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The rapid proliferation of wearable devices for
medical applications has necessitated the need
for automated algorithms to provide labelling of
physiological time-series data to identify abnormal
morphology. However, such algorithms are less
reliable than gold-standard human expert labels
(where the latter are typically difficult and expensive
to obtain), due to their large inter- and intra- subject
variabilities. Actions taken in response to these
algorithms can therefore result in sub-optimal
patient care. In a typical scenario where only
unevenly-sampled continuous or numeric estimates
are provided, without access to the “ground truth”, it
is challenging to choose which algorithms to trust and
which to ignore, or even how to merge the outputs
from multiple algorithms to form a more precise final
estimate for individual patients. In this work, we
demonstrate the novel application of two previously
proposed parametric fully-Bayesian graphical models
for fusing labels from (i) independent and (ii)
potentially-correlated algorithms, validated on two
publicly available datasets for the task of respiratory
rate (RR) estimation. These unsupervised models
aggregate RR labels and estimate jointly the assumed
bias and precision of each algorithm. Fusing estimates
in this way may then be used to infer the underlying
ground truth for individual patients. We show that
modelling the latent correlations between algorithms
improves the RR estimates, when compared to
commonly-employed strategies in the literature.
Finally, we demonstrate that the adoption of a
strongly-Bayesian approach to inference using Gibbs
sampling results in improved estimation over the
current state-of-the-art (e.g. hierarchical Gaussian
Processes) in physiological time-series modelling.

Introduction and Related Work: With the rapid increase in
the volume and variety of wearable devices now routinely
in use for healthcare applications, there exists the possibility
of personalising the care patients receive based on their
individual physiologies. This “personalised” and patient-
centric approach to healthcare is built on the assumption that
physiological data collected from patient-worn sensors can be
reliably utilised, for diagnostic and prognostic applications,
in clinical practice. However, with very large quantities
of sensor data being accumulated over time, there is an
urgent need for algorithms capable of automatically labelling

the collected physiological time series data (e.g., abnormal
respiratory rate readings) without the need for human input.

Yet to date, automated algorithms remain less reliable in
practice than labelling from human experts. The latter is often
the accepted gold-standard but is typically expensive, difficult
or even unfeasible to obtain for the majority of applications,
such as labeling of data arising from patients in real-time.
In these cases, and many other real-life clinical applications,
automated algorithms have to be relied on to process and label
sensor data. Additionally, when there is no knowledge of the
“ground-truth” in the form of expert labelling, it is a challenge
to know which algorithms to trust and which to ignore at
any given point in time. Particularly as different algorithms
may be optimal for different patient subsets, or even optimal
for the same patient at different points in time. Often, naive
methods are used to combine the recommendations of various
algorithms to form a final estimate that is intended to have
maximum precision for an individual.

Modelling continuous-valued labels in addition to the
biases and expertise of each annotator producing those labels,
remains an active area of research, with key contributions
outlined as follows. In the context of medical imaging
[1], the use of an expectation maximisation (EM) method
was demonstrated to fuse labels from different annotators
estimating the diameter of lesions from images. A method for
validating medical image segmentation, which estimated both
the bias and variance of annotators, was proposed in the work
of [2]. Similar to this approach, [3] more recently presented
a model that estimated the ground truth in the form of count
and percentage estimation, in a “crowd sensing” setting.
A Bayesian EM framework fused binary, multi-valued and
continuous-valued labels was proposed in [4]. This method
described explicitly modelled the precision (but not bias) of
individual annotators by taking into account their different
skill levels. By contrast, [5] used a Gaussian prior on the
bias parameter of annotators attempting to produce cardiac
landmark labels in 2D images. However, it is worth noting
that physiological features were not incorporated into the
models of [5] as a means of further improving estimation of
the ground truth label.

In all of the aforementioned studies, the proposed models
did not include a principled way to take into account the
quality of data or how to cater for missing labels. Moreover,
in these studies it was assumed that all annotators are
independent, which may not always be the case when labels
are produced by slightly different implementations of the
same underlying algorithm. Previous work by the author
tackled these issues by first proposing a Bayesian framework
to jointly model both annotator bias and precision using [6].
This work was then extended in [7], in which the author
proposed a fully-Bayesian approach through Gibbs sampling
for fusing continuous valued labels, from both independent
and/or partially correlated annotators, as a means of arriving
at a consensus in an unsupervised manner.
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In this letter, we present a novel application of the
methodologies proposed by the author in [7], on two publicly
available datasets. The task considered is estimation of the
underlying respiratory rate (RR) from photoplethysmogram
(PPG) recordings contained within the CapnoBase and
BIDMC datasets [8] [9]. Robust estimation of RR is a
practically well motivated task, as accurate monitoring of
the vital sign can facilitate improved diagnosis and patient
care. We demonstrate improved estimation of RR is possible
using our approach of fusing labels from different annotators,
when compared with existing methods presented in the
literature; namely two EM models by [1] and [2], as well
as a Hierarchical Gaussian process approach [10].

The remainder of this letter is organised as follows. First
we outline the methodology proposed by the authors in
[7], briefly describing the formulation of the two models
considered. The experiments used to validate and compare
the methods with selected baselines, along with the results
obtained, are then detailed before concluding remarks are
presented.

Problem Formulation: Consider the case where we have
N samples of physiological time-series data, with N

corresponding continuous-valued labels (e.g. RR labels from
PPG time-series samples). We can assume that the underlying
ground truth for the ith sample, zi, can be drawn from a
Gaussian distribution with mean ai and variance 1/b. We
can express ai as a linear regression function f(w,xi) with
an intercept w0. In this formulation w are the coefficients
of the regression (which includes w0

1). While xi is a
column feature vector for the ith record containing d features
(i.e., we have an (N × d)-dimensional design matrix, X =[
xᵀ

1 ; ...;xᵀ
N

]
). Note that, a scalar value of one was added

to the feature matrix (i.e., xi := [1,xi])) to cater for the w0

intercept. Finally, the precision of the ground truth (defined
as the inverse-variance b) is assumed to be modelled from a
gamma distribution where kb is the shape parameter and ϑb

is the scale parameter. It therefore follows that the conditional
probability density function (pdf) of z as a vector of labels
can be written as

∏N
i=1N

(
zi | xᵀ

i w, 1/b
)
.

The Independent Annotator Model (IAM): Assuming once
again the presence of N samples, we have a dataset, D =[
xᵀ
i , y

j=1
i , · · · , yj=Ri

]N
i=1

, where yji corresponds to the

label estimate provided by the jth annotator for the ith
sample, with a total of R annotators. This model assumes
that yji is a noisy version of zi, with a Gaussian distribution

N
(
yji | zi, 1/λ

j
)

, where λj is the precision of the jth
annotator, defined as the estimated inverse-variance for

1 w0 models the overall offset predicted in the
regression, and is therefore different from the bias φ
specific to each annotator in the proposed models, which
will be described later.

annotator j. Furthermore, the bias of each annotator, which
measures the average difference between the estimation
and the ground truth, can be modelled as an additional
term, denoted as φj . The pdf of estimating yji can thus

be written as N
(
yji | zi + φj , 1/λj

)
, It is assumed that

y1
i , · · · , yRi are conditionally independent given the ground

truth zi; assuming samples are independent, it follows that
the conditional pdf of y can be expressed as :

p (y | z,φφφ,λλλ) =

N∏
i=1

R∏
j=1

N
(
yji | zi + φj , 1/λj

)
. (1)

However, as noted earlier, conditional independence between
annotators may not always be the case as labels may be
produced by variants of the same underlying algorithmic
approach. That is annotators that differ only in, for example,
operational parameter settings. Nevertheless, this assumption
can be made to simplify the model and subsequent derivation
of the likelihood. Relaxation of this independence assumption
will be explored in the second proposed model, the correlated
annotator model (described in the proceeding section). The
pdf of the bias for annotator j, φj , is assumed to once again be
drawn from a Guassian this time with mean µφ and variance
1/αφ [5]:

p
(
φj | µφ, αφ

)
=N

(
φj | µφ, 1/αφ

)
. (2)

Although the biases of the annotators could very well be
assumed to follow other distributions, such choices are likely
to be dataset-dependent. In the absence of any knowledge of
the underlying distribution of biases, we choose to assume
they are drawn from a Gaussian distribution. The precision
values, such as λj and αφ, by contrast are assumed to be
drawn from a gamma distribution, with parameters kλ, ϑλ,
and kα, ϑα, respectively:

p
(
λj | kλ, ϑλ

)
= Gamma

(
λj | kλ, ϑλ

)
. (3)

p
(
αφ | kα, ϑα

)
= Gamma

(
αφ | kα, ϑα

)
. (4)

It follows that for a given dataset D, the likelihood of the
parameters θθθ= {w,λλλ,φφφ, αφ, b, zi}, can be formulated as :

p (D | θθθ) =

N∏
i=1

p
(
y1
i , · · · , yRi | xi, θθθ

)
. (5)

Bayes’ theorem can then be used to determine the posterior
probability of the parameters θθθ, for a given dataset D, as

p (θθθ |D) =
p (D | θθθ) p (θθθ)∫

θθθ
p (D | θθθ) p (θθθ) dθθθ

, (6)
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where

p (D | θθθ) p (θθθ)

= Gamma(αφ | kα, ϑα)Gamma(b | kb, ϑb)× R∏
j=1

N
(
φj | µφ, 1/αφ

)
Gamma(λj | kλ, ϑλ)

×
 N∏
i=1

N
(
zi | x

ᵀ

iw, 1/b
) R∏
j=1

N
(
yji | zi + φj , 1/λj

) .
Obtaining the posterior probability of the parameters θθθ

essentially allows us to learn the latent ground truth for the
ith sample zi, and jointly predict the bias φj and precision
λj of the jth annotator simultaneously.

Learning from Incomplete Data using Gibbs Sampling: An
important practical scenario to consider is the case that arises
when there are missing labels from different annotators (i.e.,
not all R algorithms provide N estimates for all samples). To
account for this, the posterior distribution hyperparameters of
the IAM can be re-written using Gibbs sampling as follows
(see graphical model in Figure 1(a)):

zi ∼N
(
zi

∣∣∣∣a∗i , 1

b∗i

)
, φj ∼N

(
φj

∣∣∣∣∣µj∗φ , 1

αj∗φ

)
,

λj ∼Gamma
(
λj
∣∣∣kj∗λ , ϑj∗λ ) ,

b∼Gamma (b|k∗b , ϑ
∗
b ) , αφ ∼Gamma

(
αφ | k∗α, ϑ∗α

)
.

a∗i =

(
xᵀ
i w
)
b+

∑
j∈Vi

[(
yji − φ

j
)
λj
]

b+
∑
j∈Vi λ

j
, b∗i = b+

∑
j∈Vi

λj ,

µj∗φ =
µφαφ + λj

∑
i∈Uj

(
yji − zi

)
αφ +

∑
i∈Uj λ

j
, αj∗φ = αφ +

∑
i∈Uj

λj ,

kj∗λ = kλ +
Nj

2
,

1

ϑj∗λ
=

∑
i∈Uj

(
yji − φ

j − zi
)2

2
+

1

ϑλ
,

k∗α = kα +
R

2
,

1

ϑ∗α
=

∑R
j=1

(
φj − φ̄

)2
2

+
1

ϑα
,

k∗b = kb +
N

2
,

1

ϑ∗b
=

∑N
i=1 (zi − z̄)2

2
+

1

ϑb
.

Note that Uj is the set of samples with labels provided by the
jth annotator whilst Vi is the set of annotators that provided
labels for the ith sample, and Nj is the number of samples
annotated by the jth annotator. Finally, w can be learnt by

finding the zero gradient of the expectation of the complete

data log-likelihood as w =
(∑N

i=1 xix
ᵀ
i

)−1∑N
i=1 xizi.

The above formulation allows us to cope robustly with the
commonly-encountered difficulties arising from incomplete
(or even sparse) labelling, in a principled and probabilistic
manner.

The Correlated Annotator Model (CAM): As noted
previously, annotator independence may not always be an
accurate assumption to make in reality. To account for this,
we can incorporate a correlation measure into the annotator
model described in the preceding section. This would
facilitate an improved aggregation of the different annotator
labels, and thus a better inferred ground truth estimate. In this
formulation, annotators are considered to be anomalous when
they are highly correlated to other annotators but possess
relatively large variances and biases. These anomalous
annotators are penalised with lower weighting for their labels.
Expert annotators, defined as those that are highly correlated
to other annotators but which have relatively small variances
and biases, on the other hand have their labels weighted more
heavily in the model.

A multivariate normal distribution (MVN) can be applied
to the annotator model, using the covariance matrix (denoted
ΣΣΣ) to describe the correlation among annotators, as well
as providing a constraint on the biases φφφ. The Inverse-
Wishart (IW) distribution is used as a prior for the covariance
matrix ΣΣΣ, and the bias values φφφ for all annotators are
modelled using a MVN with meanµµµφΣ and covariance ΣΣΣ/k0.
The conditional pdf of the modified annotator model with
covariance becomes

p (y | zi,φφφ,ΣΣΣ) =

N∏
i=1

N (zi +φφφ,ΣΣΣ) , (7)

where ΣΣΣ is the covariance matrix of the R annotators and
where there are N samples.

Matrix ΣΣΣ can be further decomposed into a correlation
matrix and the precision values of the annotators. Using the
separation strategy proposed by [11], ΣΣΣ is formulated as ΣΣΣ =
QρρρQ, where Q is an R-by-R diagonal matrix with entries
being 1√

λj=1
, ..., 1√

λj=R
. Here, λj is the precision value

for the jth annotator, and ρρρ is the latent correlation matrix
of the annotation errors among R annotators. The biases of
individual annotators are now assumed to be drawn from a
MVN constrained by ΣΣΣ, with conditional pdf:

p
(
φφφ |µµµφΣ,ΣΣΣ

)
=N

(
φφφ |µµµφΣ,ΣΣΣ/k0

)
, (8)

where µµµφΣ is the prior mean for φφφ, and k0 is a positive
scalar that expresses our belief on µµµφΣ. The posterior of the
parameter θθθc = {φφφ,ΣΣΣ, b, zi} for a given dataset D can be
written using Bayes’ theorem as

p (θθθc |D) =
p (D | θθθc) p (θθθc)∫

θθθc
p (D | θθθc) p (θ) dθθθc

, (9)

3



(a) (b) (c)
Fig. 1: (a) The independent annotator model. (b) The correlated annotator model. (c) Hierarchical Gaussian Processes with an
additional prior on the latent ground truth.

where:

p (D | θθθc) p (θθθc)

=N
(
φφφ |µµµφΣ,ΣΣΣΣΣΣΣΣΣ/k0

)
IW (ΣΣΣ | v, S)×

Gamma (b | kb, ϑb)

[
N∏
i=1

N (zi | ai, 1/b)N (yi | zi +φφφ,ΣΣΣ)

]
The new parameters are now updated using the Gibbs

sampler as follows (see graphical model in Figure 1(b)) :

φφφ∼N
(
φφφ |µµµ∗φΣ,ΣΣΣ

∗
φ

)
,ΣΣΣ∼ IW (ΣΣΣ | v∗,S∗) .

µµµ
∗
φΣ =

k0µµµφΣ

k0 +N
+

Uȳb

k0 + U
,ΣΣΣ

∗
φ =

ΣΣΣ

k0 +N
, v

∗
= v +N,

S
∗

= S +

N∑
i=1

(yi − zi − ȳb)
T

(yi − zi − ȳb)

+
k0N

k0 +N

(
ȳb −µµµφΣ

)T (
ȳb −µµµφΣ

)
.

where U is a 1-by-R vector, and each of its elements
indicates the total number of labels provided by a
respective annotator. ȳb = [ȳj=1

b , · · · , ȳj=Rb ], where ȳjb =

1
Nj

∑N
i=1

(
yji − zi

)
.

Experiment and Results: We evaluate the efficacy of our
proposed models using two publicly-available biomedical
datasets: (1) The CapnoBase dataset by [8] which contains
42 PPG recordings (each with 8 minutes duration) of
spontaneous or controlled breathing from 42 subjects (29
paediatric and 13 adults); (2) The BIDMC dataset by [9]
which comprises PPG recordings with the same duration
from 53 adult subjects. The three respiratory-induced
modulation time-series (Amplitude Modulation, Baseline
Wander, and Frequency Modulation) were extracted from
the PPG recordings. To estimate the RR, it was computed
for 32-second windows, with successive windows having

29 seconds overlap, using a Fourier spectral approach. For
each window and each modality, three RR estimates were
calculated from three modulation time-series. The underlying
subject-specific latent RR was then estimated by fusing these
6 “algorithms”.

We compared our proposed models with two parametric
Maximum-likelihood EM models (EM-R by [1]; STAPLE by
[2]), as well as the non-parametric Hierarchical Gaussian
Processes (HGPs) ([10]) with an additional Bayesian
regularisation (i.e., a lognormal prior) on the noise variance
of the latent ground truth (see Figure 1(c)). By comparing
the gold-stand RR labels for a subject over 150 windows,
the mean absolute error (MAE) was computed for each
model. The mean MAE and the standard error of the mean
(SEM) were also estimated across all subjects. The results
are shown in Table 1. The CAM had the least error for
CapnoBase, but the IAM model was better for BIDMC.
Nevertheless, both proposed models outperformed the state-
of-the-art approaches recreated from the literature: a MAE
of 1 bpm vs. 1.5 bpm [9] and 1.2 bpm [8] for the CapnoBase
dataset, and a MAE of 2.96 bpm vs. 4 bpm [9] and 5.8
bpm [8] for the BIDMC datase using all possible windows.
Furthermore, the proposed models provide the Bayesian
interpretation of their estimates through 95% confidence
intervals (see dashed lines in Figure 2). In comparison, HGPs
had a larger noise variance: as 5 out of 6 algorithms (A2 to
A6) were biased with smaller estimation of RR, this resulted
a large uncertainty in the latent RR estimates when fusing
labels using HGPs.

Conclusion: Automated labelling of large volumes of
physiological time-series data being collected from wearable
sensors, often in real-time, is a prerequisite to being able
to provide patients with personalised care. In this work we
have applied two parametric unsupervised fully-Bayesian
graphical models for fusing labels from (i) independent
and (ii) potentially-correlated algorithms, to estimate the
underlying RR from PPG signals obtained from the publicly
available CapnoBase and BIDMC datasets. Robust estimation
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Fig. 2: Example of the RR estimates for a subject.

Table 1: Mean MAE±SEM (bpm) of the inferred RR
across subjects using different models for CapnoBase and
BIDMC datasets.

Model CapnoBase BIDMC
EM-R 1.14±0.22 3.15±0.34
sSTAPLE 1.78±0.34 3.51±0.28
HGPs 1.46±0.32 3.37±0.40
IAM 1.18±0.16 2.96±0.43
CAM 1.00±0.20 3.03±0.33

of RR is of clinical value and could be used to improve patient
care. By jointly estimating the assumed bias and precision
of each algorithm considered, we have demonstrated that
these models are able to infer the underlying ground truth
more robustly than existing state of the art methods. In
addition to improved performance, we show that the proposed
models are robust when dealing with missing values (as
often occurs in real-life biomedical applications due to sensor
failure), and that they are suitably efficient for use in real-time
applications.
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