
MTPSA: Multi-Tenant Programmable Switches
Radostin Stoyanov
University of Cambridge
radostin@stoyanov.io

Noa Zilberman
University of Oxford

noa.zilberman@eng.ox.ac.uk

ABSTRACT
Virtualized multi-tenant programmable switches enable on-demand
support of different users’ protocols and programs. However, sup-
porting multiple tenants on a virtualized switch raises concerns
such as resource isolation and security. Truly isolating users is
mandatory for virtualized programmable switches to be deployed
in production networks. In this paper we propose MTPSA, a Multi
Tenant Portable Switch Architecture. MTPSA offers performance,
resource and security isolation. It further introduces roles and priv-
ileges within programmable switches. MTPSA is an open-source
contribution, implemented over PSA and NetFPGA. Our evalu-
ation shows that it adds minimal overheads, supports line-rate
throughput, and scales with the number of users, while providing
an isolation of users.

1 INTRODUCTION
Over the last decade, programmable network devices have emerged
as a promising alternative to traditional fixed function switches
and network interface cards (NICs). Programmable data planes
(PDP) allow network operators to define custom packet forwarding
policies, typically using a high-level, domain-specific programming
language, such as P4 [2].

PDPs not only enable network operators to use protocols of
choice, but also to offload functions that traditionally run on servers
to the network [15]. Offloading functions to the network saves CPU
cycles for user applications and benefits from the high performance
of network devices. However, supporting more than one user func-
tion per PDP requires appropriate virtualization mechanisms [6].

Virtualization is widely adopted in cloud environments, increas-
ing the utilization of resources and reducing operating costs. In
the context of programmable network devices, PDP virtualization
allows a single physical data plane to logically support multiple
networking contexts, where the packet processing of each context
can be defined independently by a (P4) program.

Multiple previous works have considered the virtualization of
PDP [6], focusing on the challenge of merging P4 programs into a
single PDP configuration [3, 13, 16, 21], and on designing a special-
purpose P4 program (hypervisor) to serve as platform that supports
multiple P4 programs [7, 20]. These solutions, however, do not
provide sufficient virtualization capabilities. The critical elements
in virtualization are i) secure execution of user programs [7], so
one user cannot observe data used by another’s program; ii) limited
temporal interference (performance isolation) among users [6],
despite them running on the same physical data plane; iii) resource
isolation [16], where each user has allocated set of resources.

Multi-Tenant Portable Switch Architecture (MTPSA) provides a
solution to these virtualization concerns, by introducing a multi-
tenant architecture that compartmentalizes user programs to pro-
vide isolation. By applying operating-system level roles and priv-
ileges concepts to the PDP, MTPSA enables secure execution of
users programs.

To support the virtualization of PDP, we make the following
contributions:

• We propose mechanisms for security, resource, and perfor-
mance isolation of user P4 programs.

• We introduce a new architecture, MTPSA, supporting multi-
ple isolated tenants over PSA.

• We present an implementation and evaluation of MTPSA on
hardware and software targets.

MTPSA is open-source and all the code is available at [14].

2 PDP VIRTUALIZATION
Ordinarily, the PDP of a network device represents a single network
context that can be programmed, for example, using P4 [2]. A P4
program specifies a collection of protocol headers to be parsed,
and match conditions with actions to process parsed headers. To
maximize resource utilization and minimize total cost of ownership,
data centers networks are often shared by many organizations
and users, despite having potentially different packet forwarding,
bandwidth and security requirements.

A virtualized PDP allows deploying multiple programs on a sin-
gle network device. Each program operates in an isolated network
context. Operations performed in one context are not affected by
actions carried out in other contexts. This technique enables simul-
taneous deployment of multiple forwarding policies, for example,
to isolate sets of users or equipment (e.g., public vs. private), and
where each networking context can support unique protocol types
and functionality. Additionally, PDP virtualization allows quick
transitions between network configurations by storing multiple
configurations, while a single configuration is active at a time.

3 DATA PLANE ISOLATION
Isolation of user programs in the PDP may refer to different aspects.
In this section, we define three different types of data plane isolation,
and discuss their usage.
Resource Isolation Resource isolation is a common form of user
programs isolation [6, 16]. It means that some resources or state
in the PDP, such as tables (or table entries), registers or externs,
are dedicated to a specific program. These dedicated resources are
not shared with other programs from the control plane perspective.
For example, table x is dedicated to program A, while table y is
dedicated to program B.

1



Radostin Stoyanov and Noa Zilberman

Performance Isolation Performance isolation of user programs
means that the execution of one program does not affect the per-
formance of another. For example, if program A achieves certain
throughputwhen running alone, it should achieve the same through-
put also when program B is running, given a similar resource allo-
cation.
Security Isolation Security isolation of user programs refers to
aspects of isolation, predominantly access, for security purposes.
An example is preventing packets controlled by program A from
accessing data stored by program B. While Resource Isolation refers
to the assignment of resources, Security Isolation refers to the access
to resources (§4).

3.1 Isolation for Security
Most of PDP virtualization efforts to date have focused on re-
source [13, 21] or performance [12] isolation. In this work, we
focus on isolation mechanisms for security purposes. In particular,
how can we prevent malicious actors from accessing or interfering
with other users’ programs?

Often security isolation in a PDP requires enforcing a set of
policies for traffic filtering before and after a packet is provided to
a user program. For instance, access control list (ACL) rules can
be used to limit the ingress ports a user’s program is allowed to
receive packets from, and restrict the egress ports it is allowed to
send traffic on.

Attacks on PDP can vary significantly [4]. For example, a ma-
licious user can create a Denial-of-Service attack by cloning and
recirculating packets infinitely. This attack vector can be mitigated
by limiting the number of clone and/or recirculate operations per
packet.

Another security concern is preventing users from obtaining
information from packets processed by other user programs. For
example, the BMv2 framework employs an optimization technique
that allows to “recycle” packet header vector (PHV) objects, an
approach taken due to the high performance costs of memory
allocation and deallocation. Such optimizations, when used with
PDP virtualization, should isolate the PHV pool of each user, i.e.,
similar to the way Linux namespaces are used with containers.

4 ROLES AND PRIVILEGES
To support the isolation of user programs in the pipeline, we intro-
duce concepts from the operating system world to the data plane,
and in particular Roles and Privileges.

In operating systems a Superuser account, often called root or
administrator, is used for system administration, and has full privi-
leges with no access restrictions. Similarly, we define in the PDP a
Superuser as a user that has access to everything running within
the network device, and with permissions to run any available
operation. The Superuser will typically be the network administra-
tor. Non-Superusers are referred to as Users. With PDP executing
programs originating from multitude of sources, it is imperative
to distinguish between these two types of users and control the
capabilities of Users’ programs.

Each User is assigned permissions to execute operations within
the PDP. These permissions, dictate aspects such as accessibility

to tables and externs, which packets can be observed, and which
operations are limited or forbidden (e.g., recirculation, mirroring).

In practical scenarios, a multi-tenant networking environment
requires isolationmechanisms that provide a holistic security model
- confidentiality (prevents unauthorized access and misuse of data),
integrity (protect data fromunauthorized alteration) and availability
(timely and uninterrupted access of authorized users) [11].

Unlike operating systems, where users are directly assigned
privileges to execute actions, here the privileges are associated with
the packets going through the pipeline. A packet going through
the pipeline, and its metadata, will “pass” only through authorized
programs, and will be allowed only an assigned set of operations.

Consider an example where programs E and A are consecutive,
and where program E is malicious. Program A implements a con-
gestion control mechanism by looking at queue occupancy, where
queue size is carried over a metadata bus. Malicious actions by
program E may include, for example, always setting to 0 (or max-
imum) the queue size on the metadata bus, leading to incorrect
congestion control byA. This act can be prevented if E doesn’t have
the privilege to change the queue size metadata field. A malicious E
can also change header information, such as priority (in an attempt
to drop a packet), an action that can be prevented by revoking the
privilege to change certain header fields.

There are multiple types of entities and actions that require
privileges. The first type is headers, where one privilege is required
to read a header, and another to modify it. Similarly, metadata
fields also require separate read and modify privileges. Memory
requires separate read and modify privileges, however where tables
are modified through the control plane, a new type of privilege is
added - execution. A program may be allowed or forbidden certain
execution rights for actions, such as on mirroring, recirculation,
control-plane notifications and others.

5 ARCHITECTURE OF MTPSA
MTPSA,Multi Tenant Portable SwitchArchitecture, extends PSA [10]
to support multiple programs within the same network device,
while providing security, performance and resource isolation, as
well as on-the-fly reconfigurability. A key concept of MTPSA is
utilizing a Superuser P4 program that defines the pre- and post-
processing of packets, while supporting multiple User P4 programs
that specify the core packet processing logic.

Figure 1 illustrates the data plane architecture of MTPSA. Similar
to PSA, MTPSA has an ingress pipeline and an egress pipeline.
These two pipelines are the Superuser program. User programs are
represented as user pipelines within the architecture, with all user
pipelines sharing the same Superuser ingress and egress pipelines.

5.1 Superuser Pipeline
The Superuser P4 pipeline, programmed and controlled by the
device’s administrator, acts as a the hypervisor of the network
device. The Superuser pipeline has multiple roles, including:

• Packet pre-processing (Ingress).
• Packet post-processing (Egress).
• Associating incoming packets with a user identifier.
• Role and privileges assignment.
• Metadata assignment.

2



MTPSA: Multi-Tenant Programmable Switches

Memory ALU
start

Match-Action 
Stage

Ingress Match-Action Pipeline Egress 
DeparserIngress Parser

Superuser Header Vector
Superuser metadata

Ingress 
Deparser

Packet Buffer 
& Replication 

Engine
Egress 
Parser

Egress
Match-Action 

Pipeline

Buffer 
Queuing 
EngineUser Pipeline

User Header Vector
User metadata

Packet data
Frame data

Figure 1: The Architecture of MTPSA

MTPSA supports both ingress and egress Superuser pipelines, simi-
lar to PSA’s architecture.

Packet pre-processing is used for the assignment of packets to
contexts (user programs). Any incoming packet is associated with
a user identifier which may vary, e.g., based on ingress port, 5-
tuple, etc. The data required for the assignment is extracted as part
of the pre-processing, and is included in the output metadata of
the ingress Superuser pipeline. In addition, the ingress Superuser
pipeline might provide other packet pre-processing services, such
as access control lists, or handling encapsulation headers (e.g., outer
IP/UDP/VxLAN) in a manner transparent to a user program. This
approach enables adding user ID and other information to a packet
for multi-stage processing by other devices within the network.
The Superuser egress pipeline allows encapsulation headers to be
removed before a packet is sent to a destination host (e.g., user’s
host or VM).

5.2 User Pipeline
User programs are compiled as configuration contexts to user
pipelines. These pipelines can be either physical (§ 6) or virtual (§ 8).
MTPSA modularizes the PDP pipeline, allowing user programs to
be compiled and tested independently. The MTPSA-user pipeline
architecture, similar to the P4→NetFPGA SimpleSumeSwitch archi-
tecture [8], consists of a parser, a pipeline of match-action tables,
and a deparser. In the current implementation (§ 6) the user pipeline
is called after the Superuser egress parser. While a user program is
basically no different to standard P4 programs, MTPSA guarantees
that a user program i) can observe and operate only on its own
packets and ii) the resulting actions on packets will match the con-
text’s privileges. For example, the privileges can restrict the number
of circulations of a packet, or the allowed increase of header size
(e.g., turning 64B packets to 256B packets).

5.3 Execution Model
Consider a network operator providing virtualization services to
users. The operator uses traffic encapsulation to control the traffic
and route packets through the networks, but users can observe only
their decapsulated traffic at the edges of the network. Similarly, if
users want to run their traffic through specific data-plane programs,
these programs should observe only the decapsulated traffic be-
longing to the specific users. Users should not have visibility to the

way the network is managed, meaning encapsulated traffic or other
users’ traffic.

In MTPSA, the network operator provides processing resources
on the switch as a service. Traffic from a user’s virtual machine (VM)
is encapsulated (using VxLAN headers) and forwarded within the
operator’s network to the switch. In the switch, the user’s program
is identified by the VxLAN header, and the packet is decapsulated.
The user’s programs observes the packet as it was sent from the
user’s VM, and is processed according to the user’s program.

This scenario accounts for some of the design decisions inMTPSA.
First, security isolation, as all encapsulated traffic is handled only in
the Superuser pipeline, and user programs are exposed only to their
own traffic, and not to Superuser or other users’ traffic. Second, per-
formance isolation, as the separation of user programs means that
packets through one user’s program do not interfere with traffic
through other users programs. Furthermore, the Superuser pipeline
protects against malicious use outside a program (e.g., blocking re-
circulation). Last, MTPSA provides resource isolation, as users can
only access resources, such as tables, assigned to them, and can not
take advantage of other resources. Typically, users will be stopped
from exceeding allocated resources in the compilation stage, and
stopped from accessing other resources during execution.

6 IMPLEMENTATION
We implement MTPSA over two existing targets: PSA [10] over
BMv2 as a software target, and P4→NetFPGA [8] as a hardware
target. Our implementation is open-source and available at [14]. In
this section, we discuss the implementation details of our proof-of-
concept, but note that MTPSA can be extended and adapted beyond
our local design choices.

Each MTPSA target supports switch configuration contexts that
enable multiple P4 user programs to be loaded on a single device,
and to assign at run-time packets to user programs. Switch contexts
are parallel pipelines that can be configured independently. Thus,
a packet will not be sequentially processed by two user programs
(performance isolation).

Each user context (shown in Figure 2) has a unique identifier
(user_id). A control context with user_id value of 0 is used to handle
packets that are not associated with any user program. For exam-
ple, when no user programs have been loaded or an unexpected
packet has been received. The Superuser program can specify, in the
ingress pipeline using the standard metadata bus, a user_id value

3



Radostin Stoyanov and Noa Zilberman

indicating a user program to process the packet. The user_id meta-
data field is initialized to the value of 0, therefore, if not explicitly
assigned, the packet is handled by the control context.

In addition, each context, in the BMv2 MTPSA target, has a pool
of PHV objects. Using this method, the switch target can reuse PHV
objects in compliance with the security isolation requirement.
Superuser Program The Superuser P4 program implements both
ingress and egress pipelines. The ingress parser extracts header
data specified by the network administrator, and assigns the user
identifier as well as roles and privileges. MTPSA’s Superuser ingress
pipeline supports adding packet encapsulation headers (e.g., Geneve,
VxLAN, GRE, VLAN, etc.) that include the user ID and additional
information, making it available to other devices in the network.
This is used to evaluate MTPSA within a virtualized network of
multiple devices (§7.2).

There are two major differences between MTPSA Superuser
pipelines implemented over PSA and NetFPGA. On PSA, the Supe-
ruser egress parser is applied prior to the user pipeline and allows
to extract packet headers (e.g., VxLAN) specified by the network
administrator, making them inaccessible to user programs. Thus,
when using VxLAN instead of VLAN, user programs can process
arbitrary packet headers, including Ethernet, while the Superuser
pipeline can apply encapsulation the packet in a manner transpar-
ent to the user programs.

On the NetFPGA platform, as a property of SDNet, the Superuser
pipelines are implemented as two stand-alone P4 programs. In
contrast to the implementation over PSA, the Superuser egress
parser is applied after the user pipeline, as the pipeline can not be
split and the SDNet compiler is closed source (§6.1).
User Programs User P4 programs include an architecture descrip-
tion file (mtpsa_user.p4) that defines the data types and constants
available to a program in the user pipeline. All user programs are
implemented, compiled, and tested independent from one another,
and from the Superuser program. The decoupling of user programs
enables users to apply changes to their pipeline without affecting
other users. This method of abstraction enables network admin-
istrators to independently deploy in-network user applications
and better control the flow of packets in the network. The soft-
ware switch implementation supports loading user programs either
when the target is initialized, or at run-time. On NetFPGA, user
programs can currently be loaded only during initialization.
Runtime ControlWhen an MTPSA switch is up and running, a
network administrator is able to control its behavior from a control
plane. To this end, the control plane uses an auto-generated Thrift
APIs to carry out system and user requests. The MTPSA BMv2
target allows a network operator to select the switch context to
which a user program should be loaded, or apply other operations
such as updating table entries within specific contexts.

6.1 MTPSA Compiler
P4C16 reference compiler does not naturally support MTPSA. We
have extended the compiler to support MTPSA by introducing a
compiler back-end, mtpsa_switch, and two standard files: mtpsa.p4 -
utilized by a Superuser program; and mtpsa_user.p4 used with User
programs.

Ingress Parser

Ingress RMT 

Ingress Deparser

Egress Parser

User
P4 program

Parser

RMT

Parser

RMT

Parser

RMT

Deparser Deparser Deparser

Egress RMT

Packet buffer & Replication engine
(Superuser) 

VxLAN
decapsulation

Buffer Queuing Engine

Egress Deparser

...

(Superuser)
● VxLAN encapsulation
● Quality of service
● Congestion control

Figure 2: Block diagram of the MTPSA P4 architecture.

The compiler consists of a single executable p4c-bm2-mtpsa. It
enables independent compiling of P4 programs either to a user
pipeline or to the Superuser pipeline, using an additional --user
command-line option, which enables user mode.

Assigning user identifier and permissions to user pipelines do
not require changes to the compiler or target. They are embed-
ded in the control metadata bus, and the associated policy (e.g.,
disable access) is defined with the Superuser P4 program. In partic-
ular, the Superuser ingress output metadata includes user_id and
user_permissions fields that instruct the target which user program
to apply and its execution permissions.

The NetFPGA implementation does not require changes to the
P4SDnet compiler. The Superuser pipeline is defined as two P4
programs – suIngress and suEgress, with 128-bits width TUSER
bus, from which the first 40-bits are accessible in user pipelines.

7 EVALUATION
7.1 Experimental Setup
The functional evaluation of MTPSA is conducted both on the
software and on the hardware targets. For the software target,
MTPSA is compatible with the latest P4C and behavioral model
codebase 1. Mininet 2.3.0d6 is used for emulation, running on 4-core
Intel i5-4200U, over Fedora Linux 5.6.11-200.fc31.x86_64. MTPSA is
evaluated both as a stand alone switch, and within a network with
eight nodes and three MTPSA switches (two leaf switches and one
spine switch).

The hardware implementation of MTPSA architecture is eval-
uated on the NetFPGA SUME platform [22] using Xilinx Vivado
2018.2 and SDNet 2018.2, running on Ubuntu 16.04. OSNT, an open-
source network tester, [1] is used for traffic generation and capture.
OSNT is connected to the MTPSA device using 4 × 10Gbps links.
Latency and throughput are evaluated using a range of packet sizes,

1As of September 8th, 2020

4



MTPSA: Multi-Tenant Programmable Switches

Ref. Switch MTPSA0 MTPSA2 MTPSA3 MTPSA4 MTPSA8
Logic Util. 29.04% 39.04% 53.89% 60.08% 67.78% 86.51%

Memory Util. 32.69% 40.34% 52.93% 59.22% 65.51% 83.33%
Throughput 40Gbps 40Gbps 40Gbps 40Gbps 40Gbps 40Gbps
Latency (64B) 1.7µs 2.52µs 3.23µs 3.24µs 3.24µs 3.33µs

Table 1: Resource utilization and performance of Reference Learning Switch and MTPSA on P4→NetFPGA. MTPSAN repre-
sents an MTPSA switch running N user programs.

from 64B to 1518B. NetFPGA is a store and forward device, therefore
latency increases with packet size.

Several programs are used in the evaluation. Reference Switch is
the reference learning switch project of P4→NetFP-GA [8].MTPSA0
is an MTPSA pipeline implementation with no user programs. This
simplified version of MTPSA is similar to the PSA architecture. It
consists of ingress and egress pipelines.MTPSA2,3,4 are MTPSA im-
plementations with two, three and four user programs, respectively.
TCP port number is used for user_id assignment. For resource eval-
uation, user programs implement layer 2 forwarding, and Superuser
ingress and egress pipelines implement the same packet processing.
This allows a proper overheads comparison. More programs are
discussed as part of the functional evaluation.

7.2 Evaluation Results
Our evaluation spans a functional evaluation, resource consumption
and performance. Our goal is to demonstrate that MTPSA is feasible
and scalable, while not degrading performance. Our results are
summarized in Table 1.
FunctionalityWe implement a range of Superuser and user pro-
grams to evaluate MTPSA. The Superuser pipeline typically sup-
ports Ethernet, IPv4 and IPv6, TCP, UDP and ICMP headers. In two
more examples, exploring a multi-switch topology, the Superuser
pipeline encapsulates incoming packets with VxLAN or with VLAN
headers that include the user ID. User programs include forwarding
with different rules, as used in the performance evaluation, layer 4
load balancing, and others.

We validate our claims for isolation of users, e.g., packets of one
user program cannot access other program’s resources, and packets
with invalid user_id are dropped. We use externs as an example
for using privileges, where one user program is allowed to access
a counter extern, while a second program has no permission, and
verify that this is enforced.

We explore adding ’max_recirculations’ and ’max_resubmissions’
fields to PSA’s standard metadata or as user-defined metadata,
which is currently not supported2. These metadata fields can be
used to prevent denial-of-service attacks by malicious user pro-
grams, limiting the amplification effect of each context.
Resource Overhead We focus on the NetFPGA implementation
for our resource overhead evaluation. MTPSA has an obvious re-
source overhead, as due to the nature of the SDNet compiler the
Superuser pipelines and user contexts need to be implemented as
independent modules. This may not always be the case (§8). We find
that each Superuser program and user context take approximately
4% logic resources and 6% memory resources. This indicates the
2In the current implementation of PSA user-defined metadata is not preserved when
recirculating or resubmitting packets, which is an implementation decision not part of
the PSA specification.

scalability of the solution, and inMTPSA8 ten pipelines are imple-
mented. Complex programs can obviously require more resources,
as with any P4 program.
Latency As the results show, while the basic latency of MTPSA is
higher than the reference switch, due to the additional Hypervisor
layer - the Superuser program, as the number of user programs
increases from two to eight, the latency almost does not change.
Latency that is independent of the number of contexts is one of the
benefits of MTPSA compared with some previous works [21].
Throughput MTPSA supports a full line rate across a range of
packet sizes, for both TCP and UDP. We evaluate, as measured by
sending a billion packets from each port simultaneously, with both
equal and different share of traffic to each context. For example,
we measure 40Gbps throughput3 with 10Gbps going through each
of MTPSA4 four contexts, as well as with 20Gbps through two
contexts and 40Gbps through a single context.

8 DISCUSSION
Feasibility Our implementations over PSA and NetFPGA show
that MTPSA is not only feasible, but can also be used within exist-
ing environments using common infrastructure, without requiring
bespoke new solutions. These implementations are contributed to
the P4 community.
Software vs Hardware Targets MTPSA originates from PSA,
which currently has a software implementation. As such, some
of the design decisions are more appropriate for software than
hardware, such as being able to easily increase the number of user
pipelines. Our implementation of MTPSA on NetFPGA shows the
applicability of the approach to hardware targets. However, differ-
ent hardware targets will require different design decisions, as was
the case with PISA-based [2] implementations.
Applications Our implementation enables any P4 program that
runs on a single pipeline to run withinMTPSA. This includes, for ex-
ample, any P4 program prototyped on NetFPGA (e.g., [15, 17, 19]).
MTPSA prototypes use buffer queuing engine at the end of the
pipeline, allowing to place user programs in the egress pipeline
without restricting certain types of packet modifications (e.g., out-
put port change). Programs that benefit from the combination of
ingress and egress pipelines, or from a packet buffer and replication
engine between pipelines, e.g., for multicast or traffic management
(e.g., [9]), are less suitable. Since user packets going through a
shared memory create additional security risks, MTPSA’s model
mitigates such concerns.
Multi-core targets The prototype implementations of MTPSA are
based on a single-core (pipe) target model. Some targets, such as

3For TCP traffic of 64B-128B, MTPSA currently achieves 98.46%-99.96% throughput,
due to a known bug.

5



Radostin Stoyanov and Noa Zilberman

Tofino [5], use multiple parallel cores, with shared memory used
as switching fabric. Consequently, such targets may implement
user-pipelines in the ingress pipeline in addition or instead of the
egress pipeline. Such an implementation would still require pre-
processing in the Superuser ingress pipeline before the user pipeline.
Supporting user pipelines only at the Egress of multi-core targets
means that some routing decisions, such as the assignment to an
egress core, need to be taken in the Ingress pipeline by the Superuser
program.
Virtual pipelinesWhileMTPSA’s user pipelineswere implemented
using “physical” pipelines, due to the nature of the PSA and SDNet
compilers, it is also possible to implement “virtual” pipelines. In
devices that support simultaneous lookups in each stage [5], the
assigned privileges and user identifier can be used to force packet
processing only within a user program’s assigned resources. The
support of such virtual pipelines is future work.

9 RELATEDWORK
The virtualization of PDP has been explored by several previous
works. P4Visor [21] and P4Bricks [13] merge multiple P4 programs
at source level into a single program, focusing on front-end compiler
optimization to maximize the shared resources between different
P4 programs, and don’t focus on isolation.

HyPer4 [7] and HyperVDP[20] virtualize the data plane by run-
ning a P4 program emulating the behavior of multiple P4 programs
through packet resubmission and recirculation. However, these ap-
proaches require significantly more hardware resources compared
to native P4 programs.

Dejavu [18] has a similar programming model that leverages
recirculation to connect several network functions in a single switch
pipeline. It generates a single multi-pipeline P4 program that can
be compiled and loaded onto the physical pipelines. In contrast,
MTPSA enables user and Superuser programs to be developed,
compiled and configured on a switch independently.

Wang et al. [16] focused on resource efficiency and isolation in
terms of access control as the main requirements for multi-tenancy.
Their solution does not attend to security isolation, and lacks the
concept of roles. User programs are merged into a single program,
thus exposed to more performance and security vulnerabilities. Un-
like MTPSA, in [16] recirculation is completely forbidden, therefore
attending to one potential weakness, but also blocking a required
functionality.

The most closely related work is P4VBox [12], which explores a
conceptual hardware architecture for P4-based switches support
virtualization. P4VBox is limited to FPGA hardware and processing
packets with VLAN (802.1Q) tags to associate frames with virtual
switch instances. Our solution is general, allowing beyond resource
and performance isolation also security isolation, through the Su-
peruser P4 program and user privileges. MTPSA enables any policy
or rule specified by a network operator, and supports both software
and hardware targets.

10 CONCLUSION
In this paper we have introduced MTPSA, a multi-tenant architec-
ture for Portable Switch Architecture. MTPSA supports resource,

performance and security isolation of user programs, enabling net-
work administrators better control over user applications. Our im-
plementation ofMTPSA over the PSA compiler andNetFPGA shows
that the solution is not only feasible, but also scalable with minimal
effect on resource and performance.

MTPSA is open-source and available at [14].

REFERENCES
[1] G. Antichi et al. 2014. OSNT: open source network tester. IEEE Network 28, 5

(2014), 6–12.
[2] P. Bosshart et al. 2014. P4: Programming protocol-independent packet processors.

ACM SIGCOMM CCR 44, 3 (2014), 87–95.
[3] X. Chen et al. 2019. P4SC: Towards High-Performance Service Function Chain

Implementation on the P4-Capable Device. In 2019 IFIP/IEEE IM.
[4] M. H. Dumitru et al. 2020. Can we exploit buggy P4 programs?. In SoSR. 62–68.
[5] V. Gurevich. 2017. Barefoot Networks, Programmable Data Plane at Terabit

Speeds. In P4 Developer Day.
[6] S. Han et al. 2020. Virtualization in Programmable Data Plane: A Survey and

Open Challenges. IEEE OJ-COMS (2020).
[7] D. Hancock et al. 2016. HyPer4: Using P4 to virtualize the programmable data

plane. In ACM CoNEXT. 35–49.
[8] S. Ibanez et al. 2019. The P4-> NetFPGA workflow for line-rate packet processing.

In ACM/SIGDA FPGA. 1–9.
[9] R. Kundel et al. 2018. P4-CoDel: Active queue management in programmable

data planes. In NFV-SDN. 1–4.
[10] P4 Language Consortium. 2018. P4_16 Portable SwitchArchitecture (PSA). (2018).
[11] R. Ross et al. 2019. Developing Cyber Resilient Systems: A Systems Security Engi-

neering Approach. Technical Report. NIST.
[12] M. Saquetti et al. 2019. P4VBox: Enabling P4-based switch virtualization. IEEE

Communications Letters 24, 1 (2019), 146–149.
[13] H. Soni et al. 2018. P4Bricks: Enabling multiprocessing using Linker-based

network data plane architecture. (2018).
[14] R. Stoyanov et al. 2020. Multi-Tenant Portable Switch Architecture, Repository.

https://github.com/mtpsa.
[15] Y. Tokusashi et al. 2019. The Case For In-Network Computing On Demand

(EuroSys ’19). Article 21, 16 pages.
[16] T. Wang et al. 2020. Multitenancy for Fast and Programmable Networks in the

Cloud. In USENIX HotCloud.
[17] J. Woodruff et al. 2019. P4DNS: In-Network DNS. In EuroP4. 1–6.
[18] D. Wu et al. 2019. Accelerated Service Chaining on a Single Switch ASIC. In

HotNets. 141–149.
[19] Z. Xiong et al. 2019. Do Switches Dream of Machine Learning? Toward In-

Network Classification. In HotNets. 25–33.
[20] C. Zhang et al. 2019. HyperVDP: High-performance virtualization of the pro-

grammable data plane. IEEE JSAC 37, 3 (2019), 556–569.
[21] P. Zheng et al. 2020. Building and Testing Modular Programs for Programmable

Data Planes. IEEE JSAC 38, 7 (2020), 1432–1447.
[22] N. Zilberman et al. 2014. NetFPGA SUME: Toward 100 Gbps as Research Com-

modity. IEEE Micro 34, 5 (2014), 32–41.

6

https://github.com/mtpsa

	Abstract
	1 Introduction
	2 PDP Virtualization
	3 Data Plane Isolation
	3.1 Isolation for Security

	4 Roles and Privileges
	5 Architecture of MTPSA
	5.1 Superuser Pipeline
	5.2 User Pipeline
	5.3 Execution Model

	6 Implementation
	6.1 MTPSA Compiler

	7 Evaluation
	7.1 Experimental Setup
	7.2 Evaluation Results

	8 Discussion
	9 Related Work
	10 Conclusion
	References

