A critical analysis of self-supervision, or what we can learn from a single image

Yuki M. Asano

CDT Annual Meeting Oct 2019

work with *Christian Rupprecht* and *Andrea Vedaldi* at VGG

Outline

- Self-supervised learning saga
- Or is it?

Self-supervised learning like we do

- 1. Unlabelled, large collection of images
- 2. Train your network *without labels*
- 3. Use the image representations (vectors) for new tasks

Self-supervised learning like we do?

Unlabelled data + transformations

e.g. DeepCluster

- Run k-means on features
- Train classifier on k classes
- Repeat for 200 epochs

e.g. RotNet

- Create 4 classes based on rotations
- Exploits photographer bias
- Simple but works

Deepclustering for unsupervised learning of visual features M. Caron, P. Bojanowski, A. Joulin, and M. Douze ECCV, 2018 JCLR, 2018

Or colorizing images

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016

Hypothesis

"Priors"

What/how humans learn

2

Transformations

Getting there, but not quite yet

"Learn" from one image... using multiple transformations

A critical analysis of self-supervision, or what we can learn from a single image YM Asano, C Rupprecht, A Vedaldi arXiv 1904.13132

Learned first convolutional layer – from one image

Performance

Comparison of random, DeepCluster (1 & 1M images) and supervised

■ Random ■ 1-image ■ 1M images ■ Supervised

Conclusion

- 1. Early layers of deep networks contain limited information about natural images
- 2. These can be learned through self-supervision or supervised learning
- 3. Notably, only one **image + transformations** are necessary for this
- 4. Much space to go the *right* direction in self-supervised learning

Style transfer with a 1-image trained CNN

Content

yuki@robots.ox.ac.uk @y_m_asa

Appendix

Table 4: Finetuning experiments The pretrained model's conv1 and conv2 are left frozen and only the higher levels are retrained using ImageNet LSVRC-12 training set. Accuracy is averaged over 10 crops.

	c1	с2	с3	c4	с5
Full sup.	19.3	36.3	44.2	48.3	50.5
BiGAN, A	22.5	37.6	44.2	47.6	48.3
RotNet, A	22.0	38.2	44.8	49.2	51.8
DeepCluster, A	21.8	35.9	43.6	48.8	50.4

		CIFAR-10					
		conv1	conv2	conv3	conv4		
(a)	Fully sup.	66.5	70.1	72.4	75.9		
(b)	Random feat.	57.8	55.5	54.2	47.3		
(c)	No aug.	57.9	56.2	54.2	47.8		
(d)	Jitter	58.9	58.0	57.0	49.8		
(e)	Rotation	61.4	58.8	56.1	47.5		
(f)	Scale	<u>67.9</u>	<u>69.3</u>	<u>67.9</u>	<u>59.1</u>		
(g)	Rot. & jitter	64.9	63.6	61.0	53.4		
(h)	Rot. & scale	67.6	69.9	68.0	60.7		
(i)	Jitter & scale	<u>68.1</u>	71.3	<u>69.5</u>	<u>62.4</u>		
(j)	All	68.1	72.3	70.8	63.5		

