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A B S T R A C T

We present a novel technology for monitoring changes in aquifer depth using handpump vibration data. This
builds on our previous works using data to track handpump usage and facilitate handpump maintenance systems
in rural parts of Kenya. Our motivation is to develop a cost-effective and scalable infrastructure to monitor
shallow aquifers in regions where handpumps are already part of water infrastructure, but where traditional
sources of groundwater monitoring data may be limited or non-existent. The data is generated using accel-
erometer sensors attached to the handles of nine handpumps in the study site in Kenya, instrumented for a year.
These time-series data from handpumps are individually modelled using machine learning methods to track the
changes in the water level with respect to the bottom of the rising main. Results show promise in modelling
handpump vibration data with machine learning approaches to provide useful aquifer monitoring information
from the “accidental infrastructure” of community handpumps. This technology is intended to complement
existing hydrogeological modelling, and one of our key future goals is to integrate these machine learning
outputs with hydrogeological information to develop more refined and robust models for shallow aquifer
monitoring.

1. Introduction

Groundwater is directly linked to United Nations’ Sustainable
Development Goal 6 (SDG 6) – clean water and sanitation for all by
2030 (UN, 2018). It is also inexplicably linked to other SDGs related to
poverty eradication, food security, gender equality, sustainability of
cities and human settlement, combating climate change, and protecting
terrestrial ecosystems (Hope and Rouse, 2013; Howard, 2014; UN,
2018; WWAP, 2019). It is estimated that groundwater provides around
50% of all drinking water and 40% of all agricultural irrigation
worldwide (FAO, 2011). In Africa, groundwater is the major source of
drinking water and its use for irrigation is expected to increase sub-
stantially to tackle growing food insecurity (MacDonald et al., 2012).

The magnitude of groundwater’s significance is in sharp contrast to
the dearth of reliable quantitative information on groundwater re-
sources, especially in Africa (MacDonald et al., 2012; Fan et al., 2013;
UN, 2018). Available data on global groundwater storage estimates,
often based on decade-old studies with large uncertainties, limit effec-
tive governance of groundwater systems (Richey et al., 2015). Like any
other resources, groundwater resource management requires mon-
itoring to make informed plans by water users and water service pro-
viders at regional and national levels. However, long-term monitoring

data are often scarce in Africa, and wherever data are available, in-
consistencies in methodologies used at different times make compar-
isons difficult and trend unclear (Comte et al., 2016). Traditional
groundwater monitoring technologies (Xu et al., 2012; Van Camp et al.,
2013; Kelbe et al., 2016) are often data, resource, and time intensive.
Recent efforts have shown remote sensing observations can provide
useful cost-effective auxiliary data to improve global groundwater es-
timates (Richey et al., 2015). We propose a novel complementary
shallow aquifer monitoring technology that utilizes the continent’s ex-
isting handpump infrastructure. Handpumps remain a reliable and low-
cost method to access groundwater in the context of rural water supply
for around 200 million people in Sub-Saharan Africa (Thomson et al.,
2012). We aim to explore if a network of these handpumps can po-
tentially provide auxillary information that can be exploited using
machine learning approaches to monitor the underlying shallow aquifer
systems.

Previous efforts have shown that vibration data collected at the
handpump’s handle are indicative of pump malfunction (Thomson
et al., 2012; Greeff et al., 2019). Changes in the characteristics of vi-
bration data, potentially due to handpump malfunction, can be tracked
using novelty detection approaches. Higher novelty scores signify de-
parture from normal operating conditions. Remote transmission of
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these novelty scores, as part of a handpump maintenance infrastructure,
can be used for rapid pump maintenance.

The changes in vibration data were shown to be indicative of
changes in the water level at the borehole under controlled circum-
stances (Colchester et al., 2014; Colchester et al., 2017). These works
showed that the vibration generated at the handpump’s handle are af-
fected by the weight of the system, i.e. the weight of the rods and the
volume of water inside the rising main. In general, the deeper the water
level, the higher the volume of water inside the rising main, and the
stronger the observed vibration. The variation in vibration character-
istics was exploited to estimate the water level at the borehole of the
handpump. These experiments were performed using two datasets – (1)
data from a handpump on the University site, primarily installed to
perform condition monitoring related research, and (2) few weeks of
data from handpumps in the study site in Kenya. Both datasets were
collected under controlled settings, i.e. handpump users were mostly
limited to the research team, and the pump strokes and duration were
fairly consistent. Given the short data collection period, the dataset
neither captured long-term variation in the aquifer level nor faced
challenges commonly encountered during normal operations, e.g. wide
variation in the pumping style, variation in the water column at dif-
ferent times of the day, handpump breakdown and subsequent repairs,
etc. Besides, for the dataset from the Kenya study site, instead of ac-
tually measuring the varying water column, the handpump rod length
was used as an approximate measure of the depth of water in the
borehole. The preliminary results of these experiments motivated this
follow-up field study to determine if (1) the vibration data obtained
from community handpumps in an unconstrained real-world setting can
be used to track long-term changes in aquifer level (a conditional yes),
and (2) the results generalize across different depths of shallow aquifer
systems (yes).

Provided a handpump maintenance infrastructure is already in
place, there is an opportunity to dual purpose the vibration data to
monitor shallow aquifer at minimal extra cost. The distributed main-
tenance infrastructure (Greeff et al., 2019) allows adaptive transmission
of handpump vibration data, controlling when and how much of data is
transmitted, thus saving cost in resource-constrained settings. The
adaptive framework blends in well with the proposed aquifer mon-
itoring system, whose predictions are only expected to be based on data
from normally operational handpumps. This framework is further de-
tailed in Section 2.

1.1. Related works and our contribution

Machine learning approaches have been explored to understand
hydrological processes and facilitate water resource management
(Herrera et al., 2010; Yaseen et al., 2019; Achieng, 2019). These ap-
proaches have also been used to model variations in aquifer level based
on hydro-climatic data (e.g., rainfall, temperature) (Nayak et al., 2006;
Behzad et al., 2010; Yoon et al., 2011; Taormina et al., 2012; Tapoglou
et al., 2014; Suryanarayana et al., 2014; Sahoo et al., 2017). These
efforts have mostly implemented standard regression approaches, e.g.
Support Vector Regression (SVR) (Bishop, 2006), Gaussian Processes
(GPs) (Rasmussen, 2004), Multi-layer Perceptron Regression (MLP Re-
gression) (Robert, 2014), or various hybrid combinations of the same. A
recent work has shown Long Short Term Memory networks (LSTMs)
outperformed standard MLP regression to predict water table depth by
using 14 years of monthly water diversion, evaporation, precipitation,
temperature, and time as input data (Zhang et al., 2018). These efforts
show the potential of using machine learning approaches to predict
long-term changes in aquifer level in areas where hydrogeological data
are difficult or expensive to obtain.

The proposed work also compares LSTMs with MLP regression for
aquifer prediction. However, unlike all prior work, the proposed fra-
mework is novel because (1) it uses handpump vibration data to model
changes in water level, and (2) setting aside the specific types of models

used, the proposed framework combines regression and novelty de-
tection approaches to develop a novel shallow aquifer monitoring
technology that is designed to work alongside a handpump main-
tenance infrastructure. The proposed framework can also be extended
to incorporate hydro-climatic data or outputs from hydrogeological
models.

In an effort to facilitate reproducibility and data reuse, the dataset
(Greeff et al., 2020) 1 and the software (Manandhar, 2019) are both
made publicly available.

2. Methods

In this work, we use a machine learning approach to model water
column variation in a borehole based on vibration data observed at the
handle of the handpump. We note that there are two types of changes in
the water level – (i) the daily change in water level due to daily
drawdown and recovery and (ii) the long-term seasonal change in water
level due to aquifer discharge and recharge. In this work, we are in-
terested in the latter. Although modelling the daily cycle is in itself an
interesting problem, the challenge here is the unavailability of suffi-
cient relevant vibration data because the drawdown occurs rapidly (and
is often associated with pump priming whose vibration characteristics
were observed to be different), and the recovery, by definition, is as-
sociated with pump disuse, which does not generate any vibration data.
The majority of the vibration data collected during pumping corre-
sponds to the available daily water level at the borehole, which in the
long-term changes similarly to the daily maximum water level. We
exploit this long-term change in the vibration data to model the long-
term change in water level at the borehole, which we expect to ap-
proximately correspond to the variation in the corresponding shallow
aquifer from which the water is being drawn out. We expect the water
column variation in the borehole to approximately correspond to the
variation in the corresponding shallow aquifer system from which the
water is being drawn out.

We use a regression model to learn a mapping function from vi-
bration data to water column. Since we expect vibration data at each
handpump to be unique, an independent model is learned for each
handpump. To learn such a model, a collection of vibration data and
corresponding water column observations are required. These data are
collected at three different sites (three handpumps per site) in the study
area to test if the model generalizes to different depths of shallow
aquifer systems.

A schematic of the shallow aquifer monitoring framework is shown
in Fig. 1. The proposed framework is designed to work alongside a
handpump maintenance system, represented by dashed lines and not
part of the framework itself. The handpump maintenance system
monitors the condition of handpumps by tracking the changes in
characteristics of vibration data using a novelty detection approach.
The outputs of this novelty detection approach, known as novelty
scores, may be used to flag a potential pump malfunction if the future
vibration data looks substantially different from the previously ob-
served data, thus facilitating rapid maintenance (Greeff et al., 2019).

The proposed technology is based on vibration data obtained from
community handpumps, which are regularly used, and tend to break
down quite frequently, once every few months on average. Depending
on the severity of malfunction and the type of subsequent repair, the
characteristics of vibration data may change substantially, affecting the
outputs of the regression model. The vibration data will also change
when the water in the borehole reaches previously unobserved levels.
When the characteristics of the vibration data changes substantially, the
regression model learned using previously observed vibration data may
not provide correct estimation. During such circumstances, the novelty
scores may also serve as a guideline to indicate the confidence in the

1 The dataset will be available at the cited address once the embargo is lifted.
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regression model’s outputs, where higher novelty scores would corre-
spond to lower confidence in the regression model’s outputs.

When the vibration data has changed due to a pump malfunction
and subsequent repair, a simple solution to continue using the same
regression model may be to calibrate the post-repair vibration data back
to the pre-repair data. We propose using a regression model to learn a
map from post-repair to pre-repair vibration data by assuming the vi-
bration data averaged over few days pre vs. post repair are the same.
With respect to the water column estimation model, this simple cali-
bration technique inherently assumes the daily maximum height of
water column in the borehole does not change substantially in a few
days, which is generally not a bad assumption based on Fig. 7. To avoid
confusing water column-related regression with calibration-related re-
gression, the latter is referred to as calibration in rest of the document.

Data from nine handpumps are collected for over a year, out of
which two-thirds are used for learning the model (i.e. training for no-
velty detection, and training and validation for regression), and the
remaining one-thirds are used for evaluating the model (i.e. testing).

2.1. Study area and sample selection

The study area is located in Kwale County, Kenya, south of
Mombasa and adjacent to northern Tanzania, as shown in Fig. 2. From
western Shimba Hills to eastern Coastal Plain, the area slopes towards
the Indian ocean. The County population of 880,000 people mostly live
in rural areas (82%) with the majority (70%) living below the poverty
line of less than USD 1.25 a day (KNBS, 2005). The study area includes
the long-established coastal tourism industry in Diani and the more
recent mining and commercial sugar production industries. To sus-
tainably manage the resulting competition for water resources, reliable
data on groundwater is vital.

A hydrogeological study of the area (Ferrer et al., 2019) reports on
the groundwater level change in the coastal coral and sand formations
(Pleistocene, Magarini, Kalindini) but not the deeper Mazeras sandstone
during a La Nina year. They find groundwater levels vary from 4 m
below groundwater level (bgl) to 27 m bgl in response to the wetter and
drier periods. They also note communities depend on groundwater from
boreholes with handpumps as well as open wells in the shallow aquifer.
In contrast, the commercial use for irrigation and mining is largely in
the deeper aquifer system with limited interaction with the shallow
aquifer. The monitoring sites selected for this study are all non-com-
mercial community handpumps. Readers interested in further hydro-
geological or socio-economic details of the study area may refer to
(Ferrer et al., 2019; Katuva et al., 2019).

To test if the model generalizes to handpumps drawing water from
different depths of shallow aquifer systems, three different monitoring

sites are selected corresponding to three different depth ranges –
shallow, medium, and deep, where these categories are arbitrarily de-
fined based on available samples. Table 1 summarizes table of columns
(TOCs) and water columns (WCs) at the boreholes at the time of sensor
installation. We also note that all boreholes were mechanically drilled.

The rate of daily drawdown/recovery as well as long-term dis-
charge/recharge are expected to differ at these three sites due to dif-
ferent hydrogeological, socio-economic, and other factors. Besides, the
water columns in the boreholes in the coast are directly affected by both
daily and bi-weekly tidal cycles. Pre-processing steps related to re-
moving tidal effects are further described in Section 3.1.

2.2. Regression approaches for water column estimation

Regression approaches are supervised learning techniques that map
examples (inputs) to continuous labels (outputs). We use these ap-
proaches to map handpump vibration data (inputs) to their corre-
sponding water column data (outputs). A wide variety of regression
approaches exist, e.g. Relevance Vector Machines (RVMs), Gaussian
Processes (GPs), decision forest tree regression, multi-layer perceptron
regression (MLP regression), etc. Although experiments were performed
using different types of regression approaches (yielding comparable
results), we focus on MLP (also known as feedforward neural network)
regression because they form a natural baseline to compare with Long
Short Term Memory (LSTM) networks, the primary approach im-
plemented in this work. Since we wish to provide temporal context to
model water column data in terms of past examples of daily handpump
vibration data, LSTMs constitute a suitable model for our application.

2.2.1. Recurrent Neural Networks (RNNs)
Feedforward networks do not have feedback, i.e. outputs of the

model are not fed back into itself. When feedforward networks are
extended to include feedback connections, they are called Recurrent
Neural Networks (RNNs). Since feedforward networks assume samples
are independent, they are unable to utilize information from past
samples. Recurrent Neural Networks (RNNs) overcome this limitation
by allowing information from past samples to persist by using feedback
connections. They do so by repeating the feedback loop structure re-
cursively to model a sequence of samples as shown in Fig. 3. The re-
cursive framework allows parameters to be shared across the repetitive
structures, which in turn makes parameter estimation feasible. How-
ever, although theoretically possible, in practice, RNNs are unable to
model long-term dependence because gradients propagated over many
stages tend to either vanish (more common) or explode (rarely, but
causing much damage to optimization) (Goodfellow et al., 2016).

2.2.2. Long Short Term Memory (LSTM) networks
To solve RNN’s long-term dependence problem gated RNNs are the

most effective solutions designed to date. They do so by allowing gra-
dients to flow for a long duration using gated self-loops. Examples of
gated RNNs include Long Short Term Memory (LSTM) networks and
gated recurrent units (GRUs) (Goodfellow et al., 2016), the former
being the most widely used. LSTMs have the same basic repetitive
structure like RNNs, except the repeating structure (called LSTM cell)
has three gated self-loops (Fig. 4). A forget gate decides what in-
formation will be discarded from the previous cell state. An input gate
controls what new information will be stored in the current cell state.
Then the outputs from the forget gate and the input gate are used to
update the old cell state into a new cell state. Finally, an output gate
decides what information will be output from the new cell state. The
corresponding equations are

= +−f σ bW h x( [ , ] )t f t t f1 (1)

= +−i σ bW h x( [ , ] )t i t t i1 (2)

Fig. 1. The shallow aquifer monitoring framework designed to work alongside
an existing handpump maintenance framework. Vibration data from handpump
is used to learn a novelty detection model. Separately, the vibration data along
with the water column data measured in the borehole of the handpump are
used to learn a regression model. If the handpump is repaired, the vibration
data is calibrated before feeding to the regression model.
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= +
∼

−C tanh bW h x( [ , ] )t c t t c1 (3)

= +
∼

−C f C i C* *t t t t t1 (4)

= +−o σ bW h x( [ , ] )t o t t o1 (5)

= o tanh Ch * ( ),t t t (6)

where 1, 2–4, and 5–6 correspond to respectively forget, input, and
output gates. Here, Ct is the current cell state, xt is the current input
vector, ht is the current hidden layer vector containing the oututs of all
LSTM cells, and b’s and W’s are respectively biases and weights.

Different variations of LSTMs have been successfully implemented
in many applications, e.g. unconstrained handwriting recognition
(Graves et al., 2009), speech recognition (Graves, 2013), handwriting

Fig. 2. Study area showing households, handpumps, and the sampled handpumps.

Table 1
A summary of handpumps selected at three different sites in the study area.
Fig. 6a explains the notations.

Depth Pump Code Table of Column Water Column
TOC (m) WC (m)

Shallow SP1 6.4 1.1
SP2 5.4 1.7
SP3 8.9 2.0

Medium MP1 22.2 5.8
MP2 24.2 2.3
MP3 17.4 19.4

Deep DP1 30.4 11.9
DP2 42.5 6.7
DP3 35.5 14.9

Fig. 3. A folded computational graph of RNN (left), and the corresponding
unfolded graph (right).
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generation (Graves, 2013), machine translation (Sutskever et al., 2014),
image captioning (Kiros et al., 2014; Vinyals et al., 2014). RNNs and
LSTMs have also been implemented to estimate aquifer using hydro-
climatic data (Zhang et al., 2018).

Given the relatively small size of the training data, we opt for a
simple neural network architecture, consisting of a LSTM unit, a drop-
out unit (to prevent over-fitting), and a dense layer in sequence (Fig. 5).
As more data becomes available in future, there are opportunities to
implement deeper (e.g. stacked layers) and other variations (e.g. shared
layers) of networks, which are further discussed in Section 5. The model
was implemented in © keras using © tensorflow backend. The model
parameters (learning rate −

− −[10 10 ]2 5 , number of hidden nodes
−[50 200], epochs −[10 200], batch size −[10 50], and input time steps

[ −1 14 days]) were coarsely optimized using separate training and
validation sets with (80–20% splits). A separate test set (one-third of
data) was held out for evaluating the trained model. The training, va-
lidation, and test sets were split sequentially in time (from past to fu-
ture) to reflect a real implementation scenario.

2.3. Novelty detection approaches for condition monitoring

In a standard binary supervised classification approach (Bishop,
2006), models of “normality” and “abnormality” are learned, either
separately or simultaneously, using examples of “normal” and “ab-
normal” observations respectively. When there are not enough ex-
amples of abnormal observations, one way to classify these examples is
to only learn a model of normality from normal examples, and use this
model to classify new examples. Novelty detection is a type of such one-
class classification approach, which has been applied in many fields,
including electronic IT security, healthcare informatics, industrial
monitoring, etc. (Pimentel et al., 2014). This approach is very applic-
able to condition monitoring in handpumps because usually compared
to “normal” handpump operations, there are very limited examples of
“abnormal” handpump operations (e.g. broken seal, valve or handle
malfunction, etc.). Different types of novelty detection approaches
exist, e.g. k nearest neighbour (k-NN), kernel density estimation (KDE),
mixture models, one-class Support Vector Machines (one-class SVMs)
(Pimentel et al., 2014; Bishop, 2006).

In this work, we use a Gaussian Mixture Model (GMM) (Bishop,
2006) to learn a normal model by representing normal examples with a
mixture of multivariate normal densities. Here, an appropriate number
of the mixture components is determined based on the data by using
Dirichlet process mixtures (Blei and Jordan, 2006) based on a publicly

available toolbox (Morton and Torrione, 2013). For each handpump, a
Gaussian Mixture Model is used to learn a normal model based on daily
average frequency features generated from handpump vibration data.
To help parameter estimation in the mixture model, instead of using all
20 frequency bins, only the first three principal components are con-
sidered, which represent more than 95% of total variance in data. The
mixture model can be used to compute log-likelihood of examples, the
inverse of which can be considered as novelty scores, i.e. lower the log-
likelihood, more novel the examples. Since GMM provides probabilistic
novelty scores, it is suitable for our application where we intend to use
the novelty scores as a measure of confidence of the regression model’s
outputs.

3. Data

3.1. Water column data

To both learn and evaluate the regression model, water column in
the borehole represents the ground truth. The water column is mea-
sured using a diver sensor (manufactured by ©Van Essen Instruments)
that is fixed close to the bottom of the rising main. Fig. 6a details the
nomenclatures used in this document, where water column represents
the ground truth for learning the regression model. Data is collected at a
sampling interval of five minutes. An example data collected over few
days is shown in Fig. 6b, where the blue line shows a typical daily cycle
of draw-down during the day, followed by recovery during the night.
Since our primary goal is to track the variation in the aquifer level, we
use the daily recovered level, approximated by the daily maximum
level, as the ground truth for modelling.

Water column in the boreholes in the coast is affected by both daily
and bi-weekly tidal cycles. Considering the daily maximum level re-
moves the daily cycle (blue line in Fig. 6c), and low-pass filtering the
resulting data removes the bi-weekly cycle (orange line in Fig. 6c).
Fig. 7a and c show the change in water column data in the boreholes at
three monitoring sites – shallow, medium, and deep with reference to
the start date. These data have been compensated with respect to the
atmospheric pressure and pre-processed to represent daily recovered
level.

Theoretically, a network of these diver sensors would allow us to
directly monitor the shallow aquifer without having to do any model-
ling. However, given the intended scale of the proposed technology
(country to sub-continent), such monitoring program would be cost-
prohibitively impractical. Here, the costs not only refer to the cost of
the sensor, but also the ones involved in installing the sensor and
downloading the data periodically, both extremely laborious process.

3.2. Handpump vibration data

The vibration data is collected using a consumer grade accel-
erometer sensor attached to the handle of the handpump as shown in
Fig. 8a. The sensor measures accelerometer data in three orthogonal
axes at a sampling frequency of 95 Hz. A typical pumping cycle, i.e. a
cycle of the handle being raised and pushed down, corresponds to one
second interval. An example data collected over few pumping cycles is
shown in Fig. 8b.

In machine learning approaches, raw data are often first summar-
ized by useful information (known as features) before using them to
learn a model. The low frequency component of the data, which cor-
responds to the pumping motion, is found to be uninformative of water
column variation. The pumping motion is removed using a high-pass
filter, and the resulting high-pass filtered time-series signal (top plot in
Fig. 8c) is transformed to frequency domain using a morelet transform.
The magntiude of the morelet transfrom (bottom plot in Fig. 8c),
averaged across the time window, represents the frequency features
corresponding to that window. A daily average of these temporal
windows along with the corresponding daily maximum water column

Fig. 4. An LSTM cell.

Fig. 5. A sequential Neural Network architecture using LSTM.
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represent a feature-label pair. A collection of these feature-label pairs
per handpump constitutes a training and testing dataset for that
handpump.

Vibration data maybe unavailable for a period of time due to several
reasons, most commonly due to battery or sensor malfunction, or
handpump disuse. A handpump may be temporarily out of operation
usually because of malfunction or alternate water sources (e.g. surface
water) being available during rainy season, or school closures in case of
handpumps installed at the schools. We propose using Gaussian
Processes (Rasmussen, 2004) to impute frequency features corre-
sponding to missing days. Unfortunately, for two handpumps, one
shallow and one deep, too much data were missing to allow reasonable
data imputation. Hence, we only report results on the seven remaining
handpumps. Since the highest proportion of data is available for the
medium depth handpumps, we provide detailed results for that site
while only providing key results for the other two sites.

4. Results

The machine learning approaches described in Section 2 are used to
perform several experiments related to water column estimation using
the dataset described in Section 3. At this stage, our primary goal is to
assess the feasibility of the proposed technology in a real world setting,
i.e. whether vibration data from a collection of community handpumps
at a location can be used to infer the trend in water column variation of
the corresponding aquifer.

4.1. Novelty detection analysis

Figs. 9–11 show the novelty scores of training (blue dots) and test
(red dots) examples in terms of log-likelihood of examples given the
normal model. In general, the examples in future incrementally appear
to be more different from the normal examples. This trend is expected
because the vibration data is expected to change over time either due to
gradual pump wear and/or change in water level in the borehole to
previously unobserved levels (a relatively smooth change), or due to
severe pump malfunction and subsequent repair (a relatively abrupt
change). A continuous drop in the log-likelihood, suggesting a gradual
change in vibration data, may correspond to change in water column
over time (e.g. Fig. 10c). On the other hand, an abrupt change in vi-
bration data due to severe pump malfunction/repair often corresponds
to a sharp drop in the log-likelihood. Most of these cases (e.g. Fig. 10a
and b, etc.) stand out visually, and are aligned to their corresponding
pump repair dates (black dashed lines), whenever the repair dates are
available. These insights from novelty detection analysis help under-
stand the results of experiments related to calibration and water column
estimation.

4.2. Vibration data calibration

Usually the novelty scores appear to be higher (i.e. the log-like-
lihood values are lower) immediately following a repair (e.g. Fig. 9b),
indicating a substantial change in the vibration data after the repair. To
enable using a single regression model to estimate water column, the
post-repair vibration data is calibrated to match the pre-repair data. An

Fig. 6. (a) Diver sensor installation close to the bottom of the rising main in the borehole, where the notations mean cable length, table of column, water column,
pressure under water and on the surface (Figure adapted from (VanEssen, 2018)), (b and c) Typical variation in water column data in one of the boreholes at (b) the
medium depth site and the calculated daily maximum, and (c) the shallow depth site showing daily maximum (that removes daily tidal cycle), and its corresponding
low pass filtered signal (that removes bi-weekly tidal cycle).

Fig. 7. With reference to the start of monitoring date, change in water column data in the boreholes of three sites – (a) Shallow, (b) Medium, and (c) Deep.
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example of this calibration process is detailed in Fig. 9, where the top
row shows the features generated from the vibration data (Fig. 9a), the
log-likelihoods (Fig. 9b), and the water column estimates (Fig. 9c), and
the bottom row shows the corresponding plots after calibration. Since a
very simple regression model was used to calibrate the vibration data,
its quality is expected to degrade as further calibrations are performed
in future. In the example, the second calibration does not work as well
as the first calibration. As part of our future work, we intend to explore
more principled ways to model this problem, e.g. transfer learning,
which is discussed in Section 5.

4.3. Water column estimation analysis

For medium-depth handpumps, results are shown for LSTM, and for
reference, compared to MLP regression in Fig. 10. For shallow and deep
handpumps, results are only shown for LSTM in Fig. 11. In both figures,
each column corresponds to results for a particular handpump, where
the rows correspond to the novelty scores, novelty scores post-calibra-
tion, LSTM estimates, and MLP estimates (only in Fig. 10) from top to

bottom. The estimates for training, validation, and test sets are shown
in blue, orange, and red colours respectively. The estimates are shown
in terms of their 95% confidence interval based on 10 iterations of
training LSTM model with random initialization. While parameters for
each approach were coarsely optimized using cross-validation, we have
not performed exhaustive parameter optimization because our primary
goal at this stage is to assess whether the estimates roughly tracks the
true changes in water column rather than obtain the best possible
outputs. A summary of results for all handpumps for both MLP and
LSTM techniques are provided in Table 2.

Results show that, in general, vibration data are indicative of
changes in the water column. LSTM generally outperforms standard
MLP regression technique, where LSTM is expected to perform even
better as more training data become available. In most cases, pump
repairs change the vibration data features substantially, which when
“corrected” via calibration, does somewhat help to improve water
column estimation. But the frequency and/or the nature of repairs may
determine the efficacy of the simple calibration technique implemented
in this work. Nevertheless, the novelty detection outputs provide a

Fig. 8. (a) Accelerometer sensor installation close to the fulcrum of the handpump’s handle, showing three different acceleration axes, (b) typical vibration data
measured at three different axes, and (c) high pass filtered signal of the z-axis vibration data (top) and the corresponding magnitude of its morelet transform
(bottom).

Fig. 9. For a particular handpump (MP1), (a) features generated from vibration data, (b) log-likelihood of examples given normal model, and (c) water column
estimates using LSTM. These plots are redrawn in (d)–(f) once the features are calibrated at handpump repair dates, represented by the dashed lines.
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reasonably accurate guideline to determine when to trust the regression
model outputs. Typically a drop in the log-likelihood corresponds to
either an inaccurate water column estimate or one with high un-
certainty.

The proposed technology is intended to be implemented at scale by
concurrently modeling a network of community handpumps. Rather
than estimating continuous changes in water column at individual
boreholes, our ultimate goal is to use a network of handpumps to infer
the overall trend in the water levels in the corresponding shallow
aquifer. With this goal in mind, we plot the fractional change in water
columns at the boreholes at two locations with respect to a common
reference date. Fig. 12a and b show these plots for medium and shallow

handpumps respectively. These results show the estimated changes in
water column approximately track the true trend. However, the esti-
mates deteriorate as we start predicting further ahead in time due to the
limitations in the model, which are discussed in Section 4.4. Similar
plots are not shown for deep handpumps because the difference in their
water column data variation suggests that there may be differences in
the hydrogeological dynamics of the aquifers from which the two deep
handpumps are drawing water.

4.4. Limitations

Despite the resources invested in collecting a unique handpump

Fig. 10. For each column, from top to bottom rows, log-likelihood of examples given normal model, log-likelihood after calibration, water column estimates using
LSTM and MLP regressor. Columns correspond to medium-depth handpumps MP1, MP2, and MP3 in the Ukunda area.
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vibration dataset using novel sensing technology, in terms of hydro-
geology, one year of data is insufficient to track long-term changes in
aquifer level. Few years of data may be required to capture a typical
range of aquifer level changes. In the current dataset, validation and

test data are often very different from training data, complicating both
training and testing the model.

Approximately 15% of data were missing, usually over continuous
streams of time (from days to months), primarily due to discharged
batteries or other hardware-related problems, handpump malfunction,
or temporary handpump disuse because of availability of alternate
water sources during rainy season (e.g. rain harvesting, surface water).
Despite using Gaussian Processes to impute the missing data, the ac-
curacy of the imputed data degrades as the duration of missing data
increases.

The effectiveness of the vibration data calibration technique de-
pends on the frequency and type of handpump repair, with the cali-
bration being less effective as the number and/or severity of break-
downs/repairs increase. Although the novelty scores provide a
guideline to assess the confidence of the water column estimates, better

Fig. 11. For each column, from top to bottom rows, log-likelihood of examples given normal model, log-likelihood after calibration, and water column estimates
using LSTM. Columns correspond to deep handpumps DP1, DP2 and shallow handpumps SP1, SP2 at the Shimba Hills and the Coast sites respectively.

Table 2
For each regressor, mean error (metres) on test dataset (top row), and one
standard deviation (bottom row).

SP1 SP2 MP1 MP2 MP3 DP1 DP2

MLP 0.14 0.26 0.31 0.29 0.18 0.60 0.85
0.12 0.19 0.15 0.11 0.10 0.34 0.71

LSTM 0.09 0.12 0.23 0.14 0.15 0.43 1.07
0.04 0.06 0.17 0.11 0.12 0.47 0.41

Fig. 12. Fractional change in water column with respect to the reference water column observed on 2017/6/1 for the handpumps in (a) medium-depth and (b)
shallow-depth clusters.
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techniques are required to model this problem in a principled manner,
e.g. transfer learning.

5. Conclusions

The proposed technology based on handpump vibration data and
machine learning approaches show promise in providing useful aquifer
monitoring information in resource-constrained regions where alter-
nate sources of data are either scarce or cost-prohibitive and where
handpumps already constitute part of the rural water infrastructure. In
regions where handpump maintenance infrastructure is already in
place, there is an opportunity to use the vibration data for the addi-
tional purpose of providing rudimentary shallow aquifer monitoring at
minimal extra cost. As expected, going from constrained to un-
constrained real-world environment brings challenges. The most
pressing one concerns frequent handpump breakdown and subsequent
repair that complicates learning a consistent model to estimate changes
in water level. Beside the solutions implemented in this work in the
form of novelty scores and vibration data calibration, we intend to
explore more principled methods in future to model this problem. Given
a pre-trained model, transfer learning (Zoph et al., 2016; Yang et al.,
2017) allows learning a variation of the learned model for a dataset
with different characteristics by only requiring a relatively smaller
dataset. Further field-experiments will be required to determine if
transfer learning is feasible, and how much new data (hours-days) will
be required to re-train the model. We note that in practice, the proposed
technology is designed to be implemented at scale using a network of
handpumps. As long as a sufficiently large number of these handpumps
at a location are operational, the framework may allow useful ap-
proximate inference about the underlying aquifer behaviour within a
degree of uncertainty. Further large-scale field experiments are re-
quired to ascertain the viability of this technology for real-world ap-
plication as well as to determine under which conditions this tech-
nology is likely to fail and succeed. We note that the proposed
technology is aimed to complement cost-effectively any traditional
hydrogeological models rather than replace them.

As part of our future work, there are opportunities to model mul-
tiple handpumps simultaneously and fuse hydro-climatic data, and
wherever available, outputs from hydrogeological models. Multi-task
learning extensions of LSTM (Liu et al., 2016; Chen et al., 2018) are
well-suited to model such scenarios.

Given the increasing global importance of groundwater monitoring
technology, there needs to be more research to fill the gap between
available state-of-the-art but cost-prohibitive technologies and the ca-
pacity of developing nations to adopt them. Novel cost-effective tech-
nologies that utilize the available infrastructure of these regions may be
a plausible path moving forward. Given the success and ongoing trials
of machine learning approaches to solve global socio-developmental
challenges (Beckel et al., 2013; Blumenstock et al., 2015; Jean et al.,
2016; Rolnick et al., 2019), experimentation of these approaches may
provide cost-effective complementary options to boost on-going pro-
gress in hydrogeological modeling to monitor groundwater.
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