
Towards Inference Amortization for BUGS models:
BUGS to Anglican compilation

Adam Goliński, Frank Wood

Department of Engineering Science
University of Oxford

{adamg,fwood}@robots.ox.ac.uk

Outline
● Probabilistic Programming Languages (PPL) are a special class

of programming languages which allow users to specify
probabilistic models and run inference on them, i.e. find p(x|y)

x are latents and y are observed variables
● BUGS is a popular probabilistic programming language allowing to

describe graphical models
● Inference amortization is a technique that greatly reduces the

computational cost of run-time inference by training a neural
network approximating the posterior distribution q(x|y; φ) ~ p(x|y)
ahead of the time of the system operation

φ are the learnt parameters of the neural network
● Anglican is a universal, research-oriented PPL which implements

some of the cutting-edge inference techniques including inference
amortization

● To enable BUGS models to use inference amortization we have
created a compiler translating models from BUGS to Anglican

● Next steps
○ completing the translation of the entire feature set of the BUGS

language
○ application and further improvement of the inference

amortization approach which takes advantage of the structure
of the forward graphical model [3] to automate the design of the
neural network and is perfectly suited for the class of models
expressible in BUGS

Figure 1. Forward graphical model [3]

Pump failure model
Hierarchical model for failure rates of power plant pumps

BUGS
data
{
 "N" <- 2
 "t" <- c(94.3, 15.7)
 "y" <- c(5, 1)
}

model
{
 for (i in 1 : N) {
 lambda[i] ~ dgamma(alpha, beta)
 y[i] ~ dpois(lambda[i] * t[i])
 }
 alpha ~ dexp(1)
 beta ~ dgamma(0.1, 1.0)
}

Anglican
(let
 [N 2
 t [94.3 15.7]
 y [5 1]
 lambda [nil nil]
 alpha (sample (exponential 1))
 beta (sample (gamma 0.1 1))
 lambda (assoc-in lambda [0] (sample (gamma alpha beta)))
 lambda (assoc-in lambda [1] (sample (gamma alpha beta)))
 _ (observe
 (poisson (* (get-in lambda [0]) (get-in t [0])))
 (get-in y [0]))
 _ (observe
 (poisson (* (get-in lambda [1]) (get-in t [1])))
 (get-in y [1]))])

Figure 2. Inference amortization framework [2]
SIS stands for Sequential Importance Sampling

Figure 3. Inverted graphical model [3]

Figure 4. Inference network with MADE-like neural networks [3]

References
[1] M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: masked autoencoder for distribution
estimation. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 881–889, 2015.
[2] T. A. Le, A. G. Baydin, and F. Wood, “Inference compilation and universal probabilistic programming,” in
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), ser.
Proceedings of Machine Learning Research, vol. 54. Fort Lauderdale, FL, USA: PMLR, 2 017, pp. 1338–1348.
[3] B. Paige and F. Wood, “Inference networks for sequential Monte Carlo in graphical models,” in Proceedings
of the 33rd International Conference on Machine Learning, ser. JMLR, vol. 48, 2016.

Inference amortization

Figure 5. Masked Autoencoder for Distribution Estimation [1]

rate of failure for pump n

number of failures for pump n

length of operation time for pump n

