

Chemical Exchange Saturation Transfer MRI Contrast and Quantification

Paula Croal, PhD paula.croal@eng.ox.ac.uk

Institute of Biomedical Engineering & Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom

National Institute for Health Research

CEST MRI: The Basics

- Chemical Exchange Saturation Transfer MRI
- Molecular imaging technique
- Detect low concentration of metabolites that have exchangeable protons
 - Amides
 - Amines
 - Hydroxyls
 - Creatine

- Means of enhancing the sensitivity of MRI to broad range of solute molecules.
- Non-invasive means to measure biophysical and physiological properties.
- Clinically feasible and increasing evidence of clinical role.
- Broad range of CEST MRI depending on application.
 - Endogenous (e.g. APT CEST)
 - Exogenous (e.g. GlucoseCEST)

A Typical MRI Experiment

A Typical MRI Experiment: Saturation

APT CEST MRI

What are we trying to measure?

- Amide Proton Transfer (APT) CEST MRI
- In simplest terms, we just want to know what the effect size is at 3.5 ppm in relation to water

- A key appeal of the amide pool is that the exchange rate (k_{amide}) is base-catalysed
 - pH measurement

Broad range of clinical applications

Measuring the APT Effect

Asymmetry Analysis

$$MTR_{asym}(\Delta) = \frac{S(-\Delta) - S(\Delta)}{S_0}$$

Ma et al., JMRI, 2016 Zhao et al, MRM, 2012 Wang et al., Chin Med J, 2015

Croal et al., ISMRM, 2019

Is it really that simple?

- The Z-spectra is actually made up from a range of signal contributions
- Direct water saturation
- Multiple pools
- Macromolecular Effects (non-symmetrical)
- B₀ offsets
- T_1/T_2 effects
- Acquisition parameters

Correcting for B₀ Effects

- Magnetic field inhomogeneities can result in a shifting of the spectra
- Rather problematic if left uncorrected
- Solution is to estimate your field shift and sample spectrum accordingly

Macromolecular effects

- You can ignore the fact that they are asymmetrical...
 - Proceed with asymmetry analysis
- You could try and incorporate them into your analysis.
 - Both model-free and model-based options

Accounting for Multiple Pools

- The advantage of incorporating macromolecular effects into your analysis, is that you can also use this approach to account for additional pools.
- The challenge is how best to characterise pool(s) of interest, while accounting for confounding pools.
- Your pool of interest will depend on what physiological parameter you are trying to measure.

Lorentzian Difference Analysis

Overview:

- Z-spectrum described assumed to be:
 - Water pool (Lorentzian)
 - Solute pools of interest
- Exploratory
- Doesn't require a whole z-spectra.

Challenges:

- MT affects need to be well-accounted for.
- No T₁ correction.
- Non-quantitative in physiological terms.

Lorentzian Difference Analysis: Tools

Quantiphyse

- Visualisation and quantification software
- Freely available for research purposes
- www.quantiphyse.org

- The Bloch-McConnell equations allow us to characterise both the MR signal characteristics of water, as well as the exchange of protons between pools of interest and water.
- The user has control over the number of pools modelled; initialising parameters such as T₁, T₂, proton concentration (M₀), and exchange rate (k) to literature or experimental values.

Utilising a Bayesian model allows us to incorporate image priors, and attach degree of certainty

Chappell et al., 2013, MRM, 70:556-67

Bayesian Model-Based Analysis: CESTR*

$$CESTR^* = \frac{S_{Water}(\Delta\omega) - S_{water+pool of interest}(\Delta\omega)}{M_0}$$

- Model-based measures of exchange rate and concentration are not independent.
- Current approach is to combine into a ratio metric
 - Serves as an internal reference point
 - Comparable across subjects
 - Quantitative, yet comparable to MTR_{asym}
- Shown to be more robust than "conventional" metrics
- However, a solution would be to acquire at multiple powers

Chappell et al., 2013, *MRM*, 70:556-67 Ray et al., *Cancer Res.* 2019

Overview:

• Pools initialised to literature and/or

experimental values

- BM Equations used to model full Z-spectra
- 'Pure' CEST effect than characterised by CESTR*

Challenges:

- Relatively large time requirement
 - Acquisition
 - Analysis
- Challenging to implement (**Quantiphyse**)
- Reliance on metrics?

Bayesian Model-Based Analysis : Tools

Quantiphyse

- Visualisation and quantification software
- Freely available for research purposes
- www.quantiphyse.org

Does Analysis Method Really Matter?

- There are a vast array of CEST metrics available to use.
- Your choice will likely be influenced by a variety of factors.
 - Experimental design
 - Clinical population
 - Availability of resources
- However, choice of metric may significantly impact interpretation.

Is it Really That Simple?

Revisiting Asymmetry Analysis

Overview:

- Aims to isolate CEST contrast.
- Only requires 3 frequency offsets.
- Straightforward analysis.
- Broad range of applications.

Challenges:

- Pools on both sides.
- Asymmetric MT effects.
- No T₁ correction.

Conclusions:

- As with many imaging techniques, there is no consensus on how best to quantify parameters of interest.
- General trend to use "metrics", however there are a large number available.
 - Choice of metric may impact interpretation
- Model-based analysis likely offers a robust approach.
 - Bayesian model-based (CESTR*)
 - Inherent B0 correction
 - Ability to incorporate "image priors"
 - May be particularly important in pathology

Online Materials

https://quantiphyse.readthedocs.io/en/latest/cest/cest.html

- General user guide
- Tutorials: Preclinical and clinical

Practical Session: Quantiphyse

- Model-based analysis of APT CEST MRI
- Choice of preclinical ischemia or clinical brain tumour
- Run from virtual machine

Acknowledgements:

Quantiphyse Team Michael Chappell Martin Craig Benjamin Irving

Moss Zhao Alex Smith Flora Kennedy-McConnell Yunus Mysaib Tom Kirk Nicholas Blockley Matthew Cherukara Prof. Sir. Mike Brady Prof. Julia Schnabel

CANCER IMAGING CENTRE

SUPPORTED BY

