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Abstract—Objective: This paper presents a deep learning
method of predicting where in a hospital emergency patients will
be admitted after being triaged in the Emergency Department
(ED). Such a prediction will allow for the preparation of bed
space in the hospital for timely care and admission of the patient
as well as allocation of resource to the relevant departments,
including during periods of increased demand arising from
seasonal peaks in infections. Methods: The problem is posed
as a multi-class classification into seven separate ward types. A
novel deep learning training strategy was created that combines
learning via curriculum and a multi-armed bandit to exploit this
curriculum post-initial training. Results: We successfully predict
the initial hospital admission location with area-under-receiver-
operating-curve (AUROC) ranging between 0.60 to 0.78 for the
individual wards and an overall maximum accuracy of 52%
where chance corresponds to 14% for this seven-class setting.
Our proposed network was able to interpret which features
drove the predictions using a ‘network saliency’ term added
to the network loss function. Conclusion: We have proven that
prediction of location of admission in hospital for emergency
patients is possible using information from triage in ED. We have
also shown that there are certain tell-tale tests which indicate
what space of the hospital a patient will use. Significance: It is
hoped that this predictor will be of value to healthcare institutions
by allowing for the planning of resource and bed space ahead
of the need for it. This in turn should speed up the provision
of care for the patient and allow flow of patients out of the ED
thereby improving patient flow and the quality of care for the
remaining patients within the ED.

Index Terms—Machine learning algorithms, Multi-layer neural
networks, Patient Flow, Hospitals.

I. INTRODUCTION

DEEP neural networks (DNNs) have revolutionised the
field of machine learning by providing a way to utilise

very large datasets as well as large feature spaces to make
meaningful predictions. State of the art performance has been
achieved by DNNs in a wide range of tasks proving their
efficacy as learning algorithms. Their strength in function
approximation has not been overlooked by the medical com-
munity, with numerous publications exploiting them to make
useful predictions for various healthcare scenarios [17, 30, 21].

One of the challenges of utilising DNNs is that they are non-
convex optimisation problems meaning the best performance
that the algorithm is capable of may not be achieved [8]. As a
result, much work has been carried out in developing methods
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of presenting data to the network for training in a structured
fashion [10]. This has since been called a curriculum and is
widely used when training DNNs today.

The aim of this work is to utilise the concept of curriculum
training to train a model that will predict where in a hospital
a patient will be admitted based on very early information
obtained in the ED from the triage nurse. We aim to show
that the movement of patients from ED to one of seven
different ward types in hospital is predictable. This would
allow allocation of a bed and resources for the patient well
ahead of admission to ensure that they receive care and
treatment in as timely a fashion as possible. We also aim
to demonstrate that this prediction can be done given data
collected from a patient at point of entry to the ED department,
which in turn will improve the flow of patients out of the ED
and into the hospital. Difficulties in admitting patients to the
optimal hospital ward are often most marked during periods
of high demand, such as during peaks in seasonal infections
including influenza. We therefore test the performance of our
model through out the year.

In Section II we discuss the related work and in Section
IV we discuss how a curriculum regularises the training of a
DNN and how our algorithm is built. Then in Section VI we
display the results of our algorithm and discuss these.

II. RELATED WORK

In existing literature, there is currently much work published
in the monitoring of patients in hospitals using machine learn-
ing techniques [12, 20]. However the application of machine
learning to model patient flow is still a relatively new topic
with a consequently limited literature.

Within this literature, prediction of admission to a particular
ward based on measurements within hospital is a well explored
area of research [18, 11, 1, 16]. Zhai et al. carried out work in
predicting newly-hospitalised children who were likely to need
transferral to the paediatric intensive care unit [23]. Logistic
regression was used and achieved 89% accuracy. The model
however only considered paediatrics, a subset of the total
hospital population. While this is useful for the monitoring of
the well-being of newly-hospitalised children it is not robust
to be used as a general model for patient flow.

An investigation into the prediction of ward transition was
carried out by Xu et al. in [35]. In this work, “alternating direc-
tion method of multipliers” (ADMM) was used in conjunction
with discriminative learning of mutually correcting processes
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to learn and predict the destination of a ward transition. The
model produced an overall next location prediction accuracy
of 81% when considering all patients for all wards. It would
seem that the model is powerful at predicting the transition
process within the hospital, however it could also be argued
that this is directly due to the data that have been used. In
particular, they considered all patients within the hospital and
did not discriminate between emergency and non-emergency
patients. It is well known that good patient flow is significantly
hindered by the ad-hoc introduction of emergency admissions
into the hospital [26, 22]. The authors also use the MIMIC-II
dataset [14] where the majority of the wards in consideration
for transfer are ICU wards. This may not be useful for analysis
of patient flow in the hospital as a whole. As a result, we
will only consider patients who have been admitted in an
emergency, we will consider all the wards within the hospital
and we will aim to predict the initial point of entry.

In this work we choose to focus on the complex problem of
predicting the outcome of the ED-inpatient interface (EDii).
Staib et al. emphasise the importance of this interface by
discussing how there is significant evidence to show that the
delayed transfer of emergency patients to wards is associated
with a 20-30% relative increase in inpatient mortality [34].
They also mention why this problem is difficult to predict.
This is primarily due to the EDii being poorly defined in terms
of clinical ownership, as well as the fact that the unscheduled
nature of emergency admissions disrupts scheduled activity
within the hospital, thereby slowing the movement of patients
out of the ED. This can lead to patients being admitted
to wards that are not ideal for their treatment in order to
empty the ED, which can be hazardous [19]. By providing a
prediction of the likely inpatient admission location, we seek
to begin bridging the gap in patient flow between the ED and
the inpatient wards.

Neural networks have primarily been used for the ward
admission problem as binary classifiers. The majority of
previous work using neural networks in this field predicts if
a patient will or will not be admitted to a location within a
hospital or to the hospital itself. Somoza et al. use a neural
network to predict whether or not a patient presented to the
ED of a psychiatric hospital will be admitted or not [3]. The
model performs well using the neural network achieving a 91%
accuracy. However this model is limited in its usefulness to
clinicians on the ground. Knowing a patient will be admitted is
useful for planning of overall numbers but greater granularity
as to where they will be admitted is more useful for resource
planning. As a result our problem will consider predicting the
location of admission in the hospital.

In this work we utilise a curriculum in order to train
our neural network. Curriculum Learning stems from the
observation that children in schools learn by beginning with
simple ideas and progressing on to more complex topics. By
doing so they are able to understand fundamental principles
on which they can build to learn more complex topics (which
in themselves are usually simply superpositions of the fun-
damental principles). Curriculum Learning is the idea that
neural networks may also benefit from this structured approach
to learning. By presenting the network initially data that are

‘easier’ to optimise over, the optimisation surface (of network
prediction error vs. network parameters) is more likely to be
convex [10]. This has an analogy with numerical continuation
methods, where a complex optimisation surface is decomposed
into layers, beginning as a completely convex surface and
gradually increasing in non-convexity [15]. In this paper we
will exploit this methodology in order to train neural networks
on noisy medical data. We will then compare this to normal
batch methods of training networks and see the effect that the
curriculum has on the prediction accuracy.

The use of non-stationary bandits in learning has also
been explored in [31] where a curriculum is arranged and
a bandit selects which batches to train a neural network on.
The bandit is trained by measuring how a particular batch
of data improves the performance of the network which in
turn affects the probability of selecting that curriculum batch
to train on. The better the performance, the more likely the
bandit is to choose this batch of data again. The authors of [31]
propose four different algorithms to select the next curriculum
batch to train on. These are the use of a non-stationary bandit
to select the next batch to train on, using linear regression
and a windowed linear regression on the performance of the
network to predict the batch most likely to provide the best
performance after training, and using Thompson sampling to
select the next batch for training. The authors found that
the non-stationary bandit was the most effective method of
choosing the next batch of data providing the best performance
and faster training. While these approaches have an effective
performance on the training problems presented in the work,
the authors do not utilise the curriculum to guide their network
weight space into the domain of a global minimum. Another
work which uses a similar approach is that of [29] where
a curriculum is also generated and a non-stationary bandit
is used with the EXP3.S algorithm [7] to select the next
curriculum batch to train on. However, once again without
using the curriculum initially, this algorithm will not always
provide a better or faster training of the network.

Aside from simply improving the accuracy of a model
it is important, particularly when using deep models in the
healthcare domain, to provide a level of interpretability to the
decision making process. In [33], the authors emphasise the
importance of understanding what in the input space has driven
a decision in order to learn from the model, or to validate the
classification. We again see this in a review of deep learning
in healthcare by [32] where one of the fundamental challenges
noted is interpretability of deep learning models and relating
the decision made back to the input space. As a result we
propose a ‘saliency term’ to see the most important features
that contribute to predictions in our model.

III. NOVELTY

The novelties of this work are as follows: we have developed
a novel strategy for the training of neural networks combining
a curriculum training phase with a multi-armed bandit phase
to maximise prediction performance on noisy biomedical data.
This also incorporates a saliency layer before the inputs which
allows interpretation of the importance of the input features. To
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the best of the authors knowledge no other work has proposed
the framework of predicting where in the hospital a patient
from the ED will be admitted. This is also believed to be the
first work to employ deep learning architectures in order to
carry out hospital admission prediction.

IV. METHODOLOGY

A. Curriculum Learning

Due to the non-convex nature of optimising artificial neural
networks (ANNs), a structured method of presenting data to
the network via curriculum learning was introduced with the
aim of reducing the likelihood of the weights being optimised
into a local minimum [10]. There are similarities between
curriculum learning and numerical continuation methods as
pointed out in [10], where optimisation of a complex surface is
achieved through first optimising over smoother more convex
versions of the surface. Consider a family of cost functions
Cλ(θ) such that C0 is easy to optimise over (and which is
likely to be more convex than other functions), λ ∈ [0, 1] is
the ranking of “difficulty to optimise" and where C1 is the
actual cost function that is to be minimised. By optimising
over the network parameters, θ, for C0, as C0 is simply a
smoother version of C1 we bring our parameters into the
domain of a minimum of C0 as well as C1. We then gradually
increase λ while keeping θ at the local minimum. This helps
to avoid local minima which may be present in the more
complex optimisation space. The aim therefore, is to create
batches of data, Q, ranked according to λ (i.e., Qλ with λ = 0
being the “easiest" batch of data to optimise progressing to the
“hardest" as λ increases.) These batches are then presented to
the network for training in order of increasing λ. Note that the
batch Qλ+ε will contain all of the data in Qλ for ε > 0, as
an increment in λ represents the addition of more “complex"
data to the previous batch.

With application to real data, we need to define “easiness"
of fitting to the data. We define a sequence of batches of
data Qλ(z) comprised of individual data entries, z, such that∫
Qλ(z)dz = 1 (i.e., our whole dataset). We also define

Qλ(z) ∝Wλ(z)P (z) ∀z, where Wλ(z) is the weight assigned
to example z at the point λ in the curriculum sequence and
P (z) is the training data (Wλ(z) is 0 for “complex" data at low
values of λ i.e, excluded in the “easy to optimise" batches).
The “easiness" of the fit to data is described by:

H[Qλ(z)] < H[Qλ+ε(z)] ∀ ε > 0 (1)

where H is the entropy of data batch Q. The weights of the
examples also increase with λ as:

Wλ+ε(z) ≥Wλ(z) ∀ z, ∀ ε > 0 (2)

to balance training as the “less complex" data will have been
presented to the network for training a greater number of
times. This is because the first curriculum batch (‘easiest’)
will also be a part of all the other curriculum batches, i.e, for
N curriculum batches denoted by Q, Q0 ⊂ Q1 ⊂ . . . QN .
Therefore the data in Q0 is presented to the network a greater
number of times and so the rest of the data must be weighted

to account for this so that all data is presented an equal number
of times.

In this work we define “complexity" of the data using
the Mahalanobis distance in order to encode the notion of
entropy. The Mahalanobis distance is a multi-dimensional
generalisation of measuring the number of standard deviations
that exist between a point P and the mean, µ, of a probability
density function (p.d.f), D [4]. The larger the Mahalanobis
distance the more unlikely the data entry is to belong to the
distribution (and which is therefore of higher entropy). We
therefore assume that our data belong to a single p.d.f, with
mean µ and covariance S. Due to the input features being
of mixed data types, we encode our input features through a
trained denoising autoencoder to gain a representation of the
data in an embedded space before calculating the Mahalanobis
distance. In using the Mahalanobis distance, our curriculum
organises our training data such that we train according to
the most similar samples first (the smaller number of samples
of different classes in this batch increases the likeliness of
finding a more global minimum, therefore making it “easier"
to optimise over) before progressing on to the easier to
differentiate between samples. This mirrors the approach that
is used in the SVM in defining the separation boundary where
data of differing classes are closest together.

B. Regularisation using a Mahalanobis Curriculum

We now postulate how the Mahalanobis curriculum may
naturally regularise itself. Let Z be a training data set consist-
ing of datapoints zn where zn ∈ Z and zn consists of input
features and a label such that zn = {xn, yn}.

We also define the Mahalanobis distance as:

dmn
=
(
(xn − µ)T S−1 (xn − µ)

) 1
2

(3)

where xn are the (continuous) input features of the datapoint,
µ is the vector of the mean value of each feature, and S is
the covariance matrix.

Using this equation we can now create a vector, Dm, of
distance of each datapoint from the mean of the assumed p.d.f
of the dataset, where X → Dm, ∀ xn ∈ X , X ⊂ Z, Z ⊂
R.

We now seek to create N batches of training data of
increasing entropy of size k datapoints where k = card(Dm)

N .
We then extract the indices of the lowest entropy features

using the following formulation:

jN = index

(
i=Mk⋃
i=1

min ((... (dm\dm1
) \dm2

) ...\dmi
)

)
(4)

for M = {1, 2, ..., N}, and dmb
is the bth smallest element of

the set Dm. We are then able to construct the N curriculum
batches BN = Z{jN} and their corresponding outputs, ON =
Y{jN}. The training proceeds by presenting the batches in B
for the smallest N first and then gradually increasing N .

Consider a typical cost function used for backpropagation:
1
N

∑N
n=1 (ŷn − yn)

2, which can be re-written as
1
N

∑N
n=1 (Wxn − yn)2 where W is an operator equivalent
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to multiplication by the weights of the previous layers of a
deep neural network. We are able to do this in this case as
we activate the nodes of our network with ‘relu’ activations
which is simply a piecewise linear operator.

Using the definition of the Mahalanobis distance as shown
in Equation 3, if we consider xn to be a random variable, we
see for normally distributed data xn ∼ N (µ,S) and xn →
µ +

√
Sdm. For ease of notation, we assume that all input

features are orthonormal, i.e, S is a diagonal matrix. Therefore
we see that xn =

(
d2m.(SI)

) 1
2 + µ, where I is the identity

matrix and which we substitute back into our expression for
MSE, which expands to the following expression:

MSE= 1
N

N∑
n=1

(W 2(d2mn
(SI))+2W 2(d2mn

(SI))
1
2 µ

−2W(d2mn
(SI))

1
2 yn+W

2µ2−2Wµyn+y
2
n)

When we are training with a curriculum, we train ini-
tially with low entropy data so that dmn

→ 0: MSE →
1
N

∑N
n=1

(
W 2µ2 − 2Wµyn + y2n

)
= 1

N

∑N
n=1 (Wµ− yn)2.

For very low entropy values we are simply calculating the
mean squared error with respect to the mean of our assumed
p.d.f.

Now we investigate as dm becomes large: We assume that
the first 3 terms in the expanded MSE equation will dominate
the response due to the large value of dm:

MSE→ 2
N

∑N
n=1

[
W(d2mn

.(SI))
1
2

(
W
2 (d

2
mn

.(SI))
1
2 +[Wµ−yn]

)]
Here there are two important things to notice: firstly the cost
function now contains an additive loss term proportional to
||W ||. This means that in the case of overfitting where the
magnitude of the weights increases dramatically, the error
function will be penalised for this. This is artificially intro-
duced using L1/L2 regularisation whereas here it naturally
arises with data that is perceived to be of higher entropy. The
next point to notice is that the difference between prediction
and label is no longer squared meaning we have much more
gradual learning with higher entropy data (which is positive as
we don’t want to learn the noise that is associated with these
data).

By using a curriculum we initialise our function approxi-
mation using the mean of the data. This is advantageous as it
greatly reduces the likelihood of our function approximation
being skewed by outliers and possibly even erroneous data.

C. Multi-armed bandits

The curriculum is trained in a cyclical fashion which, as
described previously, is beneficial for finding a local minimum
near the global minimum. However after initial training there
is no reason why this cyclical training should provide the
best possible performance of the model. Given that we now
have discrete batches of data created by the curriculum, we
introduce a multi-armed bandit in order to choose the best
batch to train the network on.

A multi-armed bandit is a method in which choices need
to be made based on allocation of a finite resource, where the
aim is to maximise the expected reward of allocation of the

resource [13]. The probabilities of reward based on choice
are only partially known at the time of allocation and the
optimal choice to maximise reward becomes more clear as
resource is spent. The multi-armed bandit is an example of an
exploration vs. exploitation problem as is often framed within
reinforcement learning problems. A hyperparameter that is
manually chosen, ε, defines the rate with which exploration
of the choices occurs (by choosing a batch at random) as
opposed to exploiting the batch with the highest reward. Due
to the non-convex nature of training an ANN, we can view
the training of the ANN as a multi-armed bandit problem.
For multi-class classification, certain classes are learned more
rapidly depending on the data that has been presented to the
network to train it. By using the concept of batches of data
split according to their “easiness" as introduced by curriculum
learning, we can treat this as a problem of choosing the right
data to train the network on in order to maximise our reward
which in this case is the general accuracy of the model in a
multi-class classification.

Algorithm 1 The multi-armed bandit for training of the
network after initially trained with a curriculum

1: procedure INITIALISATION
2: rate of exploration = ε
3: resource available = Na
4: Prob. curriculum batch gives max reward = P
5: Num. training data batches = Nchoices
6: Count of number of times batch is chosen = K
7: Batches by Mahalanobis distance = cbatches
8: loop:
9: for i in Na do:

10: if ε > u ∼ U(0, 1) then
11: batch = cbatches[int (u ∼ U(0, Nchoices))]
12: else
13: batch = cbatches[argmax(P )]

14: Train on batch and find accuracy on training set
15: i0 → A0

T =
∑C
j (δj)

16: i1:Na
→ AiT =

∑C
j

((
δij − δ

i−1
j

)
/δi−1j

)
17: Test on validation set
18: Aiv = overall accuracy on validation set
19: reward = AiT ×Aiv
20: K[batch] = K[batch] + 1
21: α = 1/K[batch]
22: P [batch] = P [batch] + α× (reward−P [batch])

Algorithm 1 shows how the multi-armed bandit problem
was applied for training. We begin by defining the exploration
rate, ε, how many batches of data we have, Nchoices, and
how many attempts we have at training the network with the
batches, Na. We also initialise vectors of zeros of the same
length as the number of training data batches, K and P .

For a value of ε = 0.1, the bandit would explore (choose
a different training data batch at random) 10% of the time.
Otherwise the bandit will choose the training data batch that
has the greatest probability of returning maximal reward.

Once the training data batch has been chosen we train
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using these data. The reward is then calculated. For multi-class
classification, we require a reward function that will improve
the accuracy of prediction over all classes and not just the
classes that are more prevalent in the data. We therefore define
our reward function with respect to the learning rate of all the
classes as well as the performance on the validation set to
ensure that the model does not overfit.

R =
C∑
i=1

δni − δ
n−1
i

δn−1i

×Anv (5)

where Anv is the validation set accuracy of the current training
episode, δ is the accuracy of class i over the training set and n
is the current training episode. By incorporating Anv , as soon
as the model begins to overfit on the training data, reward
due to the first term in Equation 5 will increase; however, any
detriment to the general performance will be reflected by Anv
which will prevent the reward increasing (i.e, a decrease in the
accuracy over the validation set would lead to the sum of the
learning gradients being multiplied by a small number thereby
reducing the reward).

D. Prediction Interpretation

After training the model it is useful to understand from the
clinical perspective why the model has made its predictions
and why errors arise. We investigate this by modifying the
architecture of our model slightly. We add a layer of weights
to the input space that are multiplied element wise by the
inputs changing the function approximator from f (y | x; θ)
to f (y | win � x; θ). Having multiplied the inputs, x, by the
weights win we then pass the weights through the softmax
function to find the relative importance of each feature to the
prediction and then add the entropy of this output to the cost
function. We therefore change our cost-function so that it now
becomes:

L (θ) = −

g (win) log (g (win)) +∑
j

(yj log (ŷj))

 (6)

where g implies the softmax, win are the pre-multiplying
weights of the inputs, yj is the real one-hot label of the
prediction, ŷj is the models predicted distribution over the
classes and j is the data point. Using this loss we then use
backpropagation as usual and update both θ, the network
weights, and win. The effect of this function is to encourage
sparsity in the inputs while maintaining the objective of
classifying the patients. This will allow us to see the most im-
portant features for this prediction problem. We train until we
achieve the same accuracy as was achieved previously with the
knowledge that we have achieved the maximum performance
possible with as sparse a feature space as possible.

V. DATASET

In this study we considered the patient data collected in
the electronic health records (EHR) of Oxford University
Hospitals (OUH), between January 2013 and April 2017. De-
identified patient data were obtained from the Infections in

Oxfordshire Research Database (IORD) which has generic Re-
search Ethics Committee, Health Research Authority and Con-
fidentiality Advisory Group approvals (14/SC/1069, ECC5-
017(A)/2009). The EHR stores all digitally recorded data on an
incoming patient. This includes administrative (e.g. date and
time of arrival), demographic (e.g. age, gender and so on), as
well as physiological and medical information (e.g. vital sign
measurements and medical tests ordered during the patient’s
visit). Any historical data stored about the patient will also
be available in the EHR upon their next arrival to the ED.
To avoid learning from events where patients are admitted to
wards not appropriate for their primary diagnosis and treat-
ment, i.e. wards from another medical specialty, we exclude
these admissions from the dataset. We filter patients according
to whether or not their primary diagnosis code for the visit
clearly corresponds to an appropriate label for their treatment
(i.e., which ward they are admitted to). Those admitted to
a ward obviously not appropriate for their treatment were
disregarded. The features used for prediction can be found
in Tables I and II. Only patients who were admitted in an
emergency and who had a full set of the features listed in
the appendix were considered providing a dataset of 9324
patients. The full dataset contains data from 51,277 unique
patients admitted to the OUH via the ED. Upon filtering to
only include adults and inclusion of a full feature set, our
dataset reduces to 9,324. As a result, we seek to initially keep
all features to prove that the problem is predictable before
looking in future work as to how to reduce the number of
features we are dependent upon to maximise utility to the
hospital. A training set of 60% of the dataset was used and
was balanced (on the basis of admitted ward group) leaving
5327 patients for training on. The validation set was 20% of
the dataset and testing was also 20% and the classes were kept
in the same distribution as the original dataset.

To validate the efficacy of the methodology we implement
the algorithm on another classification problem from the
MIMIC-III dataset in the next section [27]. The patients for
this dataset are also emergency patients only and have all
features available. This provides us with a dataset of 8806
patients. These were split into the same train-validation-test
proportions as before with only the training set being balanced
as before. As MIMIC-III is an ICU focused dataset, replicating
the experiment we have carried out with the OUH dataset is not
possible. As a result we create a new problem of classifying
the mortality of patients (binary classification) based on 11
features that are available early in the patient’s admission. All
features used are shown in Tables I, II and III.

VI. RESULTS AND DISCUSSION

The OUH hospital in consideration has a total of 108 unique
wards. To create a more meaningful and useful predictor, these
were grouped by experienced clinicians working in the hospital
into seven ‘ward types’ based on the type of patient that is
admitted and the function of the ward. These are medical, car-
diac, neurosurgical/neurology (neuro), trauma, ICU, surgical
and general / obstetrics & gynaecology (general/O&G) ward
types.
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Bacteriology test requested? Biochemical tests requested?
Blood cultures requested Blood gas test requested?
CT scan requested? Cardiac enzyme test requested?
Clotting study requested Blood cross-matching requested?
Diastolic blood pressure at entry Dental investigation requested?
ECG requested? Heart rate at entry
Haematology test requested? Immunology test requested?
MRI scan requested? Early warning score
Vital signs requested? No tests requested
Orthopedic tests requested? Other tests requested?
Pregnancy test requested? Respiratory rate at entry
Systolic blood pressure at entry SPO2 at entry
Serology test requested? Body temperature at entry
Toxicology test requested? Ultrasound test requested?
Urine test requested? X-ray scan requested?
Admission method Admission source
Age experiencing atrial fibrillation?
# historic diagnoses Previous management
Previous admission to ED? Ethnic category
Frequently admitted? Gender
Dist. of address to hospital No. Investigations requested
Previous ED visit days ago Previous visit LOS
Mortality indicator severity score Historic diagnosis codes
Previous specialty

TABLE I: Table containing the patient specific features avail-
able at initial medical assessment that were used in all of the
models.

Triaged in 1 hour? Time of triage
Average day temp (degrees) ED capacity
ED attendance ID Hour admitted to ED
Month admitted to ED # ED Attendees in last 12 hours
# ED Attendees in last 4 hours # ED Attendees in last 8 hours
# ED Attendees in last hour # Breaches last 12 hours
# Breaches last 4 hours # Breaches last 8 hours
# Breaches last hour # Major admissions last 12 hours
# Major admissions last 4 hours # Major admissions last 8 hours
# Major admissions last hour Has it rained today?
Hours of sunlight Max. day temp (degrees)
Min. day temp (degrees) Weekday [0-6]

TABLE II: Table containing the environmental/hospital fea-
tures that were used in all of the models.

Admission type Admission location
Insurance Language
Religion Marital Status
Ethnicity Has previous chart events
Previous ICD9 code First care unit
First ward ID

TABLE III: Table containing the features used for mortality
prediction on the MIMIC-III dataset. Features are defined in
MIMIC-III documentation.

The aim of the algorithm is to classify the patient as being
admitted to one of these seven ward types. Initially, a multiple
logistic regression and an SVM were used for the task (trained
using stochastic gradient descent). These however provided
poor performance, with the prediction accuracy being 14%
for both methods, close to that of chance given a seven class
classification. We then implemented our curriculum training
methodology on both simple classification models as is un-
dertaken in [24], to determine whether or not the proposed
curriculum learning could improve their performance. We
found that a simple linear regression model had its classifica-
tion accuracy unchanged with or without curriculum learning,

whereas the SVM improved from 14% accuracy to an average
of 17% accuracy when using the curriculum only, and to an
average of 21% when the curriculum is combined with the
proposed multi-armed bandit.

In Figure 1 we implement a feedforward neural network for
the hospital admission location problem. Use of the feedfor-
ward network provides good performance for the multiclass
classification for some classes but not for all as indicated in
Table IV. The maximum accuracy achieved on the valdiation
and held-out test sets was 39% over all classes. However it
can also be seen from Figure 1 that the loss and accuracy
plots are very noisy. The five different seeds all provide very
different performances at the end of training with a difference
of approximately 10% performance on the validation set as
seen in the accuracy plot in Figure 1. The range of losses
shown in the loss plot indicates to us that after training the
five seeds have found different local minima within the weight
space. This indicates that this is not a very stable place from
which to launch a non-stationary bandit search of the weight
space as for different seeds we will be starting our optimisation
from different locations and our final performance will be
dependent on the inital seed.

In Figure 2 we repeat the experiment however this time
incorporating a curriculum into the training regime. Using a
Mahalanobis based curriculum not only achieves a higher max-
imum accuracy overall (46% over all classes) than stochastic
mini-batch training, but also smoothes out the accuracy and
loss of the five seeds. As can be seen in Figure 2, The range
between the best performing and worst performing seeds is
much smaller. We also see in the loss plot that all seeds
eventually converge to the same loss, indicating that due to the
curriculum all of the seeds have converged to a very similar
local minimum. This not only improves the performance for
the whole classification but also improves the performance
of the individual classes that did not perform well initially
which can again be seen in Table IV. The losses and the
accuracies being much smoother provides us with a stable
basis to begin an exploration vs. exploitation approach to
training the network.

The multi-armed bandit is then incorporated into Figure 3,
showing how the bandit explores until it finds the best batches
to train the network on given what has previously proven
successful. We are able to exploit the batches of data in the
curriculum to provide us with a better or equal performance to
a network trained only using a curriculum. We see in Figure
3 that the average accuracy initially decreases due to the
exploration that is required and eventually jumps to a value
of 52% accuracy overall, the strongest average from any of
our training regimes. The performance eventually falls from
52% over all classes due to the algorithm being constrained to
continue selecting batches to train on, moving the weights out
of the region of the weight space that achieved 52% accuracy.

For all experiments, the performance is recorded and the
best performing model saved as the optimal model. Each
method is trained until the onset of overfitting is exhibited. Fig-
ures 1 and 2 show performance on the training and validation
sets, whereas Figure 3 shows the performance on the validation
set. The validation accuracies reported were also found on the
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held-out test set. The optimal network architecture found after
cross-validation was a 5 layer deep network with 100 nodes
on the hidden layers, all activated by the ‘relu’ function. The
optimal batch size was 90 for stochastic mini-batch training,
the temperature of the output ‘softmax’ was 2 and momentum
for the stochastic gradient descent was 0.9.

We also experimented using the curricula from [10], [24],
[28] and [29] to organise input data. We found that these
achieved average accuracies of 40%, 40%, 43% and 42%
respectively for curriculum learning, whereas our method
achieved 46%. When incorporating the multi-armed bandit,
these curricula achieved accuracies of 45%, 46%, 49% and
46%, whereas ours achieved 52%.

To further examine the efficacy of this method, we carry out
an experiment using the publicly available MIMIC-III dataset
[27, 5]. We see from Figure 4 the stochastic mini-batch train-
ing once again providing highly variable performance with a
maximum performance of 61%. Figure 5 shows the curriculum
regime, once again converging the losses and achieving a
better maximum accuracy for all seeds achieving 66%. Finally,
Figure 6 shows that our algorithm once again produces the best
maximum performance of 69.5% by combining the curriculum
regime with the MAB after a brief period of exploration. The
curriculum once again smoothes out the losses into a similar
minimum in order to provide a stable point from which to
launch an exploration of the weight space. The multi-armed
bandit then exploits the positioning in the weight space to
find a better local minimum. As before the best performing
model is saved out before continuing experimentation with
the batches. Figures 4 and 5 once again report results on
training and validations sets and Figure 6 is displayed only on
the validation set. We again find that the reported validation
accuracies were also found on the held-out test set. We have
therefore shown that this training scheme produces a better
performance for two separate classification problems from two
separate datasets.

To analyse the performance of our approach across the seven
ward-types in the OUH dataset we look at the AUCs of the
unique classes after training with the different regimes.

TABLE IV: Maximum performance of various models on
ward type prediction for the individual ward types. We test an
SVM, feedforward deep neural network trained by stochastic
mini-batch training (ff-NN), curriculum learning with a deep
neural network (CL) and our proposed method curriculum
learning and multi-armed bandit training (CL-MAB). Chance
corresponds to an accuracy of 14% and an AUC of 0.5.

Test Data Model
SVM ff-NN CL CL-MAB

Avg. Acc. 0.14 0.39 0.46 0.52
Medical AUC 0.50 0.67 0.67 0.67
Cardiac AUC 0.55 0.78 0.78 0.78
Neuro AUC 0.56 0.51 0.56 0.60
Trauma AUC 0.66 0.75 0.75 0.75
ICU AUC 0.65 0.71 0.71 0.71
Surgical AUC 0.50 0.59 0.63 0.63
General/Obs&Gynae AUC 0.54 0.64 0.66 0.68
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Fig. 1: Batchwise training for five separate seeds.
Shaded regions indicate maximum and minimum
performance.

Number of curriculum batches0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

0 1000 2000 3000 4000 5000 6000 7000
Number of curriculum batches

1.0

1.5

2.0

2.5
Lo
ss

training
validation

Fig. 2: Mahalanobis curriculum for five separate
seeds. Shaded regions indicate maximum and min-
imum performance. The red line shows the maxi-
mum accuracy achieved on the validation set and
held-out test set.

0 5000 10000 15000 20000 25000
Number of curriculum batches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Fig. 3: Curriculum followed by a multi-armed ban-
dit batch selector for five seeds with shaded regions
indicating maximum and minimum performance.
The validation set is plotted alone for clarity. The
red line shows the maximum accuracy achieved on
the validation set and held-out test set.

We see that the best performance is achieved by the
combination of the curriculum learner and multi-armed ban-
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Fig. 4: Batchwise training for five separate seeds on the
MIMIC-III dataset. Shaded regions indicate maximum and
minimum performance. The red line shows the maximum
accuracy achieved on the validation set and held-out test set.
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Fig. 5: Mahalanobis curriculum on the MIMIC-III dataset for
five separate seeds. Shaded regions indicate maximum and
minimum performance. The red line shows the maximum
accuracy achieved on the validation set and held-out test set.

Fig. 6: Curriculum (orange) followed by a multi-armed bandit
batch selector (blue) on the MIMIC-III dataset. The mean per-
formance of the differently seeded models on the validation set
is plotted alone for clarity. The red line shows the maximum
accuracy achieved on the validation set and held-out test set.

dit, the incorporation of the latter improving the prediction

performance on groups 2 and 6 without detriment to the
other classes. We further investigate by extracting the latent
representation of our test data from the embedded space of
the final layer in the network after training. We then apply
the t-SNE algorithm [9] to view the clusters that are formed
within that space.

Fig. 7: Visualisation of clustering of the latent representations
of the final layer using the t-SNE algorithm.

The result in Figure 7 shows that there are some well defined
clusters, coloured by orange, pink, turquoise, red and lilac.
However there are two clusters (which correspond to classes
2 and 5) which are not clearly defined by colour and this can
be explained as they have low AUC values (see Table IV).

To gain a clearer understanding of why the AUCs for the
separate classes are different we use the modified architecture
that was described in Section IV-D to interpret feature im-
portance. We retrain the modified architecture to achieve the
same accuracy as the previous network while minimising the
temperature of the softmax from the input layer to achieve
as ‘peaky’ a distribution as possible over the input features.
We then extract the trained weights of the inputs, win. The
only features that have weights in the sparse vector (and are
therefore considered important for the prediction) are listed in
Table V and Figure 8. Table V and Table VII in Appendix A
show the binary features which were found to be important for
prediction. Figure 8 and Figure 10 in Appendix A show how
frequently previous diagnoses appear for patients admitted to
a certain ward type. These were compared with the previous
diagnoses of the patients admitted to each ward type for the
whole dataset and where there was overlap in the diagnoses,
these were boxed and labelled as seen in Figure 8b.

We see from Tables V and VII that the model has learned a
distribution based on these ‘important’ features. These tables
explain why the model does not predict accurately for all
patients.

• The blood culture test is predominantly carried out for
patients who go on to be admitted to classes 0 and 4
which correspond to the ‘medical’ wards and the ICUs.
This test is used to check for bloodstream infection
which can have serious complications and as a result,
the model has learned to associate a request for this
test with admission under medicine, representing most
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Feature Predicted and Actual Class
0 1 2 3 4 5 6

Pregnancy test 0.00 0.00 0.01 0.00 0.03 0.00 0.19
Blood culture 0.16 0.03 0.10 0.02 0.31 0.09 0.09

Cardiac enzymes 0.06 0.58 0.12 0.09 0.27 0.17 0.07

Blood cross-match 0.06 0.09 0.39 0.45 0.42 0.00 0.17
Frequent Flier 0.04 0.04 0.04 0.02 0.03 0.22 0.06

TABLE V: Proportion of patients from each class who had
the following tests carried out. All patients in this table
were correctly predicted by the model. Values ≥ 15% are
highlighted in bold. Classes are: 0 - medical rest, 1 - cardiac,
2 - neurology, 3 - trauma, 4 - ICU, 5 - surgical rest, 6 - general
rest.

(a) Class 0: Medical (b) Class 1: Cardiac

(c) Class 2: Neuro (d) Class 3: Trauma

(e) Class 4: ICU (f) Class 5: Surgical

(g) Class 6: General/O&G

Fig. 8: Historical diagnosis code by admission location for cor-
rectly predicted patients. Plots are of frequency of appearance
by encoded diagnosis code.

patients admitted with an infection, and with the need
for intensive care.

• Cardiac enzyme tests are those that are used to indicate
a heart attack has occurred or is occurring or if there

is blockage in the heart’s arteries [2]. It is therefore
unsurprising that the model associates this test with class
1, which corresponds to the ‘cardiac’ ward types.

• Blood cross-matching (the procedure of searching for
appropriate blood to use if a transfusion is required) is
a common test asked for from patients who are usually
admitted to classes 2, 3 and 4 corresponding to ‘neuro’,
‘trauma’ and ‘ICU’ ward types respectively. This repre-
sents the a subset of patients likely to require surgery
during their admission.

• The frequent flier flag is mostly associated with patients
admitted to surgical wards (class 5). It is not immediately
clear why this is. However, it is hypothesised that this
ward function may act as a spare space where beds are
available for emptying the ED.

• Pregnancy tests are correlated with the general rest wards
(class 6). This likely reflects that admissions under ob-
stetrics and gynaecology fall into this group of patients.

Using the tables and figures we can now see how the
predictions are determined.

1) Class 0 (‘Medical’ ward type) are mainly predicted by
a blood culture test request and no other tests.

2) Class 1 (‘Cardiac’ ward type) are dominated by having
only a cardiac enzyme test requested and no others. Pres-
ence of a previous diagnosis of a rheumatic, hypertensive
or ischemic disease further increases the likelihood of
admission.

3) Class 2 (‘Neuro’ ward type) are predicted by a blood
cross-matching request and previous diagnoses, the most
prevalent of which correspond to ‘aortic valve stenosis
with insufficiency’. These are documented in the litera-
ture to highly correlate with stroke [6], possibly explain-
ing the reason for these patients’ predicted admission to
Neuro. Upon investigation of the dataset, 86% of the
patients who had been previously diagnosed with aortic
stenosis would go on to have a subsequent diagnosis
associated with cerebral infarction or stroke.

4) Class 3 (‘Trauma’ ward type) is characterised again by a
blood cross-match but with different previous diagnoses.
In this instance the diagnosis (indicated by the red
spikes in Figures 8d and 10d) corresponds to nonspecific
lymphadenitis or swelling of the lymph nodes. This is
not descriptive enough to gain a physical insight as
to why this classification is made. These patients are
generally older than the average age of the population
of the dataset (65 years old vs. 60 years old generally)
and are at a greater risk of previous accidental harm. It
is therefore expected that our CL-MAB algorithm has
associated a common previous diagnosis code with the
greater age of this population and therefore a greater
risk of injury. Further investigation would be required
to verify that this indeed is the association learned by
the algorithm for this patient subset.

5) Class 4 (‘ICU’ ward type) is characterised by a request
for blood culture, cardiac enzymes and blood cross-
matching. This wide spectrum of tests requested is
inidicative of the critical condition the patient is likely
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to be in upon presentation.
6) Class 5 (‘Surgical’ ward type) is also characterised by

a Cardiac Enzyme test requested. It is also not clear if
having a ‘Frequent Flier’ flag causes the prediction.

7) The cause of a prediction of class 6 (‘General / O&G’
ward type) is mainly due to a pregnancy test and this is
most likely due to the inclusion of O&G admissions in
this ward type.

The overlap in important features for the ‘neuro’ and
‘trauma’ classes may also explain the difference in AUCs
reported in Table IV. It is very possible that many ‘neuro’
admissions are predicted to be ‘trauma’ due to the similarity in
their input importance. This may also be the case for ‘surgical’
and ‘cardiac’ admissions. To improve our model it will be
important to determine if there are further specific features
that can be obtained at ED triage time for all classes that may
help distinguish these classes.

For comparison we check the distribution of these features
for the whole population using the real labels of what ward
type each patient was admitted to. The distribution is shown
in Table VI.

Feature Actual Class
0 1 2 3 4 5 6

Pregnancy test 0.01 0.00 0.01 0.01 0.02 0.00 0.07

Blood culture 0.18 0.05 0.10 0.03 0.26 0.29 0.12

Cardiac enzymes 0.13 0.51 0.09 0.11 0.25 0.24 0.14

Blood cross-match 0.08 0.11 0.33 0.42 0.35 0.07 0.16
Frequent Flier 0.05 0.05 0.05 0.03 0.05 0.05 0.05

TABLE VI: The total population of the dataset is tabulated
here using their real ward types as the label. Values ≥ 15%
are highlighted in bold.

From Table VI we see that the model has learned the
underlying distribution quite accurately. The exceptions are
in classes 5 (‘Surgical’) and 6 (‘General/O&G’). For Class 6,
we see the pregnancy test is not very important for prediction
but the blood cross-match is. This motivates the introduction
of a gender-specific model. For Class 5 the model has not
learned that a blood culture test request as well as a cardiac
enzymes test request are most indicative for this class and not
the frequent flier flag. This may explain the reason for the poor
performance in AUC for class 5. Class 2 (‘Neuro’) also has a
relatively poor performance and based on the distributions in
Tables V, VII and VI, it could be due to blood cross-matching
tests being important features for classes 3 (‘Trauma’) and
4 (‘ICU’) as well. To further improve the performance of
the model we will investigate further features that are more
specific to the individual ward types, as well as developing
separate models for male and female patients. Another lim-
itation of our work is that some patient admissions require
specific equipment which can only be found in certain wards
[25]. A future model should incorporate this requirement to
maximise usefulness of the model to clinicians.

To further examine the usefulness of the model to clinical
staff we investigate its performance plotted over time. Figure
9 shows how the model performance varies with time. The
red shaded regions indicate the winter flu seasons where the

ED gets busiest with admissions. We see that the model
does not suffer significant degradation in performance due to
winter pressures. In addition in three out of four of the flu
seasons the model performs better than the yearly average.
We believe this could be due to the grouping of wards into
ward functions as opposed to individual wards, which bypasses
the problem of patients being admitted to a ward atypical for
their condition but still capable of treating the patient. However
this may also be due to our preprocessing step of removing
patients obviously admitted to an inappropriate ward for their
diagnosis. While this filters the obvious cases, it does not
remove all such cases from the dataset. We therefore believe
that this model could still be useful in helping clinicians during
busy periods to request bed space well in advance of the need
for it to allow timely admission of patients from the ED and
into the hospital ward.

Fig. 9: Performance of the model by month for the 4 years of
data included in the dataset. The black solid line is the overall
accuracy over the four years. The red shaded area shows the
winter flu seasons and the solid red lines show the average
performance of the model during those flu seasons.

VII. CONCLUSION

In this article we have presented a novel method of training
and regularising deep learning model with the aim of predict-
ing where a patient presented to the ED will be admitted in an
OUH Trust hospital. This prediction will aid in the provision
of timely care and treatment for the patient and those still in
the ED. Our model achieves AUC values between 0.60 and
0.78 for the individual ward types. Furthermore, our model
also provides an explanation as to the cause of the predictions,
allowing the user to incorporate more important features for
individual ward types in the future. The authors believe this
may be useful for ensuring timely admission to hospital and
reducing the time to care. This will in turn improve the quality
of care for patients still in the ED due to less crowding.
This work may also be useful for resource prediction and
optimisation in hospitals more generally.

VIII. FUTURE WORK

The model presented in this work is first trained using a
curriculum and then using the curriculum batches a multi-
armed bandit is employed to improve the performance. While
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the algorithm described in Algorithm 1 is non-stationary, it
is weakly non-stationary relying on the number of pulls of a
certain batch to reduce the probability of choosing said batch.
As a result, we will improve this by turning this problem into
a full reinforcement learning problem. Treating the weights
of the network as the state space, we will train a policy to
select the best action to take (batch to train on) given the state
space. We believe this will be a much more effective method
of training due to the information provided to the trainer about
the state of the weights of the network.

We would also like to further investigate features that can
be obtained from the ED which correlate highly with the
individual ward types. In doing so we will be able to reduce
the input feature space and advise clinicians in the ED what
needs to be measured for this prediction problem. It is hoped
that by doing this, we will be able to mitigate the problem of
missing features which can commonly happen in models with
large input spaces. We will continue investigating methods of
identifying when patients were admitted to wards that were
not ideal for their treatment. We believe that finding these
cases will help to improve the performance of our models
due to their reliance on historical data. We will also seek to
integrate data on the equipment used during a patient stay to
better inform the model of which wards are appropriate for
admission.
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APPENDIX A
INCORRECT PREDICTIONS DISTRIBUTION

For comparison, we show the distribution of the features of
patients who were predicted to be one of these classes but the
classification was incorrect. These results are shown in Table
VII and Figure 10.

Feature Predicted and not Actual Class
0 1 2 3 4 5 6

Pregnancy test 0.00 0.00 0.00 0.00 0.02 0.00 0.02

Blood culture 0.38 0.03 0.09 0.03 0.33 0.07 0.16
Cardiac enzymes 0.10 0.35 0.05 0.04 0.21 0.15 0.05

Blood cross-match 0.07 0.08 0.23 0.39 0.70 0.00 0.10

Frequent Flier 0.06 0.03 0.02 0.04 0.04 0.04 0.08

TABLE VII: All patients in this table were incorrectly pre-
dicted by the model to belong to these classes. Values ≥ 15%
are highlighted in bold.

(a) Class 0: Medical (b) Class 1: Cardiac

(c) Class 2: Neuro (d) Class 3: Trauma

(e) Class 4: ICU (f) Class 5: Surgical

(g) Class 6: General/O&G

Fig. 10: Historical diagnosis code by admission location
for incorrectly predicted patients. Plots are of frequency of
appearance by encoded diagnosis code.


