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The timing and processes that govern the end of volcanic eruptions are not yet fully understood, and there cur-
rently exists no systematic definition for the end of a volcanic eruption. Currently, end of eruption is established
either by generic criteria (typically 90 days after the end of visual signals of eruption) or criteria specific to a given
volcano. We explore the application of supervised machine learning classification methods: Support Vector Ma-
chine, Logistic Regression, Random Forest and Gaussian Process Classifiers and define a decisiveness index D to
evaluate the consistency of the classifications obtained by these models. We apply these methods to seismic
time series from two volcanoes chosen because they display contrasting styles of eruption: Telica (Nicaragua)
and Nevado del Ruiz (Colombia). We find that, for both volcanic systems, the end-date we obtain by classification
of seismic data is 2-4 months later than end-dates defined by the last occurrence of visual eruption (such as ash
emission). This finding is in agreement with previous, general definitions of eruption end and is consistent across
models. Our classifications have a higher correspondence of eruptive activity with visual activity than with data-
base records of eruption start and end. We analyze the relative importance of the different features of seismic ac-
tivity used in our models (e.g. peak event amplitude, daily event counts) and find little consistency between the
two volcanic systems in terms of the most important features which determine whether activity is eruptive or
non-eruptive. These initial results look promising and our approach may offer a robust tool to help determine
when an eruption has ended in the absence of visual confirmation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

There is no widely-accepted systematic definition for the end of an
eruptive period (e.g. Phillipson et al., 2013) and, as a result, end-dates

The processes which govern large-scale change in volcanic systems
are not yet fully understood. Volcanic systems are dominated by com-
plex and non-linear processes. This complexity has implications for
both understanding and forecasting the onset of volcanic activity (e.g.
Sparks, 2003), and for managing transitions in behaviour during
prolonged eruptions (e.g. Sparks and Aspinall, 2004; Hicks and Few,
2015; Barclay et al., 2019). While much attention has been focussed
on forecasting the timing of eruption onset, and the timing of alerts,
warnings and calls for evacuation in the run-up to eruption, or as the
eruption escalates (e.g. Marzocchi and Woo, 2007; Winson et al.,
2014; Cameron et al., 2018), less attention has been focussed on the
ends of volcanic eruptions (Bonny and Wright, 2017).
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are often poorly reported. Although some global compilations of volca-
nism contain a field for eruption end-date, the end-dates are often not
recorded. The Smithsonian Global Volcanism Program (GVP) highlight
that, of the 10,415 eruptions in the Volcanoes of the World (VOTW) da-
tabase at the time of writing, there were no available termination dates
for 59% of the entries (Siebert et al., 2011). This lack of data was attrib-
uted to the gradual nature of eruption endings, which made assigning a
discrete date difficult. Phillipson et al. (2013) suggest that end-dates in
the GVP database have a temporal uncertainty on the order of days, but
inspection of the slow decline in observable activity at some systems
(such as Mont Pelée after 1905; or Soufriére Hills Volcano Montserrat
since 2010; Lacroix, 1908; Wadge et al., 2014) suggests that the uncer-
tainty could be much larger in some cases - not least in the absence of a
definition of what constitutes the ‘end of eruption’. Even in well-
monitored cases eruption end dates are hard to determine. For example,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvolgeores.2020.106917&domain=pdf
https://doi.org/10.1016/j.jvolgeores.2020.106917
mailto:grace.manley@earth.ox.ac.uk
https://doi.org/10.1016/j.jvolgeores.2020.106917
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jvolgeores

2 G.F. Manley et al. / Journal of Volcanology and Geothermal Research 401 (2020) 106917

even though the activity at Mt. St Helens from 2004 to 2008 was closely
monitored with networks of instruments (including seismic, tilt and gas
measurements), determining the end of the eruption was impeded by
poor weather conditions throughout the month of December 2007. It
could not be conclusively determined that small-scale extrusion was
finished until visual observations were made in January 2008
(Dzurisin et al., 2015).

The lack of a specific definition for eruption end has implications for
volcanic hazard. Tilling (2009) cites the mistaken identification of de-
creased volcanic activity as the end of eruption as one of the primary
reasons for major loss of life during the 1982 El Chichén eruption. De
la Cruz-Reyna et al. (2017) identify the definition of eruption end as a
particular difficulty during sustained periods of activity, such as at Popo-
catépetl in Mexico. Popocatépetl has been in continuous eruption since
1994, exhibiting both effusive and explosive activity, but with lulls in ac-
tivity which have led to uncertainty over whether or not they represent
the end. Similar stop-start activity has characterised the long-lived and
ongoing dome-forming eruptions of Santaguito, Guatemala (1922 to
present), and Soufriére Hills Volcano, Montserrat (1995 to present).
Better understanding of the timing of eruption end could have implica-
tions for the allocation of resources and management of populations liv-
ing adjacent to volcanoes during both acute and sustained volcanic
eruptions.

Obtaining an operational definition for the end of an eruption relies
on piecing together various measurements of volcanic activity to deter-
mine when a break in volcanic activity represents the end of the erup-
tive period. Definitions for eruption end in a monitoring context come
under two main categories:

(i) Generic rules on the end of eruptions: For example, Simkin and
Siebert (1994) used a generic 90-day (or 3-month) rule for the
end of eruption, i.e., that if a volcano displays no visible signs of
eruption for 90 days, then the eruption can be considered over;

(ii) Definitions that are volcano-specific. For example, eruptions at
Piton de la Fournaise, Réunion, are defined solely on increases or
decreases in seismic tremor amplitude (Battaglia and Aki, 2003).

Volcanic systems undergo periods of activity and repose, on varying
timescales (e.g. Barmin et al., 2002; Lamb et al., 2014). Identifying the
critical thresholds which govern when large-scale changes in volcanic
behaviour occur is acknowledged as one of the fundamental research
questions associated with understanding the beginning, evolution and
termination of volcanic activity (NAS, 2017). Development of models
for these critical thresholds is necessary to understand the processes
which drive large-scale change in volcanic behaviour, but this in turn
requires knowing when these changes occur in the timeline of an
eruption.

To understand the timing of large-scale change in the system, it is
important to define the various states of volcanic behaviour. Siebert
et al. (2015) define eruption according to the observation of the follow-
ing: explosive ejection of either fragmented new magma or older solid
material, and/or the effusion of liquid lava. Activity outside eruption is
defined as unrest, and a volcano in no state of eruption or unrest is
said to be in repose (unless extinct). Phillipson et al. (2013) define
two further categories of unrest: pre-eruptive and non-eruptive unrest,
which are based on the presence of observable parameters such as de-
formation or seismicity. Neither of these categories can be assigned in
real time, it being necessary to wait either until the crisis has subsided
or an eruption has begun to determine whether the unrest was pre-
eruptive or not.

Volcanic state has been previously characterised in models of seis-
mic evolution over the eruptive period. McNutt (1996) developed the
generic earthquake swarm model, which describes the evolution of
seismic activity over an eruptive cycle. In this model, it is suggested
that the rate and type of seismicity observed over an eruption can be
generalised, and that the physical processes governing the type of

seismicity at each eruptive stage may be inferred. Carniel (2014) de-
scribe how time series which have undergone a process of data reduc-
tion can be used to identify and infer the timing of transitions
between different states of volcanism.

Machine learning is the process by which computers learn without
being explicitly programmed. In fields such as healthcare, jet engine
monitoring or economics, the use of machine learning methods for
both data analysis and real-time monitoring is already established. Vol-
canic systems have conceptual parallels with these systems: they can be
described as a “high-integrity” system (Clifton et al., 2014) in which ob-
servation of failure (i.e., eruption) is rare in comparison with stable be-
haviour, and the number of failure modes are not known or not well
characterised. The use of machine learning techniques in volcanology
is an emerging field. Pattern recognition techniques have previously
been applied to volcano-seismic data, with a particular focus on detec-
tion and classification of seismic event types from raw waveform data
(e.g., Langer et al., 2006; Curilem et al., 2009; Apolloni, 2009; Bicego
et al,, 2013; Maggi et al., 2017; Malfante et al.,, 2018). Machine learning
has also been applied to satellite data, in order to detect signs of unrest
in large numbers of acquisitions: Anantrasirichai et al. (2018) used deep
learning to detect ground deformation in Sentinel-1 data, and Flower
et al. (2016) used logistic regression to detect volcanic eruptions in
global daily observations of SO, measured using the Ozone Mapping In-
strument. Ren et al. (2020) used multi-station seismic tremor measure-
ments to classify behaviour at Piton de la Fournaise volcano and identify
fundamental frequencies of the tremor.

In this paper we use classification machine learning models (see
Section 2.1 for a full description) (i) to classify eruptive and non-
eruptive patterns in volcanic time series data, and (ii) to observe how
these patterns differ from inferences based on visual observation or con-
ventional monitoring techniques. Similar classification techniques have
been previously successfully applied in a healthcare context to classify
patient state (e.g., Clifton et al.,, 2014) and therefore have potential for
characterising volcanic state. Our approach is distinct from previous
work in volcanology (discussed above) as we classify overall volcanic
state as eruptive or non-eruptive, as opposed to aiming to detect distinct
change in one observable. We present a proof-of-concept study in clas-
sifying seismic time series for two volcanoes selected to cover a range of
eruptive styles.

2. Methods
2.1. Machine learning methods used

Fig. 1 illustrates the four multi-class methods used for the analysis in
this paper. The methods used are all supervised methods, in which we
select days from time series data (e.g., seismic event counts) for training
that include both eruptive and non-eruptive examples to train the
model. During training, some training points are held back and used
to test the trained model to increase the model accuracy (a process
known as model validation). Once a model has been trained, it is then
tested using days from the time series which were not presented during
the training period.

For this preliminary work, we use machine learning models where fea-
tures are calculated and chosen as inputs to the model, as opposed to other
methods such as deep learning wherein features are calculated and chosen
within the model. Choosing features as model input is preferred so that we
can use features derived from the seismic data that are similar to those
used in current monitoring practices. These features, such as event rate
or peak signal frequencies, have had widespread success in a monitoring
context as a basis for distinguishing between states of eruption (Carniel,
2014). The established use of these features in a monitoring context
means that results such as the relative importance of a given feature in
the models is directly applicable to current observatory practices.

Each machine learning model we apply is distinct from the others in
its method of determining the boundary between non-eruptive and
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Fig. 1. Visualisation of how boundaries are defined within the four machine learning methods used in this paper: (a) Support Vector Machine (SVM) (b) Logistic regression (c) Random
forest decision tree (d) Gaussian process classifier with uncertainty bounds marked. Red and blue dots denote two classes of data, which in this study represent non-eruptive and eruptive
data. The y-axis in (b) and (d) represents the probability that a given day belongs to the red class or blue class. (For interpretation of the references to color in this figure, the reader is

referred to the web version of this article.)

eruptive data. We choose to apply multiple methods which have the
same training period, to observe whether the classification of eruptive
and non-eruptive behaviour is consistent with several distinct methods.
Each method determines the boundary between classes in a different
way, and thus the methods have their own advantages and disadvan-
tages. Support Vector Machine models (SVMs, Section 2.1.1) are good
at handling non-linear relationships between data. Logistic regression
(LR, Section 2.1.2) is a straightforward model, and thus rarely overfits
data, while offering a fully interpretable approach whereby its parame-
ters are informative of the relative contribution to the classification of
the input variables. Random forest models (RFs, Section 2.1.3) are gen-
erally associated with high classification accuracy and involve taking an
ensemble of individual decision trees (where the latter are weak classi-
fiers). Gaussian Process models (GPs, Section 2.1.4) directly capture the
uncertainty associated with the prediction and offer a principled ap-
proach to dealing with artefact in time-series data.

2.1.1. Support vector machine (SVMs)

SVMs (Fig. 1a) involve finding the hyperplane between two classes
of data which maximises the margin of the classification, where the
margin is defined as the perpendicular distance between the decision
boundary and the closest data points (Bishop, 2006). SVMs use the “ker-
nel trick” to transform the data to a higher dimensional space, in which
potential non-linearities in the original data can be separated (which
would not be possible for logistic regression and other generalised lin-
ear models, for example). The choice of kernel depends on the proper-
ties of the dataset, such as non-linearity of the data. SVMs have been
widely used in the field of seismic detection (e.g., Ruano et al., 2014),
and they are well suited to general models even with few training ex-
amples (Mountrakis et al., 2011). We use the LibSVM libraries (Chang
and Lin, 2011) to formulate models using both Radial Basis Function
(RBF) and even-order polynomial kernels. The values of the
hyperparameters for these models are selected using standard 5-fold
cross-validation (Hastie et al., 2001).

2.1.2. Logistic regression (LR)

LR models (Fig. 1b) are a form of generalised linear model: this means
that the classification linearly depends on the features, where each fea-
ture has a coefficient in the linear model. Logistic regression models the
posterior probability of a given day being eruptive as a continuous (sig-
moid, or S-shaped) function of a linear expression of the features. The
probabilistic output of these models means that for each day of results,
we can infer the certainty of a classification on that day. A full discussion
of logistic regression is included in McCullagh and Nelder (1989) and
Hastie et al. (2001). In the Earth Sciences, LR models have previously
been applied in estimation of landslide hazard (Pradhan and Lee, 2010).

2.1.3. Random forest (RF)
RF classification (Fig. 1c) involves the averaging of an ensemble of
decision trees: each decision tree comprises a series of operations that

consecutively compare available features in the input data to
randomly-selected thresholds on those features (Hastie et al., 2001).
Many possible decision trees are combined in random forest classifica-
tion: the result of each tree contributes a vote towards the final classifi-
cation. The hierarchical nature of decision trees means that these
methods can be used to determine the relative importance of the fea-
tures, where features that appear towards the top of the decision tree
contribute more to the classification and are therefore associated with
greater importance (Breiman et al., 1984). Random forest models have
been applied extensively in remote sensing, due to the high accuracy
of classification obtained and their ability to identify important variables
(discussed more in Section 4.4; and Belgiu and Dragut, 2016).

2.1.4. Gaussian process classification (GPs)

Gaussian processes (GPs) (Fig. 1d) fit stochastic models to obtain a
probability that a given data point is in a given class (Bishop, 2006).
The classification that results from a Gaussian process classification is
therefore associated with a given uncertainty. Like SVMs, GP classifica-
tion involves a choice of kernel function to train the model. We use an
Automatic Relevance Determination (ARD) kernel for training models,
which allows the importance of each feature input into the model to
be evaluated (Williams and Rasmussen, 2006).

2.2. Model assumptions

The models used in this paper require the fundamental assumption
that the input variables are Independent and Identically Distributed
(IID). Assuming data which are IID implies that each day of features is
independent from other days of features, and that the features on
each day are drawn from the same underlying statistical distribution
(Cover and Thomas, 2006). While data are rarely perfectly IID in prac-
tice, the assumption typically holds to the degree that models involving
such approaches yield satisfactory results. To determine whether or not
this hypothesis is appropriate for our data, and therefore whether or not
our models can perform well using previously-unseen data, we train
and test (using data held-out during the training process) separate
models for each volcanic system.

Though we are considering a physical system, which may not pro-
vide perfectly IID data, we hypothesise that this assumption is valid to
a first order approximation. Other machine learning models exist
which can take into account non-IID behaviour; however, these
methods are beyond the scope of this paper.

2.3. Nevado del Ruiz and Telica volcanoes

We analyze single-station seismic datasets from two volcanic sys-
tems: Nevado del Ruiz Volcano, Colombia and Telica Volcano, Nicaragua.
We choose to apply models to the datasets from these two volcanic sys-
tems for our test study as they represent contrasting styles of activity.
Telica displays near-continuous levels of seismic activity, whereas Nevado
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del Ruiz represents more punctuated volcanic activity. Therefore, success-
ful classification of these differing styles is a useful proof-of-concept that
these methods have the potential to be extended to a range of volcanic
situations.

Nevado del Ruiz is a stratovolcano in Colombia which primarily
erupts products of andesite-basaltic andesite composition (Cuellar-
Rodriguez and Ramirez-Lopez, 1987; Londono, 2016). The dataset is
from 21st March 2007 to 25th February 2015 and covers two eruptive
periods, both recorded in GVP. The first phase has a start-date of 22nd
February 2012 and end-date of 12th July 2013, and the second, much
shorter, phase has a start-date of 15th December 2014 and end-date
of 7th January 2015. An increase in seismic activity began in September
2010 and ash emissions from Nevado del Ruiz were observed from early
2012 onwards (Global Volcanism Program, 2017). The 2012 ash emis-
sions of Nevado del Ruiz were the first emission of ash since the VEI 3
eruption of 1985, which led to the lahar inundation of Armero and
>25,000 fatalities (Lowe et al., 1986; Naranjo et al., 1986). The end-
date of the first phase is a day later than the last recorded ash emission
and coincides with the last advisory of the Washington Volcanic Ash Ad-
visory Centre (VAAC, 2013). It is unclear how the dates for the second
phase are chosen, as ash emission was observed both in November
2014 and later in January 2015.

Telica volcano is a persistently restless volcano in Nicaragua which
undergoes small (VEI 1-2) eruptions every few years (Geirsson et al.,
2014; Rodgers et al., 2013; Rodgers et al., 2015a). Persistently restless
volcanic systems are characterised by high and variable rates of seismic-
ity and degassing, with frequent explosive activity (Rodgers et al.,
2015a; Geirsson et al., 2014; Roman et al., 2019; Stix, 2007). The Telica
data used for this analysis were obtained from the TESAND network, for
the period 1st April 2010 to 18th March 2013. This data period contains
one VEI 2 eruption, recorded in GVP with a start-date of 7th March 2011
and an end-date of 14th June 2011. The end-date is 3 days after the last
ash-and-gas explosion sequence (comprising 17 explosions) was ob-
served on 14th June 2011 (Geirsson et al., 2014).

24. Classification scheme

Fig. 2 illustrates the process of training and testing the multi-class
methods introduced in Section 2.1. We use supervised machine learning
algorithms: these models are trained on labelled data and subsequently
tested on unseen data. Data are labelled in “eruptive” and “non-erup-
tive” classes according to the eruption dates recorded by the GVP data-
base. Non-eruptive data comprises all of the data which does not fall

under the dates recorded in GVP for the eruption. We select training pe-
riods to represent non-eruptive and eruptive data as input to the
models. These training periods are selected such that they do not over-
lap with the GVP start and end dates, because we want to independently
constrain the timing of transitions between eruptive and non-eruptive
activity. The eruptive and non-eruptive training periods are chosen to
represent times in which the presence or absence of visual eruption
was confirmed from activity reports, archived by the Servicio Geolégico
Colombiano (SGC) and Instituto Nicaragiiense de Estudios Territoriales
(INETER).

For Nevado del Ruiz, the non-eruptive period we select to train the
model is from 15th June 2009 to 30th September 2011. This non-
eruptive period is approximately 4 months before the weekly reports
mark the first possible ash emission, clear deformation signal and in-
crease in SO, emission (Global Volcanism Program, 2012a, 2012b).
The eruptive training periods selected are 23rd March 2012-26th Febru-
ary 2013 and 9th April 2013-25th April 2013. These periods are selected
because they coincide with ash emissions confirmed by Manizales ob-
servatory (Appendix 2; SGC). We use 938 days of the Nevado del Ruiz
daily time series for training the models and 1364 days of the time series
for subsequently testing the models.

For Telica, we choose non-eruptive training periods from 29th June
2010-8th January 2011 (before eruption) and 1st September
2012-20th November 2012 (a year after the eruption). The second
half of the training period is selected as it is over a year after the end
of eruption. The eruptive training period is from 28th March 2011-1st
June 2011, starting after ash emission had been confirmed by visual ob-
servation (Global Volcanism Program, 2011; Geirsson et al., 2014). We
use 333 days of the Telica daily time series for training the models and
730 days of the time series for subsequently testing the models.

2.5. Feature extraction

Feature extraction is the process of selecting variables which will be
used as inputs into machine learning models. Fig. 3 describes the pro-
cess of feature extraction from raw seismic data. The inputs to machine
learning models are time series derived from raw seismic data. To pro-
duce these derived time series, several categories of features are se-
lected from the seismic data (see AP 1.1 and 1.2). For all features apart
from event rates, the data are taken from a single seismic station. Telica
data is from the TBTN station of the TESAND network, located approxi-
mately 1 km east of the active vent (Roman, 2009). Nevado del Ruiz data
is from the BISZ station, located approximately 2 km west of Arenas

Select training periods
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Fig. 2. The framework of training and testing supervised multi-class classification models. Training periods which include non-eruptive and eruptive data are selected. The model is trained
on a subset of these training data, and concurrently validated using the rest of the training data. After a model has been trained, the model can be run again with testing data. Blue
represents data labelled as non-eruptive and red represents data labelled as eruptive. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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input for the machine learning model.

crater (Global Volcanism Program, 2012a, 2012b). For Telica, there are
45 features (AP 1.2) and for Nevado del Ruiz (AP 1.1) there are 36 fea-
tures in total. There are a greater number of features for Telica due to
the inclusion of features from individual event classifications and
RSAM data.

Total event rates per day from network detections are used for both
volcanoes. For the Telica data, two additional features derive from the
automatic spectral classification of Low Frequency (LF) and High Fre-
quency (HF) as defined by Rodgers et al. (2015a). Band ratio is defined
as the base 2 log of the ratio of high-frequency to low-frequency energy
(Rodgers et al., 2015a; c.f. Buurman and West, 2010). The distinction be-
tween high- and low-frequency bands is dependent on the typical fre-
quencies of the volcanic system: for Telica, low-frequency activity is
defined as 1-6 Hz, and high-frequency activity is defined as 6-11 Hz
(Rodgers et al., 2015a). Dominant frequencies are obtained by recording
the 5 peak frequencies from each event during the day. Peak amplitude
is calculated from the maximum peak-peak amplitude of each event.
Waveform standard deviation is obtained by calculating the width of
the largest peak of the spectra for each event during the day. RSAM mea-
surements are calculated hourly during the day for the Telica dataset.
Multiplet information is the number of waveform families active on a
given day, obtained by waveform cross-correlation using Peakmatch
(Rodgers et al., 2015b).

From the categories of observations described above, features are
calculated on a per-day basis by taking the mean, median, variance,
minimum, maximum, 10th percentile, 90th percentile and change in
mean from the previous day. For multiplets and event rates, only the
per-day value and change in value from the previous day is calculated.
The RSAM features are mean and variance of the per-hour readings
and change in mean from the previous day. For a full list of features
see Appendix 1.

For days in the time series with zero events, the whole day is omitted
from the time series as no features can be extracted for this day. The
gaps in the dataset could be filled using a method such as imputation
in which missing data is replaced by a substitute, such as the mean of
the whole dataset (Schafer and Graham, 2002). However, given that
the days which have no associated data represent a small proportion
of the dataset, we choose to leave these gaps within the time series.

Models can be limited by large quantities of features. High-
dimensional systems (those with many features) are not ideal to work
with: as the number of dimensions of data increases, the number of
training examples required to train a consistent model grows exponen-
tially (Bishop, 2006). This phenomenon is known as the “curse of di-
mensionality” (Bellman, 1961). For generalised linear models such as
logistic regression, high-dimensional systems are especially poor to

work with (Johnstone and Titterington, 2009). For this reason, we
apply regularisation to the logistic regression model, to reduce the num-
ber of dimensions as input to the model. We use a technique known as
the Least Absolute Shrinkage and Selection Operator (LASSO) to reduce
the number of dimensions as input to the logistic regression models.
The LASSO acts to penalise large coefficients in linear models, so that a
smaller subset of the full set of features is chosen to model on for each
dataset. A full discussion of the LASSO formulation is included in
Hastie et al. (2001).

We use features derived from single-station seismic data, hence do not
include derived event parameters such as location or depth. Seismic data
is the only type of data which is input to the model. We do not use other
observables, such as gas or deformation data. The end-date obtained by
classification therefore corresponds to the end of seismicity associated
with the eruption, and therefore represents the seismic end-date. Seismic-
ity can often continue longer than the end of visible eruption, as it reflects
the processes occurring at depth within the volcanic system. Seismic data
is one of the most ubiquitous monitoring datasets collected at volcanoes
and understanding the path to cessation of processes at depth is crucial
in terms of understanding the end of eruptions, supporting the value of fo-
cussing only on seismic data for this preliminary study.

The features which we use, with the exception of those associated
with RSAM, are derived from detected seismic events. The advantage
of using these discrete features is that the method could be easily ex-
tended to seismic catalog data from other systems with waveforms at-
tached. However, depending on the seismic characteristics of a given
volcano, the inclusion of more features derived from continuous data
(such as dominant tremor frequency) may be necessary.

2.6. Eruption classification

Each day in the time series is classified independently from the other
days. To pick out the large-scale changes in classification, we define a
rolling threshold filter criterion for a day to be classified as eruptive,
which is based on a moving average of the classifications. For a day to
be classified as eruptive, the day itself and the seven days preceding
that day must also be classified as eruptive. By applying this filter to
the model output, classification of observations as eruptive is more con-
servative than if the results are left unfiltered. The choice to require
7 days of eruptive classification is made as the timescale of a week cor-
responds to typical timescales on which observations of volcanic activ-
ity are communicated to the public where the eruption circumstances
are ongoing or chronic, for example in weekly reports of activity.
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2.7. Quality assessment: decisiveness index

Our aim when classifying volcanic state is not necessarily to achieve
maximum accuracy relative to GVP labels, due to the issue with GVP
definition of volcanic state (discussed in Section 1). We therefore define
an alternative index to model accuracy to evaluate our models. This
index is a measure of how consistent or decisive the model classification
is over the whole dataset, expressed as a percentage of the total number
of days containing data. As we are looking to classify overall patterns of
eruptive or non-eruptive activity, the decisiveness index favours classi-
fications with less noise.

To define the decisiveness index D, we take the number of transi-
tions between classes in our models (Nty;; where a transition can be
from non-eruptive to eruptive or eruptive to non-eruptive) and subtract
the expected number of transitions corresponding to the number of
eruptive periods in the dataset (Ntg; where one eruptive period would
have two transitions, at the beginning and end of the eruption) then
normalise by the number of days contained within the data period
(Ng). An index of 0 means that the number of transitions in the model
are exactly equal to the number of assumed transitions. A larger index
means that there is more inconsistency (i.e. more indecision) in the
final model classification.

_ New—Nte

D N,

100

The decisiveness index is reported as a percentage. The worst classi-
fication which one might produce would alternate between classes
every day, and therefore contain a transition for each day. As the num-
ber of days is three orders of magnitude greater than the number of
transitions in the datasets presented here, the number of transitions
would be nearly equal to the total number of days and the decisiveness
index will approach 100%. The decisiveness index is a method to evalu-
ate which models make the most consistent classifications of eruptive
state.

The definition of the decisiveness index is a method to evaluate
which models make the most consistent classifications of eruptive
state. This index makes no assumptions about when the transitions
occur within the dataset. Therefore, the index is used in conjunction
with comparison to visual observation of volcanic state in order to eval-
uate the success of the models presented within this paper.

3. Results

We independently trained 4 different classification models for each
volcanic system, with each type of model trained and tested on each
volcano separately. The analysis could be extended by training a
model on several different seismic datasets, which would be a general
classification model. However, a general model would require datasets

from a greater variety of volcanic settings to ensure that the non-
eruptive and eruptive distributions were well-characterised by the ma-
chine learning models.

3.1. Nevado del Ruiz

The results from each machine learning method are summarised in
Table 1. For all 4 machine learning methods, the end-date of the first
phase of eruption at Nevado del Ruiz obtained by classification of the
data is later than the end-date contained in the GVP database. Fig. 4 il-
lustrates the results from the SVM classification of Nevado del Ruiz
data in a time series plot for the whole data period. Several observations
can be made which are consistent features of all of the models
summarised in Table 1, though we only plot the SVM model (Fig. 4) as
it has the highest model accuracy of 82.6% (Table 1):

1. There is a sustained classification of non-eruptive activity before the
beginning of eruptive activity, with only 1 pre-eruptive day errone-
ously classified as eruptive in 2007 for the SVM model.

2. The eruption end-date is 4-5 months later than the end-date re-
corded in GVP. Though the eruption end-date was recorded as the
12th July 2013 just the previous day, active ash emission was ob-
served on the 11th July 2013, with further reports of gas and steam
emission until November 2013 (Global Volcanism Program, 2017).

3. The second phase of eruption was classified as longer-lived than the
GVP start- and end-dates would suggest. Though recorded in GVP as
commencing in December 2014 and finishing in January 2015, the
SVM classification of eruptive behaviour lasted from July 2014 to
February 2015.

Table 1 summarises the results for the decisiveness index when ap-
plied to Nevado del Ruiz. It can be seen that the Gaussian process classi-
fier has the best result for the decisiveness index with 3.13%, followed
by SVM with 3.65%. Logistic regression and random forest classifications
have a poorer score for the decisiveness index of 4.78% and 4.17% re-
spectively. The range of D for the Nevado del Ruiz models is 1.65%.

Fig. 4 also contains information for the days in the Nevado del Ruiz
dataset on which there were insufficient data to calculate features.
Where there are many data gaps in the sequence, for example, during
non-eruptive activity in 2007 or during the eruption in mid-2012, the
classification is the same on either side of and during the data gap.
From this observation we can determine that the decision to leave
data gaps and not to fill them with a method such as imputation is jus-
tified (Section 2.5).

All of the models apart from random forest yield >70% accuracy
(where the model result is compared to the GVP label of whether a
day is eruptive or non-eruptive) after filtering. The greatest accuracy
of 82.6% is achieved by using the SVM model. Logistic regression models
have the second highest accuracy (79.6%). High model accuracy is
therefore consistent over multiple types of classification, including

Table 1
Summary of results from all machine learning models applied to the Nevado del Ruiz and Telica dataset.
Volcano Method Start-date for first  End-date for Start-date for End-date for Decisiveness Model Model
phase (GVP) first first first index (%)* accuracy accuracy
phase (GVP) phase (model) phase (model) (unfiltered) (filtered)
(%) (%)
Nevado del SVM 22nd February 12th July 2013 February 2012 November 2013  3.65 76.2 82.6
Ruiz Logistic regression 2012 February 2012 December 2013 4.78 75.4 79.6
Random forest February 2012 November 2013 4.17 62.8 66.9
Gaussian process classifier February 2012 November 2013 3.13 67.6 72.7
(GPC)
Telica SVM 7th March 2011 14th June 2011 March 2011 August 2011 3.01 83.6 87.9
Logistic regression March 2011 October 2011 3.76 65.1 71.6
Random forest March 2011 August 2011 3.39 62. 69.5
Gaussian process classifier March 2011 August 2011 1.69 86.2 90.5

(GPC)

2 Decisiveness Index is defined in Section 2.7. Lower D scores are better, and D is comparable across different datasets.
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Fig. 4. Results from SVM classification on Nevado del Ruiz data over the study period: from
21st March 2007 to 6th March 2011 (top panel) and from 6th March 2011 to 25th
February 2015 (bottom panel). Results of the classification are denoted by the grey
rectangles where rectangles in the top half of each panel denote a classification of
eruptive and rectangles in the bottom half of the panel denote a classification of non-
eruptive. As each classification is made independently, consecutive days of the same
classification together - such as non-eruptive classification in the top panel - illustrate
the decisiveness of the classifier. Above the classification, the green horizontal line at the
top of each panel denotes the timing of the training period and the red horizontal line
second from the top of each panel denotes the timing of the eruption as recorded by
GVP. The right axis and orange line within the plot denote daily event count for all
events. Below the classification, the blue horizontal line denotes the days for which we
could derive features (listed in AP 1.1). In the top panel, gaps in data were primarily due
to low event count, whereas in the bottom panel during the eruption there is a gap
which corresponds to instrument failure. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

both non-linear and linear models. Random forest and Gaussian process
classifiers have a similar accuracy.

Fig. 5 displays the Receiver Operating Characteristic (ROC) curves
from all classification models applied to the Nevado del Ruiz dataset.
ROC curves plot the false positive rate against the true positive rate for
a binary classifier as the threshold of classification is changed. A better
classifier will have a higher true positive rate at low false positive rate,
as more points will be correctly classified. Better classifiers will also
have a greater Area Under the Curve (AUC), which can be seen where
the curve is higher than the diagonal line through the origin of the
graph. From Fig. 5 it can be seen that logistic regression and random for-
est have a very similar structure, with an AUC of 0.89. The SVM has a
slightly better performance at low false positive rate, but overall has a
lower AUC of 0.85. The Gaussian process classifier has a relatively poor
performance relative to the SVM, logistic regression and random forest,
despite having a similar model accuracy to the random forest models.

Though good accuracy is achieved by the models, it should be
highlighted that this represents a comparison of model output for
each day compared to the GVP label of whether a day is eruptive or
non-eruptive. We anticipate that the GVP labels are not entirely reliable
due to uncertainty in the GVP definition of end of eruption (Phillipson
et al,, 2013). This error in labels leads to a number of false positives
after the GVP end-date, where the day has been classified as eruptive
by the models though the GVP label is non-eruptive.

Fig. 6 is a summary of the feature importance results for logistic re-
gression, random forest and Gaussian process classification, the three
methods for which this analysis is available. From the results we can ob-
serve that there is not much consistency between the three methods as
to the most important features within the dataset, either in the group of
features (e.g. Event rate, dominant frequencies) or the type of features
within a group (e.g. Rate, A, mean; for a full list of features see Appendix
1). For the logistic regression classifier, multiplet rate per day is the fea-
ture that has the greatest importance.

3.2. Telica

Table 1 presents the summary of results of models run on Telica Vol-
cano. As with the Nevado del Ruiz data, end-dates obtained by classifi-
cation of Telica data for successful models (unsuccessful modelling is
summarised below) are all approximately 2 months later than the
end-date contained within the GVP database.

Gaussian process classification had the best value of decisiveness for
data both for models applied to Telica data, and over both Nevado del
Ruiz and Telica classifications overall, with a value of 1.69. Gaussian pro-
cess classification also had the highest accuracy (87.9%) of all the
models applied to Telica. SVM had the second-best value of decisiveness
index of all the models (3.01%), followed by random forest (3.39%) and
logistic regression (3.76%) models. The range of D for models on the
Telica dataset is 2.07%.

Fig. 7 summarises the classification from the Gaussian process classi-
fier on the data from Telica, the model which had the highest accuracy
and best decisiveness index of any model applied in this study. The at-
tributes of the classification which we identify consistently over all
models for the Telica time series are as follows:

1. For all of the machine learning approaches, the end-date inferred
from the models was later than the end-date recorded by GVP. The
end-date for the eruptive phase at Telica was 14th June 2011,
whereas the end-dates obtained by successful classifications were
all in August 2011.

2. After the end-date of the eruption inferred by the models, there are
2-3 short periods of elevated event count in November 2011 and
March 2012 which correspond to classifications of eruptive activity.

Fig. 8 summarises the ROC curves for all of the methods. Although
Gaussian process classification has the best values for decisiveness and
accuracy, this model has the lowest Area Under the Curve (AUC) at
0.64. SVM and logistic regression classifiers have similar AUC values at
0.94 and 0.91 respectively. Overall, the AUC values for Telica are less
smooth than for Nevado del Ruiz, a consequence of the smaller dataset
that we have for Telica.

Fig. 9 is a summary of the feature importance results for the methods
applied to Telica data. Event rate features do not have high values for
variable importance. This finding can be confirmed by observing the
classification in Fig. 7: the overall event rate spans a similar range
(from 0 to 500 events per day) during classification of both eruptive

Nevado del Ruiz - ROC curve
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Fig. 5. Receiver Operating Characteristic (ROC) curve for all of the methods applied to the
Nevado del Ruiz data. The ROC curve plots the true positive rate, false positive rate and
AUC value. SVM, logistic regression and random forest have similar performance,
compared to Gaussian process classification.
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Fig. 6. Results from feature importance analysis methods on Nevado del Ruiz data. Feature importance is derived from logistic regression (top), random forest (middle) and Gaussian
process classification (bottom). The y-axis denotes absolute importance which varies depending on the models, normalised by the maximum value for the model. There is a much
greater range in importance for the Gaussian process classification than for the random forest model. Vertical lines separate the categories of features. For a full list of input features

see Appendix 1.

and non-eruptive activity by our models. As seen for the models applied
to Nevado del Ruiz, there is not much consistency in the individual fea-
tures which are associated with a higher importance.

3.3. Training models with data from the end of volcanic eruption

The Nevado del Ruiz models are trained using two training periods:
a period before the beginning of the first eruption and a period during
the first phase of the eruption (Fig. 4). In these models we do not train
over any transitions between eruptive and non-eruptive behaviour.
We now extend the modelling to train over two extra periods using
SVM:

(i) Over the GVP start-date, with training period 23rd June
2009-23rd December 2011 (non-eruptive) and 2nd February
2012-24th March 2013 (GVP start of eruption).

(ii) Over the GVP end-date, with training period 23rd June
2009-23rd September 2011 (non-eruptive) and 29th December
2012-26th September 2013 (GVP eruption end).

We would expect the models to successfully classify non-eruptive
and eruptive behaviour if the GVP dates represent reliable labels of
the transitions in the dataset.

The results from model (i) are very similar to those presented for a
model trained over no transitions in behaviour (Fig. 4). However, for
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Fig. 7. Results from GPC classification on Telica data over the study period: from 1st April
2010 to 6th October 2011 (top panel) and from 7th October 2011 to 18th March 2012
(bottom panel). Results of the classification are denoted by the grey rectangles where
rectangles in the top half of each panel denote a classification of eruptive and rectangles
in the bottom half of the panel denote a classification of non-eruptive. As each
classification is made independently, consecutive days of the same classification
together - such as non-eruptive classification in the top panel - illustrate the
decisiveness of the classifier. Above the classification, the green horizontal line at the top
of each panel denotes the timing of the training period and the red horizontal line
second from the top of each panel denotes the timing of the eruption as recorded by
GVP. The right axis and yellow line within the plot denote daily event count for all
events. Below the classification, the blue horizontal line denotes the days for which we
could derive features. There are no significant periods of data shortage throughout the
Telica data time period. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

model (ii), we obtain a very poor classification: eruptive behaviour is
not classified until July 2012 despite visual evidence of eruption from
February 2012 onwards (Global Volcanism Program, 2012a, 2012b).
Moreover, no activity during the second phase of eruption is classified
as eruptive. We conclude from this result that the eruption end-date re-
corded in GVP does not provide a reliable label for the transition be-
tween eruptive and non-eruptive behaviour.

4. Discussion
4.1. Classification compared to visual observations

The results presented in Section 3 suggest that in both phases of
eruption at Nevado del Ruiz the classification of eruptive activity is
more prolonged than the GVP start- and end-dates would suggest. A
possible reason for the discrepancy between model classification and
GVP eruption duration is that GVP classifications are based on visual ob-
servation of volcanic activity, whereas we are running models on the
seismicity, with 7-day rolling window filtering. Seismicity can indicate
processes occurring at depths of several kilometres within the volcanic
system (Moran et al., 2011), which it is reasonable to expect would con-
tinue after visual signals of volcanic eruption had ended. The classifica-
tion of eruption until November 2013 (Table 1) could represent
continued or declining seismogenic processes at depth during the de-
clining phase of the eruption. In this respect, the seismic end-dates pre-
sented here are hypothesised to represent the most generous bound on
the end-date of the eruption.

In Fig. 10 we compare the event rate and model classification to
the alert level recorded at Nevado del Ruiz for the duration of the
data period, as event rate is a commonly-used parameter for inves-
tigating volcanic state. The majority of alert level changes were
concentrated in the period leading up to eruption, and the first
seven months of eruptive activity. There are no alert level changes
following 5th September 2012, on which date the alert level was

downgraded from II (Orange) to III (Yellow) (Global Volcanism
Program, 2012a, 2012b). The alert level changes are therefore too
coarse to provide insights into the processes occurring at the end
of the eruption.

Fig. 10 also summarises the event rate and recorded ash emissions
according to weekly reports and confirmed visual reports of ash emis-
sion (Appendix 2; SGC). The classification of the second phase of erup-
tive activity precedes the ash emission during July 2014, and
continues until further ash emission during November 2014. Our
model results show a high correlation of eruptive classification with
ash emission during the second phase of volcanic eruption recorded
from weekly reports from the Manizales observatory and observatory
records (Londono and Galvis, 2018), having trained our model on the
seismic signals associated with ash emissions during the first phase of
volcanic activity.

The good agreement between classification and observation can also
be noted with a comparison to event rate: though the GVP end-date of
11th July 2013 coincides with a consistent low event rate for Nevado
del Ruiz, our model continues to classify behaviour as eruptive for 4 fur-
ther months, which spans a spike in event rate to 1000 events per day in
September-October 2011, and culminated in ash emission at the end of
November (Global Volcanism Program, 2017).

In the Telica results, we observed deviations between our model
classification and that of the GVP in terms of end-dates from August-
October 2011, in addition to two periods of elevated event rate from
October-November 2011 and February-March 2012. These periods
are united by records of “jet-turbine” sounds from the crater initially re-
ported by nearby communities (Global Volcanism Program, 2012a,
2012b), and by crater incandescence and gas emission in September
2011 and February 2012. Overall, comparison to visual observations is
more difficult for Telica data as visual reports of activity are released
monthly rather than weekly in Colombia, and there is no system of
alert level classifications.

For both volcanoes, unfiltered models yielded classification of erup-
tive activity before the GVP eruption beginning date. However, these
classifications were not sufficiently consistent to remain as eruptive
after applying the 7-day rolling filter. Further work is required to see
how these results could be analysed for the case of pre-emptive classifi-
cation of eruption to evaluate whether those classifications of eruptive
activity are truly eruptive or represent a false positive result.

Telica - ROC curve
————"]

True positive rate

—SVM

—— Logistic regression
Random forest

—— Gaussian process classifier

0.2 0.4 0.6 0.8 1
False positive rate

Fig. 8. Receiver Operating Characteristic (ROC) curve for all of the methods applied to the
Telica data. The ROC curve plots the true positive rate, false positive rate and Area Under
Curve (AUC) value. SVM, logistic regression and random forest have similar
performance, compared to Gaussian process classification.



10 G.F. Manley et al. / Journal of Volcanology and Geothermal Research 401 (2020) 106917
Telica
1 =) w0 —~
— — @ = [}
L = = o s| 2 9 S = > o'
0.9 — e e Q
2 2 2] 2 5 E|lE g g e
8 ost — o & n . = = 3 @ s
o 2 £ = M8 ) 3 g RS 23] =
8 o7f s = & ch 5 e & 2 a1 @,
= + -] = = © = = 17
sr | 8| E| ¢ 1S § 2| Z g
> [} <] [e]
g 05 m M Lﬂ [a WY E E 2 - -
i 2 g
O 04 g Q 41 =
& 8 A o
= 03 S @
o = ] -1 .
g e 3
g o2} 5 4 B
]
Z o1} i
] JI
1 P
— Py 0 g 2 — o,
L = = Q @ .2 = =~ i
0.9 = = E b= =] g = 3] < =
© < Lo = < I B < = - &
S osp —~ ° o ) = = = = 2 @ 7]
3 2 = = Mg 2 g = 5| £ o
£ 07 @ 3 Q = g o) = = =
— - < ~ (=] 3= o o
S) . = S M 1 = = =
g oo | Bl E| 8 <l 5| = Z| =1 &
) o
> > o) ]
g 05 LE = <2 ~ g = = =R B
el % g =
D 04 o 4 O
0 =) A =
=] o @
S 03} XS] 4 &
g 2
~
5 o02f g o
Z 0.1 | II -
1 = = =
= 5 &5 = 2| o §| & 2| &
09F = =t = k3 < .
3 = 22 2 B E g S|E] @
- L= .
g gl 8 g < 2| Al &l| & BE| 871 &
I © S =) g ] 3 2 R 7]
5 ol ~ = i I = [=) 2, J 2,
o : + + = - e e} ] Qo
8, g = g = g 2 = | 5 =
g 5] 5) s g = 3 E
g o6 1) 4 4 o ° < 7
R=] > o [=} < 2 E e}
m M = 3 = o
= 05k 2 = = o
o} 5 a
2 g A %
= 04} 56 B @0
g S Q
o 031 4 - —
8 3 &
Z 02 = 4 =
=
0.1} i @
0 o It l L L 1 H ||

|-Ratc [ Delta [ Mean [ Variance ] 90th percentile [Jlll] 10th percentile 7] Minimum [0 Maximum -Medianl

Fig. 9. Results from feature importance analysis methods on Telica data. Feature importance is derived from logistic regression (top), random forest (middle) and Gaussian process
classification (bottom). The y-axis denotes absolute importance which varies depending on the models, normalised by the maximum value for the model. Vertical lines separate the

categories of features.

4.2. Possible application of methods and future work

In this study we have shown that retrospective classification of vol-
canic activity can yield timing of change with a greater correspondence
to heightened activity and ash emission than end-dates denoted by vi-
sual activity judged to be the last of an eruptive phase (Fig. 10). The
coarseness of alert level changes and the success of the classification
model discussed in Section 4.1 presents the possibility to use these ma-
chine learning classification methods to identify potential start- and
end-dates for seismically monitored volcanoes. Estimates for seismic
end of eruption obtained by classification could be combined with
other indicators of activity, such as deformation, thermal or gas data,
to make a judgement on whether the eruption has ended.

In remote locations, or where conditions are unfavourable for mak-
ing visual observations, classification of seismic data could yield a

consistent method for determining transitions in eruptive state in the
absence of other evidence. The work presented here is an example of
how to distinguish between eruptive and non-eruptive seismic activity
using information from one seismic station alone. For example, though
no official visual observations of Telica volcano coincided with our erup-
tive classifications in late 2011 or early 2012, nearby communities re-
ported jet-like sounds which coincided with these periods. Further
applications for this method could include monitoring volcanoes in re-
mote locations where regular visual observations of the volcano are
not practical.

The end-dates yielded by the successful methods are between 2 and
4 months later than the end-dates judged to be the last visual indication
of eruption (Section 3). This finding is in agreement with the generic 90-
day rule discussed in Section 1. The validation of this months-long time-
scale of eruption cessation, consistent across volcanoes of differing
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Fig. 10. Comparison of the event rate and alert level (top panel) and SVM classification and recorded ash emissions (bottom panel) at Nevado del Ruiz between the dates of 28th June 2010
to 25th February 2015. Vertical dashed lines in each plot indicate the GVP start- and end-dates of the two phases of eruption during the data period. Stars indicate confirmed ash emissions.
Rectangles in the bottom panel represent the classification from SVM (as in Fig. 4) where blue rectangles are non-eruptive classification and red rectangles are eruptive classification. We
choose to plot the SVM as it was the best-performing classifier for Nevado del Ruiz. The alert level was consistently green from the beginning of the data period to the first alert level change
on 30th September 2010. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

eruption style, provides new insights on the physical processes which
govern changes in seismicity at the end of volcanic eruption. These pro-
cesses could include magma withdrawal or relaxation, or rheological
changes in the magma (which could in turn be due to, for example, in-
creased crystallinity or decreased gas content).

This study is a proof-of-concept of the classification of time series for
the detection of large-scale changes in eruptive systems, and further
work would be required to make classifications on a real-time basis. In
addition, to apply these techniques to a greater number of volcanoes re-
quires representative seismic data during eruptive and non-eruptive
periods to train new models. These models also do not give any
indication of the type or severity of potential eruptive activity when
the classification is eruptive. Further work, incorporating a more diverse
range of time-series observations and datasets into the modelling, is
needed to investigate the sensitivity of the modelled end-dates deter-
mination to the nature and variety of datasets used.

The models presented in this study could be extended by defining 3
classes for model training and classification. Here, the non-eruptive class
could be split into two classes: one which represents a background class
and one which represents a precursory class to eruption. However, to
make this extension it would be necessary to have an independent data
stream to reliably distinguish between the background and precursory
states, such as a gas time series hence this analysis is not presented here.

4.3. Failure of logistic regression

For both of the datasets, logistic regression performed poorly rela-
tive to the other methods applied to the datasets, with end-dates

1-3 months after the other classification models which were all in
agreement. As logistic regression involves linear modelling to define
the classification, failure to characterise the overall volcanic state indi-
cates that the underlying relationships are non-linear, even when fea-
tures are removed from the dataset through regularisation. The
processes governing volcanic eruption have been previously described
as “nonlinear and stochastic” (Sparks, 2003), which could account for
the failure of the logistic regression approach here.

4.4. Feature importance: feature ranking

The feature importance results from the 33 methods which yield full
feature importance results are summarised in Fig. 11; here the top 10
features ranked as most important in determining the transition be-
tween eruptive and non-eruptive for the Nevado del Ruiz and Telica
datasets are plotted. As there may be orders of magnitude between
the importance score for these two methods, it is better to value the
very top features. The groups of features with high ranks for both
methods are dominant frequencies, band ratio and waveform standard
deviation (Nevado del Ruiz), and peak amplitude and dominant fre-
quencies (Telica). Dominant frequencies rank in the top 5 features for
all methods and for both volcanoes.

Though daily event rate is widely used as a parameter for determin-
ing changes in volcanic activity, the daily (total) event rate only appears
in the top 10 features for one method at Nevado del Ruiz, and change in
event rate from the previous day does not appear as a top 10 ranked fea-
ture at all. Increases in VT seismicity has been demonstrated as a
common precursor to volcanic eruption at closed volcanic systems,
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Fig. 11. Plot of the top 10 ranked features from each feature importance method on
Nevado del Ruiz (top) and Telica (bottom). Vertical dashed lines represent the
distinction between groups of features (labelled on the x-axis).

particularly at previously dormant volcanoes (Cameron et al., 2018).
However, studies at basaltic systems including Kilauea Volcano, Hawaii
(Chastin and Main, 2003) and Piton de la Fournaise Volcano, Réunion Is-
land (Collombet et al., 2003 ) have found that these precursory increases
in VT seismicity are often either not present, or do not always lead to an
eruption. Increases in VT seismicity ending in no eruption have also
been documented as “failed eruptions” (Moran et al, 2011),
representing a challenge in determining whether a phase of unrest
will lead to eruption. From the results presented here, we cannot con-
clusively identify a category of features which distinguishes between
eruptive and non-eruptive behaviour for both volcanoes.

4.5. Verification of model assumptions

From the successful classification of non-eruptive and eruptive ac-
tivity presented in Section 4, we conclude that it is at least approxi-
mately correct to make the assumption that the data are Independent
and Identically Distributed (IID) for the relatively small VEI and short-
lived (<3-5 year) eruptions considered in this study. If similar methods
are applied on different timescales, this assumption may not be valid. If
data were binned on a shorter timescale than daily observations, it may
not be appropriate to make this assumption as individual events in cer-
tain cases can be quasi-periodic, i.e., not independent from each other
(Ignatieva et al., 2018). Following a catastrophic eruption, the assump-
tion that each day is drawn from an identical distribution may not
hold. Seismicity has been shown to reflect processes within the conduit
(e.g., Jousset et al., 2003), which in turn can be eroded by several pro-
cesses during eruption including volcanic tremor or wall collapse
(Macedonio et al., 1994). Observations of precursory seismic activity
at Kelud Volcano, Indonesia preceding the 2007 and 2014 eruptions
found significant differences in seismic characteristics before both erup-
tions, which is consistent with the contrasting eruption dynamics of the
two events. (Hidayati et al., 2018). Transition periods between eruptive
and non-eruptive data may last on timescales from hours to weeks
(Carniel et al., 2003; Ripepe et al., 2002), and behaviour during these

transitions may represent a different mode of the volcanic system
(Connor et al., 2003; Rodgers et al., 2016). Though the successful models
presented here indicate that there are no significant transition periods
within the data periods included in this study, for volcanoes with tran-
sition periods on longer timescales (such as days — weeks) the transition
period may need to be defined as a separate, third class of activity.

5. Conclusions

Machine learning methods can successfully classify overall patterns
of eruptive and non-eruptive behaviour in seismic time series. This
study is the first to apply machine learning techniques to single-
station seismic data to classify overall volcanic state as eruptive or
non-eruptive. We define a decisiveness index D to evaluate classifica-
tion of eruptive state based on the consistency of classification, which
is comparable across datasets. Our models have a high agreement in
terms of eruptive classification with visual indicators of eruption, such
as ash emissions. The date of the eruption end is found to be consistently
later than the date recorded in GVP, by approximately 60-120 days. This
finding is in agreement with previous, non-physical definitions of end of
volcanic eruption, such as the 90-day rule for determining the timing of
eruption end (Simkin and Siebert, 1994). Classification of eruptive and
non-eruptive data could be applied to seismic time series to determine
when end of eruption occurred, in the absence of conclusive visual ob-
servations. Support Vector Machine and Gaussian Process Classifiers
were the most successful classification models applied to Nevado del
Ruiz and Telica respectively. Logistic regression, a linear classifier, had
lower classification accuracy and decisiveness for both datasets, which
could be due to non-linearity in the data. Feature importance methods
identified little consistency between the most important seismic fea-
tures used as model inputs. Work on a larger number and variety of
datasets is necessary to determine whether these most important fea-
tures are consistent between volcanoes, or between volcanoes with
similar eruption styles or tectonic settings.
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