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Abstract. Carbon-intensity forecasting and carbon-aware scheduling
are vital for decarbonizing flexible loads in data centers, yet existing
approaches neglect the carbon cost of the forecasting models themselves
and lack a unified performance—carbon metric. We introduce the Eco-
Adjusted Accuracy Score (EAAS), a novel metric that penalizes COq
emissions per unit of accuracy. We train five representative time-series
learners (ARIMA, linear regression, Prophet, Light GBM, XGBoost) on
identical UK grid carbon intensity traces and rank them by EAAS. To
improve EAAS score, and building on an XGBoost baseline, we propose
three new data-centric optimizations: Data Input Reduction, Vectorized
Operations, Cache-Friendly Processing, both individually and in a com-
bined hybrid form. These strategies show promising potential in cutting
runtime and carbon emissions while matching or improving predictive ac-
curacy, boosting EAAS by up to 14.7% over the baseline. These results
highlight the potential of targeted data manipulations, without hardware
or scheduler changes, in balancing between forecasting performance and
environmental impact.

Keywords: Carbon-intensity forecasting - Eco-Adjusted Accuracy Score
(EAAS) - Data-centric optimization

1 Introduction

Accurate short- and multi-day forecasting of electricity grid carbon intensity
underpins carbon-aware workload management in data centers. Prior ML-based
forecasting methods, e.g., CarbonCast [12], and uncertainty-aware decarboniza-
tion models [11], achieve high predictive accuracy across a range of horizons.
Complementarily, carbon-aware scheduling frameworks such as FTL [2]|, Car-
bon Explorer [1], CarbonScaler [9], and CASPER [17] leverage these forecasts
to shift compute toward lower-carbon periods, realizing substantial emission re-
ductions. However, few studies explicitly optimize both forecasting accuracy and
the carbon cost of producing the forecast itself, leaving a critical gap in Green
AT research. [10,16,18]. To address this, we introduce the Eco-Adjusted Accuracy
Score (EAAS), a single metric that combines model accuracy with its carbon
footprint.
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Building on an XGBoost baseline(a gradient-boosted decision-tree model),
we explore three data-centric optimization strategies, Data Input Reduction,
Vectorized Operations, and Cache-Friendly Processing, and propose a hybrid
approach combining all three. Our hybrid method outperforms the XGBoost
baseline, yielding higher EAAS, reduced runtime, improved accuracy, and lower
CO4 emissions.

2 Related Work

Increasingly, ML research augments accuracy with energy and carbon metrics:
Strubell et al. [18] explored the environmental costs of NLP model training;
Schwartz et al. [16] coined “Green AI”; Henderson et al. [10] and Patterson et
al. [14] advocated standardized reporting and analyzed large-network footprints;
and Wu et al. [19] surveyed industry practices, supported by tools like real-
time carbon-intensity measurement [5] and Eco2AlI library [3]|, with predictive
frameworks, mlco2 and the recent LLMCarbon [7], that forecast grams of COge
per unit accuracy even before training; however, none applies such an approach
to time-series forecasting.

On the systems side, architectural and scheduling interventions, such as
ACT [8], Carbon Explorer [1], CarbonScaler [9], and Casper [17], have achieved
significant emission reductions. In contrast, data-centric methods such as training
data pruning [15] and inference scheduling across heterogeneous hardware [13] of-
fer a complementary path. We build on these strands, Green Al metrics, systems
optimizations, and data-centric methods, by applying lightweight data manip-
ulations(shortened input windows, vectorized features, cache-friendly batching)
to halve running time and cut COs emissions by over 70% without modifying
model architectures or infrastructure in certain scenarios.

3 EAAS: Eco-Adjusted Accuracy Score

3.1 Eco-Adjusted Accuracy Score

Design Goals The EAAS metric balances forecast accuracy and carbon effi-
ciency by rewarding models with high predictive performance while proportion-
ally penalizing those with greater CO5 emissions. Its reference emission level Ej
is configurable to each application: for example, one may set Ey to the median
emission within the comparison set or to a regulatory threshold, thus tailoring
the penalty scale to specific operational or policy requirements.
Formal Definition. For each model i, let A; =1 — M‘?(}?)Ei (clamped at zero if
negative), E; = emissions (gCOse), and Ey = median{E;}, where MAPE is the
mean absolute percentage error expressed as a fraction.

Then

Ey

EAAS; = A; (Ei)_x,
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where A € (0,1) tempers the carbon penalty. Because the penalty term can
exceed 1 when F; < Ey, EAAS may slightly exceed 1.0. Choosing A between
0.05-0.2 differentiates high vs. low emitters while preserving rankings among
top-accuracy models; A = 0.1 remains a balanced choice. See Appendix for more
details.

3.2 Evaluation

Experimental Setup We evaluate five forecasting models on the UK Grid CI
dataset [6], which contains over 280,000 hourly observations across 32 features
representing generation source mixes. After resampling to uniform hourly inter-
vals, we applied seasonal-trend decomposition to isolate baseline trends, cyclical
patterns, and residual noise. All experiments ran on a MacBook Pro (Apple M1
Pro, macOS 15.2, 16 GB RAM, 10-core CPU, integrated GPU) using CodeCar-
bon v2.8.2 [4] to track energy use and carbon emissions.

Models and Features Our benchmark includes the models: (1) Linear Re-
gression as a lightweight baseline; (2) ARIMA for classical temporal dependen-
cies; (3) Prophet to capture multiple seasonalities and handle missing data; (4)
LightGBM for efficient, scalable gradient boosting; and (5) XGBoost with reg-
ularization for high-frequency accuracy. All models share the same feature set:
hour, day-of-week, lagged CI values, rolling statistics, and Fourier terms. Hyper-
parameters are tuned via time-series cross-validation to avoid leakage.
Additional evaluation is described in Appendix B.

3.3 Results

Simplicity Wins at Coarse Granularity. As shown in Table 1, at long hori-
zons (yearly—monthly), the Linear Regression model consistently achieves the
highest EAAS, despite its modest complexity, because its small emission foot-
print more than compensates for marginally lower accuracy compared to heavier
learners. In contrast, advanced methods (e.g., Light GBM, XGBoost) incur dis-
proportionately higher carbon costs for only minor accuracy gains over these
coarse scales. Different setups sometimes reach orders of magnitude in differ-
ences.

Boosting Methods Dominate Fine-Grained Forecasting. As Figure 1
shows, at the hourly resolution (the range where optimization will have great-
est impact), XGBoost (MAPE 6.00 %, Runtime 0.86s) and LightGBM (MAPE
7.75 %, Runtime 1.06 s) outperform LR (MAPE 11.24 %, Runtime 0.18s). Their
superior accuracy, despite modest runtime increases, makes them clear candi-
dates for deeper data-centric tuning to maximize EAAS in daily or hourly tasks.

4 Data-Centric Run-Time optimization

We investigate a suite of data-centric modifications, and their component abla-
tions, to uncover practical pathways for reducing model runtimes without sacri-
ficing predictive performance. Appendix C provides additional details.



Table 1: Model performance comparison across time scales., augmented with
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EAAS. Higher EAAS indicates a better accuracy—carbon trade-off.

Model Time Scale MSE RMSE MAPE NMSE Runtime Emissions EAAS
ARIMA  Yearly 54.6209 7.3906 5.95% 0.0033 0.07s 5.7835 x 1077 0.978
Monthly 694.0285 26.3444 18.61% 0.0387 4.88s 3.4944 x 107¢ 0.707
Daily 6733.3383 82.0569 45.11% 0.3432 337.23s  1.4804 x 10~* 0.328
Hourly 6349.4231 79.6833 41.88% 0.3085 7843.35s 2.3465 x 107 0.263
Light GBM Yearly 35983.7477 189.6938 152.70% 2.1747 0.12s 6.1216 x 10~7 0.000
Monthly 1671.3543 40.8822 33.56% 0.0933 0.20s 6.1932 x 1077 0.687
Daily 1280.5721 35.7851 30.25% 0.0653 0.64s 8.5515 x 1077 0.698
Hourly 81.7257 9.0402 7.75% 0.0040 1.06s 1.3540 x 107° 0.883
LR Yearly 8.0171 2.8314 2.28%  0.0005 0.06s 6.4401 x 1077 1.007
Monthly 67.4290 8.2115 6.65% 0.0038 0.06s 5.6140 x 1077 0.976
Daily 104.8359  10.2389 8.99%  0.0053 0.09s 8.7186 x 10~7 0.909
Hourly 158.5259  12.5907 11.24% 0.0077 0.18s 1.2716 x 107° 0.854
XGBoost Yearly 4417.7547 66.4662 53.50% 0.2670 0.13s 6.8100 x 1077 0.477
Monthly 1456.7819 38.1678 29.83% 0.0813 0.32s 7.0528 x 1077 0.716
Daily 1252.6690 35.3931 29.28% 0.0639 0.27s 7.6091 x 1077 0.716
Hourly 56.0183 7.4845 6.00% 0.0027 0.86s 8.7325 x 1077 0.939
Prophet  Yearly 1060.0526 32.5584 26.21% 0.0641 0.40s 6.5733 x 1077 0.759
Monthly 657.1598  25.6351 20.68% 0.0367 0.11s 9.7266 x 1077 0.785
Daily 3005.1810 54.8195 53.03% 0.1532 0.84s 2.2114 x 107° 0.428
Hourly 3379.8872 58.1368 61.11% 0.1642 63.71s 6.4964 x 107° 0.252

4.1 Methodology

In this section, we outline future optimization directions and introduce a hybrid
method that cuts XGBoost’s runtime, chosen for its speed, without sacrificing
accuracy. We then examine four optimization techniques, summarizing their im-
pact on performance, and the resulting runtime-accuracy trade-offs.

Data Input Reduction This method reduced computational overhead by
selecting essential columns and limiting data to last five years (post-2018) of
records, improving runtime by over 20% and decreasing Mean Squared Error by
60%. By removing irrelevant older data, it minimized noise and enhanced both ef-
ficiency and predictive accuracy, demonstrating that more data does not guaran-
tee better results.Vectorized Operations Leveraging vectorized operations in
pandas and numpy, this approach optimized feature engineering and memory us-
age, modestly enhancing runtime during training and feature creation. Although
accuracy gains were minimal, the reduced runtime and lower emissions make
it ideal for large-scale and resource-constrained environments.Cache-Friendly
Processing Employing chunk-based processing, this method improved memory
efficiency and reduced runtime by enhancing cache utilization and minimizing
memory thrashing. It was particularly effective for large datasets, significantly
lowering training and data transformation times, making it suitable for real-
world, resource-limited scenarios.
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(a) EAAS by Model Across Time Scales (b) Scatter of EAAS vs. Accuracy

Fig. 1: EAAS performance: (a) Across time scales (b) Relative to accuracy.

Hybrid Approach The final methodology integrated data reduction, vectorized
operations, and chunk-based processing, halving runtime and enhancing accu-
racy over the baseline. This hybrid approach outperformed individual methods,
demonstrating the effectiveness of holistic optimizations for both efficiency and
predictive performance.

4.2 Results

Overview Figure 3 illustrates the impact of each optimization stage on XG-
Boost’s error metrics, runtime, carbon emissions, and EAAS. Panel (a) shows
that Data Input Reduction (O1) delivers the largest drop in MSE (from 56.02
to 21.28) and a 65% reduction in COs, while the Hybrid pipeline (O4) achieves
the greatest overall emissions cut and runtime savings. Panel (b) plots EAAS
against raw accuracy for all models and time scales, highlighting that the Hybrid
approach attains the highest EAAS, confirming its superior balance of perfor-
mance and carbon efficiency. As shown in Table 2 and Figure 2, the Hybrid
pipeline outperforms in all three optimisations in EAAS.

Table 2: Performance comparison of optimizations. Higher EAAS is better.

Method Emissions (kg CO2) MSE Runtime (s) MAPE (%) EAAS
Baseline 8.73 x 1077 56.02 0.86 6.00 0.846
01 (Data Input) 3.03 x 1077 21.28  0.67 3.72 0.963
02 (Vectorized) 2.97 x 1077 54.99 0.62 5.92 0.943
03 (Cache-Friendly) 5.02 x 1077 5495  0.65 5.95 0.894
Hybrid (O1+02+03)  2.34x 1077 4867  0.43 538  0.971

Ablation Study: Location & Time We further examined how execution
context affects emissions. Running the Hybrid pipeline at night reduced CO5 by
17.6%, and executing in North East England (CI = 77 gCO3/kWh) cut emis-
sions by 75% compared to South England (CI = 285 gCO5/kWh). Additionally,
executing from IDE or terminal leads to different emission impacts in different
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Fig. 2: (a) Runtime Comparison and (b) Components Decomposition
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(a) XGBoost optimization (b) EAAS vs. raw accuracy (1-MAPE)
Fig. 3: Performance and trade-off analysis of our data-centric optimizations.

optimization methods due to differing background loads. These findings under-
score the value of context-aware scheduling alongside data-centric optimizations.

5 Conclusion

In this work, we introduced the Eco-Adjusted Accuracy Score (EAAS), a unified
metric that penalizes carbon-intensive forecasting while rewarding predictive
performance, and demonstrated via benchmarks on ARIMA, linear regression,
Prophet, Light GBM, and XGBoost across hourly to yearly UK grid data that
simple models can outperform complex ones when emissions are accounted for.
Focusing on XGBoost, our data-centric optimizations show promising potential
for runtime reduction and emission cutting, in particular with the lense of EAAS.

Future work will explore federated learning across grid regions to harness
spatial correlations; develop adaptive pipelines that auto-tune window lengths
and feature sets in response to live carbon-intensity fluctuations; and extend
data-centric strategies to deep and hybrid statistical ML models and novel ar-
chitectures, uncovering new avenues for sustainable AI design.
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A Algorithm Supplements

A.1 Carbon Emissions Monitoring

We support a reproducible carbon-emission measurement pipeline prototyped
on macOS, where native power-monitoring APIs are limited compared to Win-
dows. Leveraging CodeCarbon’s PowerMetrics [4] extension, we sample CPU,
GPU, and RAM energy consumption, aggregate these per-component readings
into total power usage, and convert the result from kWh to gCO4 via a real-time
carbon intensity API. Emissions estimates were cross-validated against Eco2Al
over ten test runs, yielding under 15% variance and confirming our setup’s reli-
ability.

Algorithm 1 Energy Consumption and Carbon Emissions Monitoring

Require: Py, getPowerUsage(), getCarbonlntensity(), code segment C
Ensure: Energy Fwwn, CO2 emissions
 E+0 > Joule accumulator
: I + getCarbonlIntensity/() > gCO2/kWh
while C is running do
p  getPowerUsage() > Watts, aggregated CPU/GPU/RAM
E+ E+px Ppoll
sleep(Pyon)
end while
Fiawn < E/3.6 x 10°
COQ < EkWh x I
: return (Exwn, CO2)

L PN A P

—_

A.2 Benchmarking Protocol

Task Formulation: Given historical carbon-intensity values {ci—,,...,c:}, we
predict the next m hours {¢i4y1, ..., Ct4m}. We focus on week-ahead forecasting
(m = 168) to balance scheduling lead-time with practical data availability, as
this provides a unique niche.

FEvaluation Metrics: Each model is evaluated by its mean absolute percentage
error (MAPE) on the hold-out horizon; total training runtime; COz emissions
measured via Algorithm 1; and EAAS as defined in Section 3.1. This concise
protocol provides a unified comparison of accuracy, speed, and carbon footprint
and can be readily applied to other time-series prediction tasks. Note that in
this paper Ej is chosen as the global median of all models’ emissions:

Ey = median{FE; | Vi}.

Thus EAAS is computed uniformly as

EAAS, — A,;(%)_A.
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If one instead wishes to normalize per horizon, one may define
Ey ; = median{E; : Time Scale = j}
and use Fy ; in place of Ey for models at scale j.

Algorithm Pseudocode We present the pseudocode for constructing the hy-
brid approach here.

Algorithm 2 Hybrid Optimization Approach

1: procedure OPTIMIZEDFORECAST (historical _data, forecast horizon)
// Step 1: Input-Window Reduction

3 reduced _data < SelectLastNHours(historical _data, 24)

4 // Step 2: Vectorized Feature Engineering

5: features < 0

6: features.Add(TemporalFeatures(reduced _data))

7.

8

features.Add(VectorizedLags(reduced _data))

: features.Add(VectorizedRollingStats(reduced _data))
9: // Step 3: Cache-Friendly Chunking
10: optimal _chunk _size < DetermineCacheSize()
11: chunks < SplitIntoChunks( features, optimal _chunk__size)
12: // Step 4: Model Training and Prediction
13: model < InitializeXGBoost()
14: for chunk in chunks do

15: model .PartialFit(chunk)

16: end for

17: forecast <+ model Predict( forecast _horizon)
18: return forecast

19: end procedure

A.3 Additional EDA

We complement our analysis with key charts, such as correlation matrices and
feature distributions, to deepen understanding of the UK Grid CI data.

Dataset Structure.
— Shape: (281,308 x 32).
— Columns: Fuel types (GAS, COAL, NUCLEAR, etc.), composite measures
(RENEWABLE, FOSSIL), and percent-based features.
— Data Types: Predominantly float64, with no missing values.

Descriptive Statistics.
— GAS: 625-27,868 MW (mean: 12,233 MW).
— COAL: 0-26,044 MW (mean: 5,880 MW).

NUCLEAR: 2,065-9,342 MW (mean: 6,438 MW).

— Percentage Metrics: ZERO_CARBON_perc, FOSSIL_perc track generation
mix shifts.
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Time Series Insight. Decomposition of the hourly CI series reveals:
— Trend: Gradual long-term shifts.
— Seasonality: Daily and annual cycles.
— Residual: Short-term fluctuations.

(a) Carbon Intensity Across Scales (b) Time Series Decomposition

Fig. 4: Parallel plots of (a) CI levels and (b) decomposed components.

ARIMA (1,1,1) Native Metrics.

— Yearly: MSE 76.8090, RMSE 8.7641, MAPE 7.05%, NMSE 0.0046, Run-
time 0.09s, Emissions 5.7464 x 10~7 kg COs.

— Monthly: MSE 869.2681, RMSE 29.4834, MAPE 22.10%, NMSE 0.0485,
Runtime 0.05s, Emissions 5.8719 x 107 kg COs.

— Daily: MSE 3169.2744, RMSE 56.2963, MAPE 34.81%, NMSE 0.1616,
Runtime 0.25s, Emissions 8.9178 x 10~7 kg COs.

— Hourly: MSE 6914.6466, RMSE 83.1544, MAPE 43.01%, NMSE 0.3360,
Runtime 2.48 s, Emissions 2.2391 x 10~% kg CO,.

B Extended Analysis

B.1 Further Emissions Analysis

Table 3 summarizes the average emissions and runtime across all optimization
methods for both environments. Notably, the IDE environment demonstrates
21.78% lower average emissions compared to the Terminal environment. Sim-
ilarly, the IDE shows improved average runtime (8.06% faster) over Terminal.

Table 3: Average Emissions Reduction and Runtime Improvement

Environment Average Emissions (kg CO2) Average Runtime (s)

Terminal 3.6755 x 107 0.62
IDE 2.8743 x 107 0.57
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Table 4 projects per-run CO5 emissions under three UK regional carbon
intensities. Locations with cleaner grids (e.g. North East England at 77g/kWh)
yield sub-3 x 10~ kg per run, whereas high-carbon regions (South England at
285g/kWh) incur over 1 x 10~%kg.

Table 4: Projected Emissions Across Different Locations

Location Carbon Intensity (g CO2/kWh) Emissions (kg CO»)
South Scotland 147 5.3923 x 1077
North East England 77 2.8309 x 1077
South England 285 1.0462 x 1073

Tables 5 and 6 detail each optimization’s per-run MAPE, runtime, and CO,
for the Terminal and IDE environments, respectively. The hybrid “optimization
4” consistently delivers the lowest emissions and fastest runtimes in both settings,
improving over the baseline by roughly 70-80%.

Table 5: Emissions and Runtime Metrics for Terminal Environment
Method Emissions (kg CO;) MSE Runtime (s) MAPE (%)

Baseline 8.7325 x 1077 56.0183 0.86 6.00
optimization 1 3.0314 x 1077 21.2842 0.67 3.72
optimization 2 2.9651 x 1077 54.9893 0.62 5.92
optimization 3 5.0238 x 1077 54.9457 0.65 5.95
optimization 4 2.3419 x 1077 48.6674 0.43 5.38

Table 6: Emissions and Runtime Metrics for IDE Environment

Method Emissions (kg CO;) MSE Runtime (s) MAPE (%)
Baseline 8.9719 x 1077 56.0183 0.79 6.00
optimization 1 5.4479 x 1077 21.2842 0.82 3.72
optimization 2 3.0953 x 1077 54.9893 0.56 5.92
optimization 3 3.3312 x 1077 54.9457 0.66 5.95

optimization 4 1.8555 x 1077 48.6674 0.41 5.38
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le—7 Comparison of Carbon Emissions Across Terminal and IDE Environments

Environment
Terminal
IDE

Emissions (kg CO>)

Baseline ol 02 03 04
Optimization Methods

Fig.5: Carbon Emissions

B.2 Model Comparison: Light GBM vs XGBoost

Result Analysis & Evaluation As we have seen in the comparison results, across
yearly, monthly, and daily scales, Linear Regression (LR) consistently delivers
the lowest error metrics and shortest runtimes, making it a strong all-rounder
for coarse-grained forecasting. However, at the hourly level, where our optimiza-
tion will focus, XGBoost and LightGBM clearly outperform LR in terms of
MAPE, indicating their potential for higher impact if further tuned. Although
these boosting methods may increase runtime, their superior accuracy at finer
time resolutions makes them the primary candidates for deeper investigation
and optimization trade-offs. This section compares these two models for further
insights.

XGBoost & Light GBM XGBoost and Light GBM are chosen as the two meth-
ods of investigation due to their good performance in hourly forecasting. Fig-
ure 6 demonstrates that both XGBoost and Light GBM closely follow the high-
frequency swings of carbon intensity, with XGBoost exhibiting a marginally
tighter fit during abrupt spikes. The error distributions reinforce this: XGBoost’s
hourly and daily residuals cluster more sharply around zero and feature smaller
interquartile ranges than LightGBM, indicating fewer extreme mispredictions.
At coarser monthly and yearly scales, both models tend to underpredict during
high-CI periods and overpredict when CI is low, yet XGBoost still maintains
a narrower error spread. These results suggest that while both ensemble meth-
ods are highly effective, XGBoost’s superior fidelity in capturing rapid carbon-
intensity fluctuations and its tighter error distribution make it the preferable
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choice for applications requiring fast, reliable response to sudden grid carbon
variations.

(a) High-frequency Prediction Visualisa-
tion (b) Error Analysis

Fig. 6: XGBoost vs Light GBM: Prediction Visualisation & Error Analysis

B.3 Lambda Sensitivity Analysis

Methodology To explore the sensitivity of our EAAS metric to the penalty
parameter A\, we conducted a comprehensive analysis across 100 lambda values
ranging from 0.01 to 1.0. This analysis evaluates how model rankings change
as the carbon penalty varies, providing empirical justification for our choice of
A=0.1.

For each lambda value \; € {0.01,0.02,...,1.00}, we calculated:

B\
EAAS;(\;) = A; (—) (1)
Ey
where A; = 1 — MAPE,/100 is the accuracy component, E; is the model’s
carbon emissions, and Ej is the global median emission across all models.

Sensitivity and Stability Analysis Our analysis reveals significant differ-
ences in ranking stability and sensitivity across models and time scales. Table 7
summarizes the ranking stability findings, while Table 8 details the sensitivity
of the EAAS score itself.

The coefficient of variation (CV) of EAAS scores across lambda values pro-
vides insight into model sensitivity to the penalty parameter. Table 8 shows the
EAAS ranges and sensitivity metrics, highlighting which models’ scores are most
affected by the choice of .
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Table 7: Ranking Stability Analysis Across Lambda Values (0.01-1.0)

Model Ranking Variance Ranking Std EAAS CV Stability Category
Most Stable Models

LightGBM _Yearly 0.0000 0.0000 0.0000 Highly Stable
ARIMA _Yearly 0.0900 0.3000 0.1155 Stable
Prophet Daily 0.1164 0.3412 0.2695 Stable
XGBoost_Hourly 0.1404 0.3747 0.0032 Stable
LR_Daily 0.3931 0.6270 0.0028 Stable
Moderately Stable Models

Prophet Yearly 2.9179 1.7082 0.0787 Moderately Stable
ARIMA Daily 0.3475 0.5895 1.2656 Moderately Stable
XGBoost_ Yearly 0.3956 0.6290 0.0685 Moderately Stable
Most Volatile Models

LightGBM_ Hourly 9.7924 3.1293 0.1296 Highly Volatile
LightGBM _Monthly 7.8300 2.7982 0.0959 Volatile
LR_Hourly 5.2300 2.2869 0.1116 Volatile
ARIMA Monthly 2.7800 1.6673 0.3972 Volatile

Justification for A = 0.1 Table 9 shows how model rankings change at key
lambda values, demonstrating the stability around our chosen value of A = 0.1.

Our comprehensive analysis provides strong empirical justification for choos-
ing A = 0.1. At this value, the metric provides a balanced differentiation
between high and low emitters without overwhelming the accuracy component;
lower values (0.01-0.05) offer insufficient penalty, while higher values (0.5-1.0)
overshadow accuracy. Furthermore, models maintain high ranking stability
around A = 0.1, with the ranking variance for top-performing models remaining
below 0.4. This choice also has a practical interpretation: the penalty factor
(E;i/Ep)~%! means a model with double the median emissions sees its EAAS
reduced by a modest 7% (27°! ~ 0.93). This ensures the metric is robust,
falling within a stable region where minor variations do not significantly alter
outcomes, and maintains a good sensitivity balance, where the most sensitive
models (CV < 1.8) are penalized meaningfully while stable models (CV < 0.01)
are not unduly affected.

1. Robustness: The choice of A = 0.1 falls within the stable region where small
variations do not significantly alter model rankings, ensuring reproducible
results across different experimental conditions.

2. Sensitivity Balance: At A = 0.1, the most sensitive models (CV < 1.8)
are penalized meaningfully while stable models (CV < 0.01) are not unduly
affected.

Implications and Visualization The sensitivity analysis reveals important
insights for practical deployment. High-emissions models like ARIMA and
Prophet, especially at high frequencies, are highly sensitive to A and benefit
most from carbon-aware tuning. In contrast, low-emissions models like Linear
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Table 8: EAAS Sensitivity Metrics Across Lambda Values

Model EAAS Range EAAS CV Sensitivity Level
Most Sensitive Models
ARIMA Hourly 0.5368 1.7189 Very High
ARIMA Daily 0.5182 1.2656 High
Prophet Hourly 0.3673 1.1037 High
ARIMA Monthly 0.6015 0.3972 Moderate
Prophet Daily 0.2819 0.2695 Moderate
Least Sensitive Models
Light GBM _Yearly 0.0000 0.0000 None
LR _Daily 0.0086 0.0028 Very Low
LightGBM _Daily 0.0067 0.0028 Very Low
XGBoost_Hourly 0.0104 0.0032 Very Low
Prophet  Monthly 0.0881 0.0344 Low

Table 9: Top-3 Model Rankings at Key Lambda Values

Lambda Rank 1 Rank 2 Rank 3

0.01 LR _Yearly (0.980)  ARIMA Yearly (0.944) XGBoost_Hourly (0.940)
0.05 LR Yearly (0.992) ARIMA Yearly (0.960) LR _Monthly (0.954)
0.10 LR _Yearly (1.006) ARIMA _Yearly (0.979) LR_ Monthly (0.975)
0.20 LR_ Yearly (1.036)  ARIMA_ Yearly (1.019)  LR_Monthly (1.017)
0.50 LR Monthly (1.158) ARIMA Yearly (1.149) LR Yearly (1.132)
1.00 LR_Monthly (1.436) ARIMA _Yearly (1.404) LR_Yearly (1.310)

Regression and XGBoost are more robust choices where A might be adjusted
based on local conditions. Yearly and monthly models generally show higher
stability than volatile hourly models, reflecting the accuracy-efficiency trade-
off at different resolutions. For production systems, we recommend a default of
A = 0.1, adjustable within the stable [0.05, 0.2] range based on organizational
priorities.

Figure 7 provides a comprehensive visualization of this analysis, showing
(a) EAAS trajectories, (b) a ranking stability heatmap, (c) the coefficient of
variation, and (d) ranking variance. This analysis validates our choice of A = 0.1
and demonstrates that the EAAS metric provides stable, interpretable rankings
while maintaining the crucial balance between accuracy and carbon efficiency.

C System Design Supplement

This section provides additional details and recommendations to support de-
ployment and reproducibility of carbon-efficient CI forecasting systems.

Model Selection. For coarse-grained forecasting (yearly, monthly), Linear Re-
gression achieves the best balance of accuracy and efficiency. For fine-grained
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Lambda Sensitivity Analysis for EAAS Metric

EAAS vs Lambda for Key Models Model Rankings Across Lambda Values
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Fig. 7: Comprehensive sensitivity analysis of the EAAS metric to the choice of
A. (a) EAAS score trajectories for key models as A increases. (b) Heatmap of
model rankings across the full lambda range (warmer colors indicate a better
rank). (c¢) EAAS score sensitivity measured by the coefficient of variation. (d)
Ranking stability measured by variance, identifying the most consistent and
volatile models.

forecasting (daily, hourly), optimized XGBoost or Light GBM offer the most ef-
fective performance—efficiency trade-off.

Data Management. We reduce both columns (retaining only DATETIME and
CARBON_INTENSITY) and rows (restricting to 2018-2023). Rolling 24h windows
are maintained instead of multi-year histories, cutting storage and training costs
while preserving forecast quality.

Implementation Strategy. Feature engineering relies on pandas (.resample(),
.shift(), .rolling()) with NumPy vectorisation. Training uses ~10k-row
chunks for cache efficiency. We recommend incremental optimization: first input-
window reduction, then vectorisation, then chunking, allowing validation after
each stage.
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EAAS Metric. Accuracy is 1 — MAPE/100, clipped at zero if negative. EAAS is
Ai(E;/Ey)~?, with Ey the median emission across models. EAAS may slightly
exceed 1 when F; < Ej. Rankings are stable across A € {0.05,0.10,0.20} (Spear-
man p > 0.95); A = 0.1 balances differentiation of high vs. low emitters.

Week-Ahead Forecasting. A 168 h horizon provides actionable lead time for or-
ganisations outside energy markets (without access to contract books), aligning
with typical scheduling windows while remaining forecastable.

Context Effects. Execution context affects emissions: night-time runs reduced
CO2 by ~17%, and North East England (77 gCO2/kWh) offered up to 75%
lower emissions than South England (285 gCO5/kWh).

Generality. The EAAS formulation is task-agnostic and can be applied to any
setting with measurable accuracy and emissions.

Computational Environment. Intel Core i7-10700K @ 3.8 GHz, 32 GB DDRA4-
3200 RAM, Ubuntu 20.04 LTS, Python 3.8.10. Key libraries: pandas 1.3.5,
numpy 1.21.5, scikit-learn 1.0.2, xgboost 1.5.2, lightgbm 3.3.2, CodeCarbon 2.1.4.
All code and preprocessing scripts are available in our repository.
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