

University of Nottingham

Quantiphyse: Quantitative BOLD for mapping OEF

Nicholas Blockley

University of Nottingham

| CHINA | MALAYSIA

Oxygen Extraction Fraction

OEF is a measurement of oxygen consumed by metabolism

- Tightly coupled to perfusion
- Function of perfusion and oxygen metabolism
- Can be combined with perfusion to measure oxygen metabolism
- Arterial-venous difference in blood oxygen saturation

OEF is dimensionless

• Healthy resting brain value: 0.3-0.4

¹⁵O PET OEF measurements

Bremmer JP, et al. Mol. Imaging Biol. 2011;13:759–768.

Oxygen consumption in brain

Altered during disease/activity

Gold standard

- Triple oxygen PET
- Expensive, invasive and time-consuming

Need for quantitative technique

- Clinically applicable
- MRI inherently sensitive to blood oxygenation

University of Nottingham UK | CHINA | MALAYSIA Oxygen Extraction Fraction

BOLD Effect

 $\mathsf{R}_2'\,/\,\mathsf{T}_2'\,\text{effect}$

- Reversible transverse relaxation rate/time
- Signal dephasing at meso/macroscopic scale
- Relationship with blood oxygen saturation vessel size dependent
- Predominantly extravascular effect
- Tissue volume ~95% of voxel volume

Ogawa et al., Biophys J, 1993;64:803-812

Quantitative BOLD (qBOLD)

- Models MR signal decay in a vessel network
- Sensitive to amount of deoyhaemoglobin
- Through the reversible transverse relaxation rate R₂'

 $R_2' = R_2^* - R_2 \propto dHb$

Oxygen Saturation*

*An H & Lin W. J. Cereb. Blood Flow Metab. 2000;20:1225–1236. He X & Yablonskiy DA. Magn. Reson. Med. 2007;57:115–126. How do we measure R_2' ?

- Introduce R₂'-weighting in to images using a modified spin echo sequence
- GESSE: Gradient Echo Sampling of Spin Echo
 - Acquires many closely space tau/TE values
 - Refocussing pulse is static
- ASE: Asymmetric Spin Echo
 - Acquires only a single TE
 - Refocussing pulse is moved

I D

- 1. Acquire R₂'-weighted data
 - Asymmetric Spin Echo
 - Gradient Echo Sampling of Spin Echo

- 1. Acquire R₂'-weighted data
 - Asymmetric Spin Echo
 - Gradient Echo Sampling of Spin Echo
- 2. Estimate R_2 ' from long tau data
 - Log-linear fit to tau>15ms data
 - R_2' is proportional to OEF x DBV

- 1. Acquire R₂'-weighted data
 - Asymmetric Spin Echo
 - Gradient Echo Sampling of Spin Echo
- 2. Estimate R_2 ' from long tau data
 - Log-linear fit to tau>15ms data
 - R₂' is proportional to OEF x DBV
- 3. Estimate DBV from spin echo
 - Difference between intercept and measured spin echo signal

- 1. Acquire R₂'-weighted data
 - Asymmetric Spin Echo
 - Gradient Echo Sampling of Spin Echo
- 2. Estimate R_2 ' from long tau data
 - Log-linear fit to tau>15ms data
 - R₂' is proportional to OEF x DBV
- 3. Estimate DBV from spin echo
 - Difference between intercept and measured spin echo signal
- 4. Estimate OEF from R_2 ' and DBV
 - Known constants of proportionality used to quantify OEF

Magnetic Field Inhomogeneity

- Slice selection: Gradient in z-direction causes signal attenuation
 - Signal decays with form of Sinc function
- Phase/Frequency encoding: smaller effect than in z-dimension

Correction approaches

- 2D: correction in post-processing
 - Requires a high resolution field map
- 3D: prospective correction
 - 3D phase encoding compensates for zgradient

Underlying T₂/R₂ signal decay

- Tissue signal is TE dependent
- Independent of R₂'

Correction approaches

- GESSE: Post-processing to correct for tissue signal decay
- ASE: No post-processing required since R₂-weighting is constant

He X & Yablonskiy DA. Magn. Reson. Med. 2007;57:115–126.

Cerebral Spinal Fluid

- Off-resonance w.r.t. tissue water
- Overestimation of R₂'
 - Leading to overestimation of OEF

Correction approaches

- FLAIR: Fluid Attenuated Inversion Recovery
 - Use differing T₁ properties of CSF & tissue
- Postprocessing using a model of CSF/tissue signal decay

He X & Yablonskiy DA. Magn. Reson. Med. 2007;57:115–126.

- 1. Asymmetric Spin Echo (ASE) removes R₂ weighting
- 2. Gradient Echo Slice Excitation Profile Imaging (GESEPI) reduces MFIs
- 3. CSF-nulling using FLAIR removes nuisance signal

- 1. Asymmetric Spin Echo (ASE) removes R₂ weighting
- 2. Gradient Echo Slice Excitation Profile Imaging (GESEPI) reduces MFIs
- 3. CSF-nulling using FLAIR removes nuisance signal

GESEPI-ASE

- 1. Asymmetric Spin Echo (ASE) removes R₂ weighting
- 2. Gradient Echo Slice Excitation Profile Imaging (GESEPI) reduces MFIs
- 3. CSF-nulling using FLAIR removes nuisance signal

University of Nottingham

IK | CHINA | MALAYSIA

Fitting directly for OEF and DBV

 Co-linearity between OEF and DBV makes finding a unique solution challenging

Fitting for R_2' and DBV

- Easier to identify optimal solution
- Can calculate OEF from R₂' and DBV

Cherukara MT, et al. Neuroimage 2019;202:116106.

Initial version designed to accept streamlined qBOLD data (FLAIR-GESEPI-ASE)

· Suitable for other data if appropriate pre-processing can be performed

Processing options

- By default we fit for R_2' and DBV
- Can add model of the intravascular signal (default: powder model or motional narrowing model)
- Experimental support for including CSF
- Recommend only fitting for CSF fractional volume and assuming constant CSF frequency shift

Infer modified T2 rate rather than OE	FX
Infer deoxygenated blood volume	×
Include intravascular compartment	×
Use motional narrowing model	
Include CSF compartment	×
Infer CSF frequency shift	
Infer CSF fractional volume	

Post-analysis visualisation of model fitting is a valuable feature of Quanitphyse

Calculating OEF

 Can be done within Quantiphyse using Simple Maths widget

 $(R_2' \text{ x const}) / (Hct \text{ x DBV})$

- const subsumes geometry and physical parameters
- Hct haematocrit

+x Simple Maths			
Simple mathematical operations of	on data		
Create data using simple mathemati	cal operations on existing data		
For example, if you have loaded data 'modelfit', you could calculate the re	called 'mydata' and run modelling to produce a model siduals using:	prediction	
mydata - modelfit			
The output will be interpreted as being defined in the same data space as the 'data space' option - if this is incorrect the output will probably be misaligned!			
Data space from	mean_dbv		
Command	(mean_r2p * 0.00113) / (0.4 * mean_dbv)		
Output name	mean_oef		
Output is an ROI			

OEF is a valuable biomarker of brain health

Quantitative BOLD offers a rapid and non-contrast approach to measuring OEF

Important to know the limitations of the qBOLD model

• i.e. difficult to estimate OEF and DBV directly

Analysing qBOLD data in a Bayesian framework provides robust estimates of OEF

Quantiphyse provides a user friendly interface for Bayesian model fitting

