IMPROVING SAT SOLVER WITH
GRAPH NETWORKS AND RL

NVIDIA.

Vitaly Kurin, Saad Godil, Shimon Whiteson, Bryan Catanzaro

https://arxiv.org/abs/1909.11830

https://arxiv.org/abs/1909.11830

CAN RL IMPROVE AN
EXISTING SAT SOLVER?

BOOLEAN SATISFIABILITY (SAT) PROBLEM

SAT IS IMPORTANT

o Theoretical computer science;

o Automatic theorem proving;

o Circuit design;

SOLVERS RELY ON HEURISTICS
METICULOUSLY CRAFTED BY HUMANS

WHAT DO WE HAVE NOW?

o Graph-Q-SAT (GQSAT), a branching heuristic

o >2x iteration speed-up on random 3-SAT problems

o Generalization to problems 5x in size

e SAT -> unSAT

HOW DID WE ACHIEVE THAT?

 Injecting a model into an existing algorithm

» Graph Representation

e Graph Neural Networks

e Reinforcement Learning (DQN)

CDCL(formula):

trivially satisfiable(formula):

trivially unsatisfiable(formula):

literal, value = |pick literal(formula)
formula = propagate(formula, literal, value)
CDCL(formula)

Injecting a model into an
existing alc_;orithm

CONFLICT LEARNING

X_1AND x_2 AND x_3 => unSAT?
Add 'NOT (x_1 AND x_2 AND x_3) to clauses

Injecting a model into an
existing algorithm

VSIDS

Tr1 To I3 r1 To I3

O 0 O 42 3.1 2.7

(x1 OR xz) AND (NOT X9 OR X3)

Injecting a model into an
existing algorithm

SAT AS A GRAPH

(x1 OR .'X,'z) AND (NOT X9 OR X3)

> Graph Representation > >

GRAPH NEURAL NETWORK

[42.0 , 3.14]

Graph [1.62,2.70]
Network

[6.02, 1.67]

> > > Graph Nets > >

DQN

[42.0, 3.14]
j::. [0.1] [1.62,2.70]
’0::. —
[0.1]
[6.02, 1.67]

Reward is -0.1 for a non-terminal step.

> > > DQN

TRAINING PIPELINE

e Train model on SAT 50-218 train data

» Evaluate every k-th epoch

e Pick the best

o Evaluate on the test set

METRIC OF SUCCESS

Minisat Steps Minisat Steps Minisat Steps
Our Steps ’ Our Steps , e o o , Our Steps

problem 1 problem 2 problem 100

PROBLEM SIZE/TYPE GENERALIZATION

Table 2: MRIR for GQSAT trained on SAT-
50-218. Evaluation for SAT-50-218 is on a
separate test data not seen during training.

dataset mean min max
SAT 50-218 246 226 272
SAT 100-430 394 353 441

SAT 250-1065 391 288 5.22

unSAT 50-128 234 207 251
unSAT 100-430 224 185 2.66
unSAT 250-1065 1.54 130 1.64

WHY IS GQSAT EFFICIENT?

Average assignments change per step, SAT 50-218

121 mE GQSAT
m MiniSat
£ 101
w
b7
(=%
g 8
=
[}
=
)
w
£ 61
[
£
[
2
2 4
o
(=,
[
@
£ 24
0..
0 20 40 60 80 100

problem ID

WARMING UP THE EXISTING ALGORITHM

—— SAT 100-430 —— unSAT 100-430
5 {—— SAT 250-1065" —— URSAT 250-1065 - —
—— SAT 50-218 ~—— unSAT 50-218

|

Iterations improvement

0 10 50 100 300 500 1000
model decisions

PROBLEM STRUCTURE GENERALIZATION

2.5 A
B trained on SAT50

P trained on Flat75

Median iterations reduction

30-60 50-115 125-301 150-360 175-417 200-479
Flat Graph Coloring dataset

Iterations improvement

10

DATA EFFICIENCY

—— SAT 100-430 —— unSAT 100-430
—— SAT 250-1065 —— unSAT 250-1065
—— SAT 50-218 —— unSAT 50-218

10 50 100 300 500 800
Training set size

FURTHER WORK

« Training on problems with larger horizon.
e Scaling to larger problems.

e From reducing number of iterations to wallclock time speedup.

ACKNOWLEDGEMENTS

Bryan Catanzaro for inviting me, giving a problem to solve and constant feedback.

Saad Godil for endless everyday discussions, feedback, coding and experiments.

Andrew Tao and Guy Peled for computing support.

Rajarshi Roy, Robert Kirby, Yogesh Mahajan, Alex Aiken, Mohammad Shoeybi, Rafael Valle,
Sungwon Kim, Ryan Prenger and the rest of the ADLR team @NVIDIA for great discussion and
being amazing people.

University team and ERC @NVIDIA for making this a great experience.

Shimon Whiteson @Oxford for supervising me.

Samsung R&D UK for funding my DPhil.

Wendy Poole @Oxford for organizing everything related to CDT.

@y0Ob1byte vitaliykurin@gmail.com https://yobibyte.qgithub.io

https://yobibyte.github.io/

