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CAN RL IMPROVE AN
EXISTING SAT SOLVER?



BOOLEAN SATISFIABILITY (SAT) PROBLEM



SAT IS IMPORTANT

o Theoretical computer science;

o Automatic theorem proving;

o Circuit design;



SOLVERS RELY ON HEURISTICS
METICULOUSLY CRAFTED BY HUMANS



WHAT DO WE HAVE NOW?

o Graph-Q-SAT (GQSAT), a branching heuristic

o >2x iteration speed-up on random 3-SAT problems

o Generalization to problems 5x in size

e SAT -> unSAT



HOW DID WE ACHIEVE THAT?

 Injecting a model into an existing algorithm

» Graph Representation

e Graph Neural Networks

e Reinforcement Learning (DQN)



CDCL(formula):

trivially satisfiable(formula):

trivially unsatisfiable(formula):

literal, value = |pick literal(formula)
formula = propagate(formula, literal, value)
CDCL(formula)

Injecting a model into an
existing alc_;orithm




CONFLICT LEARNING

X_1AND x_2 AND x_3 => unSAT?
Add 'NOT (x_1 AND x_2 AND x_3) to clauses

Injecting a model into an
existing algorithm




VSIDS

Tr1 To I3 r1 To I3

O 0 O 42 3.1 2.7

(x1 OR xz) AND (NOT X9 OR X3)

Injecting a model into an
existing algorithm




SAT AS A GRAPH

(x1 OR .'X,'z) AND (NOT X9 OR X3)

> Graph Representation > >




GRAPH NEURAL NETWORK

[42.0 , 3.14]

Graph [1.62,2.70]
Network

[6.02, 1.67]

> > > Graph Nets > >




DQN

[42.0, 3.14]
j::. [0.1] [1.62,2.70]
’0::. —
[0.1]
[6.02, 1.67]

Reward is -0.1 for a non-terminal step.

> > > DQN




TRAINING PIPELINE

e Train model on SAT 50-218 train data

» Evaluate every k-th epoch

e Pick the best

o Evaluate on the test set



METRIC OF SUCCESS

Minisat Steps Minisat Steps Minisat Steps
Our Steps ’ Our Steps , e o o , Our Steps

problem 1 problem 2 problem 100



PROBLEM SIZE/TYPE GENERALIZATION

Table 2: MRIR for GQSAT trained on SAT-
50-218. Evaluation for SAT-50-218 is on a
separate test data not seen during training.

dataset mean min max
SAT 50-218 246 226 272
SAT 100-430 394 353 441

SAT 250-1065 391 288 5.22

unSAT 50-128 234 207 251
unSAT 100-430 224 185 2.66
unSAT 250-1065 1.54 130 1.64




WHY IS GQSAT EFFICIENT?

Average assignments change per step, SAT 50-218
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WARMING UP THE EXISTING ALGORITHM

—— SAT 100-430 —— unSAT 100-430
5 {—— SAT 250-1065" —— URSAT 250-1065 - —
—— SAT 50-218 ~—— unSAT 50-218

|

Iterations improvement
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PROBLEM STRUCTURE GENERALIZATION

2.5 A
B trained on SAT50

P trained on Flat75

Median iterations reduction

30-60 50-115 125-301 150-360 175-417 200-479
Flat Graph Coloring dataset



Iterations improvement

10

DATA EFFICIENCY

—— SAT 100-430  —— unSAT 100-430
—— SAT 250-1065 —— unSAT 250-1065
—— SAT 50-218 —— unSAT 50-218
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Training set size



FURTHER WORK

« Training on problems with larger horizon.
e Scaling to larger problems.

e From reducing number of iterations to wallclock time speedup.
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