# IMPROVING SAT SOLVER WITH GRAPH NETWORKS AND RL







Vitaly Kurin, Saad Godil, Shimon Whiteson, Bryan Catanzaro

https://arxiv.org/abs/1909.11830

# CAN RL IMPROVE AN EXISTING SAT SOLVER?

#### BOOLEAN SATISFIABILITY (SAT) PROBLEM

# $(x_1 OR x_2) AND (NOT x_2 OR x_3)$

#### SAT IS IMPORTANT

- Theoretical computer science;
- Automatic theorem proving;
- Circuit design;

#### SOLVERS RELY ON HEURISTICS METICULOUSLY CRAFTED BY HUMANS

### WHAT DO WE HAVE NOW?

- Graph-Q-SAT (GQSAT), a branching heuristic
- >2x iteration speed-up on random 3-SAT problems
- Generalization to problems 5x in size
- SAT -> unSAT

#### HOW DID WE ACHIEVE THAT?

- Injecting a model into an existing algorithm
- Graph Representation
- Graph Neural Networks
- Reinforcement Learning (DQN)



def CDCL(formula):
if trivially\_satisfiable(formula):
 return True
if trivially\_unsatisfiable(formula):
 return False
literal, value = pick\_literal(formula)
formula = propagate(formula, literal, value)
return CDCL(formula)

| Injecting a model into an |  |
|---------------------------|--|
| existing algorithm        |  |

#### **CONFLICT LEARNING**

#### $X_1 AND x_2 AND x_3 => unSAT?$

#### Add `NOT (x\_1 AND x\_2 AND x\_3)` to clauses

#### VSIDS

#### 

#### $(x_1 OR x_2) AND (NOT x_2 OR x_3)$

| Injecting a model into an |  |  |  |
|---------------------------|--|--|--|
| existing algorithm        |  |  |  |

#### SAT AS A GRAPH



 $(x_1 OR x_2) AND (NOT x_2 OR x_3)$ 

#### **GRAPH NEURAL NETWORK**



| $\rangle$ | $\succ$ | Graph Nets | $\rangle$ |
|-----------|---------|------------|-----------|
|-----------|---------|------------|-----------|

#### DQN



Reward is -0.1 for a non-terminal step.

|--|

#### TRAINING PIPELINE

- Train model on SAT 50-218 train data
- Evaluate every k-th epoch
- Pick the best
- Evaluate on the test set

#### METRIC OF SUCCESS



#### PROBLEM SIZE/TYPE GENERALIZATION

Table 2: MRIR for GQSAT trained on SAT-50-218. Evaluation for SAT-50-218 is on a separate test data not seen during training.

| dataset        | mean | min  | max  |
|----------------|------|------|------|
| SAT 50-218     | 2.46 | 2.26 | 2.72 |
| SAT 100-430    | 3.94 | 3.53 | 4.41 |
| SAT 250-1065   | 3.91 | 2.88 | 5.22 |
| unSAT 50-128   | 2.34 | 2.07 | 2.51 |
| unSAT 100-430  | 2.24 | 1.85 | 2.66 |
| unSAT 250-1065 | 1.54 | 1.30 | 1.64 |

#### WHY IS GQSAT EFFICIENT?

Average assignments change per step, SAT 50-218 12 GQSAT MiniSat mean assignments change per step 2 -0 20 80 0 40 60 100 problem ID

#### WARMING UP THE EXISTING ALGORITHM



#### PROBLEM STRUCTURE GENERALIZATION



#### DATA EFFICIENCY



# FURTHER WORK

- Training on problems with larger horizon.
- Scaling to larger problems.
- From reducing number of iterations to wallclock time speedup.

# ACKNOWLEDGEMENTS

- Bryan Catanzaro for inviting me, giving a problem to solve and constant feedback.
- Saad Godil for endless everyday discussions, feedback, coding and experiments.
- Andrew Tao and Guy Peled for computing support.
- Rajarshi Roy, Robert Kirby, Yogesh Mahajan, Alex Aiken, Mohammad Shoeybi, Rafael Valle, Sungwon Kim, Ryan Prenger and the rest of the ADLR team @NVIDIA for great discussion and being amazing people.
- University team and ERC @NVIDIA for making this a great experience.
- Shimon Whiteson @Oxford for supervising me.
- Samsung R&D UK for funding my DPhil.
- Wendy Poole @Oxford for organizing everything related to CDT.



vitaliykurin@gmail.com

https://yobibyte.github.io