
1

Towards Continuous Threat Defense: In-Network
Traffic Analysis for IoT Gateways

Mingyuan Zang, Changgang Zheng, Lars Dittmann, and Noa Zilberman

Abstract— The widespread use of IoT devices has unveiled
overlooked security risks. With the advent of ultra-reliable low-
latency communications (URLLC) in 5G, fast threat defense is
critical to minimize damage from attacks. IoT gateways, equipped
with wireless/wired interfaces, serve as vital frontline defense
against emerging threats on IoT edge. However, current gateways
struggle with dynamic IoT traffic and have limited defense
capabilities against attacks with changing patterns. In-network
computing offers fast machine learning-based attack detection
and mitigation within network devices, but leveraging its capabil-
ity in IoT gateways requires new continuous learning capability
and runtime model updates. In this work, we present P4Pir, a
novel in-network traffic analysis framework for IoT gateways.
P4Pir incorporates programmable data plane into IoT gateway,
pioneering the utilization of in-network machine learning (ML)
inference for fast mitigation. It facilitates continuous and seamless
updates of in-network inference models within gateways. P4Pir
is prototyped in P4 language on Raspberry Pi and Dell Edge
Gateway. With ML inference offloaded to gateway’s data plane,
P4Pir’s in-network approach achieves swift attack mitigation and
lightweight deployment compared to prior ML-based solutions.
Evaluation results using three public datasets show that P4Pir
accurately detects and fastly mitigates emerging attacks (>30%
accuracy improvement and sub-millisecond mitigation time). The
proposed model updates method allows seamless runtime updates
without disrupting network traffic.

Index Terms—In-network computing; Machine learning; Se-
curity; Internet of Things; P4

I. INTRODUCTION

The ubiquitous and dynamic deployment of IoT devices in
diverse use case environments has given rise to a surge in
security threats that were previously overlooked. The threats
become more urgent in the context of ultra-reliable low-latency
communications (URLLC) in 5G [1]. With end-to-end latency
at millisecond scale under URLLC requirements, threats can
spread faster than cloud-based security analytics can respond.
This is particularly pressing in time-critical applications such
as real-time sensing (latency < 30ms) and industrial process
automation (latency < 50ms) [2].

Threats are also evolving stealthily with changing patterns.
Attackers exploit botnets or alter attack patterns [3] to evade
traditional security measures like firewalls, causing disrup-
tion of critical services or impact on network infrastructure.
Thereby, swift defenses against evolving attacks are imperative
to counteract potential widespread damage. IoT gateways

This work was partly supported by the Otto Mønsted Foundation, VMware,
and EU Horizon SMARTEDGE (101092908).

M. Zang and L. Dittmann are with Technical University of Denmark,
Denmark. (email: minza@dtu.dk, ladit@fotonik.dtu.dk)

C. Zheng and N. Zilberman are with University of Oxford, UK. (email:
{name.surname}@eng.ox.ac.uk)

(with wireless/wired interface) close to end devices play a
vital role in defending against emerging threats before they
spread. However, to counter emerging attacks in gateway,
state-of-the-art security measures focus primarily on accurate
detection through methods like online learning or model
retraining [4, 5]. This leaves a gap in fast and flexible action
enforcement against detected anomalies.

Recent advancements in programmable data planes (PDP)
and in-network machine learning (ML) inference provide a
novel approach to rapidly detect attacks and enforce actions
in high-speed switches [6, 7], with potential extending to
other network devices like IoT gateways. In-network ML
inference, a type of in-network computing, is the offloading
of ML inference tasks from servers/cloud to the data plane
of network devices. Unlike classical practices of running ML
training and inference solely in servers/cloud, this approach
offloads inference processes from servers/cloud to pipeline
logics in programmable data plane within network devices
(programmed in P4 language [8]). Thus, ML inference runs
concurrently with packet switching. This empowers a direct
ML-based identification of malicious traffic and action en-
forcement within network devices, avoiding Round-Trip Times
(RTT) for cloud-based analysis [6]. Moreover, reconfigurable
pipelines in programmable data planes also enable flexible
defense in network devices. Traffic features can be flexibly
parsed and in-network ML inference model can be reconfig-
ured to flexibly respond to emerging threats, unlike classical
solutions where ML models rely on predefined features from
either monitoring protocols [9] or proprietary toolkits [10].

However, there are still challenges when it comes to inte-
grating the efficiency and flexibility of in-network ML to en-
able fast and continuous attack detection and mitigation within
IoT gateway. First, it poses a challenge to integrate in-network
ML inference into the resource-constrained gateway device.
Second, there is a need for continuous collection and analysis
of traffic features to learn emerging threats [11]. Third, IoT
gateways need to operate continuously to minimize mainte-
nance costs, and ensure uninterrupted service delivery along
with round-the-clock security [12]. This raises a concern:
reconfiguring in-network ML functions requires data plane
program recompilation, potentially disrupting normal traffic
in gateway during updates. To address these challenges, the
question is: Can in-network ML be used to detect and mitigate
emerging security threats at the IoT edge, while providing high
detection accuracy, fast mitigation and continuous learning
without affecting normal traffic?

To answer this question, we present P4Pir, a novel in-
network ML-based analysis framework providing swift ML-

2

Trained ML Model

P4Pir DataRules

IoT Gateway

(Programmable)

Cloud

Control

Plane

Data

Plane

Internet

IoT use cases

Fig. 1. Deploying P4Pir within IoT gateway in edge scenario.

based attack defense, continuous traffic learning, and seamless
model updates in IoT gateway device (shown in Figure 1).
P4Pir operates within an IoT gateway with programmable
data plane on network edge. P4Pir establishes a seamless
workflow for collecting traffic data, updating an in-network
ML model, and employing data plane table rules to de-
tect/mitigate threats within the gateway. Specifically, P4Pir
incorporates the following three features: a) Swift in-network
ML-based mitigation. We integrate in-network ML inference
into an IoT gateway, supporting fast threat defense as incoming
traffic passes through the pipeline. b) Continuous learning
with proactive logging and labeling. We introduce proactive
traffic data logging and automated labeling to avoid manual
intervention, enabling continuous retraining of the in-network
inference model and learning on emerging attacks. c) Seamless
updates of in-network inference model. We propose shadow
table updates scheme to allow seamless in-network model
updates to identify emerging attacks, avoiding function recom-
pilation or forwarding disruptions in gateway.

To the best of the authors’ knowledge, P4Pir is the first
work offering in-network ML in IoT gateway. Additionally,
P4Pir is the first to explore a seamless reconfiguration of in-
network ML inference at runtime within IoT gateway. This
allows fast and continuous defense against emerging attacks,
ensuring uninterrupted service.

Our contributions are as follows:
• An in-network traffic analysis framework in IoT gateway,

leveraging in-network ML inference for accurate detec-
tion and fast mitigation of emerging attacks.

• A proactive logging and unsupervised labeling to contin-
uously log traffic features and learn from incoming traffic.

• A seamless reconfiguration method for in-network ML
inference at runtime, allowing seamless model updates for
continuous defense without interrupting gateway service.

• A prototype1 on both P4Pi (a Raspberry Pi-based plat-
form providing data plane programmability) and Dell
Edge Gateway. Evaluation results show that P4Pir can
efficiently detect and fastly mitigate emerging attacks
(>30% accuracy enhancement and sub-millisecond mit-
igation time) with negligible overhead. Compared with
Kitsune [4], a state-of-the-art IoT gateway intrusion
detection system, P4Pir achieves equal or 10% higher
detection accuracy and enables fast attack mitigation.

The remainder of the paper is organized as follows:
Section II provides background to IoT gateways and pro-
grammable data planes. Section III discusses related work and

1Source code: https://github.com/In-Network-Machine-Learning/P4Pir

limitations. Section IV provides an overview of the proposed
solution, and design details are explained in Section V-VIII.
Section IX presents a comprehensive evaluation and Section X
compares P4Pir with state-of-the-art work. Section XI provides
a discussion and Section XII concludes.

II. BACKGROUND

A. Traffic Analysis on IoT Gateway

An IoT gateway acts as a bridge between local network de-
vices (sensors, actuators, etc.) and remote servers or cloud plat-
forms. It has wireless interface that connects to local devices to
collect user data and wired interface that routes the data to the
Internet [13]. Deployment scenario’s requirements determine
the selection of communication protocols, such as DNS or
HTTP for service communication and MQTT for sensor data
collection and cloud analytics [14]. For specific use cases like
industrial automation, protocols like ModBus/TCP [15] are
configured to enable ModBus interface support.

Various protocols have security concerns that attackers
exploit. Low-layer packet headers remain vulnerable even after
encryption [16]. Traditional solutions for traffic analysis in
IoT gateways may lead to false positive alerts and limited
flexibility in access control and filtering [17, 18]. Deploying
machine learning algorithms in the cloud [19, 20] for training
and inference improves detection accuracy but introduces
delays in mitigation decisions [6]. Swift reactions are essential
for low-latency URLLC services in 5G, as delayed mitigation
or false detection may cause widespread attacks and heavily
impact the network infrastructure [21]. A key challenge yet
to be tackled is efficiently offloading ML inference to IoT
gateways, ensuring accurate and swift attack mitigation.

B. Programmable Data Planes

While Software-defined Networking (SDN) centralized the
control plane to allow flexible control over network de-
vices [22], the advent of Protocol-Independent Switch Archi-
tecture (PISA) and programming protocol-independent packet
processors (P4) [8] further equip the data plane with pro-
grammability and flexibility. Figure 2 presents a schematic dia-
gram of the PISA architecture for programmable data plane. It
includes three main components: parser, reconfigurable Match-
Action (M/A) pipeline, and deparser. P4 language defines
how incoming packets are processed in such architecture.
Programmable Data Plane enables programmability in the

…

Parser Match-Action Pipeline Deparser

Data Plane

Control Plane

P4Runtime

P4 Program

Ingress Traffic

Programmable Device

Egress Traffic

Fig. 2. Schematic PISA architecture for programmable data plane in a
programmable device (switch) [22]. It can be programmed by P4 language.

3

TABLE I
RELATED WORKS OF ML-BASED ATTACK DETECTION

Reference Feature Collection Detection Algorithm† Inference Location Detection Mitigation Runtime Update IoT Deployment
PassbanIDS[30] Dumped pcap LOF/iForest Gateway control plane ✓ ✗ ✗ ✓

Kitsune[4] Dumped pcap AE Gateway control plane ✓ ✗ ✓* ✓

Qin[31] In-band NN SDN controller ✓ ✗ ✗ ✓

Musumeci[32] In-band RF, kNN, SVM SDN controller ✓ ✗ ✗ ✗

SwitchTree[6] In-band DT Switch data plane ✓ ✓ ✗ ✗

P4Pir In-band DT, RF Gateway data plane ✓ ✓ ✓ ✓

† RF - Random Forest, NB - Naı̈ve Bayes, LSTM - Long Short-Term Memory, LOF - Local Outlier Factor, iForest - Isolation Forest, AE -
AutoEncoder, NN - Neural Network, kNN - k-Nearest Neighbor, SVM - Support Vector Machine
* Online learning

following aspects: a) Packet header parsing: protocol iden-
tification and header extraction; b) Packet processing: packet
manipulation with reconfigurable M/A tables in pipelines; c)
Packet header deparser: packet header reconstruction. The
control plane can access the data plane and CPU processor.
Once a P4 program is compiled and run on a progammable
device, the control plane can reconfigure the data plane at
runtime via P4Runtime interface [23].

Programmable data planes enable in-network computing
and in-network ML, offloading applications like ML inference
from the server to the data plane [6]. This allows ML-based
inference for classification tasks to be performed directly in
the data plane, analyzing incoming traffic using ML models
without involving the server/cloud/SDN controller. This ap-
proach offers advantages in traffic feature analysis and enables
quick decision-making. In-network ML has been applied in
traffic classification [24], attack detection [6, 25], elephant
flow prediction [26, 27], and time-series financial data predic-
tion [28, 29]. In terms of IoT gateways, however, it remains
unclear how these benefits can be effectively leveraged.

III. RELATED WORK AND GAPS

Table I lists a summary of related work. The literature
is summarized in three aspects: ML deployment positions,
feature collection, and update mechanisms.

In a traditional or SDN-enabled IoT network, ML model
training and inference are both deployed on the server or con-
troller [30, 33, 34]. ML inference solutions rely on processor-
based ML frameworks, where traffic needs to be sent from
the data-plane-pipeline to the processor (e.g. CPU/GPU) for
inference decision, bringing extra overheads and increased
latency for attack mitigation (as Figure 3 (a)). In-network ML
deployment can reduce such inference latency by offloading
the inference process from the controller. Figure 3 (b) depicts
how inference model can be offloaded to data plane together
with traffic forwarding logic. Prior work like SwitchTree [6]
has applied such an approach for fast attack detection. By
training a model offline and mapping the trained inference
model to the data plane, malicious traffic can be labeled
and mitigated directly based on in-network inference results.
Despite accurate detection and swift mitigation, such work
requires P4 program recompilation instead of runtime updates
to achieve continuous learning, interrupting packet forwarding.

When it comes to feature collection to support continuous
learning, depending on model inference location, collection

Packet Collector

Feature Extractor Model Inference

Trained model

Attack?

Ignore

Action Manager

Network Traffic

Control Plane / Servers

Data Plane

CPU

(a) Traditional ML deployment: inference on control plane/server.

Feature Extractor Model Inference

Trained model

Attack?

Drop

Forward

Network Traffic

Control Plane / Servers

Data Plane

CPU

(b) In-network ML deployment: inference on data plane.

Fig. 3. (a) Traditional [30] vs. (b) In-network ML deployment used in this
work for traffic analysis and attack detection.

methods in prior work can be classified into two types: offline
collection and online collection. In offline methods, features
are extracted from dumped traces so that model can be trained
and evaluated in a clean environment [4]. In SDN-enabled
gateways, a controller collects traffic statistics via OpenFlow
interface [34]. When programmable data plane is introduced,
in-band feature collection has been applied to flexibly parse
features upon packet arrival [32, 35, 36]. This approach is
well-suited for IoT scenarios [37, 38]. It also enables the direct
feeding of collected features to in-network ML model.

Continuous learning of ML models is necessary to ad-
dress potential data drift, change of feature distribution or
emerging malicious activities [39]. Researchers have studied
using online learning to continuously learn from collected
traffic pattern, but is vulnerable to data distribution [4].
Alternatively, the deployed supervised-based model can be
retrained and redeployed periodically to accommodate new
traffic patterns [31]. Despite its reliable detection performance
from supervised learning, this method needs model reloading
and may lead to service disruption, especially in the in-network
ML deployment. Regarding this in-network scenario, model
updates possibility is discussed in [25]. However, there lack
of further investigation into continuous learning approach and
seamless model updates at runtime for IoT gateway deploy-

4

ment to minimize service disruption during model updates.

A. Limitations of Current Solutions
While ML has been studied in multiple works for traffic

analysis and attack detection at IoT gateway, limitations still
exist in continuous ML model update and fast attack mitiga-
tion. Despite model deployment on server/SDN controller al-
lowing for easy maintenance and updates, it lacks timely attack
mitigation at the gateway due to traversal time. Conversely,
in-network ML inference provides fast attack mitigation but
lacks efficient runtime model updates, as compile-time updates
for in-network inference models can disrupt traffic forwarding.
To fill the gap, P4Pir integrates in-network ML inference in
IoT gateway and incorporates techniques to support timely
ML-based attack mitigation, as well as runtime updates for
continuous and seamless model maintenance.

IV. SYSTEM DESIGN

A. Threat Model
This work focuses on attacks leveraging network protocols,

specifically IoT edge deployment scenarios involving gateway
connections (referred to as the neighbor and tenant scenarios
as described by Wang et al. [40]). In the neighbor scenario,
attackers connect to the same network as victim devices and
launch attacks through the network connection. In the tenant
scenario, attackers gain access to rented IoT devices using
obtained credentials, exploiting them as botnets for further
attacks. By exploiting network vulnerabilities for attack chain,
attackers can carry out the following types of attacks:

• Passive attacks: Attackers perform actions like scanning
to gather network information, including vulnerability
scanning for potential weaknesses and port scanning to
identify open ports on victims’ devices.

• Active attacks: Attackers actively exploit end devices
as botnets to flood packets to the server by initiating
massive amounts of requests to cause Denial of Ser-
vice/Distributed Denial of Service (DoS/DDoS). Such
malicious traffic is more volumetric in terms of packet
requests or anomalous retransmissions.

To effectively counteract these attacks and prevent them
from impact on other parts of network, it is crucial to address
the ever-changing patterns (e.g. pulse-wave DDoS attacks [3])
of malicious behavior and provide early mitigation. In this
study, we specifically consider scenarios where other defense
mechanisms are bypassed by attackers or not in place, and the
IoT gateway serves as the first line of defense [41].

Our main goal is to swiftly mitigate diverse and emerg-
ing types of attacks in IoT environments by leveraging and
continuously updating in-network ML inference within IoT
gateway. Thereby, we can enable rapid response to detected
attack chains, minimizing the impact of attackers bypassing
traditional security measures.

B. Design Overview
P4Pir uses in-network ML inference to detect and mit-

igate attacks at the gateway. Compared with existing in-
network inference solutions, running entirely in the data plane

Model train & map

(Tree model) [§VI]

In-network tree-based

mitigation [§VI]

Unsupervised

labeling [§VII]

In-band feature

extraction [§V]

Traffic

Data Plane

1
Attack Defender

Model Mapper Log Labeler

2

Proactive logging

[§VII]

3

Shadow rule update

[§VIII]

4

Control Plane

Packet forward/drop

Fig. 4. Design overview of framework in P4Pir.

(e.g., [6, 25]), P4Pir engages continuous model updates at
runtime without interrupting the traffic processing in the
gateway. Figure 4 depicts P4Pir’s framework. It consists of
three main components containing a series of function blocks
enabling swift ML-based attack defense with uninterrupted
model updates in the IoT gateway.

• Attack defender performs ML-based attack detection
and fast mitigation within the data plane. This defense
mechanism involves two function blocks: in-band feature
extraction (§V) and in-network tree-based attack mitiga-
tion (§VI). First, relevant traffic features are extracted
as inputs to an in-network model. Next, an in-network
inference tree model, which is mapped to data plane,
identifies malicious traffic based on these features (Fig-
ure 4 step 1). As a result, benign traffic is allowed to
pass through, while detected malicious traffic is swiftly
dropped, effectively mitigating the potential threat.

• Log labeler automates a proactive logging process from
the data plane to the control plane. It has two func-
tion blocks: proactive logging and unsupervised labeling
(§VII). During proactive logging, extracted features are
promptly logged to the control plane (Figure 4 step 2).
At the control plane, these logs are labeled using the
unsupervised algorithm iForest. This approach allows for
continuous learning of incoming traffic patterns.

• Model mapper serves the purpose of training and map-
ping the in-network model (Figure 4 step 3) Its main
function is to generate and seamlessly update Match-
Action table entries, allowing for the runtime configu-
ration of in-network inference. It involves two function
blocks: model train & map (§VI), shadow rule updates
(§VIII). The “Model Train & Map” block serves two
purposes. Firstly, it retrains the model based on logs,
allowing updates to adapt to new traffic patterns. Sec-
ondly, new table rules are generated to map the retrained
model’s parameters. Next, the “Shadow rule update”
block inserts these new rules into the data plane using
a shadow update method (as shown in Figure 4 step 4).
This seamless configuration of in-network ML inference
ensures uninterrupted traffic forwarding in the data plane.

With this framework design, our solution continuously learns
from newly incoming traffic and fastly mitigates abnormal traf-
fic. In the following sections, we provide a detailed explanation
of the internal design of each block as shown in Figure 5.

5

46

Control Plane

Data Plane

1

… …
Match Action

Unsupervised Labeler

… … …
Pkt Info 𝑓1... 𝑓𝑛 Label

Metadata

𝑓1... 𝑓𝑛 Label = 1?

Drop

Forward

N

Y

A

Pkt Info 𝑓1... 𝑓𝑛

B C

2

Mapped Model

(for inference)

IoT

Traffic

Dataset

Trained ML Model

4

3

Fig. 5. Detailed workflow of in-network ML-based traffic analysis in P4Pir.

V. IN-NETWORK FEATURE EXTRACTION

This “In-network feature extraction” block enables real-
time feature extraction within IoT gateway’s data plane, where
programmable data plane supports flexible IoT traffic parsing.
Important features are identified through offline analysis to
determine which ones should be extracted from incoming
traffic. Extracted features are then used for in-network ML
inference in data plane and logging toward control plane.
A. Offline Feature Analysis

Offline feature analysis is conducted to determine relevant
features based on their importance. It examines the varying
weights of features in revealing malicious events. The identi-
fied relevant features are used for ML-based detection. There
are several methods to calculate the feature importance. In this
paper, we use Permutation Importance. Compared to impurity-
based feature importance algorithm [42], widely used in tree-
based ML research, Permutation Importance is suitable for
tabular data like network traffic, where feature importance
is computed by the degree to which the model performance
score decreases after the feature is randomly shuffled [43]. The
computation of permutation importance is written as:

ij = s− 1

K

K∑
k=1

sk,j , (1)

where s is a reference score computed from the accuracy of
model m on Data D. To compute the importance score ij of
feature j in the shuffled data, this process repeats K time. By
doing so, the bias on cardinality features, like the numerical
ones, can be reduced [44].

We select features for in-band feature extraction within
the data plane by considering the analysis results of feature
importance and the feasibility of in-band extraction. Public
dataset EDGE-IIOTSET [45] is used as an example, and the
selected features are listed in Table II.

B. In-Band Feature Extraction

In P4Pir, selected features (as listed in Table II) are extracted
from incoming traffic within IoT gateway in an in-band man-
ner. This in-band extraction method (Figure 5 Step 1) offers
flexibility and immediacy by directly extracting features from
different layers in the data plane, as opposed to the traditional
method of extracting features from dumped captures.

In-band feature extraction is achieved through protocol-
independent processing pipelines in the programmable data

TABLE II
LIST OF SELECTED TRAFFIC FEATURES.

Layer Features
Network Layer Source/destination IP addresses

Transport Layer
Source/destination ports, TCP flags,
sequence/acknowledgment number, length.

Application Layer
MQTT protocol length, MQTT version,
DNS query type, Modbus/TCP length,
Modbus/TCP unit ID.

plane, which programmatically process packet headers. P4
language [8] defines the packet header fields, allowing the
parser to identify protocols and extract the header information
(Figure 5 step 1-A). The parser operates as a state machine,
parsing headers layer by layer (Figure 6). State transitions oc-
cur based on identifiers in packet headers, such as EtherType in
Ethernet header indicating an IPv4 packet (0x0800). Transport-
layer packets are identified using the protocol field in IP
header, while application-layer packets are recognized by des-
tination port number (assuming default port configurations). If
a header field indicates the next header in an upper layer, the
state transits to extract features from that header. This parser
design can be programmed in P4 to support various protocol
definitions, enabling flexible in-band packet processing.

When state transition reaches an end and all N features
[f1, f2, ..., fn] are extracted from the header field, they are
temporarily saved in metadata (Figure 5 step 1-B).

VI. IN-NETWORK TREE-BASED MITIGATION

This “In-network tree-based mitigation” block conducts in-
network tree-based inference on extracted traffic features to
detect and mitigate malicious traffic, preventing its forwarding
to the next hop and minimizing the impact on network
(Figure 5 1-C).

In this section, we explain in more detail the concept of
in-network inference and the process of training and mapping
a tree-based ML model to the data plane using Planter [46].
This involves training the model and obtaining its parameters,
followed by a model mapping process that translates the

extract():
ipv4.protocol
…

IPv4

UDP
TCP

extract():
tcp.port
…

extract():
udp.port
…

MQTT

extract():
mqtt.msgType
…

DNS
extract():
dns.opcode
…

extract():
eth.etherType
…

Eth

etherType == 0x0800

protocol == 6

protocol == 17

port == 1883

port == 53

Fig. 6. Flow chart of a part of parser’s state transition. Key transition
conditions are marked in gray.

6

trained inference model into executable code for in-network
inference within the data plane pipeline. We then explain how
in-network inference benefits fast mitigation in P4Pir.

A. Inference Model Mapping to Match-Action Tables

To ensure optimal performance and scalability in the data
plane pipeline [46], our solution leverages tree-based ML
models such as Decision Trees (DT) and Random Forest (RF)
for in-network inference on tabular traffic features [47]. Tree-
based models are preferred over deep learning models because
although deep learning methods, like Neural Networks (NN)
or Deep Neural Networks (DNN), have shown outstanding
accuracy in detection, they are computing-intensive and typi-
cally rely on servers or cloud platforms with high processing
power rather than IoT gateways at the edge [27, 46]. Therefore,
deploying complex deep learning models on resource-limited
IoT gateways might not be a cost-effective choice.

To achieve in-network ML inference, ML model training
and inference are separated, with training conducted in the
control plane and inference performed in the data plane of
the gateway. This separation allows for efficient offloading of
ML inference to the data plane, enabling fast decision-making
and malicious mitigation in an in-network manner. Previous
approaches (e.g. [32]) used packages like scikit-learn [48]
for supervised model training to obtain a model structure
and parameters for inference. However, it is challenging to
load such inference into the data plane because the pipeline
architecture is very different from processors like CPUs.
Thereby, in order to process in-network ML inferences within
the data plane pipeline, it is necessary to translate the inference
model into a set of Match-Action (M/A) tables in the form of
PISA architecture [8] (as plotted in Figure 2).

Challenge: flexible in-network model mapping. A flexible
mapping method is critical to enable runtime reconfigurability
and ensure uninterrupted service in IoT gateways. However,
existing in-network model mapping solutions are limited in
flexibility. Xavier et al. [49] proposed a method where the
model is translated into hard-coded if-else statements in P4
language, reducing implementation overhead but requiring
recompilation for parameter updates. Another solution pFor-
est [6, 25] uses M/A tables for flexibility but maintains a se-
quential dependency among tables, impacting scalability [46].

Solution: encode-based model mapping method for tree-
based model. To further enhance flexibility and optimize re-
source scalability, we adopt an encode-based mapping solution
proposed in Planter [7]. An encode-based mapping solution
encodes the parameters in M/A tables to optimize the resource
utilization of the data plane. It breaks the dependency within
the mapped tree path by encoding the feature space [46].

Figure 7 presents an example DT to illustrate how DT can
be encoded and mapped to a set of M/A tables. Figure 7 (a) il-
lustrates a simple DT structure trained with two traffic features
[f1, f2]. The tree performs binary splits based on threshold
values for each feature, and inference results are obtained
at the leaf nodes. Figure 7 (b) presents the corresponding
feature space of the tree, divided into rectangular regions by
the thresholds. Previous methods [6] mapped these thresholds

to M/A rules by following the sequential top-down tree path,
causing extra stage consumption in data plane pipeline. In
contrast, the encode-based method proposed in Planter [7]
effectively breaks the sequential dependency by encoding
thresholds into M/A rules in feature tables, as in Figure 7 (c). It
means each rectangular area in Figure 7 (b) is encoded to a pair
of codes (e.g. {f1 ∈ [0, th11], f2 ∈ [0, th22]} is encoded as
0000) in feature tables, and a decision table decodes the deci-
sion array at the leaf node to produce a binary label output (e.g.
packet with features’ range in {f1 ∈ [0, th11], f2 ∈ [0, th22]}
is determined as 1 - malicious). This parallelizes the pipeline
traversal process, allowing for more efficient usage of pipeline
resources, offering flexible and low-latency inference.

Expanding this concept, a Random Forest model is encoded
as ensemble of multiple trees. In line with [7], each feature
table includes coding pairs from all trees, and a voting table
synthesizes decision results from these features and trees.

B. In-Network ML-Based Mitigation

Mapping a trained tree model to M/A tables enables in-
network inference, circumventing the need to send incoming
traffic features (extracted in-band as explained in Section V) to
the control plane or servers. Extracted features traverse these
M/A tables in the data plane, akin to traversing the trained
tree model, to obtain inference decisions as final Actions. The
binary values in tables determine packet handling, where 0
represents benign packets and 1 represents malicious ones.
This approach allows for swift mitigation by forwarding be-
nign packets and dropping malicious ones within the gateway,
effectively halting malicious traffic (Figure 5 step C).

VII. PROACTIVE LOGGING AND UNSUPERVISED-BASED
LOG LABELING

P4Pir goes beyond utilizing extracted features for in-
network mitigation decisions; it also provides proactive log-
ging and unsupervised-based labeling of these features, au-
tomating the entire logging process. This approach prepares
for retraining and seamless updates of the in-network model,
without the need for manual intervention from administrators.

A. Proactive Logging

P4Pir incorporates proactive logging in the data plane,
where extracted features are sent to the control plane simulta-
neously with traffic detection (Figure 5 step 2). This logging
enables the control plane to receive records of incoming traffic
patterns, facilitating continuous learning of emerging traffic
patterns.

Challenge: efficient proactive logging. Proactive logging
in the data plane has the potential increase in traffic volume
caused by per-packet processing during feature extraction.
Given the limited resources in the IoT gateway, efficient
logging with low overhead is mandatory.

Solution: digest-based logging. To select low-overhead
logging method, two commonly used P4-based messaging
solutions are compared: direct transmission of the entire packet
as packet in to the control plane via the CPU port, versus

7

Match Action(0, th11) 00
(th11, th12) 01

(th12, n) 10

Match Action

10** 1

0010 1

01** 0
0000 1
0001 0

(0, th21) 00
(th21, th22) 01

(th22, n) 10

!2 < %ℎ21

!2 < %ℎ22 !1 < %ℎ11

!1 < %ℎ121
(**10)

0
(**01)

1
(0000)

0
(0100)

1
(1000)

Feature table: !1

Label

Yes No

Yes No

Yes No

Yes No

00
$ℎ21

01
$ℎ22

10

!1

!2

00 01 10$ℎ11
$ℎ12

!1
code

!2
code

(a) (b) (c)

0
0001

0
0101

0
1001

0
0100

1
0010

1
0110

1
1010

1
0000

1
1000

Match Action
Feature table: !2

Metadata
!1
!2

Fig. 7. Encode-based method proposed in [7] for a simple Decision Tree (DT) model mapping: (a) model structure of a trained DT, (b) feature space of a
trained DT, (c) M/A tables for in-network inference.

encapsulating features in a digest structure and sending the
digest. The former solution brings extra overhead by sending
the whole packet and needs further processing on the con-
trol plane to parse features from the packet. In contrast, a
digest-based solution saves the trouble by forwarding shorter
messages, only carrying the features needed for analysis. The
digest rate is lower than the packet rate, resulting in reduced
logging overhead [23].

To implement digest-based logging, features [f1, f2, . . . fn],
stored in metadata, are packed in digests and marked with
packet information (e.g., IP addresses). Digests sent to
the control plane by calling SendDigestEntry function in
p4runtime lib [23]. The control plane is configured with
P4Runtime to listen to digest messages. When it receives
digests, encapsulated information is extracted and saved in
DataFrame for unsupervised labeling and retraining.

B. Unsupervised-based Labeling

Building upon proactive logging from the data plane, P4Pir
automates the labeling process for the collected features re-
ceived in digests (Figure 5 step 3).

It is important to label the records and update traffic profiles
for in-network ML retraining, to ensure accurate inference
results in the presence of emerging attacks that may cause
distribution drift in incoming traffic. To achieve this with-
out interrupting the runtime reconfiguration loop caused by
manual labeling, P4Pir leverages an automated unsupervised
labeling process in logs, employing outlier detection. By
considering the emerging attack patterns as outliers compared
to the benign pattern, an unsupervised learning algorithm
is utilized to identify these outliers in logged records and
effectively learn about emerging attacks at the gateway.

To select a suitable unsupervised-based algorithm, classic
algorithms for anomaly detection have been studied: One-
Class SVM, Local Outlier Factor (LOF), and Isolation Forest
(iForest). One-Class SVM algorithm is designed to identify
abnormal data by applying SVM to “one-class” problem,
where a hyperplane is found to approximate positive examples,
labeling data within this area as positive and data outside as
negative [50]. LOF utilizes nearest neighbors to estimate local
density and computes relative density to identify outliers [51].
iForest, on the other hand, builds tree structures to identify
anomalies based on the assumption that abnormal samples can
be isolated with fewer random feature splits and are closer to
the tree’s root than normal samples [52].

We assess each algorithm’s labeling performance by com-
paring their learning results on datasets listed in Section IX-B.
As an example, Figure 8 illustrates the accuracy of these
algorithms in identifying UDP flooding attacks from EDGE-
IIOTSET [45]. AUC score (Area under the ROC Curve) is
used to depict the accuracy performance as the area under
the TPR/FPR curve. The results show that both LOF and
One-Class SVM exhibit high false alerts, incorrectly labeling
benign traffic. In contrast, iForest achieves a balanced labeling
capability for both benign and malicious traffic, with an AUC
score of 80%. Given its better performance, iForest is selected
for automated record labeling in P4Pir.

After this process, the newly logged and labeled records
serve as the input for tree-based model (i.e. DT/RF) retraining
and mapping to generate a new set of M/A table rules for in-
network inference. Note that while the unsupervised learning
algorithm (iForest) is utilized for automated labeling in the
logs, the actual in-network mitigation is conducted by the
supervised DT/RF model, highlighting the distinction between
the two function blocks in P4Pir (as plotted in Figure 4).

VIII. MODEL REMAPPING AND SHADOW TABLE UPDATES

Using the automatically collected logs, in-network inference
model can be retrained and remapped to fresh M/A tables
periodically. P4Pir facilitates shadow table updates at runtime,
enabling the remapped in-network model to be configured hit-
lessly in the data plane without disrupting gateway functions.
This section describes how shadow table updates work and
how it achieves hitless in-network model updates (Figure 5
step 4).

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

iForest LOF OneClassSVM

Fig. 8. Comparison of training accuracy of unsupervised-based labeling algo-
rithms on UDP attacks in EDGE-IIOTSET [45]. TPR = TP

TP+FN
, FPR =

FP
TN+FP

indicate how each algorithm labels benign and malicious traffic.
TPR (True Positive Rate) is calculated based on number of TP (True Positive)
and FN (False Negative) samples, and FPR (False Positive Rate) is calculated
based on number of FP (False Positive) and TN (True Negative) samples.

8

When a fresh set of M/A tables is generated by the control
plane, these rules are then written to the data plane, forming
new inference thresholds and completing the update process.
This approach differs from the classical model retraining [5]
in terms of update location, model objective, and update
requirements. In the classical method, retraining and updating
the model involves loading the trained model file onto proces-
sors like CPU. However, the in-network approach discussed
here deviates from the classical approach due to the use
of programmable data plane within IoT gateway. It uses a
different inference process, which cannot be directly updated
by loading the trained remodel file. Moreover, it is required
that the update should not cause any stop or disruption to
normal traffic processing.

Challenge: seamless rule update. Ensuring seamless run-
time reconfiguration for the in-network model is challenging
as modifications to M/A tables impact the data plane func-
tionality. This challenge is first found in Software-Defined
Networking (SDN) [53], which shares similar flow table up-
date issues to prevent temporary disruption on packet routing.
When it comes to in-network scenario on programmable data
plane, atomicity limitations in P4Runtime Remote Procedure
Call (RPC) operations further complicate the update process.
Currently, only add/remove rule operations are supported [23],
making it hard to directly overwrite parameter values in M/A
rules. One approach is to remove all old rules and write new
ones, but this risks inconsistent packet forwarding. To mitigate
this impact, a method for seamless updates is desired.

Solution: shadow table update. P4Pir employs a shadow
update method to minimize disruptions to data plane functions
during updates (as in Figure 9). This method utilizes two
tables: an active M/A table and a shadow M/A table. New
rules are first updated in the shadow table, and then a flag is
triggered to swap the roles of the active and shadow tables.

The following is a detailed workflow. When a new set of
M/A table rules is generated by Planter’s remapping in the
control plane (Figure 9 step 5 & 6), these rules are inserted
via RPC to pre-configured shadow M/A tables in pipeline
(Figure 9 Step A). To decide the timing of when shadow
tables should take effect, an UpdateFlag is stored as a table
entry. When this flag is 0, new rules in shadow tables remain
deactivated, and incoming traffic are processed by rules in
active tables. At runtime, UpdateFlag is set as 1, triggering
a switching of active/shadow tables. This action activates
shadow tables and drives ingress pipeline to apply new rules.
Thereafter, incoming traffic is processed through new rules
and obtains inference decisions of the updated model.

With shadow update design, in-network model updates are
atomic, allowing seamless swapping of active and shadow ta-
bles without waiting for model-related rule operations. It elim-
inates disruption to forwarding functions and model inference
process, albeit at the cost of increased resource utilization.

IX. EXPERIMENTAL EVALUATION

The evaluation aims to examine the following questions:
• Can P4Pir enable continuous learning and accurate de-

tection of emerging attacks? (§IX-D)

Control Plane & Servers

Data Plane

5

New M/A table

… …
Match Action

Old M/A table

… …
Match Action

New M/A table

… …
Match Action

New M/A table

… …
Match Action

Old M/A table

… …
Match Action

Insert Activate

A B

6

P4Pir Set UpdateFlage = 1Insert new table rules

Fig. 9. Shadow rule update scheme in P4Pir.

• How do the number of features and logging frequency
affect detection performance? (§IX-D)

• Can P4Pir quickly mitigate malicious traffic? (§IX-E)
• Can P4Pir achieve hitless model updates, without inter-

rupting IoT gateway functionality? (§IX-F)
• Does P4Pir’s in-network analysis function burden net-

work throughput and CPU usage in an IoT gateway?
(§IX-F)

A. Experimental Setup

P4Pir prototype was developed on P4Pi [54], using Rasp-
berry Pi (RPi) 4 Model B with 8GB of RAM, and running P4Pi
release v0.0.3 using bmv2 with v1model architecture [55].
We also prototyped P4Pir on the Dell EMC Edge Gateway
5200 hardware device [56], where P4Pir’s functionality is
encapsulated within Docker and executed on the Dell gate-
way device. P4Pir’s code is implemented mainly in P4 and
Python to provide data plane (in Section V-VI) and control
plane (in Section VI-VIII) functionality, correspondingly. ML
Model training and mapping for in-network inference function
(introduced in Section VI) is based on scikit-learn [48] and
Planter [46].

For performance evaluation, P4Pir was connected to another
RPi and a desktop with an Intel(R) Xeon(R) W-2133 CPU
@ 3.60GHz and 64 GB RAM as client and server. Public
IoT datasets CIC-IDS2017 [57], EDGE-IIOTSET [45] and
YTY2018 [4] are used for model training and evaluation. The
captured traces in the dataset are replayed using tcpreplay. In
these datasets, attacks are launched in different time slots using
a week-worth of data. In order to examine the effectiveness
of continuous learning in P4Pir, we assume an initial state
in which the gateway learns only one attack on the first day.
Then, another type of attack is replayed to simulate emerging
attacks on the next day. After P4Pir is deployed, we compare
its accuracy with a baseline’s accuracy obtained using a static
model. The static model is initialized by learning a single
attack on the first day and maintained unchanged for incoming
traffic replayed from other days.

B. Datasets

Public datasets used to evaluate P4Pir’s performance under
different traffic scenarios are described as below.

CIC-IDS2017 This dataset [57] collects 5-days traffic
records for IDS analysis, containing various attacks like scan-
ning, DoS/DDoS, etc. The attacks are launched separately in

9

each day’s time slot. In this dataset, we assume that the model
only learns a scanning attack on the first day as the initial state,
and use DoS and Botnet attacks as the emerging ones.

EDGE-IIOTSET The dataset [45] includes benign traffic
collected from sensors via diverse IoT protocols and IoT
protocol-related attacks. To run a different attack scenario from
CIC-IDS2017, in this dataset, we assume that the model learns
only DDoS TCP SYN attack on the first day as the initial state,
and uses other attacks (vulnerability scanning, UDP flooding,
and HTTP flooding) as the emerging ones.

C. Evaluation Metrics

Detection accuracy: There are several metrics to evaluate
detection performance. In this paper, we use accuracy (ACC),
F1 score, and true positive rate/false negative rate (TPR/FNR)
as the metrics defined as below to evaluate detection perfor-
mance, where Precision = TP

TP+FP and Recall = TP
TP+FN .

TP , FP , TN , and FN are defined the same as in Figure 8.

ACC =
TP + TN

TP + TN + FP + FN
(2)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

TPR =
TP

TP + FN
,FNR =

FN

FN + TP
(4)

Throughput/jitter/drop rate: Network throughput, jitter,
and drop rate are measured using iperf2, with an RPi and
a desktop used as the client and server, respectively. Every
round of experiment generates TCP/UDP traffic and through-
put/jitter/drop rate results are reported by iperf2.

CPU resources: CPU resource consumption is monitored
to quantify P4Pir’s load on the gateway. CPU utilization
is recorded with the command cat /proc/stat to print
the cycle usage breakdown in each CPU core. The tool
vcgencmd is run to obtain core temperature.

D. Detection Performance

Detection efficiency. Table III and Table IV list accuracy
and F1 score results of encode-based Decision Tree (DT) and
Random Forest (RF) [46] with and without P4Pir’s model
updates. Static DT/RF models without P4Pir’s updates are
initialized as a baseline and trained with a single attack
(“Base” columns in Table III and Table IV). To keep the results
comparable, 5-tuple features {source IP, destination IP, source
port, destination port, protocol} are used to train static DT/RF
model in both datasets. To select model parameters, we use
grid search methods and use the parameters that give high
accuracy. That is, in CIC-IDS2017 [57], DT model is trained
with a maximum depth of 5, and RF model is trained with 5
trees and maximum depth of 5. In EDGE-IIOTSET [45], DT
model is trained with a maximum depth of 6, and RF model
is trained with 6 trees and maximum depth of 6.

The results show: 1) DT/RF mapped to the data plane for
in-network inference can achieve the same level of accuracy
as the benchmark performance given by both datasets [45, 57],
reaching more than 90% accuracy and F1 score as listed in

TABLE III
DETECTION ACCURACY ON DATASET CICIDS 2017.

SCAN SCAN→DOS SCAN→BOT*

Init Base P4Pir Base P4Pir

DT
ACC 0.987 0.604 0.932 0.900 0.923
F1 0.984 0.568 0.868 0.776 0.820

RF
ACC 0.989 0.731 0.942 0.987 0.989
F1 0.985 0.027 0.869 0.964 0.987

TABLE IV
DETECTION ACCURACY ON DATASET EDGE-IIOTSET.

SYN SYN→SCAN SYN→UDP SYN→HTTP†

Init Base P4Pir Base P4Pir Base P4Pir

DT
ACC 0.910 0.156 0.945 0.435 0.903 0.921 0.941
F1 0.953 0.270 0.972 0.606 0.949 0.924 0.970

RF
ACC 0.999 0.674 0.999 0.888 0.903 0.791 0.902
F1 0.999 0.788 0.999 0.934 0.944 0.876 0.943

* Init - Initial state, Base - Baseline from in-network inference model
in [46], SCAN - port scanning attack, DoS - DDoS LOIT attack, BOT
- Botnet ARES attack. “→” indicates the change in attack pattern from
the initial state to an emerging attack.
† Init - Initial state, Base - Baseline, SYN - DDoS TCP SYN attack,
SCAN - vulnerability scanning attack, HTTP - HTTP flooding attack,
UDP - UDP flooding attack.

initial states. 2) Different attack patterns may result in different
levels of accuracy decrement for static models (Baseline), and
P4Pir can efficiently mitigate it through model updates. Accu-
racy decrement can be seen for baselines in “SCAN→DOS”
column in Table III and “SYN→SCAN” column in Table IV.
It may be due to the changing attack attributes and feature
distributions that static models have not learned. In P4Pir,
the unsupervised labeling mechanism learns changing feature
distributions in logs and retrains DT/RF with the logs to detect
attacks with increased accuracy. It increases DT’s accuracy
by more than 50% and RF’s accuracy by more than 30%
(“SCAN→DOS” column in Table III and “SYN→SCAN”
column in Table IV). 3) With different models initialized,
P4Pir has different levels of performance improvement. P4Pir
update method improves DT’s performance (“SYN→SCAN”
column in Table IV) given that DT is less scalable than RF.

Number of features impact on accuracy. EDGE-IIOTSET
dataset is used and features are selected from the ones with
high importance as listed in Table II. Figure 10 presents how
different numbers of features affect the detection’s accuracy
after an update. For both DT and RF models, using more fea-
tures for learning can increase the accuracy and lower the False
Positive Rate (FPR). When 15 features are used, both models
can reach an accuracy higher than 95%. The improvement
in FPR performance is more significant, indicating that more
benign packets can be correctly labeled when more features
are used to reflect the traffic pattern.

Update interval’s impact on accuracy. Figure 11 presents
how different update intervals affect the detection accuracy
based on EDGE-IIOTSET dataset. RF is used as an example.
In general, longer update intervals provide higher accuracy
and F1 score. This is because more traffic is logged by the
data plane and the control plane can learn from more logged
traffic to generate the updated model and parameters. Despite
the improvement, a longer update time does not necessarily
reflect better results. It can reach a fairly good detection

10

DT RF
Number of features

0

20

40

60

80

100
A

cc
ur

ac
y

(%
)

DT RF
Number of features

0

20

40

60

80

100

FP
R

(%
)

5
10
15

Fig. 10. Accuracy/FPR vs. number of features (5/10/15) when P4Pir is
deployed. DT/RF initialized with SYN attack and learning the HTTP attack.

2 5 10
Time interval (min)

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

2 5 10
Time interval (min)

50

60

70

80

90

100

F1
(%

)

Fig. 11. Accuracy/F1 vs. time interval. RF is initialized with SYN attack and
updated with different time intervals in P4Pir to learn the HTTP attack.

(∼99%) when the update is triggered every 5 minutes and the
performance would be similar to updates every 10 minutes.

E. Mitigation Performance

To assess the effectiveness of our in-network design in
fast attack mitigation, Figure 12 (a) presents a snapshot of
captured traffic. In this capture, Friday afternoon record with
normal and DDoS traffic in CIC-IDS2017 dataset is replayed.
Total amount of traffic (including normal and DDoS attacks)
is marked in blue, and attack traffic is marked in red. DT is
deployed on P4Pir based on five features and the black dash
line depicts the number of packets that are mitigated (dropped)
by P4Pir. P4Pir learns the new attack in sub-millisecond and
quickly starts dropping attack traffic, as shown by the overlap
of red and black dash lines in Figure 12 (a).

When the attack starts in the third second, traffic volume
increases as the red line climbs up. P4pir can mitigate the
malicious traffic immediately as the black line increases to-
gether with the red line. When the attack reaches a peak
at 16 seconds, P4Pir can efficiently mitigate the malicious
traffic (indicated by the overlapped red line and black line).
Average mitigation accuracy aligns with the accuracy results
presented in Table III, which is around 93%. In some cases,
FPR detection might lead to a false packet drop, indicated by
the black line exceeding the red line. Such false alerts can
be reduced by introducing more features (e.g., application-
layer features from MQTT) as presented in Figure 10. To
summarize, in-network analysis function applied by P4Pir can
mitigate attacks promptly and prevent the traffic explosion
impact of malicious attacks.

F. System Performance

Update efficiency. P4Pir introduces a shadow update
scheme (Section VIII). As the update involves changes to table
rules within the data plane, the efficiency of shadow updates

5 15 25
Time (sec)

0

1000

2000

N
um

be
ro

fP
ac

ke
ts

Normal + Attack
Attack
P4Pir Mitigated

55 60 65 70
Time (sec)

0

20

40

60

80

100

T
hr

ou
gh

pu
t(

M
bp

s)

Shadow update

P4Pir
Baseline

(a) Mitigation performance. (b) Shadow update impact.

Fig. 12. (a) A snapshot of mitigation performance of P4Pir-DT on DDoS
attack from CIC-IDS2017 dataset. (b) Shadow update impact of P4Pir-DT on
throughput. Baseline - forwarding setup without any model update.

is evaluated for two aspects: 1) whether the update interrupts
other data plane functions, and 2) whether the update affects
the detection accuracy.

The first aspect involves assessing network metrics such as
throughput, jitter, and drop rate. A qualitative comparison of
throughput is presented in Figure 12 (b). At the 60-second
mark (indicated by the yellow arrow), the shadow rule update
does not affect throughput, as indicated by the similarity
between the blue solid curve (shadow update) and the black
dashed curve (baseline without P4Pir deployment). To inves-
tigate potential interruptions and impacts on the forwarding
queue, jitter, and drop rate, different update schemes are
compared in Figure 13 (a) and (b), including ClearAll (flushing
and inserting all table entries) and Selective update schemes.
Both ClearAll and Selective schemes demonstrate a negative
effect on jitter performance, as they directly manipulate M/A
rules on the data plane at runtime, which takes time and affects
data plane forwarding. In contrast, shadow update in P4Pir is
better in ensuring updated rules are in place immediately with
negligible impact. Drop rate stays the same during shadow
update, but it is high for ∼5sec when using ClearAll.

The second aspect is evaluated by the detection accuracy
metrics in terms of false negative rate (FNR) and true positive
rate (TPR). Results are plotted in Figure 14. Flushing and
inserting table rules for model updates can disrupt the decision
accuracy, resulting in the failure to identify malicious attacks
and slow improvement of the FNR. By comparison, shadow
update provides a more immediate improvement of FNR and
TPR (∼2sec faster). TPR/FNR was 0.45/0.55 before the update
but improved from second 60 after triggering the model up-
date. Selective or ClearAll updates bring a slow improvement
of FNR/TPR after the update.

Figure 13 and 14 demonstrate that shadow update scheme in
P4Pir outperforms other update schemes in achieving seconds
faster model updates, improving detection accuracy in second
with a negligible impact on forwarding function.

Impact on network throughput/jitter. Figure 15 (a)
presents how different in-network ML deployments on P4Pir
impact throughput. In the baseline scenario, measuring only
basic forwarding functionality, throughput reaches approxi-
mately 92Mbps. When P4Pir is deployed, throughput de-
creases as a function of number of features parsed. Such a
throughput decrement is because of the limited processing
capability of bmv2 running on RPi. Compared with RF, DT is
less sensitive to the number of features in terms of throughput

11

50 60 70 80 90
Time (sec)

−1

0

1

2
Ji

tte
r(

m
s)

Shadow
ClearAll
Selective
Baseline

50 60 70 80 90
Time (sec)

−1

0

1

2

Ji
tte

r(
m

s)

Shadow
ClearAll
Selective
Baseline

(a) Jitter when updating DT. (b) Jitter when updating RF.

50 60 70 80 90
Time (sec)

−1

0

1

2

D
ro

p
R

at
e

(%
)

Shadow
ClearAll
Selective
Baseline

50 60 70 80 90
Time (sec)

−1

0

1

2
D

ro
p

R
at

e
(%

)
Shadow
ClearAll
Selective
Baseline

(c) Drop rate when updating DT. (d) Drop rate when updating RF.

Fig. 13. Jitter and Drop rate when DT/RF is updated using different update
schemes. A model update takes place at 60 seconds. Shadow - shadow
update scheme in P4Pir. Existing solutions: ClearAll - an update scheme
reinstalling all rules, Selective - an update scheme reinstalling model-related
rules. Baseline - forwarding setup without any analysis deployment.

60 62 64
Time (sec)

0.450

0.475

0.500

0.525

0.550

FN
R

ClearAll
Selective
Shadow

60 62 64
Time (sec)

0.450

0.475

0.500

0.525

0.550

T
PR

ClearAll
Selective
Shadow

(a) False negative rate (FNR). (b) True positive rate (TPR).
Fig. 14. (a) FNR curve and (b) TPR curve when DT is updated with
ClearAll/Selective/Shadow scheme.

decrement. That is because the model structure in RF requires
more feature inference than DT. The number of parsed features
and type of model brings similar impact on traffic jitter as de-
picted in Figure 15 (b). Compared to throughput, the increase
in jitter due to complex traffic processing is minimal (with
<0.05ms increment). Combined with the accuracy results in
Table IV, a trade-off between model accuracy and overhead
can be observed. When DT is trained with 5 features, P4Pir’s
update function can significantly enhance DT’s detection ca-
pability by more than 50% and only cause 14% throughput
reduction and negligible jitter increase.

Impact on CPU resources. In Figure 15 (c) and (d), we
can see how much CPU resources P4Pir consumes in terms
of CPU temperature and CPU utilization. It indicates how
much processing load is added by P4Pir. Parsing more in-band
features generally requires more resources, leading to higher
CPU utilization and CPU temperature (∼10% increment in
CPU temperature and ∼21% increment in CPU utilization
compared to the baseline). Complex models like RF present
slightly higher processing load than DT. This aligns with the
observation in Figure 15 (a) and (b), where the deployment
of DT with P4Pir update achieves the optimal balance of high
detection accuracy and low overhead.

5 10 15
Number of features

0

20

40

60

80

T
hr

ou
gh

pu
t(

M
bp

s)

Baseline
DT
RF

5 10 15
Number of features

0.00

0.02

0.04

Ji
tte

r(
m

s)

Baseline
DT
RF

(a) Impact on throughput. (b) Impact on Jitter.

5 10 15
Number of features

55

60

C
PU

Te
m

pe
ra

tu
re

(◦
C

)

Baseline
DT
RF

5 10 15
Number of features

40

50

60

70

C
PU

U
til

iz
at

io
n

(%
)

Baseline
DT
RF

(c) Impact on CPU temperature. (d) Impact on CPU utilization.

Fig. 15. P4Pir’s impact on network throughput, jitter and CPU resource
consumption. Baseline presents the setup when basic forwarding is configured
without any analysis function.

X. COMPARISON WITH STATE-OF-THE-ART

For IoT attack detection, we employ two state-of-the-art
frameworks: KitNet (core detection model of Kitsune [4]) and
Passban IDS [30]. To ensure a consistent hardware environ-
ment, we deploy their open-source solutions on Raspberry Pi,
similar to our solution. However, since these frameworks do
not offer mitigation capabilities, we compare model detection
performance using two public datasets: EDGE-IIOTSET [45]
(used in Table IV) and YTY2018 [4] (used in KitNet/Kitsune).
To make a fair comparison, we use attacks with different pat-
terns, such as Mirai and ARP MitM. Additionally, we establish
a baseline reference on a server for both datasets by running a
Neural Network (NN) model (3 layers with 48 neurons/layer
based on grid search accuracy in TensorFlow [58]).

Figure 16 (a)-(d) present an accuracy comparison between
P4Pir and online-learning model KitNet proposed in Kit-
sune [4]. A reference baseline with NN model reaches ∼99%
accuracy on a server. Results show that when DT is deployed
with P4Pir, the results are higher than KitNet, reaching around
90% accuracy. When RF is deployed with P4Pir, its accuracy
can reach a similar level as the baseline NN model (∼99%)
in vulnerability scanning and TCP SYN/UDP flooding at-
tacks. KitNet achieves ∼80% accuracy on these attacks. We
observed performance variations when using KitNet on a
different dataset [45], rather than the original one used in [4].
Dataset [45] employed here consists of packet-level features,
while original dataset [4] extracted traffic incremental statis-
tics. Performance variations can be attributed to features used
to reflect traffic patterns, which renders KitNet less scalable.

The comparison with Kitsune’s KitNet is also done in
Kitsune’s dataset [4] as Figure 16 (e) and (f). Mirai and ARP
MitM attacks are used in this test case and results present that
P4Pir can achieve a similar accurate performance as KitNet
on Mirai attack and 10% more accurate performance on ARP
MitM attack. P4Pir can also achieve comparable performance
as baseline NN running at the server. The degradation of Kit-

12

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100
A

cc
ur

ac
y

(%
)

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100

A
cc

ur
ac

y
(%

)

(a) DDoS TCP SYN [45] (b) Vulnerability scanning [45]

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100

A
cc

ur
ac

y
(%

)

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100
A

cc
ur

ac
y

(%
)

(c) DDoS UDP flooding [45] (d) HTTP flooding [45]

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100

A
cc

ur
ac

y
(%

)

P4Pir-
DT

P4Pir-
RF

KitNet Base-
NN

0

50

100

A
cc

ur
ac

y
(%

)

(e) Mirai [4] (f) ARP MitM [4]
Fig. 16. P4Pir vs. related works in terms of accuracy and throughput with
different attacks under EDGE-IIOTSET [45] and Kitsune [4] traces. P4Pir-
DT/P4Pir-RF means DT/RF deployed with P4Pir. KitNet is the algorithm
used in Kitsune [4]. Base-NN is Neural Network run at server as a baseline.

Net’s performance in ARP attack is explained as its vulnerable
to out-of-distribution (o.o.d.) samples [59].

Passban IDS proposed in [30] achieves traffic analysis and
attack detection based on a supervised learning-based method
for IoT gateways. With in-network ML design and model
update in P4Pir, the detection accuracy can reach similar level
as Passban IDS (F1>80% for scanning and flooding attack
detection). In terms of system performance, P4Pir has a more
lightweight performance than Passban IDS, beneficial from
offloading ML inference to the data plane. a) Throughput is
compared where P4Pir achieves higher network throughput
than Passban IDS (∼14% decrease vs. ∼17% decrease, com-
pared with Baseline forwarding). 2) Passban IDS has high
CPU usage when the system runs in high throughput (>70%
when throughput is higher than 70Mbps), while P4Pir has
∼60% CPU usage at that throughput.

XI. DISCUSSION

Evaluation results demonstrate that P4Pir can efficiently
mitigate attacks within IoT gateway via continuous learning
and ML updates. Observations and trade-offs are discussed.

Model selection In this work, we present DT and RF
as tree-based ML inference models for efficient in-network
analysis, while acknowledging that other models (e.g. XGB,
SVM, NN) can also be deployed on programmable data plane
for in-network attack detection [46]. However, there is a

trade-off between model accuracy and overheads. Model with
complex computations may achieve good performance, but
also bring extra overheads to the data plane. IoT gateway
deployment calls for models with low overheads and high
accuracy. Our experimental results show that the in-network
deployment of DT has lower overhead but is less effective in
detecting emerging attacks compared to RF.

Model updates P4Pir offers two update options: parameter
updates and feature updates. As the distribution of incoming
traffic changes, the model can be directly updated by inserting
new parameters and thresholds. In situations where accuracy
drastically drops, it indicates that the current set of features
may not adequately represent the current traffic pattern. In
such cases, new features are required, which may necessitate
program re-initialization involving a new feature extraction
and in-network model mapping process.

Use cases P4Pir is designed for attack mitigation, serving
as a sample use case. Likewise, it can also be used for other
ML-based applications such as IoT device identification [60],
failure mitigation, or traffic scheduling. P4Pir’s in-network
design enables them to achieve prompt ML-based analysis and
runtime reconfiguration in dynamic traffic scenarios.

XII. CONCLUSION

We introduced P4Pir, an in-network ML-based analysis
solution for IoT gateways, implemented on low-cost P4Pi
platform using Raspberry Pi and Dell Edge Gateway. P4Pir
leverages the programmable data plane to enable fast attack
mitigation and seamless ML updates for continuous learning
against emerging threats. With P4 language, we achieve flex-
ible in-band feature collection and in-network ML inference,
ensuring swift attack detection and mitigation. To keep the
model updated in identifying traffic patterns within the IoT
gateway, P4Pir actively logs in-band extracted features from
the data plane to the control plane. These features are then
labeled using an unsupervised iForest algorithm. These records
facilitate model retraining, which is then seamlessly mapped to
the data plane for in-network inference through shadow table
updates. Evaluation results show that P4Pir has minimal im-
pact on network performance. P4Pir highlights the advantages
of deploying in-network ML inference in IoT gateways. We
hope it can inspire future explorations in topics like federated
deployment for scenarios with multiple gateways.

ACKNOWLEDGEMENT

We thank Radostin Stoyanov for his contribution to early
work on this project, bringing up and optimizing the P4Pi
platform. We also thank Damu Ding and Eder Ollora Zaballa
for the discussion and their constructive comments. For the
purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript
version arising from this submission.

REFERENCES
[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey

on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3098–
3130, 2018.

13

[2] “Service requirements for the 5G system (3GPP TS 22.261 version
16.14.0 Release 16),” 3GPP, Standard, Apr. 2021.

[3] A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
based congestion control for pulse-wave ddos defense,” in Proceedings
of the ACM SIGCOMM 2022 Conference, New York, NY, USA, 2022,
p. 693–706.

[4] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[5] R. Kolcun et al., “The case for retraining of ML models for iot device
identification at the edge,” arXiv preprint arXiv:2011.08605, 2020.

[6] J. H. Lee and K. Singh, “SwitchTree: in-network computing and traffic
analyses with Random Forests,” Neural Computing and Applications,
2020.

[7] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,”
in Proceedings of the SIGCOMM’21 Poster and Demo Sessions, 2021,
pp. 12–14.

[8] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95,
jul 2014.

[9] A. Pashamokhtari, N. Okui, Y. Miyake, M. Nakahara, and H. H.
Gharakheili, “Inferring connected iot devices from ipfix records in
residential isp networks,” in 2021 IEEE 46th Conference on Local
Computer Networks (LCN), 2021, pp. 57–64.

[10] S. Klein, Ingesting Data with Azure IoT Hub. Berkeley, CA: Apress,
2017, pp. 57–70.

[11] K. Palani, E. Holt, and S. Smith, “Invisible and forgotten: Zero-day
blooms in the iot,” in 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops, 2016, pp. 1–6.

[12] C.-C. Teng, J.-W. Gong, Y.-S. Wang, C.-P. Chuang, and M.-C. Chen,
“Firmware over the air for home cybersecurity in the internet of
things,” in 2017 19th Asia-Pacific Network Operations and Management
Symposium (APNOMS), 2017, pp. 123–128.

[13] Dell Technologies, “Dell emc edge gateway 5200 software user’s guide,”
2022. [Online]. Available: https://www.dell.com/support/manuals/en-ae/
dell-edge-gateway-5200/egw-5200-software-users-guide

[14] G. C. Hillar, MQTT Essentials-A lightweight IoT protocol. Packt
Publishing Ltd, 2017.

[15] M. Hemmatpour, M. Ghazivakili, B. Montrucchio, and M. Rebaudengo,
“Diig: A distributed industrial iot gateway,” in 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), vol. 1,
2017, pp. 755–759.

[16] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Open for hire:
Attack trends and misconfiguration pitfalls of iot devices,” in Proceed-
ings of the 21st ACM Internet Measurement Conference, New York, NY,
USA, 2021, p. 195–215.

[17] M. Lima, R. Lima, F. Lins, and M. Bonfim, “Beholder – a cep-
based intrusion detection and prevention systems for iot environments,”
Computers & Security, vol. 120, p. 102824, 2022.

[18] Y. Kim, J. Nam, T. Park, S. Scott-Hayward, and S. Shin, “SODA: A
software-defined security framework for IoT environments,” Computer
Networks, vol. 163, p. 106889, 2019.

[19] P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and
fog-cloud architecture-driven cyber-attack detection framework for iomt
networks,” Computer Communications, vol. 166, pp. 110–124, 2021.

[20] P. K. Sharma, S. Singh, and J. H. Park, “Opcloudsec: Open cloud
software defined wireless network security for the internet of things,”
Computer Communications, vol. 122, pp. 1–8, 2018.

[21] A. Mahmood et al., “Industrial iot in 5g-and-beyond networks: Vision,
architecture, and design trends,” IEEE Transactions on Industrial Infor-
matics, vol. 18, no. 6, pp. 4122–4137, 2022.

[22] L. L. Peterson, C. Cascone, B. O’Connor, T. Vachuska, and B. Davie,
Software-defined networks: A systems approach. Systems Approach
LLC, 2021.

[23] The P4.org API Working Group, “P4runtime specification,”
2021. [Online]. Available: https://p4.org/p4-spec/p4runtime/main/
P4Runtime-Spec.pdf

[24] C. Zheng et al., “IIsy: Practical In-Network Classification,” arXiv
preprint arXiv:2205.08243, 2022.

[25] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pForest: In-network inference with random forests,” arXiv preprint
arXiv:1909.05680, 2019.

[26] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pheavy: Predicting heavy flows
in the programmable data plane,” IEEE Transactions on Network and
Service Management, vol. 18, no. 4, pp. 4353–4364, 2021.

[27] G. Xie et al., “Mousika: Enable general in-network intelligence in
programmable switches by knowledge distillation,” in IEEE INFOCOM

2022, 2022, pp. 1938–1947.
[28] X. Hong, C. Zheng, S. Zohren, and N. Zilberman, “Linnet: Limit Order

Books within Switches,” in Proceedings of the SIGCOMM ’22 Poster
and Demo Sessions, New York, NY, USA, 2022, p. 37–39.

[29] ——, “Lobin: In-network machine learning for limit order books,”
in 2023 IEEE 24th International Conference on High Performance
Switching and Routing (HPSR), 2023, pp. 159–166.

[30] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS:
An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge
Devices,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6882–6897,
2020.

[31] Q. Qin, K. Poularakis, and L. Tassiulas, “A learning approach with
programmable data plane towards iot security,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS),
2020, pp. 410–420.

[32] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted ddos attack detection with p4 language,” in
ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1–6.

[33] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard:
An intelligent edge defense mechanism against iot ddos attacks,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9552–9562, 2020.

[34] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “Iot-keeper:
Detecting malicious iot network activity using online traffic analysis at
the edge,” IEEE Transactions on Network and Service Management,
vol. 17, no. 1, pp. 45–59, 2020.

[35] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-speed and
scalable intrusion detection at the network edge via federated learning,”
in 2020 IFIP Networking Conference (Networking), 2020, pp. 352–360.

[36] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa,
“In-network volumetric ddos victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191–1202, 2021.

[37] A. Atutxa, D. Franco, J. Sasiain, J. Astorga, and E. Jacob, “Achieving
low latency communications in smart industrial networks with pro-
grammable data planes,” Sensors, vol. 21, no. 15, 2021.

[38] M. Zang, E. O. Zaballa, and L. Dittmann, “SDN-based In-Band DDoS
Detection Using Ensemble Learning Algorithm on IoT Edge,” in 2022
25th Conference on Innovation in Clouds, Internet and Networks, 2022,
pp. 111–115.

[39] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,
“Developing a siamese network for intrusion detection systems,” in
Proceedings of the 1st Workshop on Machine Learning and Systems,
ser. EuroMLSys ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 120–126.

[40] Q. Wang et al., “MPInspector: A systematic and automatic approach for
evaluating the security of IoT messaging protocols,” in 30th USENIX
Security Symposium (USENIX Security 21), Aug. 2021, pp. 4205–4222.

[41] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, ser. HotNets-XIV, New York, NY, USA, 2015.

[42] J. Kazemitabar, A. Amini, A. Bloniarz, and A. S. Talwalkar, “Variable
importance using decision trees,” in Advances in Neural Information
Processing Systems, vol. 30, 2017.

[43] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

[44] Scikit-learn, “Permutation feature importance,” 2022. [On-
line]. Available: https://scikit-learn.org/stable/modules/permutation
importance.html

[45] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-iiotset: A new comprehensive realistic cyber security dataset of
iot and iiot applications: Centralized and federated learning.” IEEE
Dataport, 2022.

[46] C. Zheng et al., “Automating In-Network Machine Learning,” arXiv
preprint arXiv:2205.08824, 2022.

[47] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in Thirty-
sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

[48] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[49] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in IEEE
INFOCOM 2021, 2021, pp. 1–10.

[50] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” in Advances in Neural

https://www.dell.com/support/manuals/en-ae/dell-edge-gateway-5200/egw-5200-software-users-guide
https://www.dell.com/support/manuals/en-ae/dell-edge-gateway-5200/egw-5200-software-users-guide
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.pdf
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.pdf
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html

14

Information Processing Systems, S. Solla, T. Leen, and K. Müller, Eds.,
vol. 12. MIT Press, 1999.

[51] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, New York, NY, USA,
2000, p. 93–104.

[52] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008, pp. 413–422.

[53] J. H. Han et al., “Blueswitch: Enabling provably consistent configuration
of network switches,” in 2015 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems. IEEE, 2015, pp. 17–27.

[54] S. Laki, R. Stoyanov, D. Kis, R. Soulé, P. Vörös, and N. Zilberman,
“P4Pi: P4 on Raspberry Pi for networking education,” SIGCOMM
Comput. Commun. Rev., vol. 51, no. 3, p. 17–21, jul 2021.

[55] R. Stoyanov, A. Wolnikowski, R. Soulé, S. Laki, and N. Zilberman,
“Building an internet router with P4Pi,” in Proceedings of the Sym-
posium on Architectures for Networking and Communications Systems,
2022, p. 151–156.

[56] DELL Technologies, “Dell EMC Edge Gateway 5200 software
user’s guide,” 2023. [Online]. Available: https://dl.dell.com/content/
manual77941191-dell-emc-edge-gateway-5200-software-user-s-guide

[57] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proceedings of the 4th International Conference on Information Systems
Security and Privacy, ICISSP, 2018, pp. 108–116.

[58] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265–283.

[59] A. S. Jacobs, R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta,
and L. Z. Granville, “Ai/ml for network security: The emperor has
no clothes,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, New York, NY, USA, 2022,
p. 1537–1551.

[60] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, New York, NY, USA, 2019, p.
25–33.

https://dl.dell.com/content/manual77941191-dell-emc-edge-gateway-5200-software-user-s-guide
https://dl.dell.com/content/manual77941191-dell-emc-edge-gateway-5200-software-user-s-guide

	Introduction
	Background
	blackTraffic Analysis on IoT Gateway
	Programmable Data Planes

	Related Work and Gaps
	Limitations of Current Solutions

	System Design
	Threat Model
	Design Overview

	In-Network Feature Extraction
	blackOffline Feature Analysis
	In-Band Feature blackExtraction

	In-network Tree-Based Mitigation
	blackInference Model Mapping blackto Match-Action Tables
	blackIn-Network ML-Based Mitigation

	blackProactive Logging and Unsupervised-based Log Labeling
	blackProactive Logging
	Unsupervised-based Labeling

	blackModel Remapping and Shadow Table Updates
	Experimental Evaluation
	Experimental Setup
	Datasets
	Evaluation Metrics
	Detection Performance
	Mitigation Performance
	System Performance

	Comparison blackwith State-of-the-Art
	Discussion
	Conclusion

