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Abstract—Clinical decision-making in healthcare is
already being influenced by predictions or recommen-
dations made by data-driven machines. Numerous
machine learning applications have appeared in the
latest clinical literature, especially for outcome pre-
diction models, with outcomes ranging frommortality
and cardiac arrest to acute kidney injury and arrhyth-
mia. In this review article, we summarize the state-
of-the-art in related works covering data processing,
inference, and model evaluation, in the context of
outcome prediction models developed using data ex-
tracted from electronic health records.We also discuss
limitations of prominent modeling assumptions and
highlight opportunities for future research.

Recent artificial intelligence (AI) developments seek
to positively impact medicine and clinical practice [1].
Machine learning (ML), an application of AI, recognizes
patterns within large quantities of medical data to make
future predictions, ranging from natural language pro-
cessing to computer vision applications [2], [3]. Several
ML frameworks have been proposed to predict clinical
outcomes within a certain time period in the future, such
as cardiac arrest, mortality, or intensive care unit (ICU)
admission [4], [5], [6], [7].

In general, designing an ML system involves a multi-
disciplinary effort that extends from data engineering to
training and evaluating a predictive model. We consider
the general model as a mapping of an input to an output:

f : X→ y (1)

where f(.) is a function consisting of parameters Θ, X
is the input and y is the output. For example, X can
consist of vital signs measurements of the patient, such
as heart rate, blood pressure, and respiratory rate, and
y can represent a binary label indicating the occurrence
of ICU transfer or cardiac arrest during the patient’s
hospital stay [7].

Fig. 1 depicts the typical pipeline of a ML application,
starting from the input X, and ending with the corre-
sponding output represented by y. The first task learns
to extract intermediary features (Section III) while the
second task learns from patterns in the data to produce
the predicted label (Section IV). Such models are usually
assessed based on clinical utility and interpretability
(Section V).

As we discuss related works throughout this review,
we also provide an intuitive explanation of the ML
techniques used for feature extraction or predictive in-
ference. In general, ‘learning’ how to map the input to
the output involves approximating the parameters of the
model f(.), a loss function L(y, ŷ|Θ), and an optimization

algorithm. The loss function L(y, ŷ|Θ), also known as
the cost function, measures the dissimilarity between
the true labels y and the values ŷ predicted by the
approximated model (e.g., mean square error, binary
cross-entropy, etc.). An optimization algorithm, such as
gradient descent [8], minimizes L(y, ŷ|Θ) in an iterative
manner based on the examples present in the dataset.

I. Clinical Context & Frameworks of
Outcome Prediction Models

Care pathways within hospitals vary largely due to the
diversity of admitted patients. Thus, an understanding
of the clinical context is key for developing machine
learning models that can be incorporated within existing
medical processes. As shown in Fig. 2, a patient may be
hospitalized as an emergency or elective admission, where
the latter constitutes a routine procedure. During hospi-
talization, different types of data are routinely collected
from the patient for monitoring purposes.

Patient monitoring tools, such as early warning sys-
tems [9], are widespread across different hospital wards
to continuously assess for patient deterioration. The def-
inition of what exactly constitutes clinical deterioration
has evolved over time based on the data collection and
processing techniques. Early attempts to define clinical
deterioration focused on medical neglect and its end
result of clinical complications [10]. Subsequent studies
focused on more discrete clinical events, such as se-
vere sepsis, unexpected cardiac arrest, ICU admission
or mortality [11], [12], and tend to select one or more
end-point measures of clinical deterioration. Such events
incur high costs of prolonged hospital stays, litigation,
staff time, impact on patients and staff, and broader
economic consequences [13]. The latter definition is the
most popular one, as it enables researchers to group
patients into discrete classes, such as deteriorating (i.e.,
those who experience an outcome) and non-deteriorating
(i.e., those who are discharged without experiencing any
outcomes), and as such infer the y labels.
The framework of outcome prediction models also

varies across the literature. Some studies predict the risk
of an outcome only once using the patient’s first N hours
of data after admission, such as 24 or 48 hours [14].
Others choose to predict the risk of an outcome, such
as ICU readmission, using the patient’s last N hours of
data prior to discharge. Another common methodology
is to develop a real-time alerting score, which computes
the risk of deterioration every time a set of clinical



Fig. 1. General ML pipeline that maps an input to a label. The two main steps of the pipeline are (i) extraction of an intermediary
feature space and (ii) label prediction using a classification or clustering algorithm.

observations is collected [15], as in clinical early warning
systems [16].

II. Electronic Health Records
Various types of data can be used to develop outcome

prediction models, such as imaging, speech, or claims
data [17]. Here, we focus on data extracted from elec-
tronic health records (EHR), which are being increas-
ingly deployed in hospitals worldwide. EHRs are used
in hospitals to store longitudinal information of patients
collected in a care delivery setting. Such information
includes patient demographics, vital signs, medications,
laboratory data, and description of any outcomes that
may have occurred to the patient during hospitalization,
or shortly after discharge.

Data extracted from an EHR database can be used to
develop and evaluate ML models. The dataset is typically
split into a training set and a testing set1, either by
a random or a nonrandom split based on location or
time. According to the Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement, the nonrandom split by
time is the strongest evaluation technique as it avoids
random variations between the training and testing sets
[18]. During model learning, the training set is used to
optimize the parameters Θ of the model. The trained
model is then evaluated on the held-out test set using
various performance metrics.

Fig. 3 shows the overall dataset sizes, in terms of
number of patient admissions, reported in studies pub-
lished in the last decade (arranged in chronological order
from left to right), extracted from EHRs. There is an
increase of six orders of magnitude between 2008 and
2019, which highlights the increased accessibility to EHR
data for research purposes. Most datasets are reported to

1In clinical studies, the test set is usually termed the validation
set, not to be confused with the portion of the training set used for
ML-oriented tasks, such as hyperparameter selection.

be private, and there have only been a few notable efforts
to release open access datasets, such as the MIMIC-III
database [19]. Data and resource sharing is important for
the advancements of the field.

It is also commonly agreed that data in EHRs may
reflect the recording process present in the hospital
rather than being a direct reflection of patient physiology
[20]. First, EHRs are complex as they may include struc-
tured and unstructured data; an example of the latter
is textual information which could require natural lan-
guage processing techniques to process [21]. Additionally,
categorical data, such as diagnostic coding, may adopt
different coding systems across different institutions.

Another important dimension is data completeness,
which may be defined as “the proportion of observa-
tions that are actually recorded in the system” [22].
Incompleteness of EHRs can be a result of health service
fragmentation due to inefficient communication following
patient transfer among institutions; the recording of
data taking place only during healthcare episodes that
correspond to illness, or the increased personalisation of
attributes per patient [20], [23]. Completeness may also
vary across institutions based on adopted protocols.

The third challenge is the accuracy of the data, or “the
proportion of recorded observations in the system that
are correct” [22]. Errors can occur while clinical staff
observe a patient or record data, and their occurrence
may be influenced by random and systematic errors
such as billing requirements or avoidance of liability
[20]. The accuracy of EHRs can be assessed by checking
agreement between different elements within the EHR
(such as assigned diagnosis and supplied medications), or
by verifying whether values are within expected ranges
[24].

Finally, it is important to verify whether the data was
recorded within a reasonable period of time [24]. For
example, the recorded collection time of vital signs may
precede the time of admission. Although this aspect of



Fig. 2. Visualization of the patient flow in a hospital: Patient is either admitted as an elective or emergency admission, monitored in ward
stay(s) during consultant episode(s). Patient may transfer from one ward to another, or may change the consultant during the in-hospital
stay. * Accident & Emergency patients may be admitted as inpatients or just discharged.

data quality is highly dependent on the efficiency of the
clinical staff, it also depends on the work flow protocols
adopted at different institutions. Timeliness of data must
be assessed to evaluate the chronology of data elements in
relation to admission or discharge decisions, for example
laboratory results prior to admission may be considered
as part of subsequent admission, or death within 24 hours
of discharge can be considered as in-hospital mortality.

This imposes challenges on the usability of the data,
which usually incurs preliminary data pre-processing as
shown in Fig. 4. The first step is to define an inclusion
and exclusion criteria to extract the patient cohort of
interest. The second step involves setting assumptions
to aid the analysis of the heterogeneous data, such as
defining a minimum length of stay. Finally, meaningful
features as input variables to the ML model can be
extracted using a variety of techniques.

III. Feature Extraction
The performance of clinical predictive models relies

on the feature representation of the data, as in other
domains [44]. As reported in related works, feature
extraction generally involves at least one of domain-
expertise for hand-crafted features (Section III-A), data
standardization (Section III-B), or representation learn-
ing (Section III-C).

A. Hand-crafted Features
Domain expertise is commonly used to provide guid-

ance on the design of the data pre-processing pipeline.
This involves (i) preliminary feature selection from the
input space, (ii) designing hand-crafted features, and (iii)
incorporating prior knowledge of the structure of the
data in the model design.

Examples of hand-crafted features in related works are
pulse pressure [38], [26], shock index [25], [34], [38], mean
arterial pressure [27], [38], oxygen delivery index [34],
absolute successive difference of heart rate, estimated
cardiac output, slope of fitted regression lines, or slope
projections [25]. Statistical measures can be obtained

from the distributions of the raw data, such as mini-
mum and maximum extremes, moments (mean, standard
deviation, and skewness), percentiles or the difference
between two percentiles [25], [45], [32].

Previous research also computed time series features
from waveform data [28], [46], [26], [5]. Those features can
be categorized into four types: data adaptive, non-data
adaptive, model-based and data-dictated approaches
[47]. Fourier and wavelet transforms, for instance, decom-
pose raw signals into frequency and wavelets respectively.
Time domain, Poincaré nonlinear, cross-correlation anal-
ysis and geometric measures have also been used to
investigate variability of vital signs [5], [26].

Deriving hand-crafted features is a powerful tool in the
design of ML models and has been used extensively over
the years. However, it is a time-consuming and labor-
intensive process, requires expert knowledge, and may
not scale well to new problems.

B. Data Standardization
ML algorithms require further data preparation steps

to ensure stability of learning. Here, related works reduce
the noise, sparsity and irregularity of the clinical data, as
well as align the scales of the various predictor variables.
1) Time-series Modeling: Time-series modeling is

widely used in studies pertaining to early warning models
[29], [40]. It is often used either (i) to infer a pattern
of the physiological trajectory or (ii) as an interpolation
technique to overcome the sparsity and irregularity of
physiological data.

Linear dynamic systems have been previously used to
model physiological variables for ICU monitoring [48]
and detection of sepsis [49]. Hidden Markov Models
(HMMs) were also used to model health trajectories of
patients [31], [50]. However, such models cannot easily
adapt to irregularly sampled vital-sign data. Addition-
ally, each hidden state in an HMM only depends on
the previous state [51]. Another approach for modeling
similar data is the kernel-based support vector regression
[29].
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Fig. 3. Dataset sizes reported in the literature in ascending order from left (2008) to right (2019). The vertical axis represents the dataset
size, in terms of the number of patient admissions, and the horizontal axis represents the reference number.

Fig. 4. Clinical outcome prediction models first extract a cohort
of interest based on different characteristics, and then prepare the
data for further feature extraction.

One of the most popular techniques for time series
modeling within the clinical domain is Gaussian Process
Regression (GPR). GPR is based on a non-parametric
stochastic process that offers a probabilistic approach for
time-series modeling by providing confidence intervals
for estimated values at unobserved time instances. A
comprehensive introduction to GPR can be found in [52].
Previous studies illustrate the robustness of the single-
task GPR [29], [53], [54] in modeling a single physiologi-
cal time-series variable. Others focus on multi-task GPR
[55], [40], [35], which learns similarities across several
time-series data data and models them simultaneously.
The use of GPR relies heavily on the choice of the kernel
that encodes prior knowledge of any nonlinear time-series
dynamics that might be hypothesized to exist in the data.

Most recently, neural processes, a class of neural latent
variable models, were also introduced as a probabilistic
regression approach [56], which generalizes GPR through
the use of generative models from deep learning.

Modeling the physiological trajectory of patients has

become increasingly popular for further use in classifica-
tion [40] or clustering applications [31], [53].
2) Feature Scaling: Empirical studies show that the

performance of predictive models relies on the statistical
normalisation of the input space [57]. Z-score normal-
isation with zero mean and unit standard deviation is
a widely used tool in feature scaling of numeric clinical
variables [58], [59], [42], [6], [60]. Min-max normalisation
performs a scaling of the feature values to lie within
a range, such as [0,1] in [4]. A rigorous comparison of
the different normalisation techniques in the context of
clinical deterioration does not exist. The current practice
is to choose the normalisation technique based on its
effect on the performance of the respective classifier. This
presents an opportunity for future research.

C. Representation Learning
Learning a suitable lower-dimensional embedding or

representation of a high-dimensional input space is a
fundamental component of ML research [44]. The embed-
ding can represent a medical concept [61] or summarize
a patient’s hospital visit [62]. It often performs better
than the raw input for learning subsequent tasks [63],
[64], [65]. We now provide an overview of the techniques
for obtaining embeddings in related medical applications:
(i) standard dimensionality reduction techniques, (ii)
distributed representations used in language modelling,
(iii) using embedding layers as part of a larger model, or
(iv) through the latent space of autoencoders and their
variants. Such compact representations are then further
used as inputs for classification or clustering purposes
(covered in Section IV).
1) Standard Dimensionality Reduction Techniques:

One of the most popular statistical dimensionality reduc-
tion techniques is principal component analysis (PCA)
[66]. PCA transforms a set of possibly correlated vari-
ables to a set of linearly uncorrelated components. It



has been used to extract features for various clinical
applications [67], [46], [68], such as for the detection
of hypotensive episodes [26], mortality prediction across
stroke patients [69], or prediction of hospital readmission
[70]. The main limitation of PCA is that it extracts
linear features that may not well represent non-linear re-
lationships present in complex clinical data [44]. Another
popular technique is independent component analysis
(ICA) [71], [37], which transforms the variables to a set
of independent components.
2) Distributed Concept Representations: Patient

records may contain discrete categorical codes, such
as diagnosis, medication, or treatment codes. Several
studies [41], [39], [72] propose learning from such
variables using embedding techniques derived from the
distributional hypothesis in semantic modeling. The
distributional hypothesis states that words that appear
in similar contexts in large samples of language data
are semantically similar [73]. The skip-gram algorithm
learns the co-occurrence of information inside a context
window of a fixed size [74]. It has been used to convert
medical codes to dense representations in [33], [61],
[41]. Similar to skip-gram, the Global Vectors (GloVe)
algorithm was also used to learn the global co-occurrence
matrix of medical codes [75].
3) Embedding Layers: Embedding layers can also be

integrated as part of a larger model to transform high-
dimensional features into a lower-dimensional space. The
embedding can consist of a simple linear transformation
[76], [77] or as a fully-connected (deep) network [4],
[76], [72]. One study projected the input into a higher-
dimensional space using a convolutional layer [39].
4) Autoencoders and their variants: An autoencoder

is a neural network architecture that is often used for
dimensionality reduction or feature extraction [78]. It
first transforms the input space to a (typically noise-free)
lower-dimensional representation using an encoder, and
then reconstructs the input from this compact represen-
tation. The sparse autoencoder (SAE) enforces a sparsity
constraint on the learned representation, and it has been
used to learn latent representations of clinical data [30],
[62]. The denoising autoencoder (DAE) reconstructs the
input from a partially corrupted version of the input. The
stacked DAE, which consists of several autoencoders that
are initially pre-trained independently then connected
in one network, has also been used for clinical appli-
cations [79], [37], [58], [80]. Another popular variant of
autoencoders is the variational autoencoder [81], which
is a generative model that learns a probabilistic latent
space, unlike the previously mentioned discriminative
autoencoders.

In Table I, we summarize the feature extraction tech-
niques in related outcome prediction studies. In terms
of variable selection, we observe that free clinical text
is the least-used input. That may be due to the limited
availability of datasets. We also note that representation
learning has gained popularity from approximately 2013

and on wards, and we expect it to continue to be an
active area of research in the near future. The consistent
use of hand-crafted features over the years indicates its
effectiveness in training ML models. Additionally, time-
series modeling may not be widely used as it requires hy-
perparameter tuning and high computational resources.
It also limits end-to-end training of the pipeline, since
some operations cannot be differentiated for gradient
descent.

IV. Predictive Inference
The extracted features can then used to train an

outcome prediction model. The task can be posed either
as a classification (Section IV-A) or clustering (Section
IV-B) problem.

A. Outcome Classification Framework
Table II summarizes the different classification models

that have been used to predict various clinical outcomes,
as presented in recent papers. Most papers compare
the performance of their models to those of simple ML
techniques, such as regression [42], [77], which have
been useful statistical techniques long since before the
rise of ML. We also observe that predictions are often
defined within a particular future time-frame, ranging
from short-term 48 hours prediction windows [4] to 6
months. The varying definitions in the literature of what
exactly constitutes an outcome makes it challenging to
compare methods directly. Additionally, some studies
tend to focus on specific patient subgroups, such as
pediatrics [38].
1) Regression Models: Logistic regression is one of the

simplest linear classifiers [83] and is often considered as
a standard benchmark for sophisticated clinical models
[84]. Previous studies used logistic regression to predict
hemodynamic instability [25], imminent mortality [85],
or the composite outcome of cardiac arrest, unplanned
ICU admission, and mortality [12]. However, logistic
regression cannot learn non-linear relationships and as-
sumes independence across the input variables.

Decision tree learning involves the stratification of the
feature space based on a criterion defined by informa-
tion theory, such as entropy. One study developed an
early warning score based on decision trees, using seven
routinely-collected laboratory tests [86], while another
constructed an ensemble model with gradient tree boost-
ing and adaptive boosting to predict the likelihood of
transfer to pediatric ICU [38]. Despite the high inter-
pretability of the aforementioned studies, they heavily
rely on task-specific hand-engineered features and do not
learn complex patterns in the data.
2) Kernel Methods: Kernel methods rely on a user-

defined kernel function that estimates the ‘similarity’
between pairs of data [87]. The support vector machine
is a popular example of kernel methods. It projects data
into a higher-dimensional space and finds the optimal
discriminatory hyper-planes between classes [88]. The



TABLE I
Overview of feature representation techniques adopted in related works using a variety of predictor variables: vital

signs (VS), laboratory tests (LT), demographic information (DI), diagnostic codes (DC), interventions (INT) such as
procedures and medications, and free text (TEX).

Predictor Variables Feature Representation

Ref Year VS LT DI DC INT TEX Hand-crafted
Features

Time-series
Modelling

Representation
Learning

[25] 2008 X X
[26] 2010 X X X X
[27] 2012 X X X
[28] 2012 X X X
[50] 2012 X X
[29] 2013 X X
[30] 2013 X X X
[32] 2014 X X X
[34] 2015 X X X
[35] 2015 X X X X
[33] 2015 X X X
[7] 2016 X X X X
[37] 2016 X X X X X X
[62] 2016 X X X X
[61] 2016 X X X X
[6] 2017 X X X X X X
[40] 2017 X X X X X X
[41] 2017 X X X X
[82] 2017 X X X
[38] 2018 X X X
[42] 2018 X X X X X X X
[4] 2019 X X X X X X X X

use of support vector machines heavily relies on the
choice of the kernel and regularization, and they have
shown strong performance in recent clinical applications
[28], [89], [90], [34]. Computing the kernel matrix for
all pairs of data may be computationally expensive for
large clinical datasets especially when a non-linear kernel
is used. Further work must investigate approximation
techniques for applications involving large-scale medical
data.
3) Deep Learning: Deep learning models are also

becoming increasingly popular for outcome prediction
tasks [91], [7], [5], [27], [40]. The simplest form of
neural networks is the multi-layer perceptron (MLP),
which consists of fully-connected perceptrons. The main
limitation of the MLP is its inability to account for
temporal dependencies. Recurrent neural networks and
their variants seek to model temporal behaviour through
feedback connections. Both Long Short Term Memory
(LSTM) networks [92], [93], [40] and Gated Recurrent
Units (GRU) [76], [41] were constructed to predict (and
alert in advance of) clinical outcomes. There is also a
growing interest in developing ‘end-to-end’ architectures
that can jointly extract features and perform classifica-
tion [77], [82], [94]. Although deep learning techniques
are typically characterized by strong performance, their
decision-making process lacks interpretability.

B. Clustering for Abnormality Detection

Clustering algorithms are unsupervised learning tech-
niques that group data based on similarity measures.

Within the context of predicting adverse clinical out-
comes, this can involve creating a ‘dictionary’ or cluster
of healthy patients and computing a similarity metric for
a new patient [45], [53], [95]. Popular similarity metrics
are the Kullback-Leibler (KL) divergence [96] and the
Mahalanobis distance [45]. Clustering analysis has also
been useful for patient phenotyping [30]. The concept
of creating patient dictionaries is a subset of novelty
detection. An example of such approaches is ‘one-class
classification’ [97], [48].

V. Performance Evaluation
The performance of supervised outcome prediction

models on the testing set is evaluated using various
statistical methods. Those statistical methods mainly
assess the performance of the model in terms of accuracy
metrics. In recent years, model interpretability has also
become an area of interest as it directly reflects how we
translate technologies into clinical practice [98].

A. Performance Metrics
Model discrimination refers to the model’s ability in

separating classes of interest. In the context of outcome
prediction models, we will here refer to patients who
experience an adverse outcome as the positive class,
and those who do not as the negative class. Many ML
models are trained to compute the probability of the
positive class, which is then converted to a binary value
by fixing a decision threshold. The predictions are then
compared to the true labels and can classified into one of
four categories: (1) True Positives (TP): model correctly



TABLE II
Overview of classifiers used for outcome prediction in related works.

Model Outcome References

Novelty detection ICU readmission [29]

Logistic regression
Hemodynamic instability 2 hours in advance [25]

Gout vs. acute leukaemia [30]
Mortality on the same or next day [85]

Support vector machine Cardiac arrest within 72 hours [28], [34]
Mortality within 72 hours [28], [35], [31]

Random forest classifier Diseases within one-year interval [37]
Support ensemble boosting Paediatric transfer to ICU [38]
Gaussian process classier Cardiac arrhythmia [46]

Multi-layer perceptron
ICU transfer and cardiac arrest [7]

Hypotensive episodes [26], [27]
Ventricular tachycardia [5]
In-hospital mortality [43]

Convolutional neural network
Congestive heart failure after 6 months [36]

COPD after 6 months [36]
Hospital readmission after discharge [82]

Recurrent neural networks
Mortality [6]

Acute kidney injury [4]
Diagnosis & medication codes for next visit [33]

Gated recurrent units Heart failure [41]
Multi-label diagnoses [33]

Long short term memory networks Sepsis at least 4 hours in advance [40]

predicts the positive class, (2) True Negatives (TN):
model correctly predicts the negative class, (3) False
Positives (FP): model incorrectly predicts the positive
class, and (4) False Negatives (FN): model incorrectly
predicts the negative class.

Accuracy, which summarizes the proportion of cor-
rectly classified samples across all samples, is highly bi-
ased when using highly imbalanced datasets. Therefore,
other metrics are usually considered. Sensitivity, or the
True Positive Rate (TPR), assesses the model’s ability
to correctly predict the positive class.

TPR = TP

TP + FN
(2)

Specificity, also known as the True Negative Rate
(TNR), assesses the model’s ability to correctly predict
the negative class.

TNR = TN

TN + FP
(3)

The receiving operator characteristic (ROC) curve
plots the TPR on the vertical axis and (1-TNR), also
known as the False Positive Rate (FPR), on the horizon-
tal axis. The integral under the curve is the Area Under
the Receiving Operator Characteristic Curve (AUROC)
[99].2 The AUROC assesses the model’s overall diagnos-
tic ability as the decision threshold is varied. An AUROC
of 0.5 means that the model is making predictions at
random in a two-class setting. An AUROC higher than

2Some studies refer to the AUROC as the ‘concordance-statistic’
(C-statistic).

0.8 implies that the model has good diagnostic ability.
An AUROC higher than 0.9 means that the model has
excellent diagnostic ability [100].

Precision, also known as the Positive Predictive Value
(PPV), assesses the proportion of correctly predicted
positive class across all of the true positive class.

PPV = TP

TP + FP
(4)

The Precision-Recall curve, where recall is essentially
sensitivity, plots the TPR on the horizontal axis and the
Precision on the vertical axis and integrates the area
under the curve. The integral under the curve is the
Area under Precision-Recall Curve (AUPRC). Unlike the
AUROC, the AUPRC and PPV are highly sensitive to
class imbalance. Outcome prediction models are gener-
ally characterized with low AUPRC and PPV values
[101]. Due to low PPV values, such systems should be
considered as risk stratifiers rather than predictors [26].

There are other commonly assessed metrics, such as
the F1-score [102], [91] and the likelihood ratio [103].
Some studies also report the false positives to true
positives ratio [4] and the inverse of the PPV known as
the work-up-to-detection ratio [104], [42]. The efficiency
curve [105], [86] is a qualitative summary that plots
the number of positives generated at different decision
thresholds against the sensitivity of the model. This tool
is essential to evaluate the trade-off between the total
number of positives and the number of false positives.



B. Interpretability
Despite the good performance of recently introduced

ML models, interpretability remains to be a challenge
for their clinical utility [98]. There are various defini-
tions of interpretability in existing literature and they
refer to several distinct ideas [106], [107]. Most of these
ideas pertaining to the clinical domain revolve around
trustworthiness of the results and transparency of the
model. In the context of this review, we summarize the
efforts of outcome prediction models that considered
interpretability as a key component of model assessment.
Mimic learning assumes that shallow models, such as

linear models, are interpretable. It aims to identify the
features that are potentially relevant to the prediction. It
involves first training a deep learning model for a specific
clinical task. It then trains a shallow model, such as
gradient boosting trees, to mimic the behaviour of the
deep learning model [80], [108]. The local interpretable
model-agnostic explanation (LIME) [109] generates a
local explanation of the model behaviour using a shallow
model. It has been even used to explain ML models for
the prediction of in-hospital mortality [110]. However, it
has also been argued that linear models, rule-based mod-
els, and decision trees are not intrinsically interpretable
[106]. Other post-hoc interpretability techniques such as
saliency maps rely on qualitative visual interpretations
commonly used in computer vision applications.

It is often argued that deep learning models compro-
mise interpretability for high accuracy [111]. Thus, there
have been recent breakthroughs in developing inherently
interpretable deep learning models instead of perform-
ing post-hoc interpretation [112]. For instance, attention
mechanisms are incorporated within deep learning mod-
els and assign normalised weights to a set of features.
The weights indicate the feature importance for the
prediction of a future diagnosis [94], [39], [75] or high
risk vascular diseases [102]. Other works impose non-
negativity [62] or sparsity [30] constraints on the learned
embedding space of medical data.

VI. Moving Forward

The prediction of clinical outcomes is essential to
detect deterioration in a timely manner and to ease
burden off clinical staff. The development of the ML
pipelines and their subsequent performance can also be
improved by accounting for a few considerations.

A. Noisy Outcome Labels
To train outcome prediction models, outcome labels

are currently being defined based on the occurrence of
discrete clinical events. However, such labels may be
noisy or inaccurate since EHRs only reflect parts of the
hospital experience. For example, while a patient may
experience cardiac arrest, the patient may be on terminal
care pathways with ‘do not resuscitate orders’, and such
information may not be present in the available dataset.

Additionally, outcome labels are defined based on a
specific time-window, where the features are associated
with a positive outcome label only if they are within
N hours to an outcome. This creates a strict cut-off
where data collected prior to this N -hours window is not
associated with a future outcome. Realistically speaking,
deterioration is likely to develop gradually over time,
yet this is the state-of-the-art approach in developing
outcome prediction models within clinical practice. Fu-
ture work should consider time-to-event analysis, which
focuses on predicting the time until the occurrence of an
outcome, rather than predicting a binary label.

B. Personalized Predictive Models
Most of the outcome prediction models are devel-

oped and evaluated population-wide and recent improve-
ments show marginal improvements. As more data is
collected per patient, we hypothesize that the predic-
tive power of such models could improve by develop-
ing patient-specific models, that account for individual-
, disease-, and organizational-based factors [113]. On
an individual-level, factors may include demographics,
lifestyle, coexisting medical conditions, or genetic infor-
mation. Disease-related factors may include degree of
severity, medications and therapy, rate of progression,
interventions, surgeries, and procedures. Organizational-
factors may include type of hospital, time of the day, staff
ratio, or staff training. This also motivates the advance-
ment of internet of things in healthcare to enhance the
collection of integrated data, and would certainly allow
us to move forward towards ‘precision medicine’.

Additionally, in the development of machine learn-
ing and deep learning models, it is assumed that the
data samples are independent and identically distributed
(i.i.d.) random sets. However, this may not be the case
in practice, since some data samples may belong to
the same patient and spatio-temporal patterns may be
indicative of deterioration prior to an outcome.

C. General Learning Models
Deep neural networks are powerful processing tech-

niques. However, most of the state-of-the-art models
seek to learn how to predict a specific outcome or a
particular task, which can generally be referred to as
‘narrow AI’. While some of the motivation behind using
representation learning has been to learn general patient
representations in order to perform a variety of predictive
tasks, more work needs to be done into developing
generalized models that can automatically learn from
heterogeneous EHR data to perform diverse tasks.

While recently developed ML models perform well
within retrospective studies, validating their success in
practice requires prospective analysis. The progress of
the field relies on increased multidisciplinary collabo-
rations between ML research scientists and clinicians.
While it will take time for both parties to speak the same
language, we hope that this review would demystify the



overall ML pipeline and summarize the assumptions and
techniques of the state-of-the-art.
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