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CEST MRI: The Basics

= Chemical Exchange Saturation Transfer MRI
= Molecular imaging technique

= Detect low concentration of metabolites that have exchangeable protons

= Amides
= Amines
= Hydroxyls

= (Creatine



Why CEST?

Means of enhancing the sensitivity of MRI to broad range of solute molecules.

Non-invasive means to measure biophysical and physiological properties.

Clinically feasible and increasing evidence of clinical role.

* Broad range of CEST MRI depending on application.
= Endogenous (e.g. APT CEST)
= Exogenous (e.g. GlucoseCEST)



A Typical MRI Experiment

L 7 O N
= e o
@\H @/H /H /H
N
L , L
@\H \H @/
\ T @x . I
L O oL
,L /,H O
Nz oF T T

Proton Signal

-~

BO




A Typical MRI Experiment: Saturation
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The CEST Effect
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The CEST Effect: Exchange

(‘)a (‘)O

Frequency Shift




APT CEST MRI

What are we trying to measure?

= Amide Proton Transfer (APT) CEST MRI

= [n simplest terms, we just want to know what the effect

size is at 3.5 ppm 1n relation to water

= A key appeal of the amide pool is that the exchange rate

(kymiqe) 18 base-catalysed

= pH measurement

» Broad range of clinical applications
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Chappell et al., MRM, 2013



Measuring the APT Effect

= Asymmetry Analysis
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Ma et al., JIMRI, 2016

Zhao et al, MRM, 2012
Croal et al., ISMRM, 2019

Wang et al., Chin Med J, 2015



Is it really that simple?

* The Z-spectra is actually made up from a range of signal contributions
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Correcting for B, Effects

= Magnetic field inhomogeneities can result in a shifting of the spectra
= Rather problematic if left uncorrected

= Solution is to estimate your field shift and sample spectrum accordingly

MRI acquisition Post-processing

Localizer and anatomical images
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Shimming and Bo range estimation
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Macromolecular effects

* You can ignore the fact that they are asymmetrical...

* Proceed with asymmetry analysis

* You could try and incorporate them into your analysis.

* Both model-free and model-based options

v

(*)a (‘00 '(l)a (Da (DO _(‘)a

Frequency Shift Frequency Shift



Accounting for Multiple Pools

* The advantage of incorporating macromolecular effects into your analysis, is that you can also use this
approach to account for additional pools.
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Lorentzian Difference Analysis

Overview:

100 = Z-spectrum described assumed to be:

= Water pool (Lorentzian)

80
= Solute pools of interest

TR SR I . | S N 1 = Exploratory
o= — Acquired .
=% - - Lorentzian = Doesn’t require a whole z-spectra.
U)w
Challenges:
= MT affects need to be well-accounted for.
......... = No T, correction.
-5 —1(

Frequency Offset from Water (ppm) = Non-quantitative in physiological terms.

Jones et al., MRM, 2011



Lorentzian Difference Analysis: Tools
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Quantiphyse
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= Visualisation and quantification
software

= Freely available for research purposes

=  www.quantiphyse.org




Bayesian Model-based Analysis

* The Bloch-McConnell equations allow us to characterise both the MR signal characteristics of water, as
well as the exchange of protons between pools of interest and water.

= The user has control over the number of pools modelled; initialising parameters such as T,, T,, proton
concentration (M,), and exchange rate (k) to literature or experimental values.

Water Pool
Amide Pool Other Pool(s)

Utilising a Bayesian
Mo, K. Mow K. Mon model allows us to
Ty, < > Tiw | Tin incorporate image
T), Tow T3, priors, and attach
W, Woy Wop, degree of certainty

Chappell et al., 2013, MRM, 70:556-67




Bayesian Model-based Analysis
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Bayesian Model-based Analysis
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Bayesian Model-Based Analysis: CESTR*

SWater (Aw) — Swater+pool of interest(Aw)

CESTR* =
My

Model-based measures of exchange rate and concentration are not independent.

Current approach is to combine into a ratio metric
= Serves as an internal reference point
= Comparable across subjects

= (Quantitative, yet comparable to MTR

asym

Shown to be more robust than “conventional” metrics

However, a solution would be to acquire at multiple powers
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Chappell et al., 2013, MRM, 70:556-67
Ray et al., Cancer Res. 2019



Bayesian Model-based Analysis
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Overview:
* Pools initialised to literature and/or
experimental values
* BM Equations used to model full Z-spectra
* ‘Pure’ CEST effect than characterised by
CESTR*

0 -9

Frequency offset from water (ppm)

Challenges:

= Relatively large time requirement
= Acquisition
= Analysis
= Challenging to implement (Quantiphyse)

»  Reliance on metrics?




Bayesian Model-Based Analysis : Tools
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[Quantiphyse

Quantiphyse

= Visualisation and quantification
software

= Freely available for research purposes

=  www.quantiphyse.org

Croal et al., ISMRM, 2018



Does Analysis Method Really Matter?

1.0
= There are a vast array of CEST metrics
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Adapted from Mysaib et al., Neuroimage, 2019



Is it Really That Simple?

Revisiting Asymmetry Analysis

Overview:

Aims to isolate CEST contrast.
Only requires 3 frequency offsets.

Straightforward analysis.

* Broad range of applications.
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Challenges:
* Pools on both sides.
 Asymmetric MT effects.

* No T, correction.

Van zijl et al., 2011, MRM, 65(4): 927-948



Conclusions:

= As with many 1maging techniques, there is no consensus on how best to quantify parameters of interest.

= General trend to use “metrics”, however there are a large number available.

= Choice of metric may impact interpretation

= Model-based analysis likely offers a robust approach.
= Bayesian model-based (CESTR*)
= Inherent BO correction
= Ability to incorporate “image priors”

= May be particularly important in pathology



Online Materials

https://quantiphyse.readthedocs.1i0/en/latest/cest/cest.html

= General user guide

= Tutorials: Preclinical and clinical

Practical Session: Quantiphyse

= Model-based analysis of APT CEST MRI
= Choice of preclinical ischemia or clinical brain tumour

=  Run from virtual machine
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