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Smartwatch data help detect COVID-19
Data from consumer smartwatches can improve the detection of COVID-19 when combined with symptom 
self-reporting, and can also detect the disease in pre-symptomatic individuals.

Tingting Zhu, Peter Watkinson and David A. Clifton

Tests for the detection of COVID-19  
are typically time consuming, 
costly and require professional 

expertise. Improving the frequency, ease 
and ubiquity of testing for COVID-19 is 
urgent, particularly when a substantial 
proportion of patients (40–45%; ref. 1) 
may be pre-symptomatic or asymptomatic. 
Obtaining longitudinal physiological 
data via commonplace wearable devices2, 
typically worn on the wrist, may offer a 
convenient means of detection. Self-reported 
symptoms can be used to construct relatively 
simple models for the identification of 
COVID-19 (ref. 3), and data from wearables 
may similarly be used to identify viral 
respiratory illnesses4,5. Reporting in Nature 
Medicine, Giorgio Quer and colleagues now 
show how smartwatch data can be used in 
conjunction with self-reported symptoms 
to determine whether an individual has 
COVID-19 after the onset of symptoms6. 
And in Nature Biomedical Engineering, 
Michael Snyder, Xiao Li and colleagues 
report how similar data, also from consumer 
smartwatches, can be used in advance of 
symptom onset to identify, and potentially 
predict, COVID-19 infection7.

Between March–June 2020, Quer 
and co-authors conducted the DETECT 
study, in which 30,529 participants in the 
United States provided data from their 
smartwatches and activity trackers (78.4% 
of the participants used Fitbit devices, 
31.2% used the Apple Watch, and 8.1% used 
devices compatible with Google Fit; some 
participants used more than one platform). 
Some of the participants also self-reported 
symptoms (3,811 participants, or 12.4% of 
the total) and the results of diagnostic tests 
(333 participants, or 8.7%; 54 participants, 
or 16.2%, reported a positive test result). 
For those with test results, the authors 
analysed their daily average resting heart 
rate (RHR; in beats per minute), daily sleep 
duration (in minutes) and daily activity 
(step count) according to two intervals: a 
baseline window of 7–21 days before the 
onset of symptoms, and a ‘test interval’ 
spanning 7 days from symptom onset. 
For each participant and data type, the 

authors calculated the differences between 
the maximum values (for RHR) or mean 
values (for sleep and activity data) in the 
test interval and the median of the values in 
the baseline window. The differences were 
then combined in a number of heuristic 
metrics, which were used to classify each 
participant as COVID-19-positive or 
COVID-19-negative. When compared to 
the self-reported results from the diagnostic 
tests (considered as ground truth), a metric 
aggregating the smartwatch data and the 
self-reported symptoms led to an area under 
the receiver operating characteristic curve 
(AUC) of 0.80; an existing heuristic model3 
that uses symptoms alone led to an AUC of 
0.71 (Fig. 1).

Snyder and co-authors used a dataset 
collected in February–June 2020 from 
5,262 participants who completed surveys 
related to respiratory illness, symptoms 
and diagnosis, and who wore Fitbit 
devices (63.2%), the Apple Watch (18.7%) 
or Garmin smartwatches (8.1%). One 
hundred and fourteen participants (2.2%) 
had COVID-19 and provided symptoms 

and diagnosis dates; 47 participants (0.9%) 
provided symptoms and diagnosis dates for 
different respiratory infections. The authors 
analysed a subset of 32 participants with a 
positive COVID-19 test (0.6%), for whom 
sufficient smartwatch data (RHR, sleep 
duration and step counts) spanning the 
interval of infection to disease (including 
symptom dates and diagnosis dates) were 
available, as well as 73 healthy participants 
and 15 participants who had other 
respiratory illnesses. Variations in sleep 
duration before and after symptom onset 
were examined, but sleep durations were not 
used as input. The authors constructed and 
assessed three models, involving differences 
between the observed RHR and the average 
RHR over a sliding window of 28 days; a 
statistic on cumulative sums of RHR, which 
the authors also suggest can be used to 
alert the user of potential infection in real 
time; and an anomaly-detection method 
involving the ratio of heart rate and daily 
steps. For the first two models, alerts were 
defined via signal thresholding; for the latter 
model, alerts were determined via binary 
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Fig. 1 | Prediction of COVID-19 from self-reported symptoms, and from self-reported symptoms 
combined with RHR, sleep and activity data from smartwatches. The receiver operating characteristic 
(ROC) curves for the discrimination of 54 individuals who tested positive for COVID-19 and 279 
individuals who tested negative for the disease show an AUC of 0.71 for the symptom-based model 
(left) and of 0.80 for the model using symptoms and smartwatch data (right). CI, 95% confidence 
interval. Figure reproduced with permission from ref. 6, Springer Nature Ltd.
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classification (normal versus anomalous). 
The authors defined a detection window 
starting 14 days before symptom onset 
and ending 7 days after, and compared the 
alerts raised by the three methods with the 
reported symptom dates and diagnosis dates. 
They found that 22 of the 32 participants 
with COVID-19 would have received alerts 
ahead of symptom onset or in the same day, 
regardless of the method, and that 15 out 
of the 24 participants for whom more than 
28 days of smartwatch data were available 
would have received an alert from the 
method using cumulative sums of RHR on 
or before symptom onset (Fig. 2).

Obtaining sufficient and useful data is 
difficult. In both studies, the number of 
participants who downloaded a smartphone 
app, successfully linked it to their 
smartwatch, were tested for COVID-19 and 
reported the result (positive or negative), 
reported any symptoms, and used their 
smartwatch for sufficiently long periods, is 
small. In the study by Quer and colleagues, 
1.1% of all participants had sufficient data 
for analysis, and 0.2% of all participants 
reported a positive COVID-19 test result; 
in Snyder and colleagues’ study, 2.2% of 
all participants were analysed, and 0.6% 
of all participants had a positive COVID-
19 test and had their data included in the 
analysis. Hence, population-scale analyses of 
wearable data for disease detection will need 
to be designed with sufficient robustness for 
practical applications. The use of reporting 
guidelines for prediction models (such as 
transparent reporting of a multivariable 
prediction model for individual prognosis 
or diagnosis (TRIPOD)) would facilitate 
comparisons among studies. Importantly, 
as noted by Quer and co-authors, selection 
bias inherent to the use of smartwatches 
should be considered; in fact, 87.2% of 
the participants in the authors’ study were 
younger than 65, and smartwatch ownership 

is low in populations that are most at 
risk for COVID-19, such as low-income 
groups2. Other inclusion biases relate to the 
reporting of the results of COVID-19 tests, 
which in most countries are preferentially 
given to individuals with serious symptoms. 
Similarly, any direct extrapolation of 
true-positive rates from these types of 
studies to wider populations would involve 
the unlikely assumption of equivalent 
distributions. Some of these potential biases 
could be overcome by systems that collect 
data across a wide range of diverse users. At 
the expense of accuracy, sleep duration and 
activity levels that are self-reported (rather 
than obtained from wearables) may widen 
study participation and reduce inclusion 
bias.

Performing online repeated analysis 
of physiological time series to predict 
rare events involves further complexities, 
such as how to evaluate multiple-testing 
results (that is, day-by-day predictions) 
for each participant. Quer and colleagues 
sidestep this issue by making one binary 
classification per patient (all classifications 
are then independent because each is 
associated with an independent participant, 
and each participant has either a positive 
or negative COVID-19 test). Yet evaluating 
time series models, as in Snyder and 
colleagues’ study, is trickier: the models 
output a series of alerts, which may or may 
not align with particular events (such as 
symptom onset) and intervals (such as 
pre-symptomatic periods or prodromal 
periods). Such ‘repeat’ classifications are 
arguably neither binary nor independent, as 
recordings from an individual may include 
data from healthy periods and disease 
periods.

Model complexity is typically a concern 
in the analysis of physiological time series. 
Quer and colleagues defined straightforward 
heuristics to avoid overfitting the model 

to the data, yet it is unclear whether the 
parameters used within the heuristics were 
selected so as to maximize performance in 
the same dataset (which could be considered 
‘in-sample testing’). With Snyder and 
colleagues’ models, cross-validation may 
minimize the possibility of overfitting the 
models to the available data. When working 
with small datasets, poor generalization to 
unseen datasets is a possibility.

Data from wearables are particularly 
prone to noise and artefacts. Snyder 
and co-authors show that both healthy 
participants and participants who had 
COVID-19 could have received ‘false 
positive’ alerts from the models. The authors 
hypothesize that some of these alerts might 
be caused by end-of-year holidays and other 
similar events. Sufficiently large studies 
should offer the possibility of obtaining 
data from non-disease events such that false 
positives can be reduced. However, some of 
these alerts could actually be true positives, 
as even gold-standard diagnostic tests can 
fail to detect COVID-19.

When data availability is not a constraint, 
complexity may be added to the models by 
increasing the amount of input data beyond 
the daily metrics produced by wearable 
devices, for instance by incorporating 
features derived from the underlying 
accelerometry and photoplethysmography 
waveforms that many of these devices 
acquire. In fact, respiratory rate and 
cardiovascular parameters can be estimated 
from such signals8,9. Additionally, 
machine-learning techniques could be used 
for the automated discovery of features 
that could be incorporated in a predictive 
model based on multiple time-varying 
physiological variables10. The studies of 
Quer, Snyder and their respective colleagues 
suggest that one day devices on our wrists 
could accurately alert us to a potential 
infection before we get sick.
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Fig. 2 | Heart-rate metrics for an individual before COVID-19 infection and during illness. The red dashed line indicates the day of symptom onset and the 
purple dashed line the date of diagnosis. Top: RHR residuals (with respect to the average RHR within a 28-day window. The green dashed line lies at zero 
(null residuals). The gold triangles denote the window of infection detection, according to a parametrized model. The red double-headed arrow indicates 
significantly elevated residuals. bottom: smoothed heart rate over steps (HROS), normalized according to a Gaussian distribution of data from 1-h intervals. 
The red dots indicate anomalies in the normalized HROS. Figure reproduced with permission from ref. 7, Springer Nature Ltd.
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