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Abstract—With the soaring development of body sensor
network (BSN)-based health informatics, information security in
such medical devices has attracted increasing attention in recent
years. Employing the biosignals acquired directly by the BSN
as biometrics for personal identification is an effective approach.
Noncancelability and cross-application invariance are two natural
flaws of most traditional biometric modalities. Once the biometric
template is exposed, it is compromised forever. Even worse,
because the same biometrics may be employed as tokens for
different accounts in multiple applications, the exposed template
can be used to compromise other accounts. In this work, we
propose a cancelable and cross-application discrepant biometric
approach based on high-density surface electromyogram (HD-
sEMG) for personal identification. We enrolled two accounts for
each user. HD-sEMG signals from the right dorsal hand under
isometric contractions of different finger muscles were employed
as biometrics tokens. Since isometric contraction, in contrast to
dynamic contraction, requires no actual movement, the users’
choice to login to different accounts is greatly protected against
impostors. We realized a promising identification accuracy of
85.76 % for 44 identities (22 subjects x 2 accounts) with training
and testing data acquired 9 days apart. The high identification
accuracy of different accounts for the same user demonstrates
the promising cancelability and cross-application discrepancy of
the proposed HD-sEMG-based biometrics. To the best of our
knowledge, this is the first study to employ HD-sEMG in personal
identification applications.

Index Terms—biometrics, high-density sEMG, machine
learning, cross-application discrepant identity recognition.

I. INTRODUCTION

HE wide application of body sensor network (BSN)-
based health informatics has contributed to an increasing
demand for information security in smart healthcare [1]. For
example, authentication systems in tele-healthcare monitoring
devices [2], [3] can give a binary “yes/no” output to verify
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if the identity of an individual matches a specific person.
Identification systems can also label an individual within an
enrolled database. Normally, the latter task is more challenging
and complicated. Furthermore, the biosignals of multiple
individuals acquired by BSN devices are sent to a central server
for further analysis in remote health monitoring, where personal
identification is required. Compared with knowledge-based
identification methods, such as a personal identification number
(PIN) and password, biometrics-based ones such as DNA [4],
face [5] and fingerprint [6], are relatively difficult to forge and
reproduce if stolen. Previous studies have employed fingerprint
recognition technique in implantable medical devices to ensure
information security [7]. However, the noncancelability and
cross-application invariance are two natural flaws [8]. Once
the biometric template is exposed, it is compromised forever
because users cannot volitionally replace it. Whilst it is highly
encouraged to use different passwords in different accounts or
applications. Considering the same biometrics may be employed
in different healthcare devices or in multiple application
scenarios, the exposed template can thus threaten all other
accounts. Moreover, one user may need to login to different
accounts using multiple identities to shift between different
modes of healthcare service. In this case, traditional biometrics
cannot discriminate the different roles of the same person. For
decades, researchers have put great effort into addressing these
natural flaws and hidden risks of biometrics-based personal
identification.

At the intersection of information security and biomedical
informatics, previous studies have proposed new biometric
modalities based on physiological biosignals, such as the
electroencephalogram (EEG) [9] and electrocardiogram (ECG)
[10]. Although these modalities are relatively theft-resistant
compared with traditional ones, they have their own flaws. For
example, ECG is vulnerable to the heart rate fluctuations caused
by physiological and emotional factors, which may not be under
the volitional control of the subject. Therefore, it is still not a
cancelable or cross-application discrepant modality. EEG is a
widely used modality in brain-computer interface (BCI) fields
to discriminate different intention-driven mental states such as
motor imagery [11]. The volitionally-controlled shift between
different mental states indicates its potential cancelability and
cross-application discrepancy. However, the discrimination of
multiple mental states is quite challenging due to the low signal-
to-noise ratio (SNR) of scalp EEG. Moreover, the apparatus
for EEG acquisition is quite cumbersome and inconvenient.
All these factors limit the application of EEG-based biometrics
in real life scenarios.
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By contrast, surface electromyogram (sEMG), with a more
convenient acquisition procedure, has been widely applied
in human-machine interface (HMI) techniques [12]. EMG
signals have also shown inter-individual variation in multi-
user HMI [13], indicating its potential as a possible biometric
modality. Furthermore, BSN-based health monitoring devices
using SEMG have been applied in a wide range of fields such as
daily activity monitoring and fall detection [14]. In more general
application, SEMG-based interfaces have also been embedded in
a wearable gesture sensing device to manipulate a mobile phone
in real life scenarios [15]. With increasingly diverse applications
in our daily life, employing SEMG as a biometric modality may
be a promising and effective approach. So far, very few studies
have investigated the performance of SEMG as a biometric
modality [16], [17], or as a complement to other biometric
modalities, such as keystroke dynamics [18] and ECG [19].
However, between-day signal variability was not taken into
account in all these studies. The SEMG signals were acquired
under a specific hand gesture [16], [17] or keyboard typing
[18], which is observable to impostors, making them easier to
spoof by imitating users’ gestures and motions to generate a
similar SEMG pattern. The identification performance of SEMG
signals under unobservable muscle isometric contractions have
not been well studied. Moreover, the cancelability and cross-
application discrepancy of SEMG biometrics have not been
investigated in previous studies.

In this work, we improve upon existing EMG-based methods.
First, personal identification with signal variation across
different days was considered to validate its potential as a
biometric modality. Training and testing data were collected
9 days apart on average. Second, we employed high-density
SEMG (HD-sEMG) for personal identification. Compared with
conventional sSEMG signals, HD-sEMG with its high spatial
resolution improves identification accuracy. Wearable, modular
and smart HD-sMEG acquisition techniques [20] also support
practical use of HD-sEMG in both BSN-based medical devices
and more general real life situations. Third, HD-sEMG acquired
during isometric contractions of individual finger muscles was
selected as the biometrics for identification. This modality has
three main advantages: 1) HD-sEMG patterns vary significantly
during different finger muscle contractions [21], indicating
its cancelability and cross-application discrepancy, 2) For the
case of multiple accounts, the user can set different biometric
passwords for different accounts by simply using different
finger muscle contraction patterns, and 3) During isometric
contraction, muscle tension can be changed with no joint
movement. Therefore, it is hardly observable to impostors.
Overall, these unique properties allow the self-encoding of
one’s HD-sEMG biometrics patterns based on users’ choice,
which is unobservable and hence undisclosed to impostors.
Experimental results showed that the identification accuracy
of 44 identities (22 subjects X 2 accounts) using the proposed
approach was 85.76%. To the best of our knowledge, this is
the first study to evaluate the performance of HD-sEMG in
the personal identification task with signal variation across
days considered. This is also the first study to evaluate the
cancelability and cross-application discrepancy of HD-sEMG
biometrics in personal identification task.

II. MATERIALS

A. Data Acquisition

HD-sEMG signals from the right dorsal hand of 22 subjects
(aged 21 to 31 years; 10 males, 12 females) were acquired at
using the TMSi SAGA 64+ system (sampling rate f;: 4000
Hz; common mode rejection ratio: 100 dB; resolution: 24 bits;
input impedence: > 1GS2, passband of system filter: 10-900
Hz). Each subject was informed about the experiment purpose
and procedure. Written informed consent was obtained from
each subject.

Before the experiment, the right dorsal hand of the subject
was cleaned using abrasive gel and alcohol cotton, to reduce
the skin-electrode impedance. An 8x8 flexible HD-sEMG
electrode array (Ag/AgCl electrode) with 3.8-mm electrode
diameter and 8-mm inter-electrode distance was placed on
the right dorsal hand. We placed the center of the electrode
array at the center of hand while keeping the right edges of
both electrode array and dorsal hand parallel to each other at
the same time, as shown in Fig. 1. The reference Ag/AgCl
electrode was placed on the head of the ulna.

During the experiment, subjects sat in a comfortable chair,
following the experiment instruction shown on a computer
screen in front of them. Subjects were asked to perform
isometric muscle contractions of different fingers or finger
combinations following the experiment instructions shown in
the sequence diagram of Fig. 2. During each trial, subjects
had a 10-s pre-trial rest and then performed 8 task-rest pairs.
Each task-rest pair consisted of a 3-s isometric contraction task
and a 3-s rest. Ten repeated trials were performed. Subjects
were required to inform the experiment assistant if they missed
any task or performed a wrong task. To avoid the influence of

Fig. 1: Experimental setup.
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Fig. 2: Sequence of 8§ tasks in each trial.
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disruption in performance caused by awareness of a wrong or
missed task to successive tasks, the whole trial was removed
from the dataset if one task was incorrect. On average, 9.25 out
of 10 trials were performed correctly. Two independent sessions
(session 1 and 2) with the same experimental procedures were
performed several days (3—-23 days, 9 4 6.67 days on average)
apart. Data acquired in sessions 1 and 2 were used as training
and testing sets, respectively. In session 2, the electrode array
was replaced, thus the effect of electrode shift on personal
identification performance was also considered in this study.

B. Data Preprocessing

The HD-sEMG signals were bandpass filtered at 10-900 Hz
by an 8-order Butterworth filter. Then, a notch filter was applied
to remove the 50 Hz power line interference. We evaluated the
power of residual noise using signals recorded during rest. The
signal-to-noise ratio (SNR) of the preprocessed data was 8.25
dB. The preprocessed HD-sEMG signals in each task within
a trial were then segmented into eight 3-s tasks for further
analysis.

III. METHODS OF ANALYSIS

Temporal-spectral-spatial domain features were extracted
from each HD-sEMG array channel from each 3-s task
as the representation of HD-sEMG biometrics. The feature
were: waveform length (WL), frequency median (FMD) and
spatial synchronization. For each feature, a feature vector was
constructed. These feature vectors were concatenated together
to obtain a combined high-length feature vector. An energy
constraint technique was applied to balance the contribution of
each of the three features. The combined feature vector was
then fed into a K-Nearest Neighbor (KNN) classifier to give
the identity label of a specific subject. Detailed identification
method will be elaborated in this section.

A. Feature Extraction

Let z;(j) be the j*" sample from channel i of the HD-sSEMG
array. There are 7' = 12000 samples and N = 64 channels.
Unless noted otherwise, features are computed for each channel
using the full 3-s task.

1) Waveform Length:

WL is a parameter reflecting the amplitude and frequency
of the signal waveform, taking the following form:

f T-1
WL(i) = =75 > |l +1) = 2:(5)]. (1)
j=1

2) Frequency Median:

The FMD [22] feature was extracted based on power spectral
density (PSD) of signal x;, namely P;(k), where k € 1,2,..., K
is the index of P;(k) corresponding to a specific frequency.
In our work, the PSD was obtained via Welch’s overlapped
segment averaging estimator using Hamming window with a
segment length of 71 samples, a Discrete Fourier Transform

length of 256 points and 50% overlap. FMD splits the signal
PSD into two equal parts, given by the following formula:

FMD(i
k=1

Each of the above two features (WL and FMD) was extracted
from HD-sEMG signals in all channels, constructing a 8x8
feature map. The resolution of the 8§x8 feature map was
tripled in all directions (up-sampled to 24 x 24) through
bicubic interpolation. The up-sampled feature maps were then
vectorized to 576-length feature vectors, one per task per trial.

3) Spatial Synchronization:

During muscle activations, the synchronization between each
channel pair may show a distinct pattern, due to both the
synchronization between motor units (MUs) and the cross-talk
between adjacent channels. In our work, spatial synchronization
patterns of HD-sEMG signals were extracted to recognize a
subjects’ identities. To calculate the synchronization between
each channel pair, we first performed eigenvalue decomposition
on the covariance matrix C' € R?*2 of the two channels:

) 1 K
Pi(k) =5 > Pi(k). )
k=1

Cuy, = Apug 3)

where A, (k € {1,2} and Ay > A\2) and wy are eigenvalues
and eigenvectors of C, respectively. The synchronization &
between two channels is defined as:

“4)

We calculated the synchronization between each channel pair.
The 64 channels generate Zgil k =2016 distinct channel
pairs, constructing a 2016-length feature vector.

B. Concatenating Features with an Energy Constraint

We extracted three feature vectors for each task. Due to the
different lengths of each feature vector, we applied an energy
constraint to balance the contribution of each individual feature
vector. Specifically, a feature vector v of length length(v) was
normalized to v by the following formula:

S U— mean(v) 5)

std(v) - \/length(v)

where mean(v) and std(v) denote the mean value and standard
deviation of feature vector v, respectively. The normalized
feature vectors were then concatenated together to construct
the combined feature vector. Accordingly, constituent feature
vectors with different lengths contribute the same to the distance
between the combined feature vectors of different tasks. As
a comparison, we also evaluated the performance of feature
combination without energy constraint in select analyses, in
which case, each feature vector was normalized simply by:

~ v —mean(v)
= —". 6
Y std(v) ©
The resulting 3168-length (576x2+2016) combined feature
vector represents each task. The combined feature vector was
fed in to a KNN classifier to give the corresponding identity
label.



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, XX XXXX 4

C. Validation Methodologies

A series of progressive validation procedures was conducted
to evaluate the effect of different factors on identification
accuracy.

Protocol 1:In protocol 1, we performed personal
identification of 22 subjects with training and testing data
acquired in different trials on the same day (session 2 only).
Leave-one-out cross-validation was employed. Note that in this
protocol, the HD-sEMG signals of the same task were employed
as the biometric template of each subject. The accuracy of
personal identification was calculated separately for each of
the eight individual tasks shown in Fig. 2.

Protocol 2: 1In protocol 2, the HD-sEMG signal variation
across days was taken into consideration. We performed
personal identification of 22 subjects with data from session 1
and 2 used for training and testing, respectively. As in protocol
1, the biometric templates of all subjects were acquired from
the same task. Personal identification was performed separately
on each individual task shown in Fig. 2.

Protocol 3: As discussed previously, a significant advantage
of the proposed HD-sEMG biometrics is that it allows self-
encoding via performing isometric contractions in different
ways which require no actual movement. In protocol 3, we
evaluated these effects. In a real world scenario, each subject
can choose any their manner of self-encoding (e.g., any
finger contraction task) arbitrarily, which is unobservable and
unknown to impostors. Accordingly, we employed HD-sEMG
of one uniformly and randomly selected task as the biometric
token of each subject. The selected tasks of all subjects were
hence not necessarily the same. Data from sessions 1 and 2
were used as training and testing, respectively. 200 repetitions
of the random task selection were performed. The average
performance of all 200 repetitions were used to evaluate the
performance of the proposed method.

Protocol 4: Cancelability and cross-application discrepancy
benefit from different self-encoding manners of HD-sEMG
biometrics. Discrimination between different accounts of the
same subject is a desirable but scarce trait of a biometric
modality. In protocol 4, we evaluated the cancelability and
cross-application discrepancy of HD-sEMG biometrics. We
enrolled two accounts for each subject. HD-sEMG signals
during different tasks (randomly selected) were employed as
the biometric tokens of different accounts for the same subject.
44 identities (22 subjects x 2 accounts) were identified in
this protocol. The tasks of different subjects were likewise not
necessarily the same or different due to the random selection.
The tasks of different accounts for the same subject were also
randomly selected but set to be different, which is in line with
the real world situation. Data from sessions 1 and 2 were
used for training and testing, respectively. 200 repetitions of
the random task selection were performed and the average
performance was reported.

Protocol 5: In protocol 5, we evaluated the effect of different
self-encoding lengths on identification accuracy. We randomly
selected N distinct tasks in each trial to construct an encoding
sequence (N € {1,2,3,4,5,6,7,8}). Features extracted in
each task were concatenated together in the order of the

sequence to represent the biometrics of each account of each
subject. Specifically, for the encoding length NN, the length of
the combined feature vector is 3168 V. Data from sessions 1
and 2 were used for training and testing, respectively. Similar
with protocol 4, the task sequences of different subjects were
randomly selected hence not necessarily the same or different.
The sequences corresponding to different accounts of the same
subjects were set to be different (also randomly selected). 200
repetitions of the random task selection were performed and
the average performance was reported. Besides, in protocol
5, we also evaluated the necessity and contribution of each
individual component employed in the proposed method (i.e.,
WL features, FMD features, synchronization features, bicubic
interpolation of 8 x 8 feature maps, and energy constraint).
Specifically, we conducted an ablation experiment, dropping
only one of the five components per time. The performance
variation was used to evaluate the necessity and contribution
of a specific component.

D. Statistical Analysis

To quantify the performance difference in the ablation
experiment in protocol 5, statistical analysis is required.
Because the obtained data in our work do not uniformly
follow a Gaussian distribution, Kruskal-Wallis test [23], a non-
parametric method, was employed. For multi-compare problem,
Bonferroni-Holm correction [24] was performed.

IV. RESULTS

A. Results of Protocol 1

As shown in Table I Row 1, when the training and testing
data were drawn from the same session (session 2) acquired
on the same day, identification accuracies for all tasks are
equal to or higher than 99.51%. For Tasks 1, 4, 5, 6 and 8,
the identification accuracy is 100%.

To intuitively view the discrimination of different subjects,
t-Distributed Stochastic Neighbor Embedding (t-SNE) [25] was
employed to visualize the distribution of the combined features
in a 2-dimensional space, with the data structure preserved
at the same time. Fig. 3 presents this data visualization.
Each single point represents a specific trial. Different colors
represent different subjects. As expected, repeated trials from
the same subject clustered together, intuitively showing the
separability of HD-sEMG features of different subjects without
any physiological meaning.

B. Results of Protocol 2

As shown in Table I Row 2, if we employ separate training
(session 1) and test (session 2) sets, the identification accuracy
varies with different tasks. For Task 5 (isometric contraction
of middle finger muscle), the identification accuracy for 22
identities is 62.93%. However, for Task 3 (isometric contraction
of thumb finger muscle), the identification accuracy is only
45.85%.
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TABLE I: Identification accuracy in different protocols.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
Protocol 1 (22 subjectsx 1 account, same day) 100% 99.51%  99.51% 100% 100% 100% 99.51% 100%
Protocol 2 (22 subjects x 1 account, different days) 50.73%  59.51% 45.85% 59.51% 62.93% 48.78% 49.27%  55.61%
Protocol 3 (22 subjects x 1 account, encoding length:1) 68.27%+4.88%

Protocol 4 (22 subjectsx2 accounts, encoding length:1)
Protocol 5 (22 subjects X2 accounts, encoding length:8)

57.93%+4.15%
85.76%+0.47%

For Protocols 3, 4 and 5, average accuracy and standard deviation of 200 repetitions were reported.

TABLE II: Necessity analysis of each individual component of feature extraction using ablation experiment in Protocol 5.

Encoding Length 1 2 3 4 5 6 7 8
Keening Al Invalved € t 57.93% 74.67% 80.93% 83.91% 85.01% 85.53% 85.70% 85.76%
eeping nvolved f.omponents +4.15% +3.02% +2.46% +1.47% +1.10% +0.75% +0.53% +0.47%
58.15% 74.94% 8036%  82.95% 8434% _ 85.08% 85.42% 85.63%
Drop WL Features Only w4319 +201%" 42259t 1029t +132%Y 10919 +£069%7  +0.54%F"
974% ,  6895% ,  T135% , SI.73% §385% . 8475% . 8529% 85.57%
Drop FMD Features Only w4419 237719 13039 12169 £ie2%t 1269 +096%'  +073%%
— 36.10% T425% 80.83% 83.67% 8478%  85.44% 85.64% R571%
Drop Synchronization Features Only 1 /570 4* 137104 123798 Lieawt 21139t 10709 +055%  +046%¢
— ) 1838% , 68.09% . 7521% , 7890% , SIAT% ., 8295% , SA00% , S475%
Drop Bicubic Interpolation Only 434" 1359 12869V 12239 12109 £177%Y  +1459Y 1109t
) 35.18% T2.66% . 79.07% . 8235% . 84.02% R4.84% 35.34% 85.58%
Drop Energy Constraint Only ta56%Y 13339 1266% " L1769V +£157%Y  £1a8%' 090wt 065wt

Symbols 1 and | denote improved and reduced identification accuracy, respectively, compared with that using all components.
Symbol * denotes a significant difference (based on Kruskal-Wallis test with Bonferroni-Holm correction) of identification accuracy compared with
that using all components.

o
2

-5 [

to

10 0 10 20
Fig. 3: Data visualization via t-SNE, showing distribution of
Task 5 of session 2. Each single point represents a specific

trial. Different colors represent different subjects.

C. Results of Protocol 3

Although identification accuracy using HD-sEMG of the
same task is not satisfactory (as demonstrated in Protocol 2),
performance can be promisingly improved via self-encoding,
which is a natural superiority of HD-sEMG biometrics. After
we employed HD-sEMG during a randomly selected task as
the biometric token of each subject, the identification accuracy
was improved to 68.27%+4.88% (average of 200 repetitions).

D. Results of Protocol 4

In Protocol 4, we aim to discriminate both different
subjects and different accounts of the same subject. The
identification accuracy of 44 identities (22 subjectsx 2 accounts)
was 57.93%+4.15% (average of 200 repetitions). We further

100%
¢ ¢ ¢ ¢
98.55% 98.74% 98.93% 98.98%

¢ 98.34%
y +5.98% 5.69% +4.95% +4.77%

97.55% +6.23%
¢ £7.50%
95.53%
+9.08%

95% -

90% -
¢

88.59%

+8.70%

I | | | | | | I
1 2 3 4 5 6 7 8
Encoding Length

Identification Accuracy between
Two Accounts of the Same Subject

o
&
2

Fig. 4: Identification accuracy between two accounts of the
same subject in different encoding length.

evaluated the discrimination between the two enrolled accounts
within each subject, achieving an average identification
accuracy of 88.59%=8.70% for the two-identity recognition
tasks. The high identification accuracy between different
accounts for the same subject demonstrates the promising
cancelability and cross-application discrepancy of the proposed
HD-sEMG biometrics.

E. Results of Protocol 5

We evaluated the relationship between identification accuracy
and encoding length, shown in Table. II Row 1. Average
identification accuracy improved when encoding length
increased. In particular, the average identification accuracy
at encoding length N=8 is 85.76%=+0.47%. Moreover, the
standard deviation reduced with a longer encoding length,
demonstrating that a longer encoding length can also improve
the robustness of the proposed method. In Table. II, we also
presented the results of ablation experiment, dropping one
components in our method each time. With each component
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dropped out separately, we can clearly see if all components are
necessary to achieve a high identification accuracy. As shown in
Table. II, when a particular component dropped out, the average
accuracy reduced in almost all cases, with most of these cases
showing a significant difference (p < 0.05 for Kruskal-Wallis
test with Bonferroni-Holm correction). Only for the encoding
length of 1 and 2 with WL features dropped out, the average
identification accuracy improved but with no significance. In
contrast, the remaining cases (with the encoding length>3)
when WL features dropped out showed a significantly reduced
identification accuracy. The ablation experiment demonstrates
the necessity of all components employed in the proposed
method.

Furthermore, to validate the cancelability and cross-
application discrepancy of HD-sEMG biometric modality,
we evaluated the discrimination between the two enrolled
accounts of each subject with different encoding length. The
identification accuracy for all these two-identity recognition
tasks is shown in Fig. 4. At encoding lengths N > 4, average
identification accuracy is higher than 98%.

V. DISCUSSION
A. Components Employed in the Proposed Method

In the proposed identification method, we employed five
key components, i.e., WL features, FMD features, spatial
synchronization features, bicubic interpolation of 8 x 8§
feature maps, and energy constraint. WL features reflect
the EMG standard deviation, representing the temporal
characteristics of HD-sEMG biometric template. FMD and
spatial synchronization features characterize HD-sEMG signals
in spectral domain and spatial domain, respectively. The
temporal-spectral-spatial domain features can provide sufficient
information of user’s identity.

Bicubic interpolation can also contribute to a higher
identification accuracy. Possible explanations fall into two parts.
First, bicubic interpolation can increase the spatial resolution
of 8 x 8 feature maps constructed by signals in each channel
of the 8 x 8 HD-sEMG electrode array, adding to predictable
information and robustness of related features. Second, through
bicubic interpolation, interpolated values are given by taking all
their neighbor values into consideration at the same time, further
suppressing noises to a certain extent. The results obtained
in this work indicate the high potential of super resolution
(SR) technique [26] in HD-sEMG applications. Advanced SR
techniques have been applied to improve resolutions of medical
images [27]. HD-sEMG as a type of medical images reflecting
muscle activation pattern, is expected to provide more sufficient
information using SR algorithms.

Energy constraint can balance the contribution of each
constituent feature vector. Simply concatenating constituent
feature vectors with different lengths without energy constraint,
the classifier may distribute uniform attention to each element in
the combined feature vector. Therefore, the constituent feature
vector with a longer length (e.g., the spatial synchronization
features in our work) will dominate in the classification
procedure because it can gather more attention with more
elements. Applying an energy constraint technique can assign

more attention to those element corresponding to the constituent
feature vector with a relatively shorter length. Accordingly, the
contribution of each constituent feature vector can be balanced.
Recently, attention mechanism-based neural network [28] has
attracted enormous interest in a wide range of machine learning
fields. Properly assigning attention to different features can
contribute to a better performance.

B. Comparison with Other Modalities

Noncancelability and cross-application invariance are two
natural flaws of traditional biometric modalities. Another hidden
privacy risk arising from these natural flaws is that users may
be tracked if several companies or organizations collude and
share their biometric databases. Previous studies have described
efforts to address these flaws via secure schemes to protect
biometric templates [29], [30]. The main strategy is to employ
a one-way function to transform the original biometric template
to an encrypted one. The transformed template, instead of the
original one, is stored in the database. Different applications
use different transformation functions. In most cases, it is
impossible or computationally difficult to recover the original
biometric template using a transformed one. Further, if the
transformed template is compromised, users can re-enroll the
new biometric template using a new transformation function.
However, the original templates of many traditional biometrics
are not confidential. For instance, DNA [4], face [5], gait
[31] and fingerprint [6] can be captured via lost hair, high-
resolution photography, depth camera and any touched surfaces,
respectively. Once the original biometric template is stolen, it
is compromised forever in all applications.

The proposed HD-sEMG biometric modality can overcome
these flaws, owing to both diversity and unobservability. First,
the HD-sEMG biometric patterns vary sensitively with diverse
entry modes at users’ choices so that users can enroll and
login to different accounts representing different identities
using different entry modes. Second, the users’ entry modes
to login to different accounts via muscle isometric contraction
are unobservable so that impostors have no way to match
the accounts with entry modes. HD-sEMG promises to be
employed as a cancelable and cross-application discrepant
biometric modality in real life scenarios. Comparisons between
HD-sEMG and other widely studied biometric modalities in
more aspects are summarized in Table. III and elaborated as
follows.

1) Comparison with DNA, face, fingerprint and iris:

Traditional biometrics such as DNA, face, fingerprint and iris
can achieve a high identification accuracy compared with most
other modalities, and have been widely applied in numerous real
world scenarios. However, they are all noncancelable and cross-
application invariant. HD-sEMG is much more theft-resistant
compared with the listed four biometric modalities. To acquire
HD-sEMG, the electrode array needs to be in close contact
with skin. Therefore, it is almost impossible for impostors
to steal users’ HD-sEMG without their knowledge. Further,
the self-encoding manner via muscle isometric contractions
are unobservable and hence secret to impostors. In addition,
user protection is another superiority of HD-sEMG biometrics.
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TABLE III: Comparison of biometric modalities.

DNA Face  Fingerprint Iris Gait ECG EEG HD-sEMG
Cancelability Low Low Low Low Low Low Acceptable High
Cross-Application Discrepancy Low Low Low Low Low Low Acceptable High
Theft-Resistance Low Low Low Low Low Acceptable High High
Convenience to Use Low High High High High Acceptable Low Acceptable
User Protection Low Low Low Low High High High High
Voluntariness Low Low Low Low High Low Acceptable High
Privacy Preservation Low Low High High High High High High
Identification accuracy Across Days  Very High  High High High  Acceptable  Acceptable  Acceptable  Acceptable
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Fig. 5: Comparison between spontaneous and compulsive
force.

HD-sEMG as a type of bioelectrophysiological signals, can
be detected only when users are alive and in a normal
physiological state, in contrast to DNA, fingerprint, face and
iris. Therefore, impostors have to ensure users’ life and health
to acquire valid HD-sEMG biometrics. Moreover, for the
listed four biometric modalities, users can be forced to enter
their biometric template. For example, identification systems
cannot discriminate between a spontaneous fingerprint and
a compulsive one. HD-sEMG, however, is the summation
of MUAPs generated from muscle contraction which cannot
be forced by anyone else. As shown in Fig. 5, Compulsive
force does not generate any sEMG signals. For the privacy
preservation concern, DNA and face show their respective
drawbacks. For example, exposed face can be used to identify
the user just using naked eyes, which may disturb the user
in a particular situation (e.g., affecting users’ social life if
recognized by their acquaintances). Exposed DNA can be
maliciously used to acquire detailed and highly sensitive
information about a specific user (e.g. congenital disability and
possible diseases). Also, DNA measurement normally takes
longer time and requires specialized and high-cost equipment,
so it is not convenient to use in most daily life applications
even though it can achieve an extremely high identification
accuracy.

2) Comparison with gait:

Gait identification also shows advantages in aspects of user
protection and voluntariness because users can deliberately walk
in an abnormal gait when forced to enter their gait biometrics.

Also, users can walk in a normal gait only when they are alive
and healthy. However, users’ normal gait is noncancelable
and cross-application invariant, and is easily stolen via video
recordings.

3) Comparison with ECG:

ECG can be detected only when users are alive so it can
protect users. However, discriminating between compulsive and
spontaneous ECG is quite challenging so users may be forced
to enter their ECG tokens in particular situations. Additionally,
with the development of noncontact ECG measurement [32], an
ECG biometric template is relatively easier to steal compared
with HD-sEMG. The noncancelability and cross-application
discrepancy are also two flaws of ECG biometrics.

4) Comparison with EEG:

EEG biometrics can also protect users because it can be
detected only when users are alive and in a normal physiological
state. As for voluntariness, the use of intention-driven thought
activity EEG as a biometric modality has been investigated [33].
Although users cannot be forced to perform any thought activity,
the characteristics of thought activity EEG and baseline resting
EEG share a high similarity because our brain is engaged
in numerous background activities all the time. The same
factor also leads to a relatively low cancelability and cross-
application discrepancy of EEG compared with HD-sEMG,
because discrimination between EEG in different patterns is
more challenging. Moreover, HD-sEMG acquisition, by simply
putting a HD-sEMG electrode array on the dorsal hand, is also
much more convenient than EEG acquisition.

C. Future Work

As the first study to investigate the cancelability and cross-
application discrepancy of HD-sEMG in personal identification
tasks, we achieved a promising identification accuracy of
85.76% for a 44-identity (22 subjectsx2 accounts) task. It
is expected that identification accuracy can be improved in
future studies. Here we provide some research directions that
may be investigated to further improve the performance of
HD-sEMG-based biometrics:

1) Investigate HD-sEMG biometrics in more complex
encoding manners. The vast majority of activities in daily
life are largely enabled by the dexterity of our hand. The
versatile but precise muscle contractions in the hand allow more
complex encoding processes of HD-sEMG biometrics. In our
work, only 8 different tasks were used for HD-sEMG encoding.
Therefore, the encoding processes of different subjects share a
high similarity. In practical use, encoding is not limited to a few
options. Fig. 6 shows several examples of complex encoding,
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Fig. 6: Examples of complex encoding manners.

including isometric contraction of muscles corresponding to
different parts of the palm and exerting different force level
for different fingers. With more alternative encoding processes,
HD-sEMG biometrics can achieve better performance.

2) Investigate HD-sEMG biometrics acquired from more
muscles in different parts of the body. Although measurement
of HD-sEMG of the hand is quite convenient in practical use,
the forearm is also a good alternative choice. In fact, SEMG
signals acquired from the forearm have shown great inter-
individual difference in previous studies [34]. Moreover, the
forearm extensor muscle is cylindrically shaped, oriented along
the proximal-distal direction. In the extensor muscle, different
muscle compartments have fascicles which obliquely overlap
between compartments instead of running parallell [35]. The
extremely complex anatomical structure of the forearm may
contribute to better performance.

3) Investigate new features and methods for HD-sEMG
biometrics identification. As the first study to employ HD-
SEMG in personal identification, the aim of our research is
to prove the cancelability and cross-application of HD-sEMG
biometrics. We believe that future studies exploring advanced
features and methods can improve identification accuracy to
support its practical application in the near future.

VI. CONCLUSION

In this work, we demonstrated novel HD-sEMG-based
biometrics for personal identification. The HD-sEMG biometric
modality addresses the natural flaws of traditional biometrics,
namely noncancelability and cross-application invariance. We
enrolled two accounts for each subject. The identification
accuracy of 44 identities (22 subjectsx2 accounts) is 85.76%
with encoding length N=8. To the best of our knowledge, this
is the first study to employ HD-sEMG in personal identification
tasks. This study is also the first to evaluate the cancelability and
cross-application discrepancy of HD-sEMG-based biometrics
via identifying different enrolled accounts for each subject. HD-
SEMG is a novel alternative biometric modality with promising
cancelability and cross-application discrepancy.
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