
1

P4xos: Consensus as a Network Service
Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee

Noa Zilberman, Hakim Weatherspoon, Marco Canini, Fernando Pedone, Robert Soulé

Abstract—In this paper, we explore how a programmable for-
warding plane offered by a new breed of network switches might
naturally accelerate consensus protocols, specifically focusing on
Paxos. The performance of consensus protocols has long been a
concern. By implementing Paxos in the forwarding plane, we are
able to significantly increase throughput and reduce latency. Our
P4-based implementation running on an ASIC in isolation can
process over 2.5 billion consensus messages per second, a four
orders of magnitude improvement in throughput over a widely-
used software implementation. This effectively removes consensus
as a bottleneck for distributed applications in data centers.
Beyond sheer performance, our approach offers several other
important benefits: it readily lends itself to formal verification;
it does not rely on any additional network hardware; and as a
full Paxos implementation, it makes only very weak assumptions
about the network.

Index Terms—Fault tolerance, reliability, availability, Network
programmability (SDN/NFV/In-network computing)

I. INTRODUCTION

In the past, we thought of the network as being simple,
fixed, and providing little functionality besides communica-
tion. However, this appears to be changing, as a new breed
of programmable switches match the performance of fixed
function devices [57], [6]. If this trend continues—as has
happened in other areas of the industry, such as GPUs, DSPs,
TPUs— then fixed function switches will soon be replaced by
programmable ones.

Leveraging this trend, several recent projects have explored
ways to improve the performance of consensus protocols by
folding functionality into the network. Consensus protocols
are a natural target for network offload since they are both
essential to a broad range of distributed systems and services
(e.g., [8], [7], [54]), and widely recognized as a performance
bottleneck [16], [23].

Beyond the motivation for better performance, there is also a
clear opportunity. Since consensus protocols critically depend
on assumptions about the network [28], [34], [44], [45], they
can clearly benefit from tighter network integration. Most
prior work optimizes consensus protocols by strengthening
basic assumptions about the behavior of the network, e.g.,

H. T. Dang is with Western Digital, Milpitas, CA 95035 USA (e-mail:
Tu.Dang@wdc.com).

P. Bressana and F. Pedone are with the Faculty of Informatics, Università
della Svizzera italiana, 6904 Lugano, Switzerland

H. Wang is with Intel Corporation, Santa Clara, CA, 95054, USA
K. S. Lee is with the Mode Group, San Francisco, CA 94134, USA
H. Weatherspoon is with the Department of Computer Science, Cornell

University, Ithaca, NY 14853 USA
N. Zilberman is with the Department of Engineering Science, University

of Oxford, Oxford OX1 3PJ, UK
M. Canini is with CEMSE, KAUST, Thuwal 23955, Saudi Arabia
R. Soulé is with the Department of Computer Science, Yale University,

New Haven, CT 06511 USA

expecting that the network provides reliable delivery (e.g.,
Reed and Junqueira [49]) or ordered delivery (e.g., Fast-
Paxos [28], Speculative Paxos [48], and NOPaxos [30]). Istvan
et al. [19], which demonstrated consensus acceleration on
FPGA, assumed lossless and strongly ordered communication.
Somewhat similarly, Eris [29] uses programmable switches to
sequence transactions, thereby avoiding aborts.

This paper proposes an alternative approach. Recogniz-
ing that strong assumptions about delivery may not hold
in practice, or may require undesirable restrictions (e.g.,
enforcing a particular topology [48]), we demonstrate how
a programmable forwarding plane can naturally accelerate
consensus protocols without strengthening assumptions about
the behavior of the network. The key idea is to execute
Paxos [24] logic directly in switch ASICs. Inspired by the
name of the network data plane programming language we
used to implement our prototype, P4 [5], we call our approach
P4xos.

Despite many attempts to optimize consensus [37], [2],
[27], [43], [28], [48], [34], [49], performance remains a prob-
lem [23]. There are at least two challenges for performance.
One is the protocol latency, which seems to be fundamental:
Lamport proved that in general it takes at least 3 communica-
tion steps to order messages in a distributed setting [26], where
a step means server-to-server communication. The second is
high packet rate, since Paxos roles must quickly process a
large number of messages to achieve high throughput.

P4xos addresses both of these problems. First, P4xos im-
proves latency by processing consensus messages in the for-
warding plane as they pass through the network, reducing
the number of hops, both through the network and through
hosts, that messages must travel. Moreover, processing packets
in hardware helps reduce tail latency. Trying to curtail tail
latency in software is quite difficult, and often depends on
kludges (e.g., deliberately failing I/O operations). Second,
P4xos improves throughput, as ASICs are designed for high-
performance message processing. In contrast, server hardware
is inefficient in terms of memory throughput and latency,
and there is additional software overhead due to memory
management and safety features, such as the separation of
kernel- and user-space memory [14].

P4xos is a network service deployed in existing switching
devices. It does not require dedicated hardware. There are
no additional cables or power requirements. Consensus is
offered as a service to the system without adding additional
hardware beyond what would already be deployed in a data
center. Second, using a small shim-library, applications can
immediately use P4xos without modifying their application
code, or porting the application to an FPGA [19]. P4xos is
a drop-in replacement for software-based consensus libraries



2

offering a complete Paxos implementation.
P4xos provides significant performance improvements com-

pared with traditional implementations. In a data center net-
work, P4xos reduces the latency by ×3, regardless the ASIC
used. In a small scale, FPGA-based, deployment, P4xos re-
duced the 99th latency by ×10, for a given throughput. In
terms of throughput, our implementation on Barefoot Net-
work’s Tofino ASIC chip [6] can process over 2.5 billion
consensus messages per second, a four orders of magnitude
improvement. An unmodified instance of LevelDB, running
on our small scale deployment, achieved ×4 throughput im-
provement.

Besides sheer performance gains, our use of P4 offers an ad-
ditional benefit. By construction, P4 is not a Turing-complete
language—it excludes looping constructs, which are undesir-
able in hardware pipelines—and as a result is particularly
amenable to verification by bounded model checking. We have
verified our implementation using the SPIN model checker,
giving us confidence in the correctness of the protocol.

In short, this paper makes the following contributions:
• It describes a re-interpretation of the Paxos protocol, as

an example of how one can map consensus protocol logic
into stateful forwarding decisions, without imposing any
constraints on the network.

• It presents an open-source implementation of Paxos with at
least ×3 latency improvement and 4 orders of magnitude
throughput improvement vs. host based consensus in data
centers.

• It shows that the services can run in parallel to tradi-
tional network operations, while using minimal resources
and without incurring hardware overheads (e.g., accelerator
boards, more cables) leading to a more efficient usage of
the network.
In a previous workshop paper [12], we presented a highly-

annotated version of the P4 source-code for phase 2 of the
Paxos protocol. This paper builds on that prior work in two
respects. First, it describes a complete Paxos implementation
for the data plane, including both phases 1 and 2. Second,
it provides a thorough evaluation that quantifies the resource
usage and performance of P4xos.

Overall, P4xos effectively removes consensus as a bottle-
neck for replicated, fault-tolerant services in a data center,
and shifts the limiting factor for overall performance to
the application. Moreover, it shows how distributed systems
can become distributed networked systems, with the network
performing services traditionally running on the host.

II. PAXOS PERFORMANCE BOTTLENECKS

We focus on Paxos [24] for three reasons. First, it makes
very few assumptions about the network (e.g., point-to-point
packet delivery and the election of a non-faulty leader), making
it widely applicable to a number of deployment scenarios.
Second, it has been proven correct (e.g., safe under asyn-
chronous assumptions, live under weak synchronous assump-
tions, and resilience-optimum [24]). And, third, it is deployed
in numerous real-world systems, including Microsoft Azure
Storage [8], Ceph [54], and Chubby [7].

A. Paxos Background

Paxos is used to solve a fundamental problem for distributed
systems: getting a group of participants to reliably agree
on some value (e.g., the next valid application state). Paxos
distinguishes the following roles that a process can play:
proposers, acceptors and learners (leaders are introduced
later). Clients of a replicated service are typically proposers,
and propose commands that need to be ordered by Paxos
before they are learned and executed by the replicated state
machines. Replicas typically play the roles of acceptors (i.e.,
the processes that actually agree on a value) and learners.
Paxos is resilience-optimum in the sense that it tolerates the
failure of up to f acceptors from a total of 2f + 1 acceptors,
where a quorum of f + 1 acceptors must be non-faulty [26].
In practice, replicated services run multiple executions of
the Paxos protocol to achieve consensus on a sequence of
values [9] (i.e., multi-Paxos). An execution of Paxos is called
an instance.

An instance of Paxos proceeds in two phases. During Phase
1, a proposer that wants to submit a value selects a unique
round number and sends a prepare request to at least a quorum
of acceptors. Upon receiving a prepare request with a round
number bigger than any previously received round number,
the acceptor responds to the proposer promising that it will
reject any future requests with smaller round numbers. If the
acceptor already accepted a request for the current instance, it
will return the accepted value to the proposer, together with the
round number received when the request was accepted. When
the proposer receives answers from a quorum of acceptors, the
second phase begins.

In Phase 2, the proposer selects a value according to the
following rule. If no value is returned in the responses, the
proposer can select a new value for the instance; however,
if any of the acceptors returned a value in the first phase,
the proposer must select the value with the highest round
number among the responses. The proposer then sends an
accept request with the round number used in the first phase
and the value selected to the same quorum of acceptors.
When receiving such a request, the acceptors acknowledge
it by sending the accepted value to the learners, unless the
acceptors have already acknowledged another request with a
higher round number. When a quorum of acceptors accepts a
value consensus is reached.

If multiple proposers simultaneously execute the procedure
above for the same instance, then no proposer may be able to
execute the two phases of the protocol and reach consensus.
To avoid scenarios in which proposers compete indefinitely,
a leader process can be elected. Proposers submit values to
the leader, which executes the first and second phases of the
protocol. If the leader fails, another process takes over its role.
Paxos ensures (i) consistency despite concurrent leaders and
(ii) progress in the presence of a single leader.

B. Performance Obstacles

Given the central role that Paxos plays in fault-tolerant,
distributed systems, improving the performance of the pro-
tocol has been an intense area of study. From a high-level,



3

Proposer
Leader

Acceptor
Replica

0% 25% 50% 75% 100%
CPU utilization

Figure 1: Leader bottleneck

there are performance obstacles that impact both latency and
throughput.
Protocol Latency. The performance of Paxos is typically
measured in “communication steps”, where a communication
step corresponds to a server-to-server communication in an ab-
stract distributed system. Lamport proved that it takes at least
3 steps to order messages in a distributed setting [26]. This
means that there is not much hope for significant performance
improvements, unless one revisits the model (e.g., Charron-
Bost and Schiper [11]) or assumptions (e.g., spontaneous
message ordering [28], [44], [45]).

These communication steps have become the dominant
factor for Paxos latency overhead. Our experiments show that
the Paxos logic execution time takes around 2.5us, without I/O.
Using kernel-bypass [14], a packet can be sent out of host in
5us (median) [59]. One way delay in the data center is 100us
(median) [47], more than 10x the host! Implementing Paxos
in switch ASICs as “bumps-in-the-wire” processing allows
consensus to be reached in sub-round-trip time (RTT).

Figure 2 illustrates the difference in number of hops needed
by P4xos and traditional deployments: while in a standard
Paxos implementation every communication step requires
traversing the network (e.g., Fat-tree), in P4xos it is possible
for each network device to fill a role in achieving a consensus:
the spine as a leader, the aggregate as an acceptor, the last Top
of Rack (ToR) switch as a learner, and the hosts serving as
proposers and replicated applications. In this manner, P4xos
saves two traversals of the network compared to Paxos,
meaning ×3 latency improvement. Obviously, this comparison
represents a best-case scenario for P4xos, in which the replica
is on the path of f + 1 acceptors. The actual latency savings
will depend on the topology.

As shown in §VII-B, eliminating the hosts’ latency from
each communication step also significantly improves the la-
tency’s tail. The latency saving is not device dependent:
the same relative improvement will be achieved with any
(programmable) chipset and set of hosts.
Throughput Bottlenecks. Beyond protocol latency, there
are additional challenges to improve the performance of con-
sensus [35]. To investigate the performance bottleneck for a
typical Paxos deployment, we measured the CPU utilization
for each of the Paxos roles when transmitting messages at
peak throughput. As a representative implementation of Paxos,
we used the open-source libpaxos library [31]. There are,
naturally, many Paxos implementations, so it is difficult to
make generalizations about their collective behavior. However,
libpaxos is a faithful implementation of Paxos that distin-
guishes all the Paxos roles. It has been extensively tested and
is often used as a reference implementation (e.g., [19], [32],
[46], [50]).

ToRProposer ToR Learner/
Replica

ToR Aggregate Spine Aggregate ToR

Aggregate Spine Aggregate ToR

Leader

Spine Aggregate ToR

Aggregate Spine/
Leader

Aggregate/
Acceptor

Aggregate

P4xos: Time to reach consensus: RTT/2

Paxos: Time to reach consensus: RTT x 3/2

ToR

ToR

Learner/
Replica

Acceptor

Proposer

Figure 2: Contrasting propagation time for best-case scenario
P4xos deployment with server-based deployment.

In the initial configuration, there are seven processes spread
across three machines running on separate core, distributed as
follows: Server 1 hosts 1 proposer, 1 acceptor, and 1 learner.
Server 2 hosts 1 leader and 1 acceptor. And, Server 3 hosts 1
acceptor and 1 learner.

We chose this distribution after experimentally verifying that
it produced the best performance for libpaxos. The details
of the hardware setup are explained in Section VII.

The client application sends 64-byte messages to the pro-
poser at a peak throughput rate of 64,949 values/sec. The
results, which show the average CPU utilization per role, are
plotted in Figure 1. They show that the leader is the bottleneck,
as it becomes CPU bound.

This is as expected. The leader must process the most mes-
sages of any role in the protocol, and as a result, becomes the
first bottleneck. The bottleneck is largely due to the overhead
of handling a large number of network interrupts, and copying
data from kernel space into user space for the application to
process. The other components in the protocol are similarly
afflicted. A second experiment, not shown here for brevity,
has shown that once you remove the leader bottleneck, the
acceptor becomes the next bottleneck.

III. P4XOS DESIGN

P4xos is designed to address the two main obstacles for
achieving high-performance: (i) it reduces end-to-end latency
by executing consensus logic as messages pass through the
network, and (ii) it avoids network I/O bottlenecks in software
implementations by executing Paxos logic in the forwarding
hardware.

In a network implementation of Paxos, protocol messages
are encoded in a custom packet header; the data plane executes
the logic of leaders, acceptors, and learners; the logic of each
of the roles is partitioned by communication boundaries. A
shim library provides the interface between the application
and the network.

We expect that P4xos would be deployed in data center
in Top-of-Rack, Aggregate and Spine switches, as shown



4

in Figure 2. Each role in the protocol is deployed on a
separate switch. We note, though, that the P4xos roles are
interchangeable with software equivalents. So, for example, a
backup leader could be deployed on a standard server (with a
reduction in performance).

A. Paxos with Match-Action

Paxos is a notoriously complex and subtle protocol [25],
[35], [51], [9]. Typical descriptions of Paxos [24], [25], [35],
[51], [9] describe the sequence of actions during the two
phases of the protocol. In this paper, we provide an alternative
view of the algorithm, in which the protocol is described by
the actions that Paxos agents take in response to different
messages. In other words, we re-interpret the algorithm as a
set of stateful forwarding decisions. This presentation of the
algorithm may provide a different perspective on the protocol
and aid in its understanding.
Notation. Our pseudocode roughly correspond to P4 state-
ments. The Initialize blocks identify state stored in
registers. id[N] indicates a register array named id with
N cells. To simplify the presentation, we write id rather than
id[1] to indicate a register array with only 1 cell. A two
dimensional array with height N and width M is implemented
as a one dimensional array of length N×M in P4. The notation
“:= {0, . . . , 0}” indicates that every cell element in the register
should be initialized to 0. The match blocks correspond
to table matches on a packet header, and the case blocks
correspond to P4 actions. We distinguish updates to the local
state (“:=”), from writes to a packet header (“←”). We
also distinguish between unicast (forward) and multicast
(multicast).
Paxos Header. P4xos encodes Paxos messages in packet
headers. The header is encapsulated by a UDP packet header,
allowing P4xos packets to co-exist with standard (non-
programmable) network hardware. Moreover, we use the UDP
checksum to ensure data integrity.

Since current network hardware lacks the ability to generate
packets, P4xos participants must respond to input messages by
rewriting fields in the packet header (e.g., the message from
proposer to leader is transformed into a message from leader
to each acceptor).

The P4xos packet header includes six fields. To keep the
header small, the semantics of some of the fields change
depending on which participant sends the message. The fields
are as follows: (i) msgtype distinguishes the various Paxos
messages (e.g., REQUEST, PHASE1A, PHASE2A, etc.) (ii)
inst is the consensus instance number; (iii) rnd is either
the round number computed by the proposer or the round
number for which the acceptor has cast a vote; vrnd is the
round number in which an acceptor has cast a vote; (iv)
swid identifies the sender of the message; and (v) value
contains the request from the proposer or the value for which
an acceptor has cast a vote. Note that the switch’s packet parser
can only extract data into a limited-length packet header vector
(PHV), which is approximately a few hundred bytes. Thus, our
prototype requires that the entire Paxos header, including the
value, be less than the size of the PHV.

1 void submit(struct paxos_ctx* ctx,
2 char* value, int size);

Figure 3: P4xos proposer API.

Algorithm 1 Leader logic.
1: Initialize State:
2: instance := 0
3: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
4: match pkt.msgtype:
5: case REQUEST:
6: pkt.msgtype ← PHASE2A
7: pkt.rnd ← 0
8: pkt.inst ← instance
9: instance := instance + 1

10: multicast pkt to acceptors
11: default :
12: drop pkt

Proposer. A P4xos proposer mediates client requests, and
encapsulates the request in a Paxos header. Ideally, this logic
could be implemented by an operating system kernel network
stack, allowing it to add Paxos headers in the same way that
transport protocol headers are added today. As a proof-of-
concept, we have implemented the proposer as a user-space
library that exposes a small API to client applications.

The P4xos proposer library is a drop-in replacement for
existing software libraries. The API consists of a single
submit function, shown in Figure 3. The submit function
is called when the application using Paxos wants to send
a value. The application simply passes a character buffer
containing the value, and the buffer size. The paxos_ctx
struct maintains Paxos-related state across invocations (e.g.,
socket file descriptors).

Leader. A leader brokers requests on behalf of proposers.
The leader ensures that only one process submits a message
to the protocol for a particular instance (thus ensuring that the
protocol terminates), and imposes an ordering of messages.
When there is a single leader, a monotonically increasing
sequence number can be used to order the messages. This
sequence number is written to the inst field of the header.

Algorithm 1 shows the pseudocode for the primary leader
implementation. The leader receives REQUEST messages from
the proposer. REQUEST messages only contain a value. The
leader must perform the following: write the current instance
number and an initial round number into the message header;
increment the instance number for the next invocation; store
the value of the new instance number; and broadcast the packet
to acceptors.

P4xos uses a well-known Paxos optimization [17], where
each instance is reserved for the primary leader at initialization
(i.e., round number zero). Thus, the primary leader does not
need to execute Phase 1 before submitting a value (in a
REQUEST message) to the acceptors. Since this optimization
only works for one leader, the backup leader—which may be
run on a switch, an FPGA, or in software—must reserve an
instance before submitting a value to the acceptors. To reserve
an instance, the backup leader must send a unique round
number in a PHASE1A message to the acceptors. For brevity,



5

Algorithm 2 Acceptor logic.
1: Initialize State:
2: round[MAXINSTANCES] := {0, . . . , 0}
3: value[MAXINSTANCES] := {0, . . . , 0}
4: vround[MAXINSTANCES] := {0, . . . , 0}
5: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
6: if pkt.rnd ≥ round[pkt.inst] then
7: match pkt.msgtype:
8: case PHASE1A:
9: round[pkt.inst] := pkt.rnd

10: pkt.msgtype ← PHASE1B
11: pkt.vrnd ← vround[pkt.inst]
12: pkt.value ← value[pkt.inst]
13: pkt.swid ← swid
14: forward pkt to leader
15: case PHASE2A:
16: round[pkt.inst] := pkt.rnd
17: vround[pkt.inst] := pkt.rnd
18: value[pkt.inst] := pkt.value
19: pkt.msgtype ← PHASE2B
20: pkt.swid ← swid
21: forward pkt to learners
22: default :
23: drop pkt
24: else
25: drop pkt

we omit the backup leader algorithm since it essentially
follows the Paxos protocol.

Acceptor. Acceptors are responsible for choosing a single
value for a particular instance. For each instance of consensus,
each individual acceptor must “vote” for a value. Acceptors
must maintain and access the history of proposals for which
they have voted. This history ensures that only one value can
be decided for a particular instance, and allows the protocol
to tolerate lost or duplicate messages.

Algorithm 2 shows logic for an acceptor. Acceptors can
receive either PHASE1A or PHASE2A messages. Phase 1A
messages are used during initialization, and Phase 2A mes-
sages trigger a vote. The logic for handling both messages,
when expressed as stateful routing decisions, involves: (i)
reading persistent state, (ii) modifying packet header fields,
(iii) updating the persistent state, and (iv) forwarding the
modified packets. The logic differs in which header fields are
involved.

Learner. Learners are responsible for replicating a value for
a given consensus instance. Learners receive votes from the
acceptors, and “deliver” a value if a majority of votes are the
same (i.e., there is a quorum).

Algorithm 3 shows the pseudocode for the learner logic.
Learners should only receive PHASE2B messages. When a
message arrives, each learner extracts the instance number,
switch id, and value. The learner maintains a mapping from a
pair of instance number and switch id to a value. Each time
a new value arrives, the learner checks for a majority-quorum
of acceptor votes. A majority is equal to f +1 where f is the
number of faulty acceptors that can be tolerated.

The learner provides the interface between the network
consensus and the replicated application. The behavior is split
between the network, which listens for a quorum of messages,

Algorithm 3 Learner logic.
1: Initialize State:
2: history2B[MAXINSTANCES][NUMACCEPTOR]:=

{0, . . . , 0}
3: value[MAXINSTANCES] := {0, . . . , 0}
4: vround[MAXINSTANCES] := {−1, . . . ,−1}
5: count[MAXINSTANCES] := {0, . . . , 0}
6: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
7: match pkt.msgtype:
8: case PHASE2B:
9: if (pkt.rnd > vround[pkt.inst] or vround[pkt.inst] = −1)

then
10: history2B[pkt.inst][0] := 0
11:

...
12: history2B[pkt.inst][NUMACCEPTOR-1] := 0
13: history2B[pkt.inst][pkt.swid] := 1
14: vround[pkt.inst] := pkt.rnd
15: value[pkt.inst] := pkt.value
16: count[pkt.inst] := 1
17: else if (pkt.rnd = vround[pkt.inst]) then
18: if (history2B[pkt.inst][pkt.swid] = 0) then
19: count[pkt.inst] := count[pkt.inst] + 1
20: history2B[pkt.inst][pkt.swid] := 1
21: else
22: drop pkt
23: if (count[pkt.inst] = MAJORITY) then
24: forward pkt.value to replica
25: default :
26: drop pkt

and a library, which is linked to the application. To compute a
quorum, the learner counts the number of PHASE2B messages
it receives from different acceptors in a round. If there is no
quorum of PHASE2B messages in an instance (e.g., because
the primary leader fails), the learner may need to recount
PHASE2B messages in a quorum (e.g., after the backup
leader re-executes the instance). Once a quorum is received,
it delivers the value to the client by sending the message to
the user-space library that exposes the application-facing API.
The API, shown in Figure 4, provides two functions.

To receive delivered values, the application registers a
callback function with the type signature of deliver. To
register the function, the application sets a function pointer in
the paxos_ctx struct. When a learner learns a value, it calls
the application-specific deliver function. The deliver
function returns a buffer containing the learned value, the size
of the buffer, and the instance number for the learned value.

The recover function is used by the application to
discover a previously agreed upon value for a particular
instance of consensus. The recover function results in the
same exchange of messages as the submit function. The
difference in the API, though, is that the application must
pass the consensus instance number as a parameter, as well as
an application-specific no-op value. The resulting deliver
callback will either return the accepted value, or the no-
op value if no value had been previously accepted for the
particular instance number.

IV. FAILURE ASSUMPTIONS AND CORRECTNESS

P4xos assumes that the failure of a leader or acceptor does
not prevent connectivity between the consensus participants.



6

1 void (*deliver)(struct paxos_ctx* ctx,
2 int instance, char* value, int size);
3

4 void recover(struct paxos_ctx* ctx,
5 int instance, char* value, int size);

Figure 4: P4xos learner API.

As a result, it requires that the network topology allow for
redundant routes between components, which is a common
practice in data centers. In other respects, the failure assump-
tions of P4xos are the same as in Lamport’s Paxos. Below,
we discuss how P4xos copes with the failure of a leader or
acceptor.

Leader Failure. Paxos relies on a single operational leader to
order messages. Upon the failure of the leader, proposers must
submit proposals to a backup leader. The backup leader can be,
for example, implemented in software. If a proposer does not
receive the response for a request after a configurable delay,
it re-submits the request, to account for lost messages. After
a few unsuccessful retries, the proposer requests the leader to
be changed.

Routing to a leader or backup is handled in a similar fashion
as the way that load balancers, such as Maglev [15] or Silk
Road [36], route to an elastic set of endpoints. Partitioned
Paxos uses a reserved IP address to indicate a packet is
intended for a leader. Network switches maintain forwarding
rules that route the reserved IP address to the current leader.
Upon suspecting the failure of the hardware leader, a proposer
submits a request to the network controller to update the
forwarding rules to direct traffic to the backup. A component
that “thinks” it is the leader can periodically check network
controller that the reserved leader IP address maps to its own
address. This mechanism handles hardware leader failure and
recovery. To ensure progress, it relies on the fact that failures
and failure suspicions are rare events.

Acceptor Failure. Acceptor failures do not represent a threat
in Paxos, as long as a majority of acceptors are operational.
Moreover, upon recovering from a failure, an acceptor can
promptly execute the protocol without catching up with opera-
tional acceptors. Paxos, however, requires acceptors remember
the instances in which they participated before the failure.

There are two possible approaches to meeting this require-
ment. First, we could rely on always having a majority of
operational acceptors available. This is a slightly stronger
assumption than traditional Paxos deployments. Alternatively,
we could require that acceptors have access to non-volatile
memory [55], [1], [22] to record accepted instances. Our
prototype implementation uses the first approach, since the
network hardware we use only provides non-persistent SRAM.
We discuss persistent storage further in Section V.

Correctness. Given this alternative interpretation of the
Paxos algorithm, it is natural to question if this is a faithful
implementation of the original protocol [24]. In this respect,
we are aided by our P4 specification. In comparison to HDL or
general purpose programming languages, P4 is high-level and
declarative. By design, P4 is not a Turing-complete language,
as it excludes looping constructs, which are undesirable in

hardware pipelines. Consequently, it is particularly amenable
to verification by bounded model checking.

We have mapped the P4 specification to Promela, and
verified the correctness using the SPIN model checker. Specif-
ically, we verify the safety property of agreement: the learners
never decide on two separate values for a single instance of
consensus.

V. DEPLOYMENT CHALLENGES

Expected Deployment and Routing. We expect that P4xos
would be deployed in a single data center, where network
round-trip times are low and bandwidth demands are high.
Although P4xos could be deployed in a wide-area network
(it is a faithful implementation of the Paxos protocol), the
performance benefits would be less pronounced.

As discussed in Section II, one possible deployment is that
all replicas will share a rack, and that each network device
above the rack will fill a role in achieving a consensus: the
Top of Rack (ToR) switch as a learner, the aggregate switches
as acceptors, the spine as a leader. Again, other deployments
would not affect the correctness.

Obviously, this requires more routing rules, as network
operators would need to configure forwarding and multicast
rules between switches that act as leaders, acceptors, and
learners. The routing paths need to ensure that every path
includes the necessary consensus roles in the required quantity
(e.g., that there are f + 1 acceptors).

Our switch-based prototype is implemented on a Tofino
ASIC, which does not share memory between pipelines. As a
consequence, a P4xos instance can only run on a single switch
pipeline (without reverting to re-circulation). Because all of
the consensus roles (i.e., downlinks / uplinks ) must be in the
pipeline, the consensus network is limited to the port-scale of
a pipeline. This constraint will not apply to all devices [58].
Multiple Applications. In Section III, we describe how
one replicated application can use P4xos. The design can be
easily extended to support multiple applications by running
multiple instances of P4xos, where each instance is a sequence
of values accepted by the acceptors and identified by a gap-
free monotonically increasing sequence number. Note that
the decided values for different applications could not be in
the same P4xos instance, as it would render log trimming
impractical. To identify separate instances, we need some type
of identifier. This identifier could be a new field in the P4xos
packet header, or IP address and UDP port pairs.
Persistent Storage. With Paxos, acceptor storage is usually
persistent. So, if an acceptor fails and restarts, it can recover
its state. However, our prototype uses non-persistent SRAM.
Therefore, there must always be a majority of processes that
never fail. That is, we require a majority of aggregate switches
not to fail.

Providing persistent storage for network deployments of
P4xos can be addressed in a number of ways. Prior work on
implementing consensus in FPGAs used on chip RAM, and
suggested that the memory could be made persistent with a
battery [19]. Alternatively, a switch could access non-volatile
memory (NVM), such as Phase-Change Memory (PCM) [55],



7

Resistive RAM (ReRAM) [1], or Spin-Torque Magnetic RAM
(STT-MRAM) [22]. However, at the time of writing, the
response times for this memory still lags behind SRAM.
Memory Limitations. The Paxos algorithm does not specify
how to handle the ever-growing, replicated acceptor log. On
any system, including P4xos, this can cause problems, as the
log would require unbounded storage space, and recovering
replicas might need unbounded recovery time to replay the log.
We note that in a P4xos deployment, the number of instance
messages that can be stored is bounded by the size of the inst
field of the Paxos header. Users of P4xos will have to set the
value to an appropriate size for a particular deployment. The
amount of memory available on a Tofino chip is confidential.
Bosshart et al. [6] describe a research prototype that was a
precursor to Tofino with 370 Mb SRAM and 40 Mb TCAM.
A top-of-the-line FPGA has 64Gb RAM [52].

To cope with the ever-growing acceptor log and to avoid
instance number overflow, messages are stored in a circular
buffer, which is implemented with a register array. As the
buffer fills, P4xos requires that the application checkpoint [9],
which ensures that instances preceding the checkpoint will not
be needed again, and allows the instance number field to be re-
used. The checkpoint can happen at any time, but there must
be at least one checkpoint before re-use.

Conceptually, checkpointing works as follows. Learners
must periodically checkpoint their state and tell the acceptors.
Once an acceptor knows that f +1 learners have a checkpoint
that includes the application state up to Paxos instance number
x, they can forget every accepted value up to instance x.

Historically, checkpointing was considered an expensive op-
eration, due to the overhead from I/O, and exacerbated by the
frequency at which the operation is performed. However, this
view is changing somewhat as new checkpointing techniques
have been developed and new memory technologies emerge
(e.g., as discussed above, NVM/NVRAM [55], [1], [22]). A
complete and efficient solution though is out of the scope of
the paper. Instead, we refer readers to Bessani et al. [3] as an
example of efficient checkpointing.
Value Size. The prototype requires that the entire Paxos
header, including the value, be less than the maximum trans-
mission unit. This means that P4xos is most appropriate for
systems that replicate values that have a small size (e.g., locks
for distributed coordination). In this respect, P4xos is similar
to other in-network computing systems, such as NetCache [21]
and NetChain [20].

VI. DISCUSSION

The design outlined in the previous section begs several
questions, which we expand on below.
Isn’t this just Paxos? Yes! In fact, that is the central premise
of our work: you don’t need to change a fundamental building
block of distributed systems in order to gain performance.
This thesis is quite different from the prevailing wisdom.
There have been many optimizations proposed for consensus
protocols. These optimizations typically rely on changes in the
underlying assumptions about the network, e.g., the network
provides ordered [28], [48], [30] or reliable [49] delivery.

Consensus protocols, in general, are easy to get wrong. Strong
assumptions about network behavior may not hold in practice.
Incorrect implementations of consensus yield unexpected be-
havior in applications that is hard to debug.

In contrast, Paxos is widely considered to be the “gold
standard”. It has been proven safe under asynchronous as-
sumptions, live under weak synchronous assumptions, and
resilience-optimum [24].
Isn’t this just faster hardware? The latency saving across
a data center are not hardware dependent: If you change the
switches used in your network, or the CPU used in your
servers, the relative latency improvement will be maintained.
In the experiments described in section VII (Table II), the
P4xos implementation on FPGA operates at 250MHz, while
libpaxos runs on a host operating at 1.6GHz, yet the perfor-
mance of P4xos on FPGA is forty times higher. It is therefore
clear that fast hardware is not the sole reason for throughput
improvement, rather there are more profound reasons such as
the architecture of network devices.
Isn’t offload useful only when the network is heavily
loaded? P4xos fits the changing conditions in data centers,
where operators often increase the size of their network over
time. As software and hardware components are interchange-
able, P4xos allows starting with all components running on
hosts, and gradually shifting load to the network as the data
center grows and the consensus message rate increases. As
§VII-A shows, even a moderate packet rate is sufficient to
overload libpaxos.

VII. EVALUATION

Our evaluation of P4xos explores three questions: (i) What
is the absolute performance of individual P4xos components?
(ii) What is the end-to-end performance of P4xos as a system
for providing consensus? And, (iii) what is the performance
under failure?

As a baseline, we compare P4xos with a software-based im-
plementation, the open-source libpaxos library [31]. Over-
all, the evaluation shows that P4xos dramatically increases
throughput and reduces latency for end-to-end performance,
when compared to traditional software implementations.
Implementation. We have implemented a prototype of P4xos
in P4 [5]. We have also written C implementations of the
leader, acceptor, and learner using DPDK. The DPDK and
P4 versions of the code are interchangeable, allowing, for
example, a P4 based hardware deployment of a leader to use
a DPDK implementation as a backup. Because P4 is portable
across devices, we have used several compilers [53], [40],
[56], [41], [42] to run P4xos on a variety of hardware devices,
including a re-configurable ASIC, numerous FPGAs, an NPU,
and a CPU with and without kernel-bypass software. A total
of 6 different implementations were tested. In this paper, we
report results generated using the Barefoot Networks SDE
compiler to target the Tofino ASIC and the P4FPGA [53]
compiler to target NetFPGA SUME. All source code, other
than the version that targets Barefoot Network’s Tofino chip,
is publicly available with an open-source license.1

1https://github.com/P4xos



8

A. Absolute Performance

The first set of experiments evaluate the performance of
individual P4xos components deployed on a programmable
ASIC, an FPGA, DPDK and typical software processes on x86
CPUs. We report absolute latency and throughput numbers for
the individual Paxos components.
Experimental Setup. For DPDK and FPGA targets, we
used a hardware packet generator and capturer to send 102-
byte2 consensus messages to each component, then captured
and timestamped each message measuring maximum receiving
rate. For Tofino, we used one 64-port switch configured to
40G per port. We followed a standard practice in industry
for benchmarking switch performance, a snake test. With a
snake test, each port is looped-back to the next port, so a
packet passes through every port before being sent out the last
port. This is equivalent to receiving 64 replicas of the same
packet. To generate traffic, we used a 2× 40Gb Ixia XGS12-
H as packet sender and receiver, connected to the switch with
40G QSFP+ direct-attached copper cables. The use of all ports
as part of the experiments was validated, e.g., using per-port
counters. We similarly checked equal load across ports and
potential packet loss (which did not occur).
Single-packet Latency. To quantify the processing overhead
added by executing Paxos logic, we measured the pipeline
latency of forwarding with and without Paxos. In particular, we
computed the difference between two timestamps, one when
the first word of a consensus message entered the pipeline and
the other when the first word of the message left the pipeline.
For DPDK, the CPU timestamp counter (TSC) was used.

Table I shows the latency for DPDK, P4xos running on
NetFPGA SUME and on Tofino. The first row shows the
results for forwarding without Paxos logic. The latency was
measured from the beginning of the packet parser until the
end of the packet deparser. The remaining rows show the
pipeline latency for the various Paxos components. The higher
latency for acceptors reflects the complexity of operations of
that role. Note that the latency of the FPGA and ASIC based
targets is constant as their pipelines use a constant number of
stages. Overall, the experiments show that P4xos adds little
latency beyond simply forwarding packets, around 0.15 µs
(38 clock cycles) on FPGA and less than 0.1 µs on ASIC.
To be clear, this number does not include the SerDes, MAC,
or packet parsing components. Hence, the wire-to-wire latency
would be slightly higher. These experiments show that moving
Paxos into the forwarding plane can substantially improve
performance. Furthermore, using devices such as Tofino means
that moving stateful applications to the network requires
software updates, rather than hardware upgrades, therefore
diminishing the effect on network operators.

We wanted to compare a compiled P4 code to a native
implementation in Verilog or VHDL. The closest related work
in this area is by Istvan et al. [19], which implemented
Zookeeper Atomic Broadcast on an FPGA. It is difficult
to make a direct comparison, because (i) they implement
a different protocol, and (ii) they timestamp the packet at

2Ethernet header (14B), IP header (20B), UDP header (8B), Paxos header
(44B), and Paxos payload (16B)

Role DPDK P4xos (NetFPGA) P4xos (Tofino)

Forwarding 0.4 µs 0.370 µs less than 0.1 µs
Leader 2.3 µs 0.520 µs less than 0.1 µs

Acceptor 2.6 µs 0.550 µs less than 0.1 µs
Learner 2.8 µs 0.540 µs less than 0.1 µs

Table I: P4xos latency. The latency accounts only for the
packet processing within each implementation.

Role libpaxos DPDK P4xos(NetFPGA) P4xos(Tofino)

Leader 241K 5.5M 10M 656M×4 = 2.5B
Acceptor 178K 950K 10M 656M×4 = 2.5B
Learner 189K 650K 10M 656M×4 = 2.5B

Table II: Throughput in messages/s. NetFPGA uses a single
10Gb link. Tofino uses 40Gb links. On Tofino, we ran 4
deployments in parallel, each using 16 ports.

different places in their hardware. But, as best we can tell,
the latency numbers are similar.
Maximum Achievable Throughput. We measured the
throughput for all Paxos roles on different hardware tar-
gets. The results in Table II show that on the FPGA, the
acceptor, leader, and learner can all process close to 10
million consensus messages per second, an order of magni-
tude improvement over libpaxos, and almost double the
best DPDK throughput. The ASIC deployment allows two
additional order of magnitude improvement which is 41
million 102 byte consensus msgs/sec per port. In the Tofino
architecture, implementing pipelines of 16 ports each [18],
a single instance of P4xos reached 656 million consensus
messages per second. We deployed 4 instances in parallel on a
64 port x 40GE switch, processing over 2.5 billion consensus
msgs/sec. Moreover, our measurements indicate that P4xos
should be able to scale up to 6.5 Tb/second of consensus
messages on a single switch, using 100GE ports.
Resource Utilization. To evaluate the cost of implement-
ing Paxos logic on FPGAs and Tofino, we report resource
utilization on NetFPGA SUME using P4FPGA [53], and
on Tofino using Barefoot Compiler. Note that we set the
maximum number of Paxos instances (i.e., MAXINSTANCES
from Algorithms 2 and 3) to be 64K. An FPGA contains a
large number of programmable logic blocks: look-up tables
(LUTs), registers and Block RAM (BRAM). In NetFPGA
SUME, we implemented P4 stateful memory with on-chip
BRAM to store the consensus history. As shown in Table III,
current implementation uses 54% of available BRAMs, out of
which 35% are used for stateful memory.3 We could scale up
the current implementation in NetFPGA SUME by using large,
off-chip DRAM at a cost of higher memory access latency.
Prior work suggests that increased DRAM latency should not
impact throughput [19]. The P4xos pipeline uses less than 45%
of the available SRAM on Tofino, and no TCAM. We therefore
expect that P4xos can co-exist with other switch functionality,
but it would require a reduction of some other state usage
(e.g., the number of fine-grain rules in tables).

3On newer FPGA [52] the resource utilization will be an order of magnitude
lower



9

Resource Utilization

LUTs 84674 / 433200 (19.5%)
Registers 103921 / 866400 (11.9%)
BRAMs 801 / 1470 (54.4%)

Table III: Resource utilization on NetFPGA SUME with
P4FPGA with 64K Paxos instance numbers.

Resource Sharing. The P4xos on Tofino experiment de-
scribed above demonstrates that consensus operation can co-
exist with standard network switching operation, as the peak
throughput is measured while the device runs IPv4 traffic at
full line rate of 6.5Tbps. This is a clear indication that network
devices can be used more efficiently, implementing consensus
services parallel to network operations. Using network devices
for more than just network operations reduces the load on the
host while not affecting network performance or adding more
hardware.

B. End-to-End Performance

To explore P4xos beyond a single device and within a
distributed system, we ran a set of experiments demonstrating
a proof-of-concept of P4xos using different hardware.
Experimental Setup. We used two different network
topologies for these experiments. The libpaxos, FPGA,
and DPDK experiments used the topology shown in Figure 5.
Servers and FPGAs are connected to a Pica8 P-3922 10GbE
switch. All links are configured at 10GbE. The Tofino exper-
iments used the topology shown in Figure 6.

For the libpaxos experiments, the leader and acceptors
were software processes running on the x86 servers. The
servers (replicas) have dual-socket Intel Xeon E5-2603 CPUs,
with a total of 12 cores running at 1.6GHz, 16GB of 1600MHz
DDR4 memory and two Intel 82599 10 Gbps NICs. The O.S.
was Ubuntu 14.04 with Linux kernel version 3.19.0.

For the DPDK experiments, the leader and acceptors were
DPDK processes. For the DPDK learner, we dedicated two
NICs per instance, two CPU cores in the socket coupled with
the NICs, and 1024 2MB hugepages to the DPDK application.
All RAM banks on the server were moved to the slots managed
by the socket. Virtualization, frequency scaling, and power
management were disabled in the BIOS. The RAM frequency
was set to the maximum value.

For the FPGA experiments, the leader and acceptors were
NetFPGA SUME boards. NetFPGA SUME boards operated
at 250MHz. We installed one NetFPGA SUME board in each
server using a PCIe x8 slot, though NetFPGA cards behave
as stand-alone systems in our testbed. The learners were the
DPDK implementation.

For experiments with Tofino, we used two switches, with
different pipelines acting as different roles. One switch was
a leader and an acceptor. The second switch acted as two
different acceptors. The switches were connected to the same
servers in a topology as shown in Figure 6. Again, we used
the DPDK learners.
Baseline Experiment. Our first end-to-end evaluation uses a
simple echo server as the replicated application. Server 1 ran

FPGA
Leader

Proposer

Application

Switch

NIC FPGA
Acceptor

Learner

Application

NIC

DPDK
Learner

FPGA
Acceptor

Learner

Application

NIC

DPDK
Learner

FPGA
Acceptor

Learner

Application

NIC

DPDK
Learner

Server 1 Server 2

Server 3 Server 4

Figure 5: FPGA testbed for the evaluation.

Proposer Replica

Leader/
Acceptor

Acceptor/
Acceptor

Replica

Replica

Figure 6: Topology used in Tofino experimental evaluation.

a multi-threaded client process and a single proposer process.
Servers 2, 3, and 4 ran single-threaded learner processes and
the echo server.

Each client thread submits a message with the current
timestamp written in the value. When the value is delivered by
the learner, a server program retrieves the message via a deliver
callback function, and then returns the message back to the
client. When the client gets a response, it immediately submits
another message. The latency is measured at the client as the
round-trip time for each message. Throughput is measured at
the learner as the number of deliver invocations over time.

To push the system towards a higher message throughput,
we increased the number of threads running in parallel at the
client. The number of threads, N , ranged from 1 to 24 by
increments of 1. We stopped measuring at 24 threads because
the CPU utilization on the application reached 100%. For each
value of N , the client sent a total of 2 million messages. We
repeat this for three runs, and report the 99th-ile latency and
mean throughput.

We measure the latency and predictability for P4xos as a
system, and show the latency distribution in Figure 7a. Since
applications typically do not run at maximum throughput, we
report the results for when the application is sending traffic at
a rate of 24K messages / second, which favors the libpaxos
implementation. This rate is far below what P4xos can achieve.
We see that P4xos shows lower latency and exhibits better
predictability than libpaxos: The median latencies are 22,
42 and 67 µs for Tofino, SUME and DPDK respectively,
compared with 119 µs, and the difference between 25% and
75% quantiles is less than 3 µs, compared with 30 µs in
libpaxos. Note that higher tail latencies are attributed to



10

0.00

0.25

0.50

0.75

1.00

50 100 150 200

Latency [µs]

C
D

F

libpaxos
DPDK
SUME
Tofino

(a) Latency CDF.

0

100

200

300

400

500

100k 200k 300k 400k

Throughput [msgs/s] 99
th

 P
er

ce
nt

ile
 L

at
en

cy
 [µ

s]

libpaxos
DPDK
SUME
Tofino

(b) Throughput vs. latency

0.00

0.25

0.50

0.75

1.00

50 100 150 200

Latency [µs]

C
D

F

libpaxos
DPDK
SUME
Tofino

(c) Latency CDF
(w/ LevelDB).

0

200

400

600

20k 40k 60k 80k 100k

Throughput [msgs/s] 99
th

 P
er

ce
nt

ile
 L

at
en

cy
 [µ

s]

libpaxos
DPDK
SUME
Tofino

(d) Throughput vs. latency (w/
LevelDB).

Figure 7: The end-to-end performance of P4xos compared to libpaxos: (a) latency CDF, (b) throughput vs. latency, (c) latency
CDF (LevelDB) and (d) throughput vs. latency (LevelDB). P4xos has higher throughput and lower latency.

the Proposers and Learners, running on the host.
Figure 7b shows that P4xos results in significant improve-

ments in latency and throughput. While libpaxos is only
able to achieve a maximum throughput of 64K messages per
second, P4xos reach 102K, 268K, and 448K messages per
second for DPDK, SUME and Tofino respectively, at those
points the server application becomes CPU-bound. This is a
7× improvement. Given that individual components of P4xos
Tofino offer four orders of magnitude more messages, and
that the application is CPU-bound, cross-traffic will have a
small effect on overall P4xos performance. The lowest 99th-
ile latency for libpaxos occurs at the lowest throughput
rate, and is 183µs. However, the latency increases significantly
as the throughput increases, reaching 478µs. In contrast, the
latency for P4xos starts at only 19µs, 52µs, 88µs and is 125µs,
147µs and 263µs at the maximum throughput for Tofino,
SUME and DPDK correspondingly, mostly due to the server
(i.e., learner) processing delay.

Case Study: Replicated LevelDB. As an end-to-end perfor-
mance experiment, we measured the latency and throughput
for consensus messages for our replicated LevelDB example
application. The LevelDB instances were deployed on the
three servers running the learners. We followed the same
methodology as described above, but rather than sending
dummy values, we sent an equal mix of get and put requests.
The latency distribution is shown in Figure 7c. We report the
results for a light workload rate of 24K messages / second for
both systems. For P4xos, the round trip time (RTT) of 99%
of the requests for Tofino, SUME and DPDK is 33, 114, and
116µs, including the client’s latency. In contrast, it is 176µs
for libpaxos. This demonstrates that P4xos latency is lower,
even when used for replicating a relatively more complex
application.

The 99th-ile latency and throughput when replicating Lev-
elDB are shown in Figure 7d. The limiting factor for per-
formance is the application itself, as the CPU of the servers
are fully utilized. P4xos removes consensus as a bottleneck.
The maximum throughput achieved here by P4xos for Tofino,
SUME and DPDK are respectively 112K, 80K and 73K mes-
sages per second. In contrast, for the libpaxos deployment,
we measured a maximum throughput of only 54K messages

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

40k

80k

120k

−0.25 0 0.25 0.5 0.75 1 1.25

Time [s]

T
hr

ou
gh

pu
t [

m
sg

s/
s]

(a) Acceptor failure

● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●

0

40k

80k

120k

−0.25 0 0.25 0.5 0.75 1 1.25

Time [s]

T
hr

ou
gh

pu
t [

m
sg

s/
s]

(b) Leader failure

Figure 8: P4xos performance when (a) an acceptor fails, and
(b) when FPGA leader is replaced by DPDK backup.

per second.
Note that LevelDB was unmodified, i.e., there were no

changes to the application. We expect that given a high-
performance implementation of Paxos, applications could be
modified to take advantage of the increased message through-
put, for example, by using multi-core architectures to process
requests in parallel [33].

C. Performance Under Failure

The last set of experiments evaluate the performance of
P4xos after failures. We used the same setup as the replicated
LevelDB experiment using Tofino switches illustrated in Fig-
ure 6. We measured the end-to-end latency and throughput
under two different scenarios. In the first (a), one of the three
P4xos acceptors fails. In the second (b), the P4xos leader fails,
and the leader running on Tofino is temporarily replaced with
a DPDK leader. In both the graphs in Figure 8, the vertical
line indicates the failure point.

In these experiments, the LevelDB application is the perfor-
mance bottleneck. So, as shown in Figure 8a, the throughput
remains the same after the loss of one acceptor. To handle the
loss of a leader, we re-route traffic to the backup. Figure 8b
shows that P4xos is resilient to a leader failure, and that
after a very short recovery period, it continues to provide
high throughput. Note that P4xos could fail over to a backup
libpaxos leader, as they provide the same API.



11

No Hardware
Support

Full Hardware
Support

W
ea

k
as

su
m

pt
io

ns
St

ro
ng

as
su

m
pt

io
ns NetPaxos

Fast Paxos Speculative
Paxos

NoPaxos

P4xosPaxos

Figure 9: Design space for consensus/network interaction.

VIII. RELATED WORK

Consensus is a well-studied problem [24], [38], [39], [10].
Many have proposed consensus optimizations, including ex-
ploiting application semantics (e.g., EPaxos [37], Generalized
Paxos [27], Generic Broadcast [43]), restricting the protocol
(e.g., Zookeeper atomic broadcast [49]), or careful engineering
(e.g., Gaios [4]).

Figure 9 compares related work along two axes. The y-axis
plots the strength of the assumptions that a protocol makes
about network behavior (e.g., reliable delivery, ordered deliv-
ery). The x-axis plots the level of support that network devices
need to provide (e.g., quality-of-service queues, support for
adding sequence numbers, maintaining persistent state).

Lamport’s basic Paxos protocol falls in the lower left
quadrant, as it only assumes packet delivery in point-to-
point fashion and election of a non-faulty leader. It also
requires no modification to network forwarding devices. Fast
Paxos [28] optimizes the protocol by optimistically assuming
a spontaneous message ordering [28], [44], [45]. However, if
that assumption is violated, Fast Paxos reverts to the basic
Paxos protocol.

NetPaxos [13] was an early version of P4xos that did
not require a specialized forwarding plane implementation.
It assumes ordered delivery, without enforcing the assump-
tion, which is likely unrealistic. Speculative Paxos [48] and
NOPaxos [30] uses programmable hardware to increase the
likelihood of in-order delivery, and leverage that assumption
to optimize consensus à la Fast Paxos [28]. In contrast, P4xos
makes few assumptions about the network behavior, and uses
the programmable data plane to provide high-performance.

Several recent projects have used network hardware to
accelerate consensus. Notably, Consensus in a Box [19] and
NetChain [20] accelerate Zookeeper atomic broadcast and
Chain Replication, respectively. P4xos differs from these ap-
proaches in that it separates the execution and agreement as-
pects of consensus, and focuses on accelerating only execution
in the network. This separation of concerns allows the protocol
to be optimized without tying it to a particular application. In
other words, both Consensus in a Box and NetChain require
that the application (i.e., the replicated key value store) also
be implemented in the network hardware.

IX. CONCLUSION

P4xos uses programmable network hardware to significantly
improve the performance of consensus, without strengthening
assumptions about the network. This is a first step towards
a more holistic approach to designing distributed systems, in
which the network can accelerate services traditionally running
on the host.

ACKNOWLEDGEMENTS

We acknowledge support by the Leverhulme Trust (ECF-
2016-289) and the Isaac Newton Trust. This work is par-
tially supported by the Swiss National Science Foundation
(200021 166132) and a research award from Western Digital.
This research is (in part) supported by European Union’s
Horizon 2020 research and innovation program under the
ENDEAVOUR project (grant agreement 644960).

REFERENCES

[1] AKINAGA, H., AND SHIMA, H. Resistive Random Access Memory
(ReRAM) Based on Metal Oxides. IEEE 98, 12 (Dec 2010), 2237–
2251.

[2] BENZ, S., MARANDI, P. J., PEDONE, F., AND GARBINATO, B. Build-
ing global and scalable systems with atomic multicast. In Middleware
(Dec 2014), pp. 169–180.

[3] BESSANI, A., SANTOS, M., FELIX, J. A., NEVES, N., AND CORREIA,
M. On the efficiency of durable state machine replication. In USENIX
ATC (Jun 2013), pp. 169–180.

[4] BOLOSKY, W. J., BRADSHAW, D., HAAGENS, R. B., KUSTERS, N. P.,
AND LI, P. Paxos replicated state machines as the basis of a high-
performance data store. In USENIX NSDI (Mar 2011), pp. 141–154.

[5] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM CCR 44, 3 (Jul 2014), 87–95.

[6] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. Forwarding meta-
morphosis: Fast programmable match-action processing in hardware for
sdn. SIGCOMM CCR 43, 4 (Aug 2013), 99–110.

[7] BURROWS, M. The chubby lock service for loosely-coupled distributed
systems. In USENIX OSDI (Nov 2006), pp. 335–350.

[8] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N., SKJOLSVOLD,
A., MCKELVIE, S., XU, Y., SRIVASTAV, S., WU, J., SIMITCI, H.,
HARIDAS, J., UDDARAJU, C., KHATRI, H., EDWARDS, A., BEDEKAR,
V., MAINALI, S., ABBASI, R., AGARWAL, A., HAQ, M. F. U., HAQ, M.
I. U., BHARDWAJ, D., DAYANAND, S., ADUSUMILLI, A., MCNETT,
M., SANKARAN, S., MANIVANNAN, K., AND RIGAS, L. Windows
azure storage: A highly available cloud storage service with strong
consistency. In ACM SOSP (Oct 2011), pp. 143–157.

[9] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos made
live: An engineering perspective. In ACM PODC (Aug 2007), pp. 398–
407.

[10] CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors for
reliable distributed systems. J. ACM 43, 2 (Mar 1996), 225–267.

[11] CHARRON-BOST, B., AND SCHIPER, A. Uniform consensus is harder
than consensus. J. Algorithms 51, 1 (Apr 2004), 15–37.

[12] DANG, H. T., CANINI, M., PEDONE, F., AND SOULÉ, R. Paxos made
switch-y. SIGCOMM CCR 46, 2 (May 2016), 18–24.

[13] DANG, H. T., SCIASCIA, D., CANINI, M., PEDONE, F., AND SOULÉ,
R. Netpaxos: Consensus at network speed. In ACM SOSR (Jun 2015),
pp. 1–7.

[14] DPDK. http://dpdk.org/, 2015.
[15] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C., KONONOV,

R., MANN-HIELSCHER, E., CILINGIROGLU, A., CHEYNEY, B.,
SHANG, W., AND HOSEIN, J. D. Maglev: A fast and reliable software
network load balancer. In USENIX NSDI (Mar 2016), pp. 523–535.

[16] FRIEDMAN, R., AND BIRMAN, K. Using group communication tech-
nology to implement a reliable and scalable distributed in coprocessor.
In TINA Conference (Sep 1996).

[17] GRAY, J., AND LAMPORT, L. Consensus on transaction commit. ACM
Trans. Database Syst. 31, 1 (Mar 2006), 133–160.



12

[18] GUREVICH, V. Barefoot networks, programmable data plane at terabit
speeds. In DXDD (2016), Open-NFP.

[19] ISTVÁN, Z., SIDLER, D., ALONSO, G., AND VUKOLIC, M. Consensus
in a box: Inexpensive coordination in hardware. In USENIX NSDI (Mar
2016), pp. 425–438.

[20] JIN, X., LI, X., ZHANG, H., FOSTER, N., LEE, J., SOULÉ, R., KIM, C.,
AND STOICA, I. Netchain: Scale-free sub-rtt coordination. In USENIX
NSDI (Apr 2018), pp. 35–49.

[21] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N., KIM,
C., AND STOICA, I. Netcache: Balancing key-value stores with fast
in-network caching. In ACM SOSP (Oct 2017), pp. 121–136.

[22] KATINE, J. A., ALBERT, F. J., BUHRMAN, R. A., MYERS, E. B., AND
RALPH, D. C. Current-Driven Magnetization Reversal and Spin-Wave
Excitations in Co /Cu /Co Pillars. Physical Review Letters 84 (Apr
2000), 3149–3152.

[23] KULKARNI, S., BHAGAT, N., FU, M., KEDIGEHALLI, V., KELLOGG,
C., MITTAL, S., PATEL, J. M., RAMASAMY, K., AND TANEJA, S.
Twitter heron: Stream processing at scale. In ACM SIGMOD (May
2015), pp. 239–250.

[24] LAMPORT, L. The part-time parliament. ACM Trans. Comput. Syst. 16,
2 (May 1998), 133–169.

[25] LAMPORT, L. Paxos made simple. ACM SIGACT News 32, 4 (Dec.
2001), 18–25.

[26] LAMPORT, L. Lower bounds for asynchronous consensus. Distributed
Computing 19, 2 (Mar 2003), 104–125.

[27] LAMPORT, L. Generalized Consensus and Paxos. Tech. Rep. MSR-TR-
2005-33, Microsoft Research, 2004.

[28] LAMPORT, L. Fast paxos. Distributed Computing 19 (Oct 2006), 79–
103.

[29] LI, J., MICHAEL, E., AND PORTS, D. R. Eris: Coordination-free
consistent transactions using in-network concurrency control. In ACM
SOSP (Oct 2017), pp. 104–120.

[30] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A., AND PORTS, D.
R. K. Just say no to paxos overhead: Replacing consensus with network
ordering. In USENIX OSDI (Nov 2016), pp. 467–483.

[31] libpaxos, 2013. https://bitbucket.org/sciascid/libpaxos.
[32] MARANDI, P. J., BENZ, S., PEDONE, F., AND BIRMAN, K. P. The

performance of paxos in the cloud. In IEEE SRDS (Oct 2014), pp. 41–
50.

[33] MARANDI, P. J., BEZERRA, C. E., AND PEDONE, F. Rethinking state-
machine replication for parallelism. In IEEE ICDCS (June 2014).

[34] MARANDI, P. J., PRIMI, M., SCHIPER, N., AND PEDONE, F. Ring
paxos: A high-throughput atomic broadcast protocol. In DSN (Jun 2010),
pp. 527–536.

[35] MAZIERES, D. Paxos Made Practical. Unpublished manuscript, Jan
2007.

[36] MIAO, R., ZENG, H., KIM, C., LEE, J., AND YU, M. Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics. In
ACM SIGCOMM (Aug 2017), pp. 15–28.

[37] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There is
more consensus in egalitarian parliaments. In ACM SOSP (Nov 2013),
pp. 358–372.

[38] OKI, B. M., AND LISKOV, B. H. Viewstamped replication: A new
primary copy method to support highly-available distributed systems.
In ACM PODC (Aug 1988), pp. 8–17.

[39] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable
consensus algorithm. In USENIX ATC (Aug 2014), pp. 305–320.

[40] Open-NFP. http://open-nfp.org/, 2015.
[41] P4@ELTE. http://p4.elte.hu/, 2015.
[42] P4.org. http://p4.org, 2015.
[43] PEDONE, F., AND SCHIPER, A. Generic broadcast. In DISC (Sep 1999),

pp. 94–106.
[44] PEDONE, F., AND SCHIPER, A. Optimistic atomic broadcast: A

pragmatic viewpoint. Theor. Comput. Sci. 291, 1 (Jan 2003), 79–101.
[45] PEDONE, F., SCHIPER, A., URBÁN, P., AND CAVIN, D. Solving

agreement problems with weak ordering oracles. In EDCC (Oct 2002),
pp. 44–61.

[46] POKE, M., AND HOEFLER, T. Dare: High-performance state machine
replication on RDMA networks. In ACM HPDC (Jun 2015), pp. 107–
118.

[47] POPESCU, D. A., AND MOORE, A. W. PTPmesh: Data center network
latency measurements using PTP. In IEEE MASCOTS (Nov 2017),
pp. 73–79.

[48] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K., AND KRISH-
NAMURTHY, A. Designing distributed systems using approximate
synchrony in data center networks. In USENIX NSDI (May 2015),
pp. 43–57.

[49] REED, B., AND JUNQUEIRA, F. P. A simple totally ordered broadcast
protocol. In ACM/SIGOPS LADIS (Sep 2008), pp. 2:1–2:6.

[50] SCIASCIA, D., AND PEDONE, F. Geo-Replicated Storage with Scalable
Deferred Update Replication. In DSN (Jun 2013), pp. 1–12.

[51] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos made moderately
complex. ACM Comput. Surv. 47, 3 (Feb 2015), 1–36.

[52] Virtex UltraScale+, 2017. https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale-plus.html#productTable.

[53] WANG, H., SOULÉ, R., DANG, H. T., LEE, K. S., SHRIVASTAV, V.,
FOSTER, N., AND WEATHERSPOON, H. P4FPGA: A rapid prototyping
framework for P4. In ACM SOSR (Apr 2017), pp. 122–135.

[54] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In USENIX OSDI (Nov 2006), pp. 307–320.

[55] WONG, H.-S. P., RAOUX, S., KIM, S., LIANG, J., REIFENBERG, J. P.,
RAJENDRAN, B., ASHEGHI, M., AND GOODSON, K. E. Phase Change
Memory. IEEE 98, 12 (Dec 2010), 2201–2227.

[56] Xilinx SDNet Development Environment. www.xilinx.com/sdnet, 2014.
[57] XPliant Ethernet Switch Product Family. www.cavium.com/

XPliant-Ethernet-Switch-Product-Family.html, 2014.
[58] ZILBERMAN, N., BRACHA, G., AND SCHZUKIN, G. Stardust: Divide

and conquer in the data center network. In USENIX NSDI (Feb. 2019),
pp. 141–160.

[59] ZILBERMAN, N., GROSVENOR, M., POPESCU, D. A., MANIHATTY-
BOJAN, N., ANTICHI, G., WÓJCIK, M., AND MOORE, A. W. Where
has my time gone? In PAM (Mar 2017), pp. 201–214.

Huynh Tu Dang is a Principal Engineer at West-
ern Digital, where he develops network-accelerated
fault-tolerant data management systems. His re-
search interests are in dependable distributed sys-
tems and computer networking. He earned a PhD
in computer science from Università Della Svizzera
Italiana (USI in Lugano, Switzerland), and an MS
in computer science from Polytech Nice-Sophia
Antipolis (Nice, France). He has published many
articles in both journals and conference proceedings
and has been granted a US patent.

Pietro Bressana holds a bachelor’s degree in Elec-
tronic Engineering and a master’s degree in Com-
puter Engineering, both from Politecnico di Milano
(Italy). He joined the University of Lugano (Switzer-
land) as a research assistant and he is currently
working on his PhD in computer science. As a
PhD student, he visited the Networks and Operating
Systems Group of the University of Cambridge
(UK), and interned at Western Digital Research in
the Silicon Valley (USA).

Han Wang received the Ph.D. degree from Cor-
nell University, Ithaca, NY, USA in 2017. He is
currently working at Intel on P4 compilation for
programmable network ASICs. His current research
interests include data center networks, reconfig-
urable systems, compiler and formal method and
high-speed FPGA-based systems. He is a member
of IEEE.

Ki Suh Lee received BS in Computer Science and
Engineering from Seoul National University, MS in
Computer Science from Columbia University, and
Ph.D in Computer Science from Cornell University.
His research interests include data centers, network
measurements, time synchronization, and network
routing. He is currently with the Mode group.



13

Noa Zilberman is an Associate Professor at the
University of Oxford. Prior to joining Oxford, she
was a Fellow and an Affiliated Lecturer at the Uni-
versity of Cambridge. Her research interests include
computing infrastructure, programmable hardware
and networking. She holds a PhD Degree in Electri-
cal Engineering from Tel Aviv University, and is a
Senior Member of IEEE.

Hakim Weatherspoon is an Associate Professor
in the Department of Computer Science at Cornell
University and Associate Director for Cornell’s Ini-
tiative for Digital Agriculture (CIDA). Weatherspoon
received his PhD from University of California,
Berkeley. He has received awards for his many con-
tributions, including the University of Washington,
Allen School of Computer Science and Engineer-
ing, Alumni Achievement Award; Alfred P. Sloan
Research Fellowship; National Science Foundation
CAREER Award; and a Kavli Fellowship from the

National Academy of Sciences. He serves as Vice President of the USENIX
Board of Directors and serves on the Steering Committee for the ACM
Symposium on Cloud Computing.

Marco Canini is an Associate Professor of computer
science at King Abdullah University of Science
and Technology (KAUST). His research interests
include software-defined networking and large-scale
and distributed cloud computing. He received a
Ph.D. in computer science and engineering from the
University of Genoa. He is a member of IEEE, ACM
and USENIX.

Fernando Pedone is a Full Professor in the Fac-
ulty of Informatics at the Università della Svizzera
italiana (USI), Switzerland. He has been also affili-
ated with Cornell University, as a visiting professor,
EPFL, and Hewlett-Packard Laboratories (HP Labs).
He received the Ph.D. degree from EPFL in 1999.
His research interests include the theory and practice
of distributed systems and distributed data manage-
ment systems. Fernando Pedone has authored more
than 100 scientific papers and 6 patents. He is co-
editor of the book ”Replication: theory and practice”.

Robert Soulé is an Assistant Professor at Yale
University and a Research Scientist at Barefoot
Networks, an Intel Company. Prior to joining Yale,
he was an Associate Professor at the Università
della Svizzera italiana in Lugano, Switzerland. He
received his B.A. from Brown University, and his
Ph.D. from NYU. After his Ph.D., he was a post-
doc at Cornell University.


