Signal @ IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 7, JULY 2020

2131

Y —~IEEE
EMB ¢

0C" Processing
s Society Society

Multi-Modal Diagnosis of Infectious Diseases in
the Developing World

Girmaw Abebe Tadesse

, Hamza Javed, Nhan Le Nguyen Thanh, Hai Duong Ha Thi, Le Van Tan,

Louise Thwaites, David A. Clifton, and Tingting Zhu

Abstract—In low and middle income countries, infectious
diseases continue to have a significant impact, particularly
amongst the poorest in society. Tetanus and hand foot and
mouth disease (HFMD) are two such diseases and, in both,
death is associated with autonomic nervous system dys-
function (ANSD). Currently, photoplethysmogram or elec-
trocardiogram monitoring is used to detect deterioration
in these patients, however expensive clinical monitors are
often required. In this study, we employ low-cost and mo-
bile wearable devices to collect patient vital signs unob-
trusively; and we develop machine learning algorithms for
automatic and rapid triage of patients that provide effi-
cient use of clinical resources. Existing methods are mainly
dependent on the prior detection of clinical features
with limited exploitation of multi-modal physiological data.
Moreover, the latest developments in deep learning (e.g.
cross-domain transfer learning) have not been sufficiently
applied for infectious disease diagnosis. In this paper, we
present a fusion of multi-modal physiological data to pre-
dict the severity of ANSD with a hierarchy of resource-
aware decision making. First, an on-site triage process is
performed using a simple classifier. Second, personalised
longitudinal modelling is employed that takes the previous
states of the patient into consideration. We have also em-
ployed a spectrogram representation of the physiological
waveforms to exploit existing networks for cross-domain
transfer learning, which avoids the laborious and data in-
tensive process of training a network from scratch. Results
show that the proposed framework has promising potential
in supporting severity grading of infectious diseases in
low-resources settings, such as in the developing world.
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[. INTRODUCTION

NFECTIOUS diseases, such as tetanus and hand, foot
Iand mouth disease (HFMD), can still be life-threatening
conditions for patients in low and middle income countries [1].
Tetanus often affects the poorest in society in low and middle
income countries, and it was estimated to have caused 48-80,000
deaths in 2015 [1]-[4]. Tetanus cases can progress to severe
conditions in many cases, and the subsequent hospital treatment
is often lengthy (up to six weeks). Comparatively, HFMD is
typically a benign self-limited illness in infants and young chil-
dren. In recent years, HFMD outbreaks that affected millions of
children have been reported in the Asia Pacific region [5], [6]. Al-
though most cases are mild, a small number of affected children
progress rapidly to severe or fatal manifestations of the disease.
Predicting those few children who will progress to severe disease
is challenging in HFMD and as a result huge numbers of children
are admitted to hospital as a precautionary measure, placing an
enormous burden on healthcare systems [5]-[7].

Autonomic nervous system dysfunction (ANSD) is the
main cause of death in the aforementioned infectious dis-
eases [2], [6], [7]. ANSD particularly affects the cardiovascular
system and can be detected by examining the autonomic control
of the heart. Early detection of ANSD is often challenging
clinically, yet treatment becomes difficult once the condition
is established. Thus, early ANSD detection is an important task
that could improve patient outcomes.

Existing approaches to automatically evaluate the severity of
ANSD mainly require the detection of each QRS complex in
the electrocardiogram (ECG) waveform followed by the ex-
traction of vital signs such as heart rate and RR intervals, i.e.
intervals between adjacent QRS complexes [8], [9]. However
these features are not generalisable across different modalities,
e.g. photoplethysmogram (PPG), and are prone to movement
artefacts. Moreover, QRS detection incurs additional computa-
tional cost. Previously, we have demonstrated that generic time
and frequency features [10] outperformed the traditional heart
rate variability (HRV) features [8] across multiple datasets of
infectious disease patients. However, the diagnosis performance
still has room for improvement, particularly using latest mod-
eling techniques (e.g. deep learning) and transferable features
from other domains with minimum computational expenditure.
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Convolutional neural networks (CNNs) are shown to achieve
accurate malaria diagnosis in the works of [11], [12]. Addition-
ally, the benefits of transfer learning to facilitate feature learning
is also demonstrated in [12]. However, similar deep-learning
approaches are not common in the diagnosis of tetanus and
HFMD patients.

In this paper, we propose a proof-of-principle approach that
aims to fuse multi-modal physiological data, collected using
low-cost wearable devices, for the diagnosis of infectious dis-
ease (i.e. tetanus and HFMD) patients. The diagnosis maps
physiological patient data to the severity level of ANSD. Our
contributions are as follows.

First, we propose a multi-layer decision making diagnosis
step which is decomposed into an on-site triage process that
provides rapid diagnosis, followed by a longitudinal model for
personalised diagnosis. Second, a multi-modal or -stream frame-
work and different fusion strategies are developed. Third, we
validated the proposed approach on multiple infectious disease
datasets, i.e. tetanus and HFMD, collected in intensive care
units of hospitals in Vietnam. Finally, we applied cross-domain
transfer-learning by mapping time-series physiological signals
to images using spectrogram representations, thereby enabling
the use of existing computer vision networks.

The motivation for this work is the need to fuse multiple
modalities of physiological data to obtain multi-stage screening
of tetanus and HFMD patients in low-resource settings. To do
so, we employ cross-domain transfer learning to spectral repre-
sentations of time-series signals using existing deep networks
designed for natural images. Though there exists a domain
gap between spectral and natural images, a spectrogram of
a time-series signal gives a visual representation of dynamic
information that can be thought of as being composed of low
level component features such as edges, lines and general shapes,
which are also common low level components in natural images.
Therefore despite the final 2D representations being quite differ-
ent, the earlier layers of computer vision architectures trained on
natural images can be thought of as containing capability useful
for discriminating spectral images. Furthermore, our approach
can be used to exploit other computationally lighter versions
of existing networks, which can be employed on ubiquitous
devices such as a smartphone. The use of such networks also
provides the benefit of dimensionality reduction from images
into a vector that best represents the spectral image. Moreover,
for multi-stream physiological bio-signals, e.g. 12-lead ECG, the
proposed framework could help encode the spatial relationship
among multiple leads.

The proposed approach could provide data-driven insights in
the diagnosis of such infectious diseases, and hence improve
patient care in hospital settings with limited resources. Further-
more, automatic diagnosis of infectious disease may also reduce
unnecessary use of antibiotics and therefore limit antimicrobial
resistance since patients suspected of having these diseases are
often given antibiotics as a precautionary measure.

The remainder of this paper is organised as follows. Section II
reviews related works in the diagnosis of infectious diseases
in the developing world. Section III provides the problem for-
mulation followed by a step-by-step analysis of the proposed
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Fig. 1. Examples of, (a) ECG and, (b) PPG waveforms extracted
from tetanus patients with Mild (green colour) and Severe (red colour)
diagnosis of autonomous nervous system dysfunction.

approach. Section IV describes the tetanus and HFMD datasets
used for validation. Section V details the design parameters in the
proposed approach, baseline methods selected for comparison,
and the metrics employed to evaluate the classification perfor-
mance. We then present and discuss the results in Section VI.
Finally, concluding remarks are provided in Section VII.

Il. RELATED WORK

The early identification of severe infections is a task that has
begun receiving considerable interest from researchers, due to
the obvious practical benefits early detection could have for
patient outcomes. In the work of [8], the relationship between a
patient’s health status and irregularities exhibited in their ECG
readings was highlighted. This was through markers like HRV,
which can be derived and computed from the aforementioned
signal waveforms. A comparative analysis was carried out in [9],
in which the use of PPG readings to derive HRV was investi-
gated, due to the fact that the PPG is easier to measure than
ECG. From the results presented, it is clear that estimating
such markers from either waveforms remains challenging in
practice, due to the difficulty of robustly extracting RR intervals.
However, there is clear utility in developing methods that can
determine the health status of a patient from signals that are
easily acquired from inexpensive sensors.

More recently, significant research has been conducted in the
use of ML for identifying severe infection, a prominent example
being the detection of sepsis, which is one of the leading causes
of mortality for hospital inpatients. Despite this, it remains
extremely challenging to detect using developed approaches
[13], [14]. Yet the ability of machine learning (ML) methods
to outperform heuristic and rule-based methods currently in
use for detecting the disease, illustrates the promise of data
driven modelling approaches at discovering complex patterns
and insights from medical data.

By comparison, research into the use of ML for predicting
risk of developing severe cases of infections such as tetanus
and HFMD, which primarily affect low and middle income
countries, has to date been limited. In the work of Zhang and
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Liu [15], [16], random forest and gradient boosting tree models
are developed to classify severe cases of HFMD from mild ones,
for a study dataset of 530 paediatric patients, taken from Guang-
dong hospital in China. Impressive predictive performance was
achieved in both models. Additionally, a feature importance
analysis was also conducted to identify covariates that had the
most influence on whether a severe case of HFMD went onto
manifest itself.

However, it is worth noting that many of the features used,
particularly those ranked highest in terms of importance, were
those obtained using advanced hospital facilities and resources.
For example, MRI scan results and laboratory blood tests. In
a resource-constrained setting, these features are not available
or affordable. By contrast, in this work we propose the use of
features collected from inexpensive wearable sensors, i.e. PPG
and ECG signals, which can be acquired at an earlier stage
of a patient care pathway through a triage process, potentially
removing the need for hospitalisation altogether. The practical
benefits of such an approach would be most apparent for citizens
in lower and middle income countries, where healthcare systems
are not as well resourced.

Another area of related work includes the early and rapid
diagnosis of malaria, a parasitic infection that is estimated to be
responsible for 400,000 deaths a year, primarily in developing
countries [19], [20]. Notable studies include the use of Naive
Bayes and SVM for multi-class classification of different stages
of malaria infection, on a dataset of 230 samples obtained from
a hospital in India [17]. Using handcrafted features, both ML
methods were able to obtain reasonable predictive accuracy. By
contrast, in the works of [11], [12], deep learning methods in
the form of CNNs are successfully employed to make diagnoses
with higher accuracies. The latter work also explores the use
of transfer learning, which would be appropriate when dataset
sizes are small.

In many of the aforementioned papers, particularly those con-
cerning healthcare tasks, classical ML methods are frequently
considered and employed [15]-[17], [21], [22]. Although rea-
sonable to very good performance can be achieved using clas-
sical techniques (e.g. SVMs), deep learning is recognised as
the current state of the art within the ML field. This is due to
the impressive performances deep neural network architectures
have obtained across multiple application domains. In addition
to the performance achievable using deep learning, one other
important advantage they offer is the ability to avoid laborious
and time consuming feature engineering, rather ‘raw’ data can
instead usually be fed into the network directly from which
features are learnt.

However, due to the many parameters that need to be learned
by deep architectures, the ability to train robust models that
generalise well, large amounts of data are required. For many
healthcare problems, the amount of data available can be seri-
ously limited, as is the case with many of the studies reviewed in
this section. In such contexts, deep neural network architectures
can still be exploited through the use of transfer learning. That is
through employing a model trained on a similar but considerably
larger dataset (such as for general image recognition), which is
then fine tuned on the smaller dataset for the task in question.

Transfer learning has been successfully employed for a range of
medical tasks, particularly medical imaging diagnoses, through
using popular computer vision architectures like Inception and
ResNet [12], [23].

In previous work, we demonstrated the utility of the PPG and
ECG physiological signals at predicting ANSD severity levels
arising from tetanus and HFMD infections, using hand-crafted
features [10], [18]. In this paper we leverage multi-modal ML
and transfer learning to produce deep learning architectures
to better predict infection severity using signals that could be
obtained from inexpensive wearable sensors. Multi-modal ML
research to date has primarily focused on applications such as
audio-visual speech recognition, gesture identification, video
captioning and affect analysis [24].

By comparison, limited research has been conducted into
multi-modal/-stream ML for healthcare. The techniques devel-
oped for audio-visual fusion however, were successfully shown
to be capable of identifying emotional and mental health well
being [25]. A different application task was considered in the
work of [26], where video, accelerometer and GPS data streams
were successfully fused for activity and fall detection for elderly
patients in home settings. Taking into account the improvements
that can be achieved by considering multiple data modes, in this
work we propose fusing different data modalities and streams
using Fourier analysis to create 2D representations of the data.
This enables the use of transfer learning through existing archi-
tectures like Inception [27], thereby providing the possibility of
achieving superior diagnosis ability. The mapping of different
modes to image representation was shown to be effective for the
fusion of accelerometer data for activity detection in the work
of [28].

A summary of the key relevant work in the detection of infec-
tious diseases, in the context of the developing world, is provided
in Table II. The table highlights the different approaches used for
identifying infection severity, and how the proposed approach
in this paper distinguishes itself from these works.

[ll. PROPOSED METHOD

LetC = {¢;}, be a set of L ANSD severity levels of infec-
tious disease patients. Let P,, be the nth sample window that
contains a set of multi-modal (-stream) physiological data, i.e.
P, = {p}, wherem € {1,2,..., M} and M is the total num-
ber of modalities or streams. We aim to provide resource-aware
triage process by predicting the ANSD severity level in P,,, i.e.
s, € C, using a fusion of the multi-modal information, transfer
learning from existing vision-based deep convolutional net-
works, and recurrent neural network for longitudinal modelling
(see Fig. 2). The proposed approach consists of multi-modal
physiological data acquisition, cross-domain transfer learning,
on-site triage process and personalised longitudinal modelling.
This section describes the details of each block in the proposed
framework.

A. Multi-Modal Physiological Data Acquisition

Different physiological data streams (Fig. 1) are acquired
from patients of infectious diseases using low-cost wearable
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TABLE |
SUMMARY OF KEY EXISTING WORKS THAT EMPLOY DATA-DRIVEN APPROACHES TO SUPPORT DECISION MAKING IN THE DIAGNOSIS OF INFECTIOUS
DISEASE PATIENTS IN THE DEVELOPING WORLD

Features Extraction Fusion
Existing Work [Ref.] Diseases Modalities ~ Mobile sensors | Manual  Deep learning  Transfer learning | Feature fusion  Decision fusion | Multi-layer modelling ~ Multiple datasets
Zhang et al. [15] HFMD EHR X v X X X X X
Liu et. al [16] HFMD EHR X v X X X X X
Das et al. [17] Malaria Tmage v v X X X X X X
Delahunt et. al [11] Malaria Tmage v X v X X X X v
Liang et al. [12] Malaria Image v X v v X X X X
Duong et al. [18] Tetanus ECG v v X X v X X X
Abebe et al. [10] Tetanus, HFMD  ECG, PPG v v X X v X X v
Proposed Tetanus, HFMD  ECG, PPG v [ X v v [ v v v v
Multi-modal
iologi : . Personalised
hysiological -
pny: gica Cross-domain transfer learning longitudinal modelling
& l
” \‘ ) Remote monitoring
| i i
Al Al : | I
I I i i
' | 1 i
, e o )
§ ] {
J‘ ‘,/‘\M/\J - o) Escalation of care
) ) On-site triage process
Fig. 2. Block diagram of the proposed approach. Multi-modal/-stream physiological data are collected and pre-processed. A cross-domain transfer

learning is applied using frequency-time representation and existing networks such as Inception. On-site triage process is then employed to
determine the escalation of care for a patient. Personalised longitudinal modelling is applied in a cloud that can help to remotely monitor the

patient.

(a) E-patch

(b) Pulse oximeter

Fig. 3.  Wearable devices which could be used for ECG and PPG
data collection, respectively, (a) E-Patch with mounting electrolyte and
(b) Pulse oximeter with adjustable wrist-strap.

devices such as a pulse oximeter (see Fig. 3). These streams
could be from different modalities such as ECG and PPG. In
addition, a single modality may contain multiple channels, e.g.
the conventional 12-lead ECG. ECG signals are generated by
electrical activity of the sinoatrial node, which controls the ex-
pansion and contraction of the heart (see Fig. 1(a)). PPG signals
represent the changes in light absorption of the skin, measured
using an infrared sensor emitting light on the skin, when the
heart pumps blood into peripheral vessels (see Fig. 1(b)).

B. Cross-Domain Transfer Learning

Physiological signals collected using wearable sensors are
often susceptible to noise and movement artefacts. Hence, a
high pass filter followed by a Gaussian filter is applied to
mitigate these issues. Following the noise filtering, we encode
signal variation (dynamics) using a fast Fourier transform (FFT),
F(-). The output of the FFT is then rearranged to obtain a
frequency-time representation, i.e. spectrogram, which contains
the frequency response magnitude at different frequency bins
(see Fig. 4). Let p;* be the mth modality patient data of P,,, the
spectrogram can be presented as S* = F(p}"). We normalise

(a) Mild (b) Intermediate

(c) Severe

Fig. 4. Spectrogram examples extracted from ECG waveforms of
HFMD patients with Mild, Intermediate and Severe ANSD cases.

S by its maximum value and bound its values between [0, 255]
similar to the intensity values of natural images as follows:

5™ —log [ —2n w255 1
P (e ) O
Logarithmic-scale is applied to smooth the spectrogram values
since much of the energy lies in the lower frequency bins.

Raw time-series data could also be fed directly to a Conv1D-
based deep network. Compared to the proposed spectrogram-
based Conv2D approach, Conv1D applied directly on raw time
series data, however, has the following limitations. 1) Heart rate
variability is the main marker to diagnose ANSD in clinical prac-
tice. However, feeding the raw data to a network makes temporal
encoding difficult compared to using spectrograms that already
contain pre-processed temporal information. 2) It requires more
training data to effectively extract the variability from raw time
series by training a network from scratch. 3) Compared to raw
data, spectrogram representation provides robustness against
variations in device specifications and mounting positions of
wearable sensors [26, 27]. 4) In addition to its effective temporal
encoding using a short-time Fourier transform, a spectrogram
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representation enables transfer learning by using existing com-
puter vision networks, which in turn enable multi-modal learn-
ing; 5) Finally, spectrograms of multiple channels, e.g. incase
of 12 leads ECG, help to exploit their spatial relationships via
stacking.

Examples of spectrograms obtained from the ECG waveforms
of Mild, Intermediate and Severe ANSD cases of HFMD pa-
tients are shown in Fig. 4. We utilised existing vision mod-
els (e.g. GoogleNet [27]) that are pre-trained on large image
datasets (e.g. ImageNet [29]) to achieve cross-domain transfer
learning between time-series physiological data and natural im-
ages. Thus, a pre-trained deep network could be used to extract
hidden-layer features, d]" € RP (where D is the feature dimen-
sion), from each normalised spectrogram of a modality, S™. The
features are then fed into on-site triage process presented below.

C. On-Site Triage Process

On-site triage process refers to the modelling and decision
making steps that are done locally, i.e. the triage process pre-
screens patients on-site, e.g. on a mobile device. As a result, we
propose to employ simple classifier, such as logistic regression,
due to constrained on-site resources and the high dimension of
CNN features. This approach is also feasible in wearable system
settings where an initial decision is required to be made on-site
(on the wearable device) with limited computational resources.

Information fusion is another issue associated with using
multi-modal/stream physiological data for decision making.
Fusion could be applied at different stages and hence can be
categorised as either feature or decision fusion (See Fig. 5). In the
proposed framework, feature fusion refers to the concatenation
of the CNN features, and it results in single dimensional feature
vector as input for the on-site triage process. Decision fusion,
on the other hand, involves the concatenation / accumulation of
the on-site triage outputs of each modality (see Section III-D).
Feature fusion is more plausible for on-site triage process, which
allows features from different modalities to be combined before
severity modelling. Thus, feature fusion helps to avoid separate
modelling for each modality, and it is beneficial when the
modalities are highly correlated, e.g. when considering multiple
ECG leads. In the proposed approach, features extracted from the
hidden layers of existing CNNs could be concatenated for simple
classifier-based triage process. The drawback of feature-level
fusion is evident when the feature dimension of each modality
is already high as in the case of CNN features. Thus, the concate-
nation of M CNN feature vectors (each D-dimensional) results
in an even higher feature dimension, i.e. [d7]M_, € RM*D,
The on-site triage process outputs a decision vector 1, € RZ,
with L << D << M % D. The decision vector, 1,,, consists of
the score for each class, and the class with the highest score
becomes the predicted label. The longitudinal model, on the
hand, is relatively intensive computationally and hence proposed
to be done remotely.

D. Personalised Longitudinal Modeling

The on-site triage process provides the instantaneous ANSD
severity level prediction for short-duration physiological data
from an infectious disease patient. Longitudinal modelling helps

Signal Signal Signal
4 l l |
| I
JLA/QL J\v,fx/q v

3 4 4
3 4 4

| Transfer Learning |
4 4 4

I Feature Fusion l

4

1-D feature vector

(a) Feature fusion

Signal Signal Signal
| |
| |
J‘Vr—//\\//\../“, J“,/\,f\_‘\,
4 R U 4
4 4 4
| Transfer Learning |
4 4 4
| On-site Triage Process |
4 4 4
| Decision Fusion |
4

1-D decision vector

(b) Decision fusion

Fig. 5. Fusion types employed in the proposed framework: (a) feature
fusion in the on-site triage process and (b) decision fusion in the longi-
tudinal modelling.

encode the temporal dependency among subsequent samples of
the patient and predict the inference level while considering the
previous states of the same patient, i.e. provide a personalised
prediction. This can naturally be extended to predict the severity
of a patient in the future.

To this end, we employ a recurrent neural network (RNN) to
model the longitudinal dependency among subsequent samples
drawn from a single patient. Vanilla RNN is often characterised
by its inability to easily capture or encode long-term temporal
patterns, due to vanishing and exploding gradient problems [30].
Gated networks, such as long short-term memory (LSTM) net-
works, have been introduced to control the flow of information
from the input to the output in recurrent networks and thus avoid
vanishing and exploding gradients.

The input feature vector to the RNN-based longitudinal mod-
elling, q,,, consists of the output of the on-site triage process,
ie. q, =1, € RE. Note that if feature fusion was not applied
during the triage process, longitudinal modelling would be
applied on the decision fusion of triage outputs from different
modalities/streams.

Decision fusion addresses the limitations of feature-level fu-
sion when the feature dimension of each modality is high. It also
exploits each modality separately during the triage step, which
is beneficial particularly when the modalities are less correlated
and each provides different discriminative characteristics, e.g.
ECG and PPG (See Fig. 5(b)). The on-site triage process pro-
vides a low-dimension feature vector per modality, 1, € R%,
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which is a vector of class probabilities. In decision fusion,
triage outputs from multiple modalities could be fused either
through decision concatenations (DC) or decision accumulation
(DA). DC concatenates the class probability vectors of different
modalities that results in q,, = [I™]M_, € RM*L whereas DA
sums up the prediction vector per class across the modalities and
resulting in q,, € R = S M 17,

Finally, we compute ANSD severity level, s,,, using softmax
normalisation on the current hidden state of the longitudinal
model, i.e. h,,, as follows:

ewhshn

L Whshy,
>y €Wnahn

@)

Sn

where Wy, € RL*¥ is the wrapping matrix.

[V. DATASETS

We used two infectious disease datasets for the validation of
the proposed approach. The datasets are of HFMD and tetanus
patients admitted in hospitals in Vietnam. The data collection
was approved by the relevant Ethical Committees and carried
out in line with the declaration of Helsinki.

A. HFMD Dataset

We collected HFMD dataset from 74 patients, the majority
of whom were children less than three years old, at Children
Hospital No. 1, Ho Chi Minh City, Vietnam. We used unob-
trusive commercial devices, i.e. E-patch,1 in order to collect
ECG waveforms from HEMD patients, with a sampling rate of
256 Hz. The collection is designed to acquire patient data at
least twice during hospital stay. First, a 24-hour ECG recording
is performed when a patient is admitted to the infectious dis-
ease department. Then, another round of recording is done on
the penultimate day of hospitalisation. The clinical diagnosis
of the patients is used as a ground truth for the proposed
approach. The clinical score contains five labels: 2a, 2b;, 2bo,
3 and 4 in the order of increasing severity. However, there are
obvious class imbalances in the HFMD dataset as the number of
patients (per class) is as follows: 2a(33), 2b1(9), 2b2(11), 3(20)
and 4(1). As a result, we decided to merge adjacent classes, i.e.
level-2b; and level-2b, as Intermediate and level-3 and level-4
as Severe.

B. Tetanus Dataset

Ten tetanus patients, all adults, were recruited for a proof-
of-principle study at the Hospital for Tropical Diseases, Ho Chi
Minh City. Four of the patients were diagnosed with Mild ANSD
and the remaining six as Severe cases. Temporally synchronised
ECG (300 Hz) and PPG (100 Hz) waveforms, each approxi-
mately lasting up to 24 hours, were collected from a patient. A
Datex Ohmeda monitor and a pulse oximeter were employed for
data acquisition. In order to download the waveforms from the
monitor, we employed VS Capture software.

![Online]. Available: epatch.madebydelta.com

V. EXPERIMENT SETUP

In this section, we describe the setups of parameters in each
step of the pipeline, the baseline methods used for comparison
and the performance metrics used to evaluate the proposed
approach.

A. Parameter Setup

A time-series physiological data stream is decomposed into
a sequence of non-overlapped windows (samples) upon which
training and testing is performed. We set the duration of window
length to be five minutes, similar to the duration in the clinical
baseline method [8]. The total number of samples extracted from
each modality of the tetanus dataset is 3,141, which consists of
1,117 Mild and 2,024 Severe samples. From HFMD dataset,
a total of 60,373 samples are extracted from each ECG lead,
which consists of 20,151 Mild, 19,594 Intermediate and 20,628
Severe samples. For the spectrogram generation, we applied
a short-time Fourier transform on each chunk of five seconds
in a window. Overlapping percentage of 95% is applied on
subsequent chunks to obtain smooth frequency-time (spectro-
gram) representation. The ECG waveforms in both HFMD and
tetanus datasets are characterized by higher sampling rates, i.e.
256 Hz and 300 Hz respectively, compared to 100 Hz PPG
waveforms. Thus, a decimation (with a factor of 2) is performed
during spectrogram computation on the ECG waveforms. After
normalization and logarithmic scaling of the magnitude of the
frequency response values (see Eq. 1), the spectrogram is stored
as an image in JPG format using the default ‘viridis’ color map.
We set the parameters (e.g. window length and percentage of
overlapping for the FFT calculation) to obtain a square-like
spectrogram of 146 x 161 pixels. Thus, no significant change
on the input spectrogram occurs due to the resizing method
employed by an existing network, e.g. Inception.

For the cross-domain transfer learning, we experimented with
Inception-v3 [27], MobileNet [31] and MnasNet [32] trained on
ImageNet [29] to extract the CNN features on the spectrogram
images. We extracted the Inception features from the next-to-
last layer of Inception-v3, i.e. ‘pool_3 : 0, which provides a
D = 2,048 dimensional feature vector for each spectrogram.
Similarly, we extracted MobileNet and MnasNet features with
dimensions D = 1,280 and D = 1,056, respectively. We ap-
plied fixed batch normalisation after features are extracted from
the hidden layer of an existing network (e.g. Inception and
MobileNet) prior to on-site triage process and/or longitudinal
modelling. In our approach, we did not opt to fine-tune any
hyper-parameters of the existing architectures. Different modal-
ities are expected to contribute an equivalent number of samples
from each patient. Thus, replication of samples is applied in
order to achieve data balance among modalities when lower
samples are available from a specific modality.

Logistic regression and SVM are experimented with for the
on-site triage process. They take the CNN features as inputs
and each outputs a score for each class. For the longitudinal
modelling, we employ an LSTM recurrent network that
contains three additional gates (input, output and forget) in
order to control flow of information and hence avoid vanishing
gradients. We used a single layer LSTM (without stacking) to
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keep the framework simple, factoring in the limited size of the
HEFMD and tetanus datasets in addition to the high dimensional
CNN feature input. The number of neurons in each gate of the
LSTM is set to v = 64 neurons trained with a batch size of 12
and with 100 epochs. We set the recursive duration to contain
T = 6, i.e. 30 minutes for a 5-min window duration, which
means the LSTM can utilise the information from previous 5
samples when it makes decision. Adam-optimizer is used for
training with an initial learning rate of 0.01. Before training,
we split the data from each patient sequentially to train and test
sets with a ratio of 80% and 20%, respectively. Each window
(sample) in the train and test sets is classified independently
during on-site triage process, e.g. using SVM, and later on the
temporal relationships among subsequent samples is exploited
using the longitudinal model, e.g. LSTM. Though, the level of
severity hardly changes in the validation datasets, this approach
would help to predict the deterioration of a patient in advance.
Both train and test sets are normalized to force the scale of each
feature element to unit variance.

B. Baseline Methods

We compared the proposed approach with two existing works:
our previous work [10] and a baseline method [8], which em-
ployed handcrafted features for the classification of severity
levels. Abebe er al. [10] applied simple time- and frequency-
domain features whereas Malik er al. [8] strictly required the
detection of each QRS complex in ECG waveforms followed by
the extraction of vital signs such as heart rate and RR intervals.
We employed an SVM with a Gaussian kernel to validate the
baseline features.

In the proposed approach different fusion strategies are inves-
tigated. These include FC-LSTM: feature-level concatenation
of CNN features from different modalities/streams followed
by LSTM; FC-LR-LSTM: feature-level concatenation of the
feature groups followed by logistic regression and LSTM; LR-
DC-LSTM: decision-level concatenation of LR outputs of the
feature groups prior to the LSTM; LR-DA-LSTM: decision-
level accumulation of LR outputs of the feature groups prior to
the LSTM. We have also experimented with SVM for the on-site
triage process and compared it with LR.

C. Performance Metrics

We employ the following performance metrics for our eval-
uation: accuracy (A), precision (P), sensitivity or recall (R),
specificity (5) and F-score (7).

For multi-class classification as in the HFMD dataset, one-vs-
all (OVA) strategy is applied to compute the performance metrics
per severity level. Each experiment is repeated 10 times (num-
ber of iterations), and each iteration is performed with a new
initialisation set of the network parameters. The average perfor-
mance is computed, first, across the severity levels, followed by
another averaging across the iterations. The standard deviation
of performance metrics across the iterations is also reported.

VI. RESULTS AND DISCUSSION

This section presents the ANSD level classification perfor-
mance achieved in both tetanus and HFMD patients. Compared
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TABLE Il
ON-SITE TRIAGE PERFORMANCE ON TETANUS PATIENTS
FC: FEATURE-LEVEL CONCATENATION; LR: LOGISTIC REGRESSION;
SVM: SUPPORT VECTOR MACHINE
Baseline - SVM performance (%)
Method A P R S Fi
PPG- [10] 70.2+1.0 704+£08 926+03 295+29 80.0£0.5
ECG- [10] 80.2+0.7 7844+09 953+05 534+25 86.0+04
FC- [10] 782+10 753+£1.0 981+03 43.1+33 85.2+0.6
Transfer learning (%)

A P R S F
PPG-LR 90.2+03 9414+04 905+0.2 89.8+00 923+0.1
ECG-LR 91.54+0.1 93.24+04 936402 876+0.1 934+0.3
PPG-SVM 89.4+02 87704 973+£06 752+0.1 922+0.2
ECG-SVM  924+0.1 955+£0.5 927+£0.1 920+£0.0 94.0£0.6

Transfer learning + Feature fusion (%)

A P R S F
FC-LR 945+03 97.0£08 944+05 947+05 95.7+£0.6
FC-SVM 923+0.2 909+00 978+0.7 823+05 942+0.3

to the baseline methods, we discuss the results achieved via
transfer learning, feature and decision fusions, and longitudinal
modelling. Moreover, the misclassification among severity lev-
els will be discussed. Then follow the experiments that investi-
gate the effect of window duration in the spectrogram generation
and hidden layer size in the LSTM-based temporal modelling.
Finally, the proposed framework is also validated on mobile
architectures, such as MobileNet [31] and MnasNet [32].

A. On-Site Triage

1) Tetanus: Table II shows the performance of the proposed
approach for the on-site triage process compared with the base-
line methods. First, we present the performance of hand-crafted
time and frequency domain features in the baseline methods
using SVM. Second, we present the impact of transfer learning
by validating the CNN features extracted from existing networks
using LR and SVM for triage process. Third, we assess the
performance improvement via feature fusion. We primarily ref-
erence the F-score results in our discussion, as it is the harmonic
mean of the precision and recall values.

a) Transfer learning: Results in Table II show that the
SVM-based validation of hand-crafted features achieves the
lowest performance compared to the use of CNN features
extracted via cross-domain transfer learning in the proposed
framework. This demonstrates the limited generalisability of
manually designed features. We experimented with both LR
and SVM to validate the CNN features obtained from PPG and
ECG waveforms using transfer learning, which results in at least
12% and 7% performance improvements over PPG and ECG
waveforms, respectively.

b) Feature fusion for triage: The fusion of CNN fea-
tures from multiple-modalities has been shown to slightly im-
prove the on-site triage process as FC-LR (95.7%) and FC-SVM
(94.2%) achieved the highest F-score values among LR-based
and SVM-based methods respectively, as detailed in Table II.

¢) LR vs. SVM: LR performs competitively with SVM,
and even exploits the feature fusion better than the SVM, i.e.
95.7% vs. 94.2%, respectively. This can likely be attributed, at
least in part, to the high dimension of the CNN features (D =
2,048).

d) Modalities: Due to its relatively stable acquisition
process, ECG waveforms proved to be more discriminant than
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TABLE Il
ON-SITE TRIAGE PERFORMANCE ON HFMD PATIENTS FC: FEATURE-LEVEL
CONCATENATION; LR: LOGISTIC REGRESSION; SVM: SUPPORT
VECTOR MACHINE

Baseline - SVM performance (%)
R S

Method A P 1
ECG- [8] 57.1+£0.2 35.0+£0.2 3524+02 67.6+01 346+0.2
ECG-2- [10] 70.94+0.1 60.64+0.1 559+02 78.0+£0.1 55.7+0.2
FC- [10] 70.2+0.1 60.0+0.1 5454+0.1 77.34+0.1 53.94+0.2
Transfer learning (%)

A P R S Fy
ECG-1-LR 68.5+0.2 528+0.1 528+00 764+03 528+0.2
ECG-2-LR 69.84+00 549+02 548+0.1 774+£0.2 548+£0.1
ECG-1-SVM  72.6+0.3 60.1+0.2 589+00 794+03 59.1+£0.0
ECG-2-SVM  7284+0.1 609+00 592+00 79.5+04 59.5+0.1

Transfer learning + Feature fusion (%)

A P R S Fy
FC-LR 70.6 £0.4 56.0+0.2 56.04+0.2 780403 56.0+0.2
FC-SVM 76.3+0.2 65.84+0.1 6434+0.1 8214+04 64.6+0.0

PPG when validated with both hand-crafted features (86.0% vs.
80.0%) and CNN features (93.4% vs. 92.3% using LR and 94.0%
vs. 92.2% using SVM).

2) HFMD: Table III shows the on-site triage process perfor-
mance of the baseline features, CNN features and feature-level
fusion for HFMD patients. Compared to classifying tetanus
severity (Table II), the overall performance of classifying the
severity levels of HFMD patients is significantly lower, as de-
tailed in Table III. This can be attributed to the noise introduced
through the wearable sensors, due to the motion artefacts as
the HFMD patients are children, who often make spurious
movements during data collection. Moreover, compared to the
binary (Mild vs. Severe) ANSD prediction for tetanus patients,
the task by definition is more challenging for HFMD patients
as it involves three class prediction, i.e. Mild, Intermediate and
Severe.

a) Transfer learning: Similarly to tetanus results (see
Table II), the baseline features are inferior to the CNN features
for ANSD prediction on HFMD patients, particularly when
SVM is employed for both feature types. Baseline features from
ECG-2resulted in 55.7% whereas the CNN features from ECG-2
achieved 59.5%.

b) Feature fusion: FC-LR (56.0%) and FC-SVM
(64.6%) achieved the highest LR- and SVM-based F-scores,
respectively, for the on-site triage process of HFMD patients.
This reflects the advantage of feature fusion in the process.
However, the improvement is not as large as it is for tetanus
severity prediction, due to the difficulty of the prediction task in
the HFMD dataset. This is also partly due to the limitation of
feature-level fusion when the individual modalities or streams
are highly correlated, as in the case of the ECG-1 and ECG-2
streams of the HFMD dataset.

¢) LR vs. SVM: LR is shown to be inferior to SVM
during the individual validation of the ECG streams as F-scores
of ECG-1 and ECG-2 increased, respectively, from 52.8% and
54.8% (using LR) to 59.1% and 59.5% (using SVM). Moreover,
the SVM exploited the feature-level fusion of the CNN features
better than the LR: 64.6% vs. 56.0%.

d) Modalities: The two streams of ECG waveforms have
achieved competitive performance across different methods and
classifiers. This is expected as the two channels of the ECG data
are highly correlated to each other.

TABLE IV
MILD AND SEVERE LEVEL CLASSIFICATION USING LONGITUDINAL
MODELLING FOR TETANUS PATIENTS. FC: FEATURE-LEVEL CONCATENATION;
DC: DECISION-LEVEL CONCATENATION, DA: DECISION-LEVEL
ACCUMULATION; LR: LOGISTIC REGRESSION; SVM: SUPPORT VECTOR
MACHINE; LSTM: LONG SHORT-TERM MEMORY NETWORK

Feature fusion + Longitudinal model (%)

A P R S Fy
FC-LR-LSTM 97.3+03 98.0+03 97.8+£0.5 96.5+0.6 97.9+0.2
FC-SVM-LSTM  95.6+0.5 94.7+0.5 98.7+04 90.1+1.0 96.7+0.4

Decision fusion + Longitudinal model (%)

A P R S Fy
LR-DC-LSTM 97.2+0.3 97.0+£0.3 988+£0.3 944+06 97.9+0.2
LR-DA-LSTM 97.1+0.1 96.7+0.0 989+0.2 93.8+0.0 97.8+0.1
SVM-DC-LSTM  97.0+0.6 959+£09 99.54+0.1 923+18 97.7+04
SVM-DA-LSTM  96.9+0.4 95.7+0.6 99.6+0.1 920+1.1 97.6+0.3

TABLE V

ANSD LEVEL CLASSIFICATION USING LONGITUDINAL MODELING FOR
HFMD PATIENTS. FC: FEATURE-LEVEL CONCATENATION; DC:
DECISION-LEVEL CONCATENATION; DA: DECISION-LEVEL ACCUMULATION;
LR: LoGIsTIC REGRESSION; SVM: SUPPORT VECTOR MACHINE; LSTM:
LONG SHORT-TERM MEMORY NETWORK

Feature fusion + Longitudinal model (%)

A P R S y
FC-LR-LSTM 748+£05 622+07 624£07 81.1+£04 61.0£09
FC-SVM-LSTM  77.7+£0.2 683+04 663+04 832+0.2 66.6+04

Decision fusion + Longitudinal model (%)

A P R S Fy
LR-DC-LSTM 727+0.8 61.5£06 59.3+1.1 795+06 55.3+£1.9
LR-DA-LSTM 71.6+£09 61.64+06 57.7+13 7874+0.7 528+23
SVM-DC-LSTM  75.7+0.2 658+04 63.3+04 81L.7+£0.2 63.6+0.3
SVM-DA-LSTM  7544+0.6 65.7£08 629409 81.5+0.5 63.2+0.9

B. Longitudinal Modeling

This subsection describes the results achieved using the per-
sonalised longitudinal model and discusses the effects of feature-
fusion and decision-fusion on the performance improvement.

1) Tetanus:

a) Improved performance with longitudinal models:
The LSTM-based longitudinal model improved the perfor-
mance for severity level classification for the tetanus patients
as shown in Table IV. The highest LR-based and SVM-based
F-scores in Table II, i.e. 95.7% (FC-LR) and 94.2% (FC-
SVM), have been improved to 97.9% (FC-LR-LSTM) and
96.7% (FC-SVM-LSTM), respectively. Particularly notewor-
thy is the fact that the tetanus dataset contains longer dura-
tion physiological waveforms. Thus, the temporal model was
likely able to exploit this information and hence improve
performance.

b) Feature fusion vs. decision fusion: Table IV also
shows that the type of fusion is less significant when the longitu-
dinal modelling is applied, particularly for LR-based approaches
as FC-LR-LSTM (feature fusion) and LR-DC-LSTM and LR-
DA-LSTM (decision-fusions) achieved similar F-scores. SVM,
on the other hand, has shown a slight improvement with decision
fusions. The two decision fusions, decision concatenation and
decision accumulation, also achieved similar performance.

2) HFMD:

a) Improved performance with longitudinal models:
Table V shows performance improvement due to the longitudinal
model for HFMD patients (as Table IV did for tetanus patients).
The LSTM-based temporal model improved the LR-based
performance from 56% (FC-LR) to 61.0% (FC-LR-LSTM).
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(a) Tetanus confusion matrices: PPG-SVM, ECG-SVM, FC-SVM and FC-SVM-LSTM.
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(b) HFMD confusion matrices: ECG-1-SVM, ECG-2-SVM, FC-SVM and FC-SVM-LSTM.

Fig. 6.

Confusion matrices of severity-level detection in the (a) HFMD and (b) tetanus datasets that show a step-by-step performance improvement.

First, individual performance of CNN features from each modality using transfer learning, followed by feature fusion and then LSTM-based

longitudinal modelling (1-min temporal windows is employed).

Similarly, the SVM-based performance increased from 64%
(FC-SVM) to 66.6% (FC-SVM-LSTM).

b) Feature fusion vs. decision fusion: The impact of
high correlation among individual streams is demonstrated in
Table V, where feature fusion achieved significantly higher
performance compared to decision fusion approaches when
the longitudinal model is employed. For example, 61% by the
LR-based feature fusion (FC-LR-LSTM) is higher than the
decision fusions: LR-DC-LSTM (55.3%) and LR-DA-LSTM
(52.8%). Similarly, 66.6% by the SVM-based feature fusion
(FC-SVM-LSTM) is superior to the decision fusions, SVM-DC-
LSTM (63.6%) and SVM-DA-LSTM (63.2%). It is evident that
the two decision fusion schemes performed competitively with
each other. Decision concatenation helped to expand the feature
space fed to the longitudinal model when compared to decision
accumulation, and hence resulted in higher performance,
especially when LR is employed.

C. Misclassification

The misclassification among ANSD severity levels is shown
in Fig. 6(a) and (b) for tetanus and HFMD datasets, respectively.
High sensitivity is achieved on Mild vs. Severe classification of
tetanus patients. ECG and PPG waveforms are shown to perform
competitively, and their concatenation (FC-SVM) somewhat
reduced the misclassification of Mild samples to Severe, and
FC-SVM-LSTM further reduces the misclassification from 19%
to 11%.

The confusion matrices in Fig. 6(b) reveal that, on the HFMD
dataset, the individual ECG leads (ECG-1 and ECG-2) are
shown to perform equivalently due to the high correlation be-
tween the streams, i.e. they are not different modalities as ECG
and PPG but multiple streams of a single modality. Similarly
to the tetanus dataset, the feature fusion, i.e. concatenation,
of the CNN features validated with SVM (FC-SVM) increases
the recall performance of each severity level by an average of
6.3%. As expected, the full pipeline of the proposed approach,
i.e. combination of SVM-based on-site triage followed by an
LSTM-based longitudinal model, has significantly increased
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Fig. 7. Comparison of two different window durations, i.e. 1-min vs.
5-min, on the F-score (%) of severity-level classification in (a) HFMD
and (b) tetanus datasets.

the recall values of Mild and Severe levels to 83% and 75%,
respectively.

D. Window Duration

So far, we have employed a 5-minutes window duration as
recommended in a clinical baseline method [8]. To assess the
robustness of our method to window size, we also experimented
with much shorter window lengths, i.e. 1-minute. This would
help to provide much more frequent inference of ANSD severity
levels for both tetanus and HFMD patients. Fig. 7 shows results
of both LR and SVM for the on-site triage process on HFMD and
tetanus patients. On the HFMD dataset, having a shorter window
duration helps to increase the number of training samples and
hence improves performance for the majority of the methods.
This has been replicated with both LR- and SVM-based classi-
fiers (see Fig. 7(a) and (b)). However, similar findings are not
observed on the tetanus dataset (see Fig. 7(c) and (d)), which
suggests the difficulty associated with encoding discriminative
variability in short duration signals.
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TABLE VI
MILD AND SEVERE LEVEL CLASSIFICATION OF TETANUS PATIENTS
USING MOBILENET ARCHITECTURE

Transfer learning (%)

A P R S F
PPG-SVM 82.0 879 836 792 85.7
ECG-SVM 89.0 863 985 717 92.0
Transfer learning + Feature fusion (%)
A P R S "
FC-SVM 83.8 836 949 779 91.6
Feature fusion + Longitudinal model (%)
A P R S 1
FC-SVM-LSTM 860 933 834 90.3 38.0
Decision fusion + Longitudinal model (%)
A P R S Py
SVM-DC-LSTM  90.5 950 89.6 92.1 92.0
SVM-DA-LSTM 912 945 91.1 914 92.7
TABLE VI

MILD AND SEVERE LEVEL CLASSIFICATION OF TETANUS PATIENTS
USING MNASNET ARCHITECTURE

Transfer learning (%)

A P R S F1
PPG-SVM 844 91.0 84.1 85.0 87.4
ECG-SVM 89.1 83.0 963 76.1 92.0
Transfer learning + Feature fusion (%)
A P R S F1
FC-SVM 89.9 91.6 929 845 92.2
Feature fusion + Longitudinal model (%)
A P R S Fi
FC-SVM-LSTM 89.1 953 86.6 93.1 90.7
Decision fusion + Longitudinal model (%)
A P R S Fi
SVM-DC-LSTM 937 95.6 943 928 94.9
SVM-DA-LSTM 942 957 950 929 95.3

E. Hidden Layer Size

Finally, we also experimented with different sizes of the single
hidden layer in the LSTM network. We validated the choice
of 64 and 128 neurons for both tetanus and HFMD patients
and we found out these two layer sizes do not cause significant
performance changes across both datasets.

F. Mobile Architectures

We presented the benefit of cross-domain transfer learning for
pre-screening of tetanus and HFMD patients using Inception
architecture (as a proof-of-concept) on time-series physiolog-
ical waveforms. Though Inception is known to be robust, it
could be computationally more intensive compared to other
light architectures, such as MobileNet [31]. To this end, we
selected two other networks, MobileNet [31] and MnasNet [32],
to demonstrate that the proposed approach generalises across
other deep learning architectures. Thus, feature extraction from
the hidden layers of MobileNet and MnasNet resulted in feature
vectors of 1,280 and 1,056 units long, respectively, both of which
are significantly shorter than that of Inception’s 2,048 units
long feature vector. The experiments are conducted using SVM
(with Gaussian kernel) for on-site triage process with the LSTM
hidden layer size of 64 neurons with 5-minutes window duration.
The results of MobileNet and MnasNet on tetanus dataset are
shown in Tables VI and VII, whereas the results on HFMD
dataset are shown in Tables VIII and IX, respectively.

TABLE VI
ANSD LEVEL CLASSIFICATION OF HFMD PATIENTS USING
MOBILENET ARCHITECTURE

Transfer learning (%)

A P R S F
ECG-1-SVM 713 578 570 785 572
ECG-2-SVM 71.6 58.0 573 787 57.6
Transfer learning + Feature fusion (%)
A P R S Fy
FC-SVM 713 578 570 785 57.2
Feature fusion + Longitudinal model (%)
A P R S Iy
FC-SVM-LSTM  75.1 626 627 813 62.6
Decision fusion + Longitudinal model (%)
A P R S Iy
SVM-DC-LSTM 747 619 620 81.0 61.9
SVM-DA-LSTM 757 634 635 81.7 63.3
TABLE IX

ANSD LEVEL CLASSIFICATION OF HFMD PATIENTS USING
MNASNET ARCHITECTURE

Transfer learning (%)

A P R S F
ECG-1-SVM 713 580 569 784 57.1
ECG-2-SVM 717 594 574 787 57.8
Transfer learning + Feature fusion (%)
A P R N 13
FC-SVM 745 634 61.7 80.8 62.1
Feature fusion + Longitudinal model (%)
A P R N F
FC-SVM-LSTM  80.7 71.8 709 854 71.1
Decision fusion + Longitudinal model (%)
A P R S 13
SVM-DC-LSTM  79.7 70.6 69.5 84.7 69.7
SVM-DA-LSTM 787 688 68.1 84.0 68.3

The results showed that MobileNet and MnasNet achieved en-
couraging classification performance on both tetanus and HFMD
datasets. Compared to the SVM-DA-LSTM’s F} score of 97.6%
using Inception architecture on tetanus dataset, MobileNet and
MnasNet achieved 92.7% and 95.3%, respectively. Similarly, on
the HFMD dataset, MobileNet and MnasNet achieved I scores
of 63.3% and 68.3%, respectively, compared to the Inception-
based SVM-DA-LSTM’s F} score of 63.2%, which means
MobileNet performed competitively with Inception architecture
whilst MnasNet even outperformed it. The results also showed
that MnasNet outperformed MobileNet consistently across both
tetanus and HFMD datasets expectedly. Generally, we demon-
strated that the proposed framework can also be applied across a
variety of existing computer vision networks beyond Inception.
Encouraging results are achieved using MobileNet and MnasNet
with smaller feature dimensions, showing a promising potential
to implement the proposed framework in low-cost mobile de-
vices.

VIl. CONCLUSION

We presented our proof-of-principle study that applies
multi-modal and multi-layer decision making to triage patients
with infectious diseases (tetanus and HFMD) using low-cost
and unobtrusive wearable sensors that collect artefact-prone
physiological data. ANSD is the main cause of death in both
tetanus and HFMD, and it is not often apparent until late
stage manifestations. Hence, early and automatic diagnosis
of its severity level could be used for timely intervention.
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We employed spectrogram representations of ECG and PPG
waveforms that enable us to exploit existing pre-trained
networks, i.e. cross-domain transfer learning. This allows us to
avoid training from scratch and hence reduces the requirement
for large training data and high computational resource. Later,
feature fusion is applied to improve the performance of the
on-site triage process, followed by personalised longitudinal
modelling that infers the ANSD severity level taking into
consideration previous patient states. Thus, the proposed
approach would provide efficient hospital resource utilisation
in low-resource clinical-settings of the developing world, which
could in turn help improve overall patient care. Our approach was
validated with three existing networks (Inception, MobileNet
and MnasNet) on two independent datasets (tetanus and HFMD)
collected from patients in Southern Vietnam, and we achieved
significant performance improvement over existing methods.
Future avenues of research would concern investigating the
impact of incorporating an attention model into the LSTM, as
the inclusion of such a model has been shown to greatly improve
performances of the LSTM in other application domains.
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