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A B S T R A C T   

Due to environmental interference and defects in measured objects, measurement signals are 
frequently affected by unpredictable noise and periodic defects. Moreover, there is a lack of 
effective methods for accurately distinguishing defect components from measurement signals. In 
this study, a distribution-based selective optimisation method (SOM) is proposed to mitigate the 
effects of noise and defect components. The SOM can be seen as a binary- or multiple-class signal 
classifier based on an error distribution, which can simultaneously eliminate periodic defect 
components of measurement signals and proceed with signal-fitting regression. The effectiveness, 
accuracy, and feasibility of the SOM are verified in theoretical and realworld measurement set-
tings. Based on theoretical simulations under various parameter conditions, some criteria for 
selecting operation variables among a selection of parameter conditions are explained in detail. 
The proposed method is capable of separating defect components from measurement signals 
while also achieving a satisfactory fitting curve for the measurement signals. The proposed SOM 
has broad application prospects in signal processing and defect detection for mechanical mea-
surements, electronic filtering, instrumentation, part maintenance, and other fields.   

1. Introduction 

Measurement data are often collected through scientific and engineering experiments. The relationships between measurement 
data y and independent variables x are examined to analyse signal characteristics, which can be denoted as an approximate expression 
of discrete points (xi, yi) or fitting function f(xi) in signal processing. Conventional fitting methods for measurement signals include the 
original least squares (OLS) [1], fast Fourier transform (FFT) [2], principal component analysis (PCA) [3], wavelet transform (WT) 
[4,5], least mean squares (LMS) [6,7], and maximum likelihood estimation (MLE) [8]. However, few methods can efficiently handle 
environmental interference in measurement signals while fitting discrete points (xi, yi). Such environmental interference include noise 
and mechanical defects. To provide an accurate function f(xi) for data interfered with random and non-random interference, scientists 
worldwide have optimised conventional fitting methods and have provided a few approaches to improve fitting accuracy and 
computational efficiency. 

For a measurement signal with a smooth waveform, many scientists research signal characteristic based on improved fitting 
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Nomenclature 

ε Total effectiveness 
εf Total failure probability 
δ Fitting error of sample signal 
δOLS Fitting error of sample signal by OLS 
δSOM Fitting error of sample signal by SOM 
ψ Fitting success probability 
a Arbitrary moment of the measurement signal 
A Trigonometric polynomial vector 
A0 Signal amplitude 
A1 First-order amplitude of measurement signal 
Adef Defect amplitude 
Amean First-order amplitude’s mean value of five repeat experiments 
Anoise Noise amplitude 
cf Fitting coefficient 
C1 The event that defect is involved by one segment 
C2 The event that defect is involved by two adjacent segments 
D The event that defects are eliminated 
D1 The event that defects are eliminated when C1 is satisfied 
D2 The event that defects are eliminated when C2 is satisfied 
ecm Coincidence error of mth eliminated combination 
e Error value of each measurement signal’s first-order amplitude 
fm Fitting data of residual signal in mth eliminated combination. 
F Frequency of fitting error 
Nc Number of each sampling signal’s cycle 
Vd Data volume 
Ndef Number of defects per cycle 
Ndel Number of eliminated segments 
Nec Number of eliminated combinations 
Dsd Sampling density 
Nrs Number of repeated simulations 
Nsec Sample size 
Nseg Number of segments per cycle 
P(C1) Probability of defect contained in one segment 
P(C2) Probability of defect contained in two segments 
P(D) Probability of defects being eliminated 
P(D1) Probability of a segment being eliminated 
P(D2) Probability of adjacent segments being eliminated simultaneously 
P0 Coefficient vector of the measurement signal 
POLS Coefficient vector of OLS fitting curve 
Pm Coefficient vector of mth elimination combination 
Popt Optimum coefficients vector 
PSOM Coefficient vector of SOM fitting curve 
Sdef Defect span 
Ssec Phase difference of adjacent samples 
Sseg Segment span 
si Serial number of each part 
Si Serial number of each segment 
tp Processing time 
T Defect’s period and harmonic signal’s fundamental period 
Ws Signal fluctuation frequency 
xid Defect’s initial phase in each period 
xs Starting points of sample signals 
yd Deflection of bending shaft 
SOM Selective optimization method 
OLS Ordinary least square 
WT Wavelet transform 
GPR Gaussian process regression 
Measurement signal Signal acquired by sensors or other acquisition devices / the processing object of SOM 
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methods. Brown et al. [9] proposed a signal-period recognition method based on a feedback error system. Tenneti et al. [10] proposed 
a Nested Periodic Matrix method for detecting signal periods using nested periodic matrices. Qiu et al. [11] presented an optimisation 
approach to obtain the exact frequency characteristics of harmonic signals. Tan et al. [12] obtained the signal frequency using a linear 
model of the frequency measurement based on least-squares regression analysis. Gurubelli et al. [13] developed a method for esti-
mating the signal frequency of sampled sinusoidal signals. These studies have helped improve the fitting accuracy of the measurement 
signals. However, these methods can neither deal with noise with large amplitudes nor handle multiple defects. 

For measurement signals with noise components, researchers have proposed several methods to alleviate the noise effect, thereby 
recognising the signal characteristics. Laakso et al. [14] reconstructed non-uniform measurement signals using polynomial filtering to 
minimise the effects of noise. He et al. [15] evaluated noise-disturbing problems and proposed a noise-eliminating method for acoustic 
emission signals. Zhang et al. [16] proposed a modified joint maximum-likelihood estimation algorithm for burst signals. Aliev et al. 
[17] analysed the effect on estimation errors of the correlation functions of noise signals using traditional correlation analysis algo-
rithms. Sawma et al. [18] proposed an identification method for motor parameters based on LMS, but the fitting accuracy was affected 
by the noise components. The abovementioned studies are effective for noise reduction in harmonic signals, but they were unable to 
handle harmonic signals with extensive interference or multiple defects. 

Owing to the diversity of objects to be measured and the complexity of environmental factors, measurement signals are often 
merged with one or multiple types of periodic defect components. There are many common real-life examples of harmonic signals 
merging with obvious periodic defects. For example, 1) two abrupt points appear in the measurement signal of the axle profile owing to 
the casting joint line; 2) the measurement signal of the rotating cylindrical shaft emerges with multiple pulse signals induced by surface 
local damage, protuberance, and pit; and 3) the measurement signals of vibration displacement, voltage, and sound decibels are mixed 
with many transient signals owing to the interference of mechanical, electromagnetic, and even power supply impact excitations. 
Periodic defects can be easily viewed as valid information of harmonic signals in the measurement process because the span and 
amplitude of the defect are usually notable. This results in an obvious error in the fitting curve, and the fitting accuracy of the current 
methods is unsatisfactory. Fig. 1 shows an example of a waveform of harmonic signals merged with periodic defects. As shown in Fig. 1, 
the amplitude of the defect is large and the defect frequency is periodic. 

For measurement signals that emerge with defect components, the most commonly used methods for eliminating defect compo-
nents are the WT filter [19] and Gaussian process regression (GPR) [20]. However, both methods have shortcomings in terms of 
effectiveness and accuracy of defect detection. The computational efficiency of the WT filter is costly, and it cannot guarantee quick 
and accurate calculations simultaneously. GPR is mainly used to deal with the harmonic signals of lose nonperiodic information. When 
the periodic defect is merged with the measurement signal, GPR cannot distinguish between the defect and non-defect information. 
Therefore, it is not a suitable method for handling harmonic signals with periodic defects. In addition to the WT filter and GPR 
methods, researchers have proposed several methods to achieve fault diagnosis. Cheng et al. [21] proposed a noise reduction method 
based on adaptive weighted symplectic geometry decomposition. However, this method has limitations in defect identification. 
Mauricio et al. [22] developed a bearing diagnostics method by improving the envelope spectrum, which has high accuracy but more 
complexity. 

The main contribution of this study is the proposal of a novel error-distribution-based selective optimisation method (SOM) to 
distinguish defects, thereby providing a robust and adaptive approach to fit measurement signals. The proposed SOM can handle large 
periodic defect components, provide an automatic setting of parameters in the operation variable group, and ultimately eliminate 
signals that are derived from defect components. Using the proposed SOM, the optimal trigonometric polynomial vector of the har-
monic signal can be achieved, which enables an accurate estimation of the equipment’s operational performance and defects. 

This study first introduces the SOM model in Section 2. The SOM procedure involves dividing the sample signal into several 
segments, eliminating partial segments randomly, fitting the residual signal, analysing the coincidence error, and obtaining the 
optimal trigonometric polynomial vector. Section 2 defines the selection principle for the parameters in the operation variable group 
for the proposed SOM model. In Section 3, the effectiveness and applicability of the SOM are verified and compared with the current 
state-of-the-art signal fitting methods, including the OLS, WT, and GPR methods. Section 4 focuses on analysing the association be-
tween the characteristic parameters of measurement signals and fitting success probability, and presents the selection principle of 
operation variable groups. Moreover, the application of the SOM for measuring signals with defect components is verified experi-
mentally in Section 5. Finally, concluding remarks are presented in Section 6. 

2. Model of selective optimization method 

The proposed selective optimisation method (SOM) is a novel signal-processing method based on error distribution that can be used 
to distinguish defect components from measurement signals. There are three operation variables in the SOM: the number of segments 
per cycle Nseg, the number of eliminated segments Ndel, and the sample size Nsec. The operation variable group (Nseg, Ndel, Nsec) was 
selected according to the signal characteristics, which will be introduced in Section 4. 

Sample signal Samples intercepted from measurement signal in SOM / the processing result of Step 1 and the object of Step 2 
Residual signal Residual data of measurement signal after signal elimination in SOM / the processing result of Step 2 and the 

object of Step 3 
Simulation signal Simulation data in the theoretical simulation as measurement signal 
Standard harmonic signal Signal without noise or defect components  
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There are three main steps in the SOM procedure, as shown in the flow diagram in Fig. 2. The first step was signal preprocessing. 
The operation variables Nseg and Nsec are first ensured in this step, and multiple sample signals are intercepted from the measurement 
signal. The second step is the sample signal segmentation, elimination, and fitting. Operation variables Ndel are ensured, Ndel segments 
are selected and eliminated randomly, and the residual signal of each eliminated combination is fitted. The last step is statistics and 
optimisation. The coincidence errors of all the eliminated combinations were calculated and analysed, and the optimum fitting result 
of the sample signal was obtained. The details of the variable settings, operational procedure, and parameter acquisition are shown in 
Fig. 2. 

2.1. Signal preprocessing 

The signal preprocessing step involves observing the data and preprocessing the signals into windows for better curve-fitting 
performance. The defect period T and span Sdef were determined based on the measurement signal characteristics. The defect 
period T can be calculated as an integer multiple of the fundamental period of measurement signal, which can be obtained by observing 
the signal’s peaks and inflexions, or by transforming the measuring variables in the process of signal acquisition. The estimate of the 
defect span Sdef can be obtained by observing the signal waveform, and the exact value of Sdef can be acquired automatically by 
analysing the sample signal gradient. The fitting accuracy improves when Sdef < T/8. The segment span Sseg was determined according 
to T and Sdef. When the condition of Sseg > Sdef is satisfied, the number of segments per cycle Nseg can be calculated as. 

Nseg =
T

Sseg
(1) 

In general, sample size is proportional to the probability of defect elimination. Therefore, several sample signals were intercepted 
from the measurement signal to aggrandise the sample size Nsec, which is usually set as 2 or 3 to balance the fitting accuracy and 
efficiency. The acquisition procedure for sample signals can be summarised in the following two steps: 1) a segment is subdivided into 
Nsec parts, each part’s span Ssec = T/(NsegNsec); 2) Nc (usually set as 3–5) cycles of data are intercepted starting from each assigned point 
xs of the measurement signal as sample signals, xs = a + iSsec, where a is the arbitrary moment on the measurement signal, which is 
usually the initial point of signal acquisition, and iSsec is the phase difference of each sample signal’s initial phase, i = 0, 1, 2, …, Nsec-1. 

The proposed method can handle multiple harmonic signals with various independent variables. To better understand the proposed 
method, the independent variable x was defined as the phase, and T was set to 360◦ in this study. A schematic diagram of the signal 
preprocessing is shown in Fig. 3. As shown in the figure, T is the defect period, and each period of the signal is divided into Nseg 
segments, where Si stands for each segment, i = 1,2,…, Nseg. The first segment is divided into Nsec parts, where si stands for each part, i 
= 1,2,…, Nsec. If Sseg > Sdef, the probabilities of a defect contained in one or two adjacent segments are 

P(C1) =
Sseg − Sdef

Sseg
,P(C2) =

Sdef

Sseg
(2)  

where C1 and C2 represent the events in which defects occur in one and two adjacent segments, respectively. 

2.2. Segmentation, elimination, and fitting 

The eliminated combination represents the segments of each period, which can be determined according to the first period of 
sample signals. The principle of elimination was the same for the other periods as it was for the first. 

The first period was segmented based on the Nseg and Sseg obtained during preprocessing. The Ndel of the Nseg segments are 
randomly selected, and Ndel represents the number of eliminated segments. Ndel < Nseg, therefore, the number of eliminated 

Fig. 1. Waveform of harmonic signals that merged with periodic defects.  
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combinations of all sample signals can be written as 

Nec = NsecCNdel
Nseg

,Ndel < Nseg (3) 

Subsequently, the corresponding segments of each eliminated combination were removed. The probabilities of eliminating defects 
are 

P(D1) =
Ndel

Nseg
,P(D2) =

Ndel(Ndel − 1)
Nseg

(
Nseg − 1

) (4) 

where D1 and D2 represent the events in which the defects are eliminated when C1 and C2 are satisfied, respectively. The probability 
was significantly reduced when the defect was distributed in two segments. Setting Sseg > Sdef, the probability of the defect being 
eliminated is 

P(D) = P(C1)P(D1)+P(C2)P(D2) (5) 

Fig. 2. Flow diagram of the selective optimization method.  
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where D represents the case where defects are eliminated. Substituting (1), (2), and (4) into (5), the eliminated probability can be 
expressed as 

P(D) =
NdelT

(
Sseg − Sdef

)
− SsegNdel

(
Sseg − SdefNdel

)

T
(
T − Sseg

) (6) 

There are two operation variables, Nseg (in the form of Sseg) and Ndel in Eq. (6). P(D) increases with Sseg and Ndel, if T and Sdef are 
constant. This result indicates that the probability of defects being eliminated, P(D), is positively correlated with the total amount of 
signal rejection, Ndel × Sseg. However, removing too much data can lead to obvious drawbacks. Therefore, Ndel should be chosen based 
on the principle Ndef < Ndel < Nseg/2, and Sseg should be set as Sseg = keSdef and ke ∈ [1.5,2]. If defects are contained in one or two 
adjacent segments and Sseg > Sdef, the defect can be eliminated completely only if all segments involving defects are eliminated. Based 
on this combination, there must be several elimination combinations that include segments with defects. The associations between 
each signal characteristic parameter and the SOM operation variables are analysed in Section 4 (the selection principles of operation 
variable group are introduced in Section 4.3). 

Fig. 3. Schematic diagram of signal preprocessing.  

Fig. 4. Schematic diagram of the interception, segmentation, and elimination of the sample signal. Nseg = 6, Ndel = 3, Nsec = 2, grey bars represent 
eliminated segments. (a) First sample signal; (b) Second sample signal. 

Q.-Y. Xin et al.                                                                                                                                                                                                         



Mechanical Systems and Signal Processing 185 (2023) 109781

7

According to the principle of signal elimination in SOM, each period of the sample signal is divided into Nseg segments, and the Ndel 
segments are removed according to different elimination combinations. The residual signal is periodic; thus, it can be fitted based on 
OLS. 

OLS is a mathematical optimisation method for estimating the best relationship between the independent and dependent variables. 
If we assume that (xi, yi) is the coordinate of each point’s residual signals and (xi, fm(xi)) is the coordinate of the fitting curve of the 
residual signal in the mth eliminated combination, we have 

fm(x) = PmA (7) 

where A is a trigonometric polynomial vector, which can be written as A = [ 1 cosk1x sink1x cosk2x sink2x ⋯ ]
T. ki rep-

resents the fluctuation frequency of the signal, k1 = 2π/T, and can be obtained using the frequency acquisition method [23] or by 
transforming the measurement variables in the signal acquisition process. Pm is the undetermined coefficient vector, and Pm =

[ a0m a1m b1m a2m b2m ⋯ ], m = 1, 2, …, Nec. 
An example is provided in Fig. 4 to demonstrate the interception, segmentation, and elimination of a sample signal using the SOM 

model. The signal parameters are T = 360◦ and Sdef = 30◦, the operation variables are Nseg = 6, Ndel = 3, and Nsec = 2, and the grey bars 
represent the eliminated segments. In this case, the number of elimination combinations is Nec = 40, and the probability of eliminating 
defects in each elimination combination is P(D) = 35 %. Various combinations were eliminated to complete the elimination of period 
defect. 

2.3. Statistics and optimization of fitting results 

In the SOM, the coincidence errors between the residual signals and fitting curves are calculated to obtain the optimal fitting 
trigonometric polynomial of the measurement signal. According to Step 1 and Step 2, Nec groups of the fitting curve f(xi) are obtained. 
The residual sum of the squares of the two curves represents the coincidence error. The coincidence error of the mth eliminated 
combination is defined as 

ecm =

∑n
i=1(yi − fm(xi) )

2

Nc
, i = 1, 2, 3, ..., n. (8) 

where n represents the number of data points in the residual signal. The Nec combination coincidence errors and corresponding 
signal amplitudes were calculated, and all coincidence errors were evaluated using probability statistics to obtain the optimum 
trigonometric polynomial. The coincidence error was taken as the abscissa, and the signal amplitude was taken as the ordinate. The 
distribution of the coincidence errors is shown in Fig. 5 (a), where each star represents the fitting result of each elimination combi-
nation. The frequency of some coincidence errors is taken as the ordinate, and the probability statistics of the coincidence errors are 
shown in Fig. 5 (b). The processed signal and operation variables in Fig. 5 are identical to those in Fig. 4. 

As shown in Fig. 5 (a), there were three sets of obvious clustering points in the distribution graph, and the coincidence error in these 
clusters was relatively small. Meanwhile, it can be seen from Fig. 5 (b) that the group of data with the minimum error have the highest 
frequency. The optimum coefficient vector Popt was obtained by selecting the dataset with the smallest coincidence error and averaging 
the corresponding trigonometric polynomial coefficients. The SOM fitting function can be expressed as fopt(xi) = PoptA. The fitting 
results of the harmonic signal in Fig. 4 using SOM are shown in Fig. 6. 

3. Effectiveness and applicability of SOM 

The effectiveness and applicability of the SOM are verified in the following theoretical simulation. The simulation signal can be 

Fig. 5. Distribution and statistics of coincidence errors under various eliminated combinations. (a) Distribution and clusters of coincidence error. 
(b) Frequency histogram of coincidence error. 
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considered a standard harmonic signal mixed with periodic defects and random noise. The parameters of the standard harmonic signal 
include the signal amplitude A0, fluctuation frequency Ws, sampling density of the data acquisition equipment Dsd, and number of 

sampling signal cycles Nc. Considering SOM’s universality, the signal amplitude A0 was normalised (i.e. A0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
01 + b2

01

√

= 1). The 
defect component parameters include defect amplitude Adef, defect span Sdef, and number of defects per cycle Ndef. The noise 
component was ensured according to the noise amplitude, Anoise. The fitting success probabilities of various random signals are 
calculated to verify the effectiveness of the SOM in this section. 

3.1. Simulation signal generation 

A standard harmonic signal is generated, whose coefficient vector is represented as 

P0 = [ a00 a01 b01 a02 b02 ⋯ a0n b0n ] (9) 

Random noise components and periodic defect components were superimposed on the standard harmonic signal. The simulation 

Fig. 6. Fitting effect of the selective optimization method.  

Fig. 7. Simulation signal for method verification. (a) Standard harmonic signal; (b) Interference component, Anoise is noise amplitude; (c) Periodic 
defect component, Sdef is the defect span; (d) Simulation signal acquired by standard signal mixing with defect and interference components. 
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signal function can be expressed as Eq. (10), and a simulation signal is generated, as shown in Fig. 7. 

y = a00 + a01cosk1x + b01sink1x + a02cosk2x + b02sink2x + ...

+a0ncosknx + b0nsinknx + fnoise(x) + fdef(x)
(10) 

where fnoise(x) is the added random noise component and fnoise(xi) ∈ [-Anoise, Anoise]. fdef(x) is the added periodic defect component, 
which is determined by the period T, position (initial phase xid), span Sdef, maximum amplitude Adef, and number of cycles Ndef. The 
defect period is equal to the fundamental period of the standard harmonic signal, Ndef is set to 1 or 2, and xid, Sdef, and Adef are random. 
Each defect occurs in the simulation signal periodically with different amplitudes, and the function of the defect component is 
expressed as 

fdef(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RnAdef

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
h(x)

h(xid + Sdef)

√

, x ∈ [xid + nT, xid + Sdef + nT]

0 , x ∈
(
xid + Sdef + nT, xid + (n + 1)T

)
(11) 

where Rn is a random number in the range of [-1,1] and is used to produce periodic defects with different amplitudes; n is the nth 
periodic defect, n = 1,2,…Nc; and h(x) is the distance from each point to the defect middle phase, which reflects the shape of the defect 

hump, h(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
cos(x) − cos(xid + Sdef/2)

]2
+
[
sin(x) − sin(xid + Sdef/2)

]2
√

. 

3.2. Signal fitting using OLS, SOM, WT and GPR 

In our experiment, we used four curve-fitting methods: OLS, SOM, WT, and GPR. The fitting parameters of the four methods are 

Fig. 8. Fitting curves of the harmonic signal with various defect and noise parameters by OLS fitting, SOM fitting, WT filter and GPR fitting. (a) The 
simulation signal in Fig. 7, Sdef = 60, Ndef = 1, Adef = 1, Anoise = 0.05; (b) A small span defect: Sdef = 30, Ndef = 1, Adef = 1, Anoise = 0.05; (c) A large 
span defect with obvious noise: Sdef = 70, Ndef = 1, Adef = 0.5, Anoise = 0.2; (d) Two small span defects: Sdef = 30, Ndef = 2, Adef = 1, Anoise = 0.05; (e) 
Two defects with obvious noise: Sdef = 50, Ndef = 2, Adef = 1, Anoise = 0.1. 
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defined in this subsection, and their fitting results are compared using an error calculation matrix, as shown in Fig. 8. 
For the simulation signals fitted by OLS and SOM, the coefficient vectors of the fitting curve for OLS and SOM can be written as 

{ POLS = [ ae0 ae1 be1 ae2 be2 ⋯ aen ben ]

PSOM = [ ap0 ap1 bp1 ap2 bp2 ⋯ apn bpn ]
(12) 

The simulation signals were processed by the WT filter using the MATLAB Wavelet Analyser toolbox. After tuning with different 
hyperparameters in the WT filter, we chose the Daubechies wavelet with six vanishing moments (the corresponding filter type in 
MATLAB is ‘db6’) and set the wavelet decomposition to four. 

Similar to WT, the simulation signals are fitted by GPR using MATLAB (function ‘fitrgp’). The fit method is set as ‘exact’, the basis 

function is ‘pureQuadratic’, and the basis matrix is H = [1, X, X2], where X2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2
11 x2

12 ⋯ x2
1d

x2
21 x2

22 ⋯ x2
2d

⋮ ⋮ ⋮ ⋮
x2

n1 x2
n2 ⋯ x2

nd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. 

Fig. 8 (a) shows the curve-fitting results of the simulation signal, which was previously shown in Fig. 7. In Fig. 8 (b)–(e), we provide 
four typical examples of defect signals and their curve fitting results. These included (b) one small-span defect, (c) a large-span defect 
with obvious noise, (d) two small-span defects, and (e) two defects with obvious noise. 

In Fig. 8, the black lines are simulation signals, the blue curves are standard harmonic signals, and the red, green, cyan, and orange 
curves represent the fitting results using the SOM, OLS, WT, and GPR methods, respectively. As shown in Fig. 8, the fitting curves of WT 
and GPR deviate significantly from the standard harmonic signal. This confirms that the WT filter and GPR fitting are not suitable for 
processing harmonic signals mixed with defect components. Thus, WT and GPR will not be further introduced in subsequent simu-
lations. The fitting curves processed by OLS and SOM are similar to the standard harmonic signal, and the fitting errors and efficiency 
analyses of the two methods are calculated and compared in the following section. 

3.3. Efficiency analysis 

Numerical simulations were carried out to intuitively compare the fitting success probabilities of OLS and SOM. Without 
compromising generality, the initial signal characteristic parameters were set as follows: standard harmonic signal parameters, Dsd =

1024, Ws = [1, 3/7, 2, 3/4], Nc = 5. The defect component parameters are Sdef ∈ [0,30◦], Adef ∈ [0,5], and Ndef ∈ [0,2]. Noise 
component parameters: Anoise ∈ [0,0.05]. 

By calculating the difference between the coefficient vectors of the two fitting methods and that of the simulation signals, the fitting 
errors of OLS and SOM can be written as 

⎧
⎨

⎩

δOLS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(POLS − P0)

2
√

δSOM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(PSOM − P0)

2
√ (13) 

Fig. 9. Fitting result statistics in SOM and OLS methods. (a1-4) Frequency distribution of fitting error δr; (b1-4) Fitting success probabilities ψ(δr). (a1) 
(b1): Group 1 (2, 1, 1); (a2) (b2): group 2 (6, 4, 2); (a3) (b3): group 3 (8, 6, 3); (a4) (b4): group 4 (10, 2, 3). 
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Four groups of operation variables were randomly selected to process the simulation signals to prove the generality of the SOM. The 
operation variable group (Nseg, Nsec, Ndel) was set as group 1: (4, 2, 5), group 2: (6, 4, 2), group 3: (8, 6, 3), and group 4: (10, 2, 3). The 
influence of the number of simulations Nrs on the fitting results is not apparent in the process of numerous repeated simulations; 
therefore, Nrs is set as 1000 to save simulation time and ensure the reliability of the fitting method. The OLS and SOM fitting errors of 
each simulation were calculated and analysed, and the frequency distribution of the fitting error δ is shown in Fig. 9 (a1-4). The abscissa 
represents the fitting error δ and the ordinate represents the corresponding simulation frequency F(δ) of the fitting error δ. 

The coordinates are normalised to the range of [0,1], with the total fitting effectiveness of the coordinate system equal to 1 (100 %). 
As shown in Fig. 9 (b1-4), the abscissa is normalised to the relative error δr, which is the relative value between the fitting error and the 
maximum permissible error. Fitting accuracy can be effectively guaranteed when the fitting error is less than Anoise. Thus, the 
maximum tolerance interval for error was set as Anoise in this study. The ordinate is normalised to the fitting success probability, 
representing the relative value of the total frequency below a certain error and the number of repeated simulations Nrs. Therefore, the 
fitting success probability is expressed as 

ψ(δr) =
1

Nrs

∫ δr

0
F(x)dx (14) 

The fitting success probabilities ψ(δr) of OLS and SOM are shown in Fig. 9 (bi). The red and blue lines represent the fitting success 
probability curves of the two methods, respectively. They can be viewed as typical receiver operating characteristic (ROC) curves. The 
colour blocks are the area under the curve (AUC), which reflects the method’s total fitting effectiveness ε in the range of [0, 1]. The 
total fitting effectiveness is presented in Eq. (15). To obtain a higher fitting success probability within a small fitting error, the AUC 
should be as large as possible. 

ε =
1

Anoise

∫ 1

0
ψ(δr)dδr (15) 

The numerical values of each group’s fitting results are shown in Table 1, which includes fitting success probabilities ψ(δr) when δr 
= 1 (100 %) and the total fitting effectiveness ε. 

As shown in Fig. 9 and Table 1, for all four operation variable groups, the fitting results of the simulation signals obtained by SOM 
were significantly higher than the fitting results of OLS. Both the fitting success probabilities ψ(1) and the total fitting effectiveness ε of 
SOM are significantly higher than those of OLS. ψ(1) is guaranteed to be greater than 80 % in all groups. This suggests that, when 
compared to the OLS method, SOM can significantly reduce the influence of defect components and improve fitting accuracy. 

In addition, the range of total fitting effectiveness of various operation variable groups is distinctly large, from 65.06 to 96.70, when 
ε of OLS is approximately the same. This indicates that the operation variable groups play an essential role in the total fitting effec-
tiveness, and it is paramount to use the correct group of operation variables to achieve optimal curve fitting results. The association of 
each signal characteristic parameter with the total fitting effectiveness and the selection principle of operation variable groups is 
evaluated in Section 4. 

4. Operation variable selection and optimisation 

Because the parameters of the standard harmonic signal and interference are arbitrary, the fitting results of various signals are 
different in the same operation variable group (Nseg, Ndel, Nsec). Therefore, the relationship between the signal characteristics and the 
optimal operation variable is investigated to acquire the selection principle of (Nseg, Ndel, Nsec). In this section, the total fitting 
effectiveness is represented by the total failure probability εf = 1-ε, which shows the fitting effect more intuitively. 

4.1. Selection of operation variable Nsec 

To analyse the association between sample size Nsec and fitting effectiveness, the total failure probability εf for different values of 
Nseg and Ndel are calculated and shown in Fig. 10. There are seven groups of operation variables: (2, 1, Nsec), (3, 2, Nsec), (4, 2, Nsec), (5, 
1, Nsec), (6, 3, Nsec), (7, 5, Nsec), and (8, 7, Nsec). The abscissa represents the sample size (Nsec) and the ordinate is the total failure 
probability εf. 

As shown in Fig. 10, the total failure probability εf is significantly high in the case of Nsec = 1, and the influence of the increase in 
Nsec is slight when Nsec greater than 3. Thus, the situation of Nsec = 1 should be avoided when setting a generic algorithm, and the 
selection principle of Nsec is that Nsec is usually set to 2 or 3 to ensure higher processing efficiency and fitting accuracy simultaneously. 

Table 1 
The fitting results of the SOM and OLS methods.  

Group Operation variables Fitting success probabilities ψ(1)/% Total fitting effectiveness ε/% 

OLS SOM OLS SOM 

1 (2, 1, 1)  27.9 83.3  15.67  67.80 
2 (6, 4, 2)  28.4 97.9  15.44  78.37 
3 (8, 6, 3)  27.7 90.5  15.60  65.06 
4 (10, 2, 3)  28.0 100  15.39  96.70  
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4.2. Selection of operation variables Nseg and Ndel 

4.2.1. Influence of signal parameters on total failure probability 
To explore the influence of each signal parameter on the total failure probability, Nsec was set to 3 according to the selection 

principle described in Section 4.1, and the operation variable groups (2, 1, 3) (5, 1, 3) (8, 1, 3) (8, 2, 3) (8, 4, 3) (8, 6, 3) were selected as 
research objects, considering the influence of Nseg, Ndel, and Ndel/Nseg on the total failure probability εf. 

(1) Effect of standard harmonic signal parameters 

Fig. 10. Association of sample size with total failure probability. (Nrs = 2000, Signal parameters: Dsd = 1024, Nc = 5, Ndef = 1, Adef = 2, Sdef = 30◦, 
Anoise = 0.01, Ws = [1, 5/3]). 

Fig. 11. Evaluation of total failure probability based on different standard harmonic signal parameters. (The same parameters: Nrs = 2000, Sdef =

30◦, Ndef = 1, Adef = 2) (a) The number of sampling cycles Nc (Dsd = 1024, Anoise = 0.005, Ws = [1,5/3]); (b) sampling density Dsd (Nc = 5, Anoise =

0.005, Ws = [1,5/3]); (c) Fluctuation frequency Ws (Dsd = 1024, Nc = 5, Anoise = 0.01). 
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Standard harmonic signal parameters mainly include the number of sampling cycles Nc, sampling density Dsd, and signal fluctu-
ation frequency Ws, where Nc and Dsd determine the data volume, and Ws determines the harmonic signal waveform. Their influence 
on the total failure probability εf was calculated, as shown in Fig. 11. 

As shown in Fig. 11 (a) and (b), the total failure probability εf will be slightly reduced with increasing data volume for each 
operation variable group. Compared with Ws, the influences of Nc and Dsd are not apparent, and εf can be controlled to less than 5 % in 
most cases. The εf of each operation variable was similar when Nc and Dsd were constant, and the largest difference was 2 %. 

The total failure probability εf of (2, 1, 3) and (8, 6, 3) in Fig. 11 (c) is evident for the simulation signal, including the frequency 
multiplier. This shows that the extraction of valid information is difficult when too many signals are eliminated. Therefore, signal 
rejection should be minimised as much as possible on the premise that Sseg > Sdef if harmonic signals are mixed with the frequency 
multiplier components. 

(2) Effect of defect component’s parameters 
As the determining factors of the signal waveform, defect parameters (e.g., Sdef, Adef and Ndef) should be carefully considered to 

optimise the selection principle of operation variables. The simulation signal can no longer be regarded as a low-frequency harmonic 
signal when Sdef > T/4; therefore, the research range of Sdef is (0, 90]. Their influence on the total failure probability εf was calculated, 
as shown in Fig. 12. 

As shown in Fig. 12 (a) and (b), the influence of large defects and the number of defects are evident and cannot be ignored. The 
defect be eliminated efficaciously, only if Sseg greater than 1.5Sdef and Ndel ≥ Ndef and εf is less than 5 %. In addition, all cases have a 
high fitting accuracy when Ndef = 1; however, if Ndef ≥ 2, Ndel should be larger than Ndef to obtain a higher fitting accuracy. As shown in 
Fig. 12 (c), εf increases with Adef expansion; εf is generally less than 5 %, but εf of the cases Ndel = 1 is larger than in other cases. Fig. 12 
shows that the operation variables should satisfy Ndef + 1 ≤ Ndel < Nseg/2. 

(3) Effect of noise amplitude 
Owing to environmental interference, the measurement signals often interfere with various noise components. Anoise reflects signal 

stability; the influence of Anoise on the total failure probability is shown in Fig. 13. 
Fig. 13 shows that the changing trend of εf is insignificant except for (8, 6, 3) and (8, 4, 3). This result indicates that the eliminated 

signal’s span (NdelSseg) should be less than half of a period (that is, Ndel < Nseg/2) when the noise component is significant. 

4.2.2. Orthogonal experiment design of main parameters 
According to Section 4.2.1, the influence of Dsd and Nc is slight, and the relationship between Ndef and Ndel is given, so they are set as 

Fig. 12. Evaluation of total failure probability based on different defect parameters. (The same parameters: Nrs = 2000, Dsd = 1024, Nc = 5, Anoise =

0.005, Ws = [1, 5/3]) (a) defect span Sdef (Ndef = 1, Adef = 2); (b) defect amplitude Adef (Ndef = 1, Sdef = 30◦); (c) number of defects per cycle Ndef 
(Adef = 2, Sdef = 30◦). 
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constants, that is, Dsd = 1024, Nc = 5, and Ndel = 1. Other parameters Ws, Sdef, Adef, and Anoise were selected as the main variables to 
ensure the selection principle of the operation variables Nseg and Ndel. The orthogonal experimental design is shown in Table 2, which 
includes four factors and three levels. 

The operation variables are set as Nseg = 2,3,…,8, Ndel = 1,2,…,Nseg-1, and Nsec = 3. The calculation results (total failure probability 
εf/%; processing time tp/ms) for Case 1 are listed in Table 3. All simulation calculations were completed using MATLAB on the same 
computer (Lenovo, Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz, RAM 8 GB). 

To comprehensively analyse the relationship between the signal parameters and the SOM’s operating variables, the effect of signal 
parameter variation on processing time tp and total failure probability εf were analysed as follows. 

(1) Computational efficiency analysis 
In general, the processing time tp is related to the number of processed groups and the number of data points per group. Fig. 14 

shows that the processing time tp of Case 1 was fitted by linear regression. 
The processing time tp is proportional to the data volume Vd and the number of eliminated combinations Nec by performing a linear 

regression on the data. The mathematical expression of the linear regression curve is: 

tp = cfVdNec (16) 

where Vd is the data volume, Vd = (1-Ndel/Nseg)NcDsd, and cf is the fitting coefficient of the waveform of simulation signal. The 
fitting coefficients cf of Cases 1 to 9 were calculated, and the results are shown in Table 4. 

It can be seen from Table 4 that the processing times of Cases 1–3, Cases 4–6, and Cases 7–9 are marginally the same. Compared 
with Table 2, the main factor determining the fitting coefficient cf is the fluctuation frequency Ws of the signal. The signal acquisition 
parameters (Nc and Dsd) should be selected according to the accuracy requirement for simulation signals with the same fluctuation 
frequency Ws. 

(2) Fitting accuracy analysis 
As mentioned previously, the total failure probability is εf = 1-ε. The relationships between each operation variable group (Nseg, 

Ndel, Nsec) and the total failure probability εf are depicted in Fig. 15. Each bar represents an operation variable group (Nseg, Ndel, 3). The 
abscissa represents Nseg = 2,3,…,8, and the rainbow bars represent Ndel = 1,2,…,7, successively. The ordinate represents the total 
failure probability, εf. The black and pink curves represent the changing trends of εf with increasing Nseg or Ndel, respectively. 

As shown in Fig. 15, except for the same signal parameters, Ndef = 1, Dsd = 1024, and Nc = 5, there is only one parameter with the 
same definition value in each row, column, and diagonal. The signal waveform Ws of the three sub-graphs in each row of Fig. 15 are the 
same; εf of the first row is less than 5 % in most operation variable groups, and εf increases as the signal order increases. Sdef of each 
column is the same, and εf of the second column is smaller when NdelSseg≈Sdef, which demonstrates that the signal span of the removed 
part should be approximately equal to Sdef. Beyond that, Adef of the counterdiagonal and Anoise of the leading diagonal are the same, 
and they have less association than Sseg and Ws. 

Sseg and Ws are the main factors to be considered in the selection process of the operation variable group. By comparing the εf of the 
first row and first column, the influence of Ws should be primarily evaluated if the harmonic signal is mixed with the frequency 
multiplier. When a large defect exists in the signals, Ndel should be increased appropriately. In most cases, the value of Sseg should 
satisfy the conditions Sseg > Sdef and Sseg = 1.5 ~ 2Sdef are commonly used. Ndel should be set as small as possible, on the premise that 
Ndel > Ndef. When Sdef is uncertain, regardless of the signal parameters, a larger Nseg and Ndel = 1/2Nseg is a good choice. 

4.3. Selection principles of the optimum operation variable group 

This subsection summarises the effects of the signal parameters on the total fitting effectiveness. The research results on the as-
sociation of signal parameters with fitting effectiveness and suggestions for operation variables are listed in Table 5. 

Fig. 13. Evaluation of total failure probability based on different noise amplitudes. (Signal parameters: Nrs = 2000, Dsd = 1024, Nc = 5, Ws = [1,5/ 
3], Sdef = 30◦, Ndef = 1, Adef = 2). 
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To obtain a higher fitting accuracy, the selection principles of the operation variable group (Nseg, Ndel, Nsec) are as follows:  

(1) Sseg should be larger than Sdef, and usually Sseg = ksSdef, ks∈(1.5,2], Nseg = T/Sseg.  
(2) The selection of Ndel should ensure complete elimination of defects while preserving as much valid information as possible, 

usually Ndef + 1 ≤ Ndel < Nseg/2.  
(3) Nsec is proportional to the processing time and fitting accuracy, which are usually set to 2 or 3 to balance their influence.  
(4) When harmonic signals are mixed with frequency multiplier components, the amount of signal rejection NdelSseg should be 

minimised as much as possible, on the premise of satisfying principles (1)–(3). 

Based on the selection principle, periodic defects are effectively eliminated, and the fitting accuracy of the harmonic signals can be 
distinctly improved. However, similar to the selection of degree n in polynomial curve fitting based on the root mean square error for 
different data, the fitting errors of various operation variable groups are different; therefore, the coincidence error ecm is selected as the 
judging criterion when seeking the most suitable (Nseg, Ndel, Nsec). The smaller the coincidence error, the higher the fitting accuracy. 

Table 2 
Orthogonal experiment design of signal characteristic parameters.  

Cases Dsd Nc Ndef Ws Sdef Adef Anoise 

Case 1 1024 5 1 [1, 7/3] 0-10◦ 0–0.5 0.05 
Case 2 1024 5 1 [1, 7/3] 25◦-35◦ 0.8–1.2 0.2 
Case 3 1024 5 1 [1, 7/3] 50◦-60◦ 3–4 1 
Case 4 1024 5 1 [1, 3/7, 2] 0-10◦ 0.8–1.2 1 
Case 5 1024 5 1 [1, 3/7, 2] 25◦-35◦ 3–4 0.05 
Case 6 1024 5 1 [1, 3/7, 2] 50◦-60◦ 0–0.5 0.2 
Case 7 1024 5 1 [1, 2, 7/3,3] 0-10◦ 3–4 0.2 
Case 8 1024 5 1 [1, 2, 7/3,3] 25◦-35◦ 0–0.5 1 
Case 9 1024 5 1 [1, 2, 7/3,3] 50◦-60◦ 0.8–1.2 0.05  

Table 3 
Calculation results of case 1 under each operation variable group.   

Ndel = 1 Ndel = 2 Ndel = 3 Ndel = 4 Ndel = 5 Ndel = 6 Ndel = 7 

Nseg = 2 4.15;1.88* – – – – – – 
Nseg = 3 3.03;4.07 7.41;2.16 – – – – – 
Nseg = 4 2.74;5.89 3.66;6.23 12.82;2.26 – – – – 
Nseg = 5 2.57;7.78 3.04;12.05 4.63;8.41 19.75;2.53 – – – 
Nseg = 6 2.60;10.25 2.82;20.83 3.53;21.86 6.18;10.71 31.13;2.31 – – 
Nseg = 7 2.5;11.06 2.69;30.36 3.21;40.20 4.15;31.29 8.18;13.35 39.15;2.70 – 
Nseg = 8 2.43;13.57 2.65;41.21 3.10;69.80 3.68;72.51 5.09;47.30 10.48;16.22 47.69;3.02 

* Each data cell represents the calculation result of each operation variable group (total failure probability εf/%; processing time tp/ms). 

Fig. 14. The relationship between processing time and data size of case 1.  

Table 4 
The fitting coefficient value of each case.   

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

cf(*10-4)  4.0124  4.0124  4.0056  6.0959  6.1004  6.0977  8.9576  8.7862  8.7429  

Q.-Y. Xin et al.                                                                                                                                                                                                         



Mechanical Systems and Signal Processing 185 (2023) 109781

16

The operation variable must be chosen according to the operator’s requirements and signal conditions. 
In some cases, the span of defect is unknown. We propose an estimation method for the optimum operation variable group to 

simplify the selection of operation variables. The estimation method is based on minimising the coincidence error ecm. All operation 
variable groups that satisfied the selection principles were selected, and their coincidence errors were calculated. The operation 
variable group with the smallest coincidence error can be approximated as the optimal group for the measurement signal. 

Fig. 15. Total failure probability in various operation variable groups. (a)-(i) represent the total failure probability of cases 1–9. The same pa-
rameters of each case are Dsd = 1024, Nc=5, Ndef = 1, the others parameters are: (a) Case 1: Ws = [1, 7/3], Sdef = 0-10◦, Adef = 0–0.5, Anoise = 0.05; 
(b) Case 2: Ws = [1, 7/3], Sdef = 25-35◦, Adef = 0.8–1.2, Anoise = 0.2; (c) Case 3: Ws = [1, 7/3], Sdef = 50-60◦, Adef = 3–4, Anoise = 1; (d) Case 4: Ws =

[1, 3/7, 2], Sdef = 0-10◦, Adef = 0.8–1.2, Anoise = 1; (e) Case 5: Ws = [1, 3/7, 2], Sdef = 25-35◦, Adef = 3–4, Anoise = 0.05; (f) Case 6: Ws = [1, 3/7, 2], 
Sdef = 50-60◦, Adef = 0–0.5, Anoise = 0.2; (g) Case 7: Ws = [1, 2, 7/3, 3], Sdef = 0-10◦, Adef = 3–4, Anoise = 0.2; (h) Case 8: Ws = [1, 2, 7/3, 3], Sdef =

25-35◦, Adef = 0–0.5, Anoise = 1; (i) Case 9: Ws = [1, 2, 7/3, 3], Sdef = 50-60◦, Adef = 0.8–1.2, Anoise = 0.05; 

Table 5 
Association of signal parameters with the fitting effectiveness.  

Signal parameter Changing trend of fitting success probability with signal parameter increasing Application suggestions for SOM variables 

Nc Increase slightly No significant effect 
Dsd Increase slightly No significant effect 
Ws Decrease Reduce NdelSseg 

Sdef Decrease Insure Sseg > Sdef 

Adef Decrease 1 < Ndel < Nseg/2 
Ndef Decrease Insure Ndel > Ndef 

Anoise Decrease Reduce Ndel, Ndel < Nseg/2  
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5. Experiment verification 

5.1. Measurement signal acquisition 

In this section, a bending shaft with a small deflection yd is used as an example to validate the effectiveness of SOM in real-life 
engineering applications. When the bending shaft rotates, the measurement signals are regarded as harmonic signals that are resil-
ient to systematic mechanical errors and environmental disturbances. The fundamental period of measurement signal is equal to the 
rotational period of the bending shaft. The measurement signal of surface damage (e.g. burrs, pits, bumps) can be taken as periodic 
defect components in harmonic signals, whose period is the same as the rotational period of the bending shaft. As shown in Fig. 16, the 
bending shaft was clamped on the experimental platform by a pair of centres. The driving force of shaft rotation is transmitted from the 
stepper motor to the driving centres by a gear drive organ. The fluctuation signal of the bending shaft rotation y was measured by the 
measuring mechanism, and the rotation angle x was collected in real time by an optical rotary encoder. 

To verify the effectiveness of the SOM, we first collected the bending deformation signals of a smooth shaft. The waveform of the 
measurement signal of the smooth shaft was flat, with only a few noise components. Then, two surface damages were carried out in- 
house at different positions of the measured outline of the bent shaft in sequence. The deformation signals of the bending shaft for two 
cases of surface damage were collected. Each cycle of the measurement signal after the first damage included one periodic defect, and 
the measurement signal after the second damage included two periodic defects. Each measurement experiment was repeated five 
times. Surface photographs of the measured profiles and the corresponding measurement signals are shown in Fig. 17. 

5.2. Validation of SOM’s effectiveness 

Three groups of measuring signals with zero, one, and two periodic defects were fitted using OLS and SOM, respectively. The 
trigonometric first-order component f1(x) = a1cos(x) + b1sin(x) of the measurement signals reflects the bending state of the shaft. The 

first-order amplitude of the measurement signal A1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
1 + b2

1

√

is the deflection of the bending axis of the shaft at the measured point, 
that is, A1 = yd. The fundamental period of the measurement signals is T. 

The fundamental periods of the measurement signals were equal to the rotation period of the bent shaft, where T = 360◦. The 
measurement signals of the smooth shaft can be approximated as a standard harmonic signal; therefore, the operation variable group 
can be selected randomly, which is set as (10, 1, 3) in this part, whose fitting curve is shown in Fig. 18 (a). The defect span of the first 
damage was Sdef1≈25◦, and the value range of the operation variable group was Nseg∈ [6,9], Ndel ∈ [1, Nseg/2], and Nsec = 3. The defect 
spans of the second damage are Sdef1≈25◦ and Sdef2≈15◦. The value ranges of the operation variable group are Nseg∈ [6,9], Ndel ∈ [2, 
Nseg/2], and Nsec = 3. The coincidence error ecm of each operation variable group and corresponding first-order amplitude A1 are listed 
in Table 6. 

It can be seen from Table 6 that the first-order amplitudes A1 of the various operation variables are similar. According to the se-
lection principle shown in Section 4.3, the optimal group of measurement signals with one damage and two damages is (8, 4, 3) and (7, 
3, 3), respectively. The fitting curves and corresponding first-order curves obtained by the two methods were calculated and are shown 
in Fig. 18 (b) and (c), respectively. 

The fitting results for each measurement signal were calculated and are listed in Table 7. A1 represents the first-order amplitude of 
each measurement signal. Amean represents the average amplitude of five repeated measurements. e is the difference between A1 of 
each measurement signal with a defect and Amean, reflecting the robustness of the fitting method. 

As shown in Fig. 18 and Table 7, both OLS and SOM had good fitting effects for the measurement signals of the smooth shaft. 
However, in the process of fitting measurement signals with defect components, the fitting curves processed by OLS significantly 
deviate from the normal trajectory, while that of SOM has a high coincidence with measurement signals, which shows that the fitting 
effect of SOM is more accurate than that of OLS. As shown in Table 7, the fitting error of the measurement signals with defect 
components using OLS is noteworthy. The fitting effect of the SOM is better than that of OLS, and the fitting error e≈1 is approximately 
equal to the resolution of the sampling devices. 

The results in this section show that the fitting accuracy of the SOM is higher than that of OLS. SOM can effectively process 

Fig. 16. Principle diagram of experimental equipment control and signal acquisition.  
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measurement signals with periodic defects and precisely obtain the component characteristics of the signal. 

6. Conclusion 

In this study, a novel distribution-based selective optimisation method (SOM) is proposed to effectively process harmonic signals 
with large periodic defects. SOM is the first and most accurate and effective method based on unsupervised distribution-clustering 
methods for defect component elimination. The SOM process includes signal segmentation, random elimination of segments, resid-
ual signal regression fitting, error distribution statistics, and fitting curve optimisation. The fitting accuracy and computational 
effectiveness of SOM were verified in a theoretical model and compared with conventional signal fitting methods, including least mean 
square, wavelet transform-based methods, and Gaussian regression. 

The operation variables of the proposed SOM include the segment number, eliminated segment number, and sample size. The 
associations of the signal characteristic parameters with the fitting effectiveness are investigated, and the selection principle of the 
operation variables is given in detail. The segment number is related to the defect span. The number of eliminated segments is 
determined by the segment number and defect number per cycle, and the sample size is usually set to 2 or 3 to balance the fitting 
accuracy. 

Meanwhile, we use a bent shaft with zero, one, and two defects as an example to examine the feasibility of SOM in real-life in-
dustrial settings. This experiment confirms that SOM can simultaneously eliminate periodic defect signals from harmonic signals and 
perform signal regression fitting both accurately and effectively. 

Fig. 17. Surface topography and measurement signal of the measured point on the bending shaft. (a) Smooth surface; (b) First damage; (c) Sec-
ond damage. 

Fig. 18. Fitting curves of measurement signal by two methods. (a) Smooth surface; (b) One damage; (c) Two damages.  
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In conclusion, this study confirms that the proposed method can effectively eliminate periodic defects and extract standard har-
monic components from the measurement signal. It has broad application prospects in mechanical, electronic, instrument, and 
aerospace industries. 
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Table 6 
Fitting result of each operation variable group.  

Nseg Ndel One damage Two damage 

ecm A1 ecm A1 

6 1  0.94  3.31  2.51  2.22 
6 2  0.71  3.25  0.73  3.12 
6 3  0.75  3.70  0.57  3.40 
7 1  0.90  3.16  2.46  2.72 
7 2  0.57  3.54  0.70  3.23 
7 3  0.58  3.74  0.51*  3.48 
8 1  0.99  3.39  2.47  2.97 
8 2  0.73  3.86  1.03  3.15 
8 3  0.54  3.16  0.70  2.73 
8 4  0.50*  3.73  0.55  3.13 
9 1  1.61  3.70  2.69  3.41 
9 2  0.81  2.90  1.89  3.69 
9 3  0.52  3.49  0.69  2.51 
9 4  0.50  3.61  0.52  3.10 

* Minimum coincidence error ecm in columns. 

Table 7 
Fitting signal’s amplitude and fitting error of two methods.  

Condition Group OLS fitting value/μm SOM fitting value/μm 

A1 Amean e A1 Amean e 

Smooth surface 1  2.63 2.57  –  2.51 2.53  – 
2  2.52  –  2.44  – 
3  2.54  –  2.52  – 
4  2.57  –  2.57  – 
5  2.59  –  2.59  – 

One damage 1  13.06 13.01  10.49  3.73 3.64  1.20 
2  13.00  10.43  3.30  0.77 
3  12.95  10.38  3.77  1.24 
4  12.94  10.37  3.70  1.17 
5  13.08  10.50  3.69  1.16 

Two damage 1  12.74 12.72  10.17  3.48 3.29  1.00 
2  12.84  10.27  3.53  0.95 
3  12.66  10.08  3.24  0.71 
4  12.61  10.04  3.24  0.71 
5  12.74  10.17  2.95  0.42  
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