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Outline
● Probabilistic Programming Languages (PPL) are a special class 

of programming languages which allow users to specify 
probabilistic models and run inference on them, i.e. find p(x|y)

x are latents and y are observed variables 
● BUGS is a popular probabilistic programming language allowing to 

describe graphical models
● Inference amortization is a technique that greatly reduces the 

computational cost of run-time inference by training a neural 
network approximating the posterior distribution q(x|y; φ) ~ p(x|y) 
ahead of the time of the system operation

φ are the learnt parameters of the neural network
● Anglican is a universal, research-oriented PPL which implements 

some of the cutting-edge inference techniques including inference 
amortization

● To enable BUGS models to use inference amortization we have 
created a compiler translating models from BUGS to Anglican

● Next steps
○ completing the translation of the entire feature set of the BUGS 

language 
○ application and further improvement of the inference 

amortization approach which takes advantage of the structure 
of the forward graphical model [3] to automate the design of the 
neural network and is perfectly suited for the class of models 
expressible in BUGS

Figure 1. Forward graphical model [3]

Pump failure model 
Hierarchical model for failure rates of power plant pumps

BUGS
data
{
  "N" <- 2
  "t" <- c(94.3, 15.7)
  "y" <- c(5, 1)
}

model
{
  for (i in 1 : N) {
    lambda[i] ~ dgamma(alpha, beta)
    y[i] ~ dpois(lambda[i] * t[i])
  }
  alpha ~ dexp(1)
  beta ~ dgamma(0.1, 1.0)
}

Anglican
(let
  [N 2
   t [94.3 15.7]
   y [5 1]
   lambda [nil nil]
   alpha (sample (exponential 1))
   beta (sample (gamma 0.1 1))
   lambda (assoc-in lambda [0] (sample (gamma alpha beta)))
   lambda (assoc-in lambda [1] (sample (gamma alpha beta)))
   _ (observe
       (poisson (* (get-in lambda [0]) (get-in t [0])))
       (get-in y [0]))
   _ (observe
       (poisson (* (get-in lambda [1]) (get-in t [1])))
       (get-in y [1]))]) 

Figure 2. Inference amortization framework [2]
SIS stands for Sequential Importance Sampling

Figure 3. Inverted graphical model [3]

Figure 4. Inference network with MADE-like neural networks [3]
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Figure 5. Masked Autoencoder for Distribution Estimation [1]
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