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PlethAugment: GAN-Based PPG Augmentation
for Medical Diagnosis in Low-Resource Settings

Dani Kiyasseh , Girmaw Abebe Tadesse , Le Nguyen Thanh Nhan, Le Van Tan, Louise Thwaites,
Tingting Zhu , and David Clifton

Abstract—The paucity of physiological time-series data
collected from low-resource clinical settings limits the
capabilities of modern machine learning algorithms in
achieving high performance. Such performance is further
hindered by class imbalance; datasets where a diagnosis
is much more common than others. To overcome these two
issues at low-cost while preserving privacy, data augmen-
tation methods can be employed. In the time domain, the
traditional method of time-warping could alter the underly-
ing data distribution with detrimental consequences. This
is prominent when dealing with physiological conditions
that influence the frequency components of data. In this pa-
per, we propose PlethAugment; three different conditional
generative adversarial networks (CGANs) with an adapted
diversity term for the generation of pathological photo-
plethysmogram (PPG) signals in order to boost medical
classification performance. To evaluate and compare the
GANs, we introduce a novel metric-agnostic method; the
synthetic generalization curve. We validate this approach
on two proprietary and two public datasets representing a
diverse set of medical conditions. Compared to training on
non-augmented class-balanced datasets, training on aug-
mented datasets leads to an improvement of the AUROC by
up to 29% when using cross validation. This illustrates the
potential of the proposed CGANs to significantly improve
classification performance.

Index Terms—Conditional generative adversarial
networks, data-augmentation, time-series, photople-
thysmogram, low-resource.
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I. INTRODUCTION

PAUCITY of data and class imbalance drastically hinder the
performance of modern machine learning algorithms [1],

[2]. In the medical domain, the relatively low number of patients
enrolled in experimental trials, among other reasons, limits
the amount of data collected. This is even more pronounced
in low-resource clinical settings where high financial and in-
frastructural constraints exist. To overcome this obstacle, the
use of wearable sensors capable of continuous monitoring of
physiological signals such as the photoplethysmogram (PPG)
has experienced a rise [3]. The amount of data limits researchers
from capitalizing on deep learning approaches which are known
to be data-hungry [4] and which have produced promising re-
sults in cognate disciplines. Therefore, generating class-specific
medical time-series data may help in alleviating some of the
aforementioned obstacles.

Data augmentation, the process of generating new data from
the existing data is common in computer vision [5] where
images are flipped and rotated at various angles in order to
augment the dataset and act as a form of regularization. Given
its positive impact on classification performance [6], it has
been used for various tasks involving deep learning for med-
ical images such as segmentation [7] and liver lesion classi-
fication [8]. In the time-domain, on the other hand, the ad-
dition of noise and time-warping is performed [9]. Such ap-
proaches can lead to unwanted changes in the physiological
signals, changing the underlying data distribution in a manner
that might affect subsequent classification. This is especially
problematic when dealing with medical conditions such as
hand-foot-mouth (HFM) disease and tetanus (both of which
are especially prevalent in low-resource settings) that impact
the nervous system, and consequently, the frequency compo-
nents of the physiological signal. Consequently, a generative
process that accurately and realistically represents the data is
needed.

Recently, generative adversarial networks (GANs) have been
used for data augmentation purposes [10] given their ability
to capture the underlying data distribution. Conditional GANs
(CGANs) for data augmentation, however, have not been fully
explored, let alone in the medical domain.

Contribution: In this paper, we follow the pipeline in Fig. 1 by
proposing several CGANs inspired by work in other fields [11]–
[13] and adapt them to generate disease-severity-specific photo-
plethysmogram signals. We use the resulting synthetic signals to
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Fig. 1. Illustration of Pipeline. Synthetic data generated by the three different CGAN models are used to augment the original dataset for a 3-way
classification problem.

augment a dataset and improve upon the baseline performance.
Finally, we introduce the synthetic generalization curve, a novel
and generalizable method for evaluating and comparing the
performance of GANs.

II. RELATED WORK

GANs [14] were first introduced as a generative model based
on a minimax formulation where two networks, the generator
and discriminator, engage adversarially to outsmart one another.
Shortly after, CGANs [11] were introduced as simple extensions
to GANs where the generated data is conditioned on a certain
variable such as a class, time-stamp, etc.

A. Conditional Generative Adversarial Networks
(CGANs) for Time-Series

GANs have been successful in generating medical images for
the purpose of augmenting datasets [15]. A recent review by Yi
et al. [16] summarizes the state-of-the-art in that domain. Given
that medical image synthesis is beyond the scope of this paper,
we solely focus on applications to time-series data. Although in
its infancy, the application of CGANs for time-series data has
seen a recent rise in activity. CGANs have been used to generate
weather data conditioned on specific scenarios [17] and to gen-
erate wind and solar energy production over time conditioned on
environmental variables [18]. Others introduce MuseGAN [19]
to generate track-specific polyphonic music. Although their
task is temporal, their data representations lack high sampling
rates usually experienced in physiological signals. Others [20]
attempt to model the potential trajectories of humans over
time using an LSTM-based generator and discriminator. In the
medical domain, the work in [21] uses a 1D convolution-based
GAN to generate electroencephalogram (EEG) brain signals.
Inspired by this work, others generate synthetic epileptic brain
activity signals [22] and EEG signals [23] specifically to improve
classification models. Others [24] use a GAN to generate an
open-source AND privacy-protected vital sign dataset. In [25],
PPG and electrocardiogram (ECG) data are generated using
the 2D convolution-based DCGAN. Here, time-series data are

converted to images before being input into the GAN. Both
of these works, however, do not aim to generate class-specific
signals. Although the authors in [26] use a conditional DCGAN
to generate EEG data, they perform their operations in the
imaging domain and do not evaluate the representativeness of
the synthetic EEG data. Closest to our work is that of [27] which
uses an LSTM-based CGAN to produce various time-series data,
including sine waves, some medical data, and sequential MNIST
benchmark data. The medical time-series generated, however, is
of summary numerics such as heart rate and oxygen saturation as
opposed to high frequency medical data. Notably, they introduce
an evaluation metric known as “Train on Synthetic, Test on Real”
(TSTR) which we build upon in our work. Lastly, although not
used for time-series, DSGAN [28] involves a diversity sensitivity
term that rewards conditional GANs for diverse data generation.

B. Data Augmentation for Time-Series

Given the improved results associated with data augmen-
tation in computer vision [29], recent work converts time-
series into image-representations [30], [31]. The work in [9]
provides a good overview of data augmentation methods to
employ on time-series data from wearable sensors. This in-
cludes random jitter, window-slicing, changing permutations,
and time-warping. The latter is used before implementing a
convolutional neural network [32] and to boost the performance
of a deep ResNet classification network [33]. Unfortunately, the
aforementioned approaches could be detrimental in our appli-
cation especially when dealing with physiological conditions
that impact a signal’s frequency component. The addition of
noise from a Gaussian distribution with varying standard devi-
ations has been used to improve the classification performance
of three different models (SVM, LeNet, ResNet) on various
datasets [18]. While promising, the results are inconsistent and
the methdology does not seem to generalize well. In the music
domain, authors in [34]–[36] leverage an audio degradation
toolbox that introduces perturbations to the original data. To
avoid domain-specific augmentation problems, additive noise is
proposed [37], in addition to interpolation and extrapolation in
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the feature space as a form of data augmentation before data
are fed into a classifier. In contrast to traditional augmentation
approaches, an end-to-end model that learns invariant transfor-
mations to apply to the original data is proposed [38]. Although
this resulted in minor classification improvement, their approach
was limited to low-frequency data (1 sample per hour).

III. EXPERIMENTAL METHODS

We are focused on a conditional GAN-based time-series
data augmentation methodology in an effort to improve the
performance of classification models. To achieve this purpose,
we have chosen and adapted three various conditional GAN
models that have had success in generating diverse images.
When training such models, we leveraged advice pertaining to
improving training stability and performance [39].

A. Encouraging Intraclass Diversity

The importance of generating sufficiently diverse class-
specific data motivated us to adapt a reward term introduced
in [28] by making it class-specific. Classes can be defined
arbitrarily and may depend on the dataset used. In the context
of this paper, for instance, the classes represent various disease
severity levels.

LDS = −Ec

[
Ez1,z2

[‖G(z2|c)−G(z1|c)‖
‖z2 − z1‖

]]
(1)

where the outer expectation is with respect to all classes, G
represents the generator network, and z1 and z2 represent any
two input noise vectors belonging to the same class c. Intuitively,
this term rewards the generator according to how sensitive it
is to a change in input. Extreme mode-collapse, for instance,
results in a sensitivity of zero because the same output would be
generated for two different noise inputs (G(z2|c) = G(z1|c)).
Thus a null reward value is returned. We incorporate this term
into our proposed CGAN models in the hope of encouraging
intraclass diversity.

B. Encouraging Interclass Diversity

1) Vanilla CGAN With Diversity Sensitivity: The “vanilla
CGAN” incorporates the conditional variable at any point within
the generator G and/or discriminator D network. We opted to
concatenate a one-hot encoding of the class of the PPG to the
input of the generator. Our generator was trained using a loss
function that consists of three terms; i) a Jensen-Shannon loss
LJS that penalizes the network for generating unrealistic syn-
thetic data x̂, ii) an auxiliary cross-entropy loss that penalizes the
network for generating data that cannot be correctly classified as
the ground truth k, and iii) our proposed class-specific diversity
sensitivity loss (1) that penalizes the network for not generating
synthetic data that is diverse.

LG = LJS − Ex̂∼Pg
[log(p(y = k|x̂))] + λdivLDS (2)

LJS = −Ex̂∼Pg
[log(D(x̂))] (3)

where Pg represents the distribution of synthetic data and λdiv

is a hyperparameter that determines the degree of diversity
sensitivity. Independently of the generator, the discriminator was

trained using a loss function that also consists of three terms; i) a
Wasserstein loss [40] that penalizes the network for classifying
the synthetic data as realistic and the real data as synthetic, ii) a
gradient penalty of zero [41] that was found to improve training
stability, and iii) an auxiliary cross-entropy loss that penalizes
the network for incorrectly classifying the real data.

LD = Ex̂∼Pg
[D(x̂)]− Ex∼Pr

[D(x)] + Ex̄

[‖∇x̄D(x̄)‖2]
−Ex∼Pr

[log(p(y = k|x))]
(4)

where Pr represents the distribution of the real data, ∇ repre-
sents the gradient operator and x̄ = αx+ (1− α)x̂ is a linear
combination of the real and synthetic data with α ∼ U(0, 1), as
suggested by the original authors.

2) DeLiGAN With Diversity Sensitivity: DeLiGAN [12] is
proposed to deal with diverse and limited data regimes. As part
of the generative model, the parameters of a Gaussian Mixture
Model are learned through training. We remove the variance
regularization term originally introduced and replace it with
the diversity sensitivity term mentioned earlier. Furthermore,
we revert to the traditional Jensen-Shannon loss term. Our
generator and discriminator loss are represented by (2) and (4),
respectively.

3) MADGAN: MADGAN [13] is proposed as a way to ex-
plicitly generate data from different classes. In order to do this,
as many generators as there are classes are introduced. Our
generator loss consists of a Jensen-Shannon loss term of the
form in (3) for each generator and is as follows:

LG = LJS1
+ LJS2

+ LJS3
(5)

The discriminator is tasked with identifying whether the data
is real or synthetic, and if it is the latter, to further identify the
generator from which it came. Our discriminator loss is the same
as that suggested in the original paper.

IV. EVALUATION METHODS

There are many ways to evaluate GANs as summarized
in [42]. Although we take inspiration from some of these tech-
niques, our focus does not lie here. Given our desire to quantify
the potential improvement in medical diagnosis offered by data
augmentation, we build upon the work introduced in [27] and
further propose a novel evaluation method.

A. GAN-Specific Evaluation

With time-series, in contrast to computer vision, assessing the
quality and representativeness of synthetic data is not straight-
forward. Moreover, a common pitfall of such networks is mode
collapse where the generator fails to produce diverse samples;
i.e., there exists a many-to-one or many-to-few mapping of
random variable z to synthetic image x̂. This is especially
problematic in the conditional GAN case where some diversity
is expected in the generated data. Thus, we evaluate our GANs
by measuring the following:

1) Representativeness of Synthetic Data: We use the kernel
maximum mean discrepancy (MMD) [43], a common evaluation
method for GANs that compares the similarity of synthetic data
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and real data. This similarity is quantified using a kernel function
K, and in our case, we use the exponentiated quadratic.

K(x, x′) = e−‖x−x′‖2 (6)

wherex andx′ are two vectors to be compared. If they are exactly
the same, then the kernel function evaluates to one. The more
dissimilar they are from one another, the smaller the value is,
which is lower-bounded by zero. Since the original MMD metric
fails to illustrate the more granular class-specific similarities, we
introduce MMDc; a conditional MMD metric that allows us to
compare class-specific performance across different GANs as
shown below

MMDc =
∑
i �=i′

Kii′ − 2
∑
i�=j

Kij +
∑
j �=j′

Kjj′ (7)

where K is a kernel function that measures the similarity
between its inputs, Kii′ = K(x̂c

i , x̂
c
i′), Kij = (x̂c

i , x
c
j), c is a

particular class, and x̂ and x represent the synthetic and original
data, respectively.

2) Class Diversity: Variation in the generated data within
and across the classes is important to detect, where the latter
helps evaluate the conditional component of the CGAN. Since
the MMD obscures this calculation, we explicitly calculate it
through exponentiated quadratic kernels.

B. Train on Synthetic and Real, Test on Real

We call the process of training on a dataset augmented with
synthetic data and testing on the real dataset “Train on Synthetic
and Real, Test on Real” (TSRTR). The outcome of this, when
compared to a baseline, “Train on Real and Test on Real”
(TRTR), allows us to see the effect of the data augmentation
policy, which could be negative as observed in [44]. We define a
data augmentation policy as a set of three parameters that dictate
how to augment the original data: i) choice of class to imbalance,
ii) degree of synthetic imbalance, and iii) ratio of synthetic to real
data. The complete list of policies can be found in Section-VII of
the Supplementary Material. Such an evaluation is performed
using leave N-patients-out cross validation on 10 diverse classifi-
cation models; Naive Bayes, Linear and Quadratic Discriminant
Analysis, k-Nearest Neighbours, Logistic Regression, Support
Vector Machines, Decision Tree, Random Forest, Adaboost, and
Multilayer Perceptron. Mathematically, for a certain augmenta-
tion policy and for all classification models M , we calculate the
percent change in a metric of interest.

%ΔM =
XTSRTR −XTRTR

XTRTR
· 100 (8)

where X can be any desired metric such as AUROC, and
XTSRTR and XTRTR represent the metric value on a validation
set when training on an augmented dataset and a non-augmented
dataset, respectively.

C. Synthetic Generalization Curve

The above evaluation method is limited and simply provides
us with the performance of an individual classification model for
a particular augmentation policy. To obtain a holistic evaluation

of all classification models for all augmentation policies, and
thus provide a more realistic evaluation of any GAN, we propose
the Synthetic Generalization Curve. Such a metric quantifies
the extent to which all classification models M are over-or
underperforming relative to a baseline. Mathematically, a point
on the curve, which we call the synthetic generalization (SG),
can be calculated as follows:

∀ε SG(X, ε) =
1

M

M∑
m=1

δ (XTSRTR ≥ (1− ε)XTRTR) (9)

where δ is the Kronecker delta function which evaluates to one if
its argument is true and zero otherwise. TheSG is performed for
a particular augmentation policy pi from the pool of policies P ,
and ε �= 1 dictates the comparison of the classification model in
the augmented scheme XTSRTR to the baseline (1− ε)XTRTR

and varies according to user needs. For instance, when ε < 0,
the SG represents the percentage of classification models in the
augmented scheme that outperform those in the baseline by at
least−ε · 100 percentage points. From this curve, a novel metric
naturally follows: the Area Under the Synthetic Generalization
Curve or AUSGC. This curve can be averaged over many aug-
mentation polices to allow for a more realistic comparison of
the performance of different types of GANs.

V. EXPERIMENTAL SETUP

A. Dataset Description

1) PPG From Patients in Vietnam With Hand-Foot-Mouth
Disease: The PPG data were collected using a pulse oximeter
(SmartCare Analytics Ltd., Oxford, UK) placed on the major
toe of HFM-afflicted children between the ages of 3 and 6. Such
data, sampled at a rate of 100 Hz, were collected from 74 patients
upon admission to the pediatric intesive care unit, 6 hours after
admission, and one day before discharge. Each data collection
period was approximately 10 minutes in duration. Typically,
HFMD severity is diagnosed based on medical criteria [45], [46].
For this dataset, diagnoses are performed by ICU physicians
independently of the PPG waveform and consist of 3 classes in
total.

2) PPG From Patients in Vietnam With Tetanus: The PPG
data were collected using a pulse oximeter (SmartCare Analytics
Ltd., Oxford, UK) placed on the index finger of tetanus-afflicted
adults. Such data were collected from 19 patients upon admis-
sion to the intesive care unit and one day before discharge. We
only use the data from the first day of ICU admission. Each
data collection period was approximately 24 hours in duration.
Typically, tetanus severity is diagnosed based on clinical features
outlined in the Ablett score [47]. For this dataset, diagnoses
are performed by ICU physicians independently of the PPG
waveform and consist of 3 classes in total.

3) PPG From Patients in China With Cardiovascular Dis-
ease: The PPG data introduced in [48] were collected via a
sensor used on CVD-afflicted patients between the ages of 21
and 86 and may be accessed in [49]. Such data, sampled at
a rate of 1KHz, are collected from 219 patients in a clinical
environment. Each patient has three data collection periods
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each of which is 2.1 s in duration. The 4-class diagnosis of
hypertension includes; normotension, prehypertension, stage I,
and stage II hypertension. In order to better compare results
across datasets and architectures, we keep the number of classes
consistent at 3 by combining the more similar data labelled
normotension and prehypertension together. We did this to keep
the network architecture consistent across datasets and because
the aforementioned two classes are on the lower end of the
severity of the medical condition.

4) PPG From Physionet 2015 Challenge: The PPG data
were the training data offered by the Physionet Challenge
2015 [50]. It consisted of recordings from 750 patients that
suffered either of the following cardiac conditions; asystole, ex-
treme bradycardia, extreme tachycardia, ventricular tachycardia,
and ventricular flutter. The data, originally resampled to 250 Hz
by the organizers of the challenge, were downsampled to 100 Hz
for consistency with our other datasets. In effort to enable a
fair comparison across datasets, we ensure that all tasks are a
3-way classification. Therefore, even though 5 cardiac classes
exist, we choose to only distinguish between asystole, extreme
bradycardia, and ventricular flutter.

B. PPG Data Representation

Medical conditions that are associated with autonomic ner-
vous system dysfunction and heart rate variability can manifest
themselves in the photoplethysmographic wave. A task force set
up in 1996 [51] decided that five minutes of ECG data would
be sufficient for a physician to discern such medical conditions.
However, due to the lack of sufficient data and to avoid the
curse of dimensionality [52], a shorter window was chosen to
allow for an increased number of frames. Consequently, the PPG
time-series data in this work is split into frames of t = 10 second
duration. Given a sampling rate of Fs, the length of each frame
in samples becomes Fs · t.

C. CGAN Model Data

The discriminator of each CGAN model was fed a PPG
frame of length Fs · t where Fs is 100 Hz and t is 5 seconds.
These 500-dimensional frames were then reshaped according
to the packing degree p used. Packing the frames consists of
simply concatenating several frames along the time dimension
and has been previously shown to improve the discriminator’s
performance [53]. We found that a packing degree of 3 helped
produce visually-realistic PPG data. A subset (20%) of the PPG
frames from each dataset was used for training the CGANs.

D. Classification Models Data

PPG data were split into 5-second frames with 50% overlap.
In other words, each frame was of length 500 and overlapped
with the latter 250 points from the previous frame. Guided by the
importance of the frequency components of the PPG signal, we
used as input to the classification models the log of the one-sided
power spectrum of the PPG frames. Therefore, the length of each
input becomes Fs/2, which in our case was 50.

TABLE I
DATASET-SPECIFIC CROSS-VALIDATION SUMMARY

TABLE II
NETWORK ARCHITECTURE COMMON TO ALL 3 CGAN MODELS

p represents the packing degree introduced in [53]. FC and Conv1d represent
Fully Connected and 1d Convolution operations, respectively.

E. Cross-Validation

For the evaluation of the classification models, we perform
leave-3-patients-out cross-validation. Even though frames were
split into 5-second segments and treated as independent from one
another, the training and test folds were always split according
to patients. This avoids patient-related data leakage. Moreover,
each test fold consisted of PPG frames from exactly one patient
from each of the three classes. Consequently, the total number of
folds was equivalent to the lowest number of patients belonging
to each class. In Table I, we outline the specific input data sizes
NxD for each of the medical diagnosis tasks, where N and D
represent the number of frames and dimensionality of the data,
respectively. We also illustrate the degree of imbalance in the
class labels.

F. Proposed CGAN Models Specification

We primarily use fully-connected layers for the generator
and discriminator for all of the CGAN models implemented.
The input to the generator is a 50-dimensional noise vector
sampled from a standard Gaussian distribution. To reduce the
noise present in the synthetic data, we add a 1D convolutional
layer which acts as a low-pass filter before the final output of
the generator, as described in [54]. We ultimately generate PPG
signals with 500 time-steps. The specific network architecture
can be found in Table II.

To make the discriminator more robust, we reshape batch
outputs of the generator according to the packing degree p
described in [53]. The DeLiGAN network consists of a random
variable with three Gaussian mixture model components, one
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Fig. 2. Randomly sampled class-specific real (HFM) and synthetic
PPG data generated by each of the CGAN models. Samples are 5 s
in duration. Note the ability of the CGANs to capture respiratory sinus
arrythmia-induced amplitude modulation.

for each class. After experimentation, we found that when the
mean vectors and covariance matrices were initialized randomly
and isotropically (σ = 0.3), respectively, training was stabilized.
Lastly, the MADGAN architecture has three generators with
the same structure as that in Table II. We note the presence of
two heads at the end of the discriminator; one for determining
whether the data sample is fake or real, and another for predict-
ing the appropriate class. Lastly, we choose λdiv = 1e− 6 as
that appeared to stabilize training. By varying λdiv, we briefly
illustrate its effect on the GAN evaluation metrics in Section-I
of the Supplemetary Material.

Sample outputs from each CGAN model are shown in Fig. 2
for the HFM dataset. Synthetic data for the remaining datasets
can be found in Section-II of the Supplementary Material. In
addition to the similarity in shape between the real and synthetic
data, we draw the reader’s attention to a more subtle charac-
teristic: amplitude modulation. Such low frequency changes in
the PPG amplitude are hypothesized to represent respiratory
sinus arrythmia [55], a naturally-experienced physiologial phe-
nomenon. In some cases, our CGANs are able to capture this
behaviour.

G. Baselines

The evaluation methods discussed earlier require a compari-
son to a baseline. Below is a description of the various baselines
used. In all cases, the same training used for TSRTR is used for
TRTR.

1) Class Imbalanced Original Data: We employ TRTR while
maintaining the original imbalance present in the dataset.

2) Class Balanced Original Data: We employ TRTR while
balancing the original imbalanced dataset. The balancing pro-
cedure is done by removing extra frames from the overpopulated
classes. Motivation for this arises from improved performance
due to a balanced dataset. Therefore, we report our augmentation
results relative to this stronger baseline.

3) SpecAugment: We implement the technique in [31]
which focuses on the augmentation of time-series by masking
randomly-chosen time and/or frequency bands in a spectrogram

representation. Whereas the original work stops here, we then
convert the spectrograms back into the time-domain using an
inverse short time Fourier transform.

H. Effect of Data Augmentation - Hypotheses

In effort to find the ideal augmentation policy and whether
that generalized across CGAN models and/or datasets, we for-
mulated four different hypotheses. The sample size and normal-
ity of the data (supported via a Shapiro test) associated with
such hypotheses motivated our use of the statistical t-test and
ANOVA. Nevertheless, for extra precaution, their corresponding
non-parametric statistical tests (Wilcoxon and Kruskal-Wallis)
were also performed.

1) CGAN Models: Without any prior knowledge, and given
that the current CGANs have not been implemented on time-
series data, there is no reason to believe one model should
outperform the other. Therefore, we hypothesize that the results
of the CGAN models will be similar.

2) Training Set Imbalance: Given the work in [1], class im-
balance is shown to degrade classifier performance. Therefore,
we hypothesize that balanced training sets will outperform their
unbalanced counterparts.

3) Ratio of Synthetic to Real Data: Deep learning models are
notorious for being data-hungry. Authors in [56], [57] illustrate
the importance of training set size on non-parametric and deep
learning models, respectively. However, a significant addition of
synthetic data may result in a plateau [8] or even a worsening
in performance [44]. While the first effect could be due to a
lack of sufficient diversity in the synthetic data, the latter is a
consequence of unrepresentative synthetic data. Therefore, we
hypothesize that performance will increase up to a certain ratio
of synthetic to real data.

4) Class-Specific Imbalance: There is no reason to believe
that introducing an imbalance to one of the classes should
outperform that introduced to any of the other classes. Therefore,
we hypothesize that the results will be similar regardless of
class-specific imbalance.

VI. RESULTS

A. Performance of Proposed CGANs

We quantify the representativeness of the synthetic data via
the MMD values in Table III, where a lower value implies that the
synthetic data is more realistic. An average is taken over 10 seeds
with each seed containing 30 (15) randomly sampled datapoints
from the appropriate distributions of the HFM (CVD) dataset.
Fewer samples are chosen for the CVD dataset due to the small
sample size in the original dataset. We also propose the use of
cMMD values in order to discern interclass differences. Such
a granular approach facilitates the identification of potential
causal relationships between network/hyperparameter changes
and representativeness of synthetic data. This can ultimately
guide researchers working with conditional GANs. When con-
sidering all classes, we can observe that MADGAN generates
data that most resembles the true underlying distribution for both
datasets. A closer look at the HFM cMMD values, however,
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TABLE III
AVERAGE MAXIMUM MEAN DISCREPANCY OF SYNTHETIC DATA

indicates that CGAN+DS is able to produce the most realistic
class 1 data. Conversely, DeLiGAN+DS appears to generate
the least realistic synthetic data as observed by its relatively
high cMMD and MMD values. We believe such a situation may
arise due to the over-powering effect of the constraints placed
on the DeLiGAN+DS network such as the diversity-sensitivity
loss. In other words, the network could have placed greater
emphasis on generating diverse classes compared to generating
realistic classes. We also compare the real and synthetic data by
visualizing them in a 2-dimensional t-SNE [58] subspace and
calculating the pairwise L2 distance between them. More details
can be found in Section-III of the Supplementary Material.

In addition to representativeness of the synthetic data, we must
ensure that the CGANs are not suffering from mode-collapse
i.e. data generated from each class must be sufficiently diverse.
This diversity is illustrated in Fig. 3 where the exponentiated
quadratic kernel is applied to 30 randomly sampled synthetic
datapoints from each class and model combination. For each
such combination, the resulting symmetric matrix is truncated to
only show its lower triangular region. Darker elements indicate
synthetic datapoints that are quite similar to one another; a po-
tential sign of class-specific mode-collapse. Conversely, lighter
values indicate datapoints that are dissimilar from one another.
Although this hints at the existence of intra-class diversity, it
could also be a sign that the synthetic datapoint should not even
belong to that class. This latter case would confuse classification
models and negatively impact their performance. The intraclass
similarity matrices belonging to the remaining datasets can be
found in Section-IV of the Supplementary Material.

We calculate an intra-class similarity score in Table IV by
taking the average of the off-diagonal elements of the 30 × 30
kernel matrices. Moreover, we mitigate the impact of a small
sample size by averaging this across 10 different sets of 30
randomly sampled synthetic datapoints. Since we are aiming
for high diversity, or equivalently low similarity, the lower
the value the better. Based on this intuition, we can observe
that CGAN+DS on the HFM dataset suffers the least from

Fig. 3. Lower triangular exponentiated quadratic kernel matrices rep-
resenting the intraclass similarity of 30 randomly sampled synthetic
datapoints generated by the three different CGANs (columns) for each
of the three classes of HFM (rows). Results are shown for one seed.

TABLE IV
AVERAGE INTRACLASS SIMILARITY OF SYNTHETIC DATA

mode-collapse when generating data from class 1. The poorer
diversity observed in class 3 implies that its generator became
more focused on the conditional component of the input than
on the random variable. It is worthwhile to note the correlation
of the results in Table III and Table IV. We observe that the
most diverse scenarios are the ones that correspond to the most
representative synthetic data. Such a finding supports the notion
that encouraging diversity can be advantageous.

B. Effect of Data Augmentation - Results

Augmentation Methods. GAN-based data augmentation can
improve classification performance relative to a balanced sub-
sampled baseline by up to 29% as illustrated in Fig. 4. The ab-
solute classification performance before and after augmentation
can be found in Section-VII of the Supplementary Material.

Firstly, we observe that the ranking of the three GAN-
based methods are consistent across the four datasets, with
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Fig. 4. Average best percent change in AUROC as a function of
the different augmentation methods used on each dataset. Error bars
represent one standard error.

CGAN+DS outperforming the others (p < 0.05). Such con-
sistency is promising and is indicative of the robustness of
these models. We explain the relatively poorer behaviour of
the remaining GANs by noting the potential limitations of
artificially inducing interclass diversity when originally present
to a minimal extent. Furthermore, for three of the four datasets
(HFM, Tetanus, and CVD), our GAN-based data augmentation
outperforms that of SpecAugment in a statistically significant
manner (p < 0.05). On the Physionet dataset, the difference
between the SpecAugment and CGAN+DS results are not sta-
tistically significant. We attribute the strong performance of the
GANs to their ability to generate representative and sufficiently
diverse synthetic data. When performance is relatively worse
than SpecAugment, as in the case of Physionet, we attribute this
to the high degree of noise present within the dataset and also
to the inability of the GANs to generate realistic datapoints (see
Section-II of Supplementary Material). Lastly, the CGAN+DS
and MADGAN appear to produce more consistent outcomes
across datasets. This increased reliability may be a positive trait
among practitioners.

Training Set Imbalance. For all datasets except Physionet,
we were somewhat surprised to observe that there is no sig-
nificant difference in the results generated by balanced and
unbalanced training sets. This could be explained by certain
synthetic classes being less diverse and informative than others,
a finding supported by the intraclass diversity plots. Therefore,
more samples from only that class would be needed to improve
performance.

Ratio of Synthetic to Real Data. After performing an
ANOVA and a Kruskal-Wallis test, we observe that there is
no significant difference between the results generated by a
variety of synthetic to real data ratios. This implies that the
utility of the synthetic data is limited, at least for the range of
ratios chosen. The improvement in classification performance,
however, indicates that only a small amount of synthetic data can
have a strong positive impact. Such a finding was most prominent
for the Physionet dataset.

Class Imbalance. On the HFM dataset, we observe that the
classification improvement caused by introducing an imbalance
in class 1 significantly outperforms (p < 0.05) that when im-
balances are introduced in other classes. Anticipating such a
potential outcome, based on work in [59], the CGANs were

Fig. 5. Synthetic generalization curve averaged across all 54 augmen-
tation policies for each augmentation method when tested on the CVD
dataset. Shaded area represents one standard deviation from the mean.

TABLE V
AUSGC AVERAGED ACROSS ALL 54 AUGMENTATION POLICIES

trained with a balanced dataset to avoid class favouritism. Nev-
ertheless, this effect is still observed and can be partly explained
by the relatively strong class 1 cMMD values relative to the
others as seen in Table III. This phenomenon, however, is not
observed with the other datasets. The figures associated with
the aforementioned hypotheses can be found in Section-V of
the Supplementary Material.

Data augmentation, although sometimes beneficial, can also
be detrimental. To better understand the potential improvement
and worsening of classification due to data augmentation, we
illustrate our novel synthetic generalization curve in Fig. 5.
Analagous to an ROC curve, the higher it is, the stronger the
outcome. Moreover, increased mass when ε < 0 is indicative of
classification improvement relative to the chosen baseline. For
instance, the black dot indicates that when using MADGAN to
augment the dataset, 40% of the classification models on average
perform equivalent to or better than 1.10 of the baseline perfor-
mance. We also observe that all methods are upper-bounded by
the MADGAN method, indicating the latter’s superiority. The
synthetic generalization curves for the remaining datasets can
be found in Section-VI of the Supplementary Material.

Building on the analogy to the ROC, we introduce the AUSGC
values in Table V. Given the range of values chosen for epsilon,
the closer the AUSGC is to 1, the better the conditional GAN is
in improving classification. Moreover, the smaller the standard
deviation, the more consistent the conitional GAN is across the
chosen augmentation policies. In other words, it is not producing
highly varying behaviour. Ultimately, no statistical difference
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was found between the AUSGC values of the various augmen-
tation methods. Nonetheless, we would like to emphasize that
although we have used AUROC as the comparative performance
metric in (9), this curve is inherently metric agnostic; i.e., one can
use any performance metric. This allows researchers to choose
their metric of interest based on the task at hand.

VII. CONCLUSION

Challenges posed by insufficient medical time-series data
which are class-imbalanced can limit the potential of clinical
decision support algorithms. To overcome such challenges, we
modify and compare various conditional generative adversarial
networks in their ability to synthesize pathological photoplethys-
mogram data. If researchers are solely aiming to generate the
most realistic PPG data, then we recommend the DeLiGAN+DS
and MADGAN methods in light of the relatively lower maxi-
mum mean discrepancy and L2 distance values. If, however,
researchers are also aiming to boost the performance of their
classification task, then we recommend CGAN+DS. Using this
method, we show a statistically significant improvement of the
AUROC by up to 29%.

For researchers working with time-series in low-data regimes,
our proposed models offer them an opportunity to expand their
dataset and improve their classification performance. Unfortu-
nately, in pursuit of rules of thumb for augmentation policies,
we were unable to find significant patterns. Future work would
involve the evaluation of such augmentation methods on more
complex neural networks and the simultaneous generation of
different pathological medical time-series data. Also, the merger
of generative modelling with self-supervised learning can be
leveraged to obtain clinically acceptable classification perfor-
mance.
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