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Abstract—Heart rate variability (HRV) is an important non-
invasive parameter to assess the cardiac autonomic nervous
system. In particular, spectrum matrices of HRV data have
been widely used for physical and mental health monitoring.
However, measurement uncertainties from data acquisition and
physiological factors can easily affect the HRV spectrum and
degrade outcomes of health monitoring. In this paper, we propose
a new model for incomplete spectrum estimation of the HRV
data based on matrix completion (MC). We show that our model
performs efficiently when estimating missing entries for HRV
spectra. Moreover, a refined model of matrix completion (RMC)
is proposed that can be derived from correlation analysis of
the HRV spectra. Two benchmark electrocardiography (ECG)
datasets are retrieved and used to derive the HRV data, which
are employed to evaluate the performance of our RMC method
on the estimation of missing entries in the spectra. Furthermore,
four different types of deep recurrent neural networks and the
traditional MC method are used for a comparison study, and our
RMC method obtains the least estimation error with different
masking ratios. The experimental studies and comparison results
demonstrate the advantages and robustness of our developed
method for the estimation of incomplete HRV spectra.

Index Terms—Heart rate variability, uncertainties, spectrum
estimation, matrix completion.

I. INTRODUCTION

Heart rate variability (HRV) is an important marker to assess
autonomic nervous system (ANS) dynamics by measuring
variations between consecutive heartbeats [1]. HRV variables
have been widely used to evaluate anxiety disorder, depression,
and psychotropic medication [2]. In particular, HRV indices in
frequency domain describe power distributions with different
frequency bands, which have been found to be reliable markers
for assessing sympathetic (SNS) and parasympathetic nervous
system (PNS) activities [1]. For example, the low frequency
(LF) (0.04-0.15 Hz) of the HRV spectrum is generally mediated
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by sympathetic and parasympathetic actions; while the high
frequency (HF) band (0.15-0.4 Hz) is mediated by PNS [3].

Generally, HRV data can be obtained by measuring variations
of RR intervals (RRI) in electrocardiography (ECG) record-
ings, or it can be derived from inter-beat intervals (IBI) of
photoplethysmography (PPG) signals [2]. However, measuring
HRV using ECG or PPG signals is still challenging, because
these data recordings are vulnerable to measurement noises and
motion artifacts, which have subsequent influence on HRV data
analysis [2], [4]. Many machine learning techniques have been
developed to address the various uncertainties of HRV data,
such as the Gaussian modelling [4], ensemble deep learning
[5], and Bayesian deep learning [6]. However, deep neural
networks (DNN) typically require expertise in hyperparameters
tuning and need a large number of training samples.

Matrix completion (MC) is a method which enables recovery
of missing entries from observed samples in an incomplete
matrix [7], [8]. The MC technique uses the low-rank property
of massive measured data to estimate missing values in data
samples, and it has been used for uncertainty estimation in
image processing, biology, and bioinformatics [8], [9]. However,
the use of MC techniques for HRV spectrum analysis is largely
unexplored. In this paper, we leverage the advantages of MC
techniques to estimate uncertainties within the HRV spectrum
data, which are modelled as missing values. In a further step,
we develop a refined matrix completion (RMC) method by
using representative information in the data matrix to recover
missing values of HRV spectra; Two benchmark ECG datasets
are used to investigate the performance and robustness of the
developed RMC method for HRV spectrum estimation.

II. METHOD DEVELOPMENT

Given a set of ECG recordings sampled from N subjects
{sp(t)}p=1,2,··· ,N , the HRV sequence can be obtained by
measuring changes of consecutive RR intervals in the ECG
recording; Then, a matrix F ∈ Rm×nfs can be formulated by
spectra of HRV sequences, with m denoting the number of
HRV sequences, and nfs indicating the number of truncated
frequencies in the spectrum. Next, we introduce HRV spectrum
estimation with the developed RMC technique.

A. Matrix Completion for Uncertainty Estimation

Given a matrix X ∈ Rn1×n2 with some observed entries
(X)ij∈Ω, with Ω as the set of observed elements in matrix
X, and |Ω| ≪ n1n2. Assume matrix X has a rank of r, and
min(n1, n2) ≫ r, the aim of MC technique is to recover
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missing elements in the matrix. Formally, the MC technique
is to solve the following problem [7], [8],

minimize rank(Y)

subject to yij = xij , for (i, j) ∈ Ω
(1)

As the optimisation of rank norm in Eq. (1) is an NP-hard
problem, an alternative approximation can be used as,

minimize ||Y||∗
subject to yij = xij , for (i, j) ∈ Ω

(2)

where, ||Y||∗ represents the nuclear norm of the matrix, and it
is defined as the summation of singular values of the matrix.

By defining an operator PΩ to model the missing data, the
optimisation in Eq. (2) can be rewritten as,

minimize ||Y||∗
subject to PΩ(Y) = PΩ(X),

(3)

where, the operator {PΩ(Y)}i,j = xi,j if (i, j) ∈ Ω; and 0 if
(i, j) /∈ Ω.

Considering noises and uncertainties in data measurements,
the estimation in Eq. (3) can be relaxed as,

minimize ||Y||∗
subject to ||PΩ(Y)− PΩ(X)||F ≤ ε,

(4)

where, ε > 0 is a small value to control estimation error, and
|| · ||F is the Frobenius norm. An iterative solution to Eq. (4)
can be obtained by the soft singular value thresholding [9].

Suppose we are interested in estimating a certain entries of
the matrix, i.e., the HF or LF bands of the HRV spectrum;
Then, the low rank approximation problem can be modified to
approximate the matrix under Frobenius norm,

minimize ||PΩ(Y)− PΩ(X)||F
subject to f(Y) ≤ 0,

(5)

where, f(Y) is a constraint for the estimated matrix, such
as f(Y) = ||Y||∗ − λ is the nuclear norm constraint. The
optimisation in Eq. (5) can be solved by the interest-zone
matrix approximation as presented in [8].

B. Refined Matrix Completion for HRV Spectrum Estimation

Generally, HRV spectrum can be characterised and estimated
by some specific models [10]. Next, we construct a refined
matrix for spectrum estimation with identifying important
information by the modelled signals.

Suppose we have interested entries to be estimated in the
xs spectrum, and it can be initially estimated as,

xms (f) = φ(f, xs), (6)

where, f ∈ [fl, fr] is the range of interested frequencies, xms
is the modelled spectrum using the operator φ(·), such as the
autoregressive (AR) model or Gaussian process [10].

Then, the relevant information with respect to the xs
spectrum can be obtained as,

HK(xs) := max
k∈[K]

ρ(xs, xk) (7)

where, HK(xs) is the set of identified spectra for xs, [K] =
1, 2, · · · ,K, s ̸= k, is the set of indices for the identified
spectra, and ρ(xs, xk) is defined as,

ρ(xs, xk) = ψ(xms , x
m
k ) (8)

where, ψ(·) calculates the relationship between paired spectra,
which can be obtained by computing the correlation coefficient
or distance between two spectra.

Next, a refined matrix XHK
can be obtained by the identified

spectra, and the optimisation in Eq. (5) can be updated as,

minimize ||PΩ̃(YHK
)− PΩ̃(XHK

)||F
subject to f(YHK

) ≤ 0,
(9)

where, Ω̃ is the set of observed entries in the refined matrix.
Then, missing entries in the matrix can be estimated by solving
the optimisation problem in Eq. (9) using the interest-zone
matrix approximation technique [8].

III. EXPERIMENTAL STUDY AND RESULTS

HRV data usually can be derived from ECG signals, and
two benchmark datasets from the PhysioNet Database [11]
are used to investigate the model’s performance of spectrum
estimation for this study. The first ECG dataset is the MIT-BIH
Normal Sinus Rhythm Database (NSRDB) [11]; and the second
ECG dataset is the MIT-BIH Arrhythmia Database (ARDB)
[11], [12]. The two datasets include both normal and abnormal
sinus rhythms, which will be used to present a comprehensive
investigation of the developed model.

A. ECG Signal Processing

The NSRDB includes 18 long-term ECG recordings collected
from subjects with no significant arrhythmias, and the ECG
recordings are sampled with 128 Hz; The ARDB consists of
48 ECG recordings with a sampling frequency of 360 Hz, and
it is widely used for the investigation of cardiac arrhythmias.

We first identify R-peaks in the ECG recordings, calculate
the RR intervals, and filter outliers of the intervals. Figure 1
shows the detected R peaks in the ECG recording, and the
comparison of outlier removal. Then, the preprocessed data is
divided into segments with a 5-min duration, which will be used
to derive the HRV data. As the NSRDB has recordings with
an approximately 24-hour sampling duration, it will produce a
large matrix of data segments for the estimation. We therefore
use ECG data with 1-hour duration for the analysis. Next, the
HRV data is obtained by resampling the RR intervals with 4
Hz, and a 4th order Butterworth filter with cutoff frequencies
of 0.03 Hz and 0.9 Hz is used to preprocess the sequence [13].

B. Spectrum Estimation with the Developed RMC Method

The power spectral density (PSD) of the HRV data is
obtained using Welch’s algorithm with an overlap of 50%
[14], and the HRV matrix can be obtained by combining all
the spectra. Figure 2(a) illustrated the derived spectrum of
HRV data with a particular focus on the frequency range from
0.004 Hz to 0.4 Hz. Then, we model the derived PSD spectrum
using AR model for simplicity. As shown in Figure 2(a), the
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Fig. 1: ECG signal processing and RR intervals calculation.
(a) R peaks detection. (b) Outlier removal from RR intervals.

AR model efficiently captures the underlying trend of the PSD
spectrum in both the LF and HF parts.

To test the model’s performance on estimating uncertainties
in the PSD spectrum, we mask a certain number of elements
in the sequence, and the remaining parts are used to derive
the relevant important spectra in the matrix. Figure 2(b) shows
the calculated correlation coefficients between the 20th data
segment and other spectra. We gradually increase the number
of selected segments from 5 to 30, and find that the model
obtains the optimal performance when a total number of 11
data segments are selected.

Fig. 2: HRV spectrum estimation and the identification of
important data segments. (a) PSD estimation using AR model.
(b) Correlation coefficients for the 20th HRV spectrum.

It can be seen from Figure 2(b) that the model not only
identifies neighbourhood samples for the 20th data segment, it

also recognises data segments with far distances as important
information. Then, the refined matrix can be formulated by
the identified important segments, and it is used to estimate
the missing parts in the spectrum. Figure 3 shows a spectrum
with 70% missing elements, which are estimated using our
developed RMC method and other models. It can be seen
from Figure 3(a) and (b) that both the MC and RMC methods
efficiently estimate the missing values; in particular, the peak
values around 0.27 Hz in the spectrum.

C. Comparison Study

Machine learning, and in particular deep learning, has
demonstrated excellent performance on regression analysis of
sequential data [15], [16]. As shown in Figure 3, four different
types of DNN models are used to prediction missing elements
in the HRV spectrum, including gated recurrent units (GRU),
long short-term memory (LSTM), and hybrid models with
combining LSTM and convolutional neural networks (CNN).
All the recurrent neural networks have 120 hidden unites, the
CNN models consist of layers with 32 and 64 kernels, and
the kernel size is 3. The models are trained with a maximum
epoch of 100, and an initial learning rate of 0.005.

It can be seen from Figure 3 that the four DNN models
efficiently estimated missing elements in the spectrum. To
present a comprehensive comparison between all the methods,
we mask 50% and 70% elements of HRV spectrum for each
data segment in the two datasets, i.e., NSRDB and ARDB, and
then use all the models to estimate the spectra. The normalised
root mean square error (NRMSE) is calculated between the
estimated spectrum and original values [17]. Table I presents
the performance comparison between the four DNN models,
the original MC method, and our developed RMC method for
the HRV spectrum estimation. The values are presented as
mean ± standard deviation, and the smallest estimation error is
bold-faced. It can be seen from Table I that both the MC and
RMC methods outperform the DNN models on the two ECG
datasets; in particular, our developed RMC method obtains the
least error of HRV estimation spectrum.

TABLE I: Comparison of estimation errors (NRMSE) on the
two ECG datasets with different masking ratios.

Model
NSRDB ARDB

50% 70% 50% 70%

GRU 1.116± 0.234 1.348± 0.703 1.230± 0.444 1.117± 0.177

LSTM 1.142± 0.255 1.478± 0.792 1.264± 0.560 1.225± 0.352

CNN 3 LSTM 0.659± 0.137 0.910± 0.555 0.877± 0.494 0.859± 0.143

CNN 5 LSTM 0.705± 0.158 1.004± 0.628 0.964± 0.653 0.893± 0.155

MC 0.615± 0.805 0.743± 0.573 0.367± 0.256 0.616± 0.286

RMC 0.285 ± 0.278 0.310 ± 0.259 0.326 ± 0.235 0.548 ± 0.305

IV. DISCUSSION

A matrix completion-based method was developed for HRV
spectrum estimation in this paper. By leveraging the low-rank
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Fig. 3: Comparison study between the RMC method and other techniques. (a) Traditional MC method, (b) RMC method, (c)
GRU model, (d) LSTM model, (e) LSTM and 3-layer CNN, and (f) LSTM and 5-layer CNN.

property of the HRV spectrum matrix, the developed RMC
method demonstrates efficient performance on estimating miss-
ing entries of the spectrum. Comparing with four DNN models
and the original MC method, we show that the developed RMC
method has the best performance on the spectrum estimation,
which indicates that statistical machine learning techniques may
have comparable or superior performance with DNN models in
some specific applications. More detailed performance of the
developed RMC method and the evaluation of HRV variables
will be investigated in a future study.

V. CONCLUSIONS

This study developed a new model for HRV spectrum
estimation based on the low-rank MC method. A refined MC
model was derived using modelled information of HRV spectra,
and the developed method demonstrated efficient performance
on estimating missing entries in HRV spectra, even with 70%
elements masked. Comparing with four deep learning models
and the traditional MC method, our developed refined MC
model obtained the least NRMSE error on two benchmark
ECG datasets with different masking ratios, and the results
demonstrated the effectiveness and robustness of our developed
model for HRV spectrum estimation.
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