

Introduction

Causal Inference helps us draw conclusions about causal links in our data.

Directed Acyclic Graphs (DAGs) capture these links by representing a set of variables and their conditional dependencies.

Current state of the art in structure learning - **NOTEARS** algorithm.

Challenges:

- presence of discrete data
- sensitivity to dataset e.g. number of samples

Solutions:

- Bootstrapping
 - Visualizing variance of learned graphs
- Statistical Tests
- Confidence measures based on bootstraps
- Negative control tests
- Extended Functionality
 - Binary solver + combined solver

Bootstrap

Can use bootstrapping to generate multiple datasets and graphs

Each graph generated from NOTEARS has a weight matrix which encodes:

- Direction of an edge
- Weights/coefficents of an edge
- Plot illustrates variance in the above properties

Key Point – bootstrapping gives us more information about our solver across samples

Shaan Desai^{1,2}, Philip Pilgerstorfer², Roxana Pamfil², Konstantinos Georgatzis², Stephen J. Roberts¹ ¹University of Oxford, Department of Engineering ²QuantumBlack (a Mckinsey Company)

NOTEARS for Binary Data

Original NOTEARS $\min_{W \in \mathbb{R}^{d \times d}} F(W) = \frac{1}{2n} || \lambda$

New Logistic Loss $Loss_{binary} = \frac{1}{n} [-Tr(X^T)]$

Logistic NOTEARS $\min_{W \in \mathbb{R}^{d \times d}} F(W) = Loss$

Bootstrapping

Variance Plots

Robust Causal Graphs: Extensions to the NOTEARS Algorithm

- Original NOTEARS (Gaussian likelihood) algorithm fails on discrete data.
- Logistic NOTEARS (Bernoulli likelihood) solves this for binary data.
- Can combine logistic with original to solve for mixed datatypes by splitting continuous variables and discrete (binarized).

$$X - XW \big| \big|_F^2 + \frac{\rho}{2} h(W)^2 + \alpha h(W) + \lambda \big| |W| \big|_1$$

$$T * \log(\sigma(XW))) - Tr((1-X)^T * \log(1-\sigma(XW)))]$$

$$s_{binary} + \frac{\rho}{2}h(W)^2 + \alpha h(W) + \lambda ||W||_1$$

 \bigcirc

where:

output e.g.

feature_4

feature 6

feature_5

Markov Blanket of feature 3 (p > 0.75)

Negative control feature Z with no links