
We apply a Gaussian Process regression to the findings from each agent, naturally accounting for the stochasticity
associated with simulating the vector-borne transmission of malaria. The Agent generated policy recommendations
are compared with human made interventions taken from the literature.

Introduction
There has been significant progress in the prevention and control of malaria over the last 15 years.
Reductions in mortality rate and number of new cases. But many countries in Sub Saharan Africa still
rely heavily on external funding for malaria prevention and control, which in recent years is declin-
ing [4]. Separate decision makers (e.g., NGOs, Governments and Charities) must be able to explore
the possible set of actions for appropriate malaria interventions for their environments. Such possi-
ble policies may include a mix of actions like the distribution of long-lasting insecticide-treated nets
(ITNs), indoor residual spraying (IRS), vector larvicide in bodies of water, and malaria vaccinations.
The space of possible policies for malaria interventions is daunting and inefficient for human decision
makers to explore. This work uses the OpenMalaria codebase of stochastic transmission models for
malaria simulation. Currently used by researchers to evaluate the impact of various malaria control
interventions. OpenMalaria therefore provides a platform to create a simulation environment from
which an AI agent may explore optimal policies for the control of malaria. This work will use a
parameterisation of OpenMalaria models for Rachuonyo South district in Kenya [3].

Stochastic Multi-Armed Bandit
Exploring malaria policies from OpenMalaria simulations is posed as a multi-armed bandit problem;
to efficiently determine high performing policies for a simulated human population.
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Figure 1: Policies ai are chosen by the Agent Model which receives Rewards R(ai)

There is no access to state transitions at run-time for OpenMalaria simulations. Instead we solve for
the problem of making a ‘one-shot’ policy recommendation for the intervention period (5 years).

Action
The main control methods used in Rachuonyo South district are: mass-distribution of long-lasting
insecticide-treated nets (aITN ); Indoor Residual Spraying (aIRS) with pyrethroids; and the prompt
and effective treatment of malaria. a = {aITN , aIRS} where aITN and aIRS ∈ (0, 1], describe the
coverage of the intervention for the simulated population.

Figure 2: Visual description actions: long-lasting insecticide-treated nets and indoor residual spraying

Reward
The reward for each policy Rθ(ai) is stochastic through the parameterisation of the simulation θ,
which generates a randomised distribution of parameters for the OpenMalaria simulation. The mag-
nitude of the reward is given by an economic cost-effectiveness analysis of the stochastic simulation
output. Disability adjusted life years (DALYs) [1], are a metric defined by the total years of life lost
due to fatality linked with contraction of the disease, and number of years of life with disability as
a result of the disease. We use a discount factor γ = 0.97 to discount the value of future years of
life lost, and a life expectancy of 46.6 years for Rachuonyo South District. We simulate two types of
costs, the healthcare system costs (HSC), and intervention costs (IC). For each malaria episode that

a patient seeks treatment, hospitals incur costs to treat the disease, to manage the patent’s recovery
process, and also to deal with the patient’s death if that were to occur. Agent models receive rewards
based on the cost effectiveness of a policy. This is a score often used by human researchers evaluating
the impact of a policy, calculated as the cost per DALY averted (CDA).

CDA =
HSCint −HSCno int + Cint

DA
(1)

Agent Models
Three different agents (GP-ULCB, Genetic Algorithm and Batch Policy Gradient) perform sequen-
tial batch exploration, towards optimisation of an unknown stochastic reward function R. Due to the
computational expense of calculating R(ai) and the size of A, we wish to find solutions of maximal
reward in as few iterations i as possible. Approximating a∗ = argmaxa∈AR(a) without prohibitively
expensive computation for all possible policies, using a subset Ac ∈ A of the policy space.

Results
Human decisions are made using OpenMalaria as a research tool [2]. Researchers state the current
policy of 56% aITN , 70% aIRS for Rachuonyo South is the most cost-effective with regards to CDA,
while they recommended that increasing to 80% aITN and 90% aIRS would have the greater health
impact. In this work we use the same stochastic parameterisation θ of OpenMalaria, but instead an-
swer the question for the decision maker: what policy decision can be made for the next 5 years to
improve cost-effectiveness? Our results indicate that the best strategies reduce aIRS, while maintain-
ing the levels of aITN . These findings are extracted from the surface maxima of the posterior mean
µ(a) through gaussian progress regression of rewards Rθ(a) collected by each respective agent. Fig-
ure 3 presents these surfaces. For reference, the cost of the human recommended policy ( 80% aITN
and 90% aIRS) is an order of magnitude higher than our recommended strategies.

GP-ULCB Genetic Algorithm Batch Policy Gradient

Policy CDA DA Cint Policy CDA DA Cint Policy CDA DA Cint
{61,55} -9.94 1343 1400 {55,38} 13.74 1744 845 {55,41} 14.56 1507 1616
{56, 53} -9.83 1297 1203 {60, 39} 14.25 1833 634 {55, 5} 14.58 1527 1359
{65, 55} -9.68 1286 1726 {55, 48} 14.56 1734 1739 {55, 30} 14.58 1469 1574

Table 1: Top performing policies. Policy: {aITN%, aIRS%}, CDA: Cost per DALY Averted USD, DA: DALYs Averted,
Cint: Intervention Costs USD. notes: -ve values indicate health-system savings greater than intervention cost

Evaluation
These methods give a comprehensive evaluation of exploring the cost-effectiveness space for a policy
of two interventions. Such insight is often missing from empirical studies for malaria interventions,
which may seek to determine how much of single intervention may be implemented to maximise
a particular performance metric. A limitation is that we did not explore deploying interventions at
different times of year, or if multiple policies could have been concurrently deployed in a population.
Furthermore, the simulation environment did not permit interventions to be targeted to subsets of the
population (e.g. young children). Finally, this work is specific to one studied location in Western
Kenya, and the generalisation of the agents’ insights across expansive environments e.g. Sub-Saharan
Africa is yet to be explored.
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Figure 3: Plots of − log(Rθ(a)) under different Agent model selection of ai. Showing relative performance for a decision maker of different policies where there are existing interventions of aITN = 0.55 and aIRS = 0.7


