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Hospital Admission Location Prediction via Deep
Interpretable Networks for the Year-Round
Improvement of Emergency Patient Care

Rasheed El-Bouri , David W. Eyre , Peter Watkinson , Tingting Zhu , and David A. Clifton

Abstract—Objective: This paper presents a deep learn-
ing method of predicting where in a hospital emergency
patients will be admitted after being triaged in the Emer-
gency Department (ED). Such a prediction will allow for
the preparation of bed space in the hospital for timely
care and admission of the patient as well as allocation
of resource to the relevant departments, including dur-
ing periods of increased demand arising from seasonal
peaks in infections. Methods: The problem is posed as a
multi-class classification into seven separate ward types.
A novel deep learning training strategy was created that
combines learning via curriculum and a multi-armed bandit
to exploit this curriculum post-initial training. Results: We
successfully predict the initial hospital admission location
with area-under-receiver-operating-curve (AUROC) ranging
between 0.60 to 0.78 for the individual wards and an overall
maximum accuracy of 52% where chance corresponds to
14% for this seven-class setting. Our proposed network
was able to interpret which features drove the predictions
using a ‘network saliency’ term added to the network loss
function. Conclusion: We have proven that prediction of
location of admission in hospital for emergency patients is
possible using information from triage in ED. We have also
shown that there are certain tell-tale tests which indicate
what space of the hospital a patient will use. Significance:
It is hoped that this predictor will be of value to healthcare
institutions by allowing for the planning of resource and
bed space ahead of the need for it. This in turn should
speed up the provision of care for the patient and allow flow
of patients out of the ED thereby improving patient flow and
the quality of care for the remaining patients within the ED.

Index Terms—Machine learning algorithms, multi-layer
neural networks, patient flow, hospitals.
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I. INTRODUCTION

D EEP neural networks (DNNs) have revolutionised the field
of machine learning by providing a way to utilise very

large datasets as well as large feature spaces to make meaningful
predictions. State of the art performance has been achieved by
DNNs in a wide range of tasks proving their efficacy as learning
algorithms. Their strength in function approximation has not
been overlooked by the medical community, with numerous
publications exploiting them to make useful predictions for
various healthcare scenarios [1]–[3].

One of the challenges of utilising DNNs is that they are non-
convex optimisation problems meaning the best performance
that the algorithm is capable of may not be achieved [4]. As a
result, much work has been carried out in developing methods
of presenting data to the network for training in a structured
fashion [5]. This has since been called a curriculum and is widely
used when training DNNs today.

The aim of this work is to utilise the concept of curriculum
training to train a model that will predict where in a hospital a
patient will be admitted based on very early information obtained
in the ED from the triage nurse. We aim to show that the move-
ment of patients from ED to one of seven different ward types in
hospital is predictable. This would allow allocation of a bed and
resources for the patient well ahead of admission to ensure that
they receive care and treatment in as timely a fashion as possible.
We also aim to demonstrate that this prediction can be done given
data collected from a patient at point of entry to the ED, which in
turn will improve the flow of patients out of the ED and into the
hospital. Difficulties in admitting patients to the optimal hospital
ward are often most marked during periods of high demand, such
as during peaks in seasonal infections including influenza. We
therefore test the performance of our model through out the year.

In Section II we discuss the related work and in Section IV
we discuss how a curriculum regularises the training of a DNN
and how our algorithm is built. Then in Section VI we display
the results of our algorithm and discuss these.

II. RELATED WORK

In existing literature, there is currently much work published
in the monitoring of patients in hospitals using machine learning
techniques [6], [7]. However the application of machine learning
to model patient flow is still a relatively new topic with a
consequently limited literature.
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Within this literature, prediction of admission to a particular
ward based on measurements within hospital is a well explored
area of research [8]–[11]. Zhai et al. carried out work in pre-
dicting newly-hospitalised children who were likely to need
transferral to the paediatric intensive care unit [12]. Logistic
regression was used and achieved 89% accuracy. The model
however only considered paediatrics, a subset of the total hos-
pital population. While this is useful for the monitoring of the
well-being of newly-hospitalised children it is not robust to be
used as a general model for patient flow.

An investigation into the prediction of ward transition was
carried out by Xu et al. in [13]. In this work, “alternating direc-
tion method of multipliers” (ADMM) was used in conjunction
with discriminative learning of mutually correcting processes
to learn and predict the destination of a ward transition. The
model produced an overall next location prediction accuracy
of 81% when considering all patients for all wards. It would
seem that the model is powerful at predicting the transition
process within the hospital, however it could also be argued
that this is directly due to the data that have been used. In
particular, they considered all patients within the hospital and
did not discriminate between emergency and non-emergency
patients. It is well known that good patient flow is significantly
hindered by the ad-hoc introduction of emergency admissions
into the hospital [14], [15]. The authors also use the MIMIC-II
dataset [16] where the majority of the wards in consideration for
transfer are ICU wards. This may not be useful for analysis of
patient flow in the hospital as a whole. As a result, we will only
consider patients who have been admitted in an emergency, we
will consider all the wards within the hospital and we will aim
to predict the initial point of entry.

In this work we choose to focus on the complex problem
of predicting the outcome of the ED-inpatient interface (EDii).
Staib et al. emphasise the importance of this interface by
discussing how there is significant evidence to show that the
delayed transfer of emergency patients to wards is associated
with a 20-30% relative increase in inpatient mortality [17]. They
also mention why this problem is difficult to predict. This is
primarily due to the EDii being poorly defined in terms of clinical
ownership, as well as the fact that the unscheduled nature of
emergency admissions disrupts scheduled activity within the
hospital, thereby slowing the movement of patients out of the
ED. This can lead to patients being admitted to wards that are
not ideal for their treatment in order to empty the ED, which
can be hazardous [18]. By providing a prediction of the likely
inpatient admission location, we seek to begin bridging the gap
in patient flow between the ED and the inpatient wards.

Neural networks have primarily been used for the ward ad-
mission problem as binary classifiers. The majority of previous
work using neural networks in this field predicts if a patient will
or will not be admitted to a location within a hospital or to the
hospital itself. Somoza et al. use a neural network to predict
whether or not a patient presented to the ED of a psychiatric
hospital will be admitted [19]. The model performs well using
the neural network achieving a 91% accuracy. However this
model is limited in its usefulness to clinicians on the ground.
Knowing a patient will be admitted is useful for planning of

overall numbers but greater granularity as to where they will be
admitted is more useful for resource planning. As a result our
problem will consider predicting the location of admission in
the hospital.

In this work we utilise a curriculum in order to train our neural
network. Curriculum Learning stems from the observation that
children in schools learn by beginning with simple ideas and
progressing on to more complex topics. By doing so they are able
to understand fundamental principles on which they can build to
learn more complex topics (which in themselves are usually sim-
ply superpositions of the fundamental principles). Curriculum
Learning is the idea that neural networks may also benefit from
this structured approach to learning. By presenting the network
initially data that are ‘easier’ to optimise over, the optimisation
surface (of network prediction error vs. network parameters) is
more likely to be convex [5]. This has an analogy with numerical
continuation methods, where a complex optimisation surface
is decomposed into layers, beginning as a completely convex
surface and gradually increasing in non-convexity [20]. In this
paper we will exploit this methodology in order to train neural
networks on noisy medical data. We will then compare this to
normal batch methods of training networks and see the effect
that the curriculum has on the prediction accuracy.

The use of non-stationary bandits in learning has also been
explored in [21] where a curriculum is arranged and a bandit
selects which batches to train a neural network on. The bandit is
trained by measuring how a particular batch of data improves the
performance of the network which in turn affects the probability
of selecting that curriculum batch to train on. The better the
performance, the more likely the bandit is to choose this batch of
data again. The authors of [21] propose four different algorithms
to select the next curriculum batch to train on. These are the use
of a non-stationary bandit to select the next batch to train on,
using linear regression and a windowed linear regression on the
performance of the network to predict the batch most likely to
provide the best performance after training, and using Thompson
sampling to select the next batch for training. The authors found
that the non-stationary bandit was the most effective method of
choosing the next batch of data providing the best performance
and faster training. While these approaches have an effective
performance on the training problems presented in the work,
the authors do not utilise the curriculum to guide their network
weight space into the domain of a global minimum. Another
work which uses a similar approach is that of [22] where a cur-
riculum is also generated and a non-stationary bandit is used with
the EXP3.S algorithm [23] to select the next curriculum batch
to train on. However, once again without using the curriculum
initially, this algorithm will not always provide a better or faster
training of the network.

Aside from simply improving the accuracy of a model
it is important, particularly when using deep models in the
healthcare domain, to provide a level of interpretability to the
decision making process. In [24], the authors emphasise the
importance of understanding what in the input space has driven
a decision in order to learn from the model, or to validate the
classification. We again see this in a review of deep learning
in healthcare by [25] where one of the fundamental challenges



EL-BOURI et al.: HOSPITAL ADMISSION LOCATION PREDICTION VIA DEEP INTERPRETABLE NETWORKS 291

noted is interpretability of deep learning models and relating
the decision made back to the input space. As a result we
propose a ‘saliency term’ to see the most important features
that contribute to predictions in our model.

III. NOVELTY

The novelties of this work are as follows: we have developed
a novel strategy for the training of neural networks combining
a curriculum training phase with a multi-armed bandit phase
to maximise prediction performance on noisy biomedical data.
This also incorporates a saliency layer before the inputs which
allows interpretation of the importance of the input features. To
the best of the authors knowledge no other work has proposed
the framework of predicting where in the hospital a patient from
the ED will be admitted. This is also believed to be the first
work to employ deep learning architectures in order to carry out
hospital admission prediction.

IV. METHODOLOGY

A. Curriculum Learning

Due to the non-convex nature of optimising artificial neural
networks (ANNs), a structured method of presenting data to the
network via curriculum learning was introduced with the aim
of reducing the likelihood of the weights being optimised into
a local minimum [5]. There are similarities between curriculum
learning and numerical continuation methods as pointed out
in [5], where optimisation of a complex surface is achieved
through first optimising over smoother more convex versions of
the surface. Consider a family of cost functions Cλ(θ) such that
C0 is easy to optimise over (and which is likely to be more convex
than other functions), λ ∈ [0, 1] is the ranking of “difficulty to
optimise” and where C1 is the actual cost function that is to
be minimised. By optimising over the network parameters, θ,
for C0, as C0 is simply a smoother version of C1 we bring
our parameters into the domain of a minimum of C0 as well
as C1. We then gradually increase λ while keeping θ at the
local minimum. This helps to avoid local minima which may
be present in the more complex optimisation space. The aim
therefore, is to create batches of data, Q, ranked according to λ

(i.e., Qλ with λ = 0 being the “easiest” batch of data to optimise
progressing to the “hardest” as λ increases.) These batches are
then presented to the network for training in order of increasing
λ. Note that the batch Qλ+ε will contain all of the data in Qλ

for ε > 0, as an increment in λ represents the addition of more
“complex” data to the previous batch.

With application to real data, we need to define “easiness”
of fitting to the data. We define a sequence of batches of
data Qλ(z) comprised of individual data entries, z, such that∫
Qλ(z)dz = 1 (i.e., our whole dataset). We also defineQλ(z) ∝

Wλ(z)P (z) ∀z, whereWλ(z) is the weight assigned to example
z at the point λ in the curriculum sequence and P (z) is the
training data (Wλ(z) is 0 for “complex” data at low values of λ

i.e, excluded in the “easy to optimise” batches). The “easiness”
of the fit to data is described by:

H[Qλ(z)] < H[Qλ+ε(z)] ∀ ε > 0 (1)

where H is the entropy of data batch Q. The weights of the
examples also increase with λ as:

Wλ+ε(z) ≥ Wλ(z) ∀ z, ∀ ε > 0 (2)

to balance training as the “less complex” data will have been
presented to the network for training a greater number of times.
This is because the first curriculum batch (‘easiest’) will also be
a part of all the other curriculum batches, i.e, for N curriculum
batches denoted by Q, Q0 ⊂ Q1 ⊂ . . . QN . Therefore the data
in Q0 is presented to the network a greater number of times and
so the rest of the data must be weighted to account for this so
that all data is presented an equal number of times.

In this work we define “complexity” of the data using the Ma-
halanobis distance in order to encode the notion of entropy. The
Mahalanobis distance is a multi-dimensional generalisation of
measuring the number of standard deviations that exist between
a point P and the mean, μ, of a probability density function
(p.d.f), D [26]. The larger the Mahalanobis distance the more
unlikely the data entry is to belong to the distribution (and which
is therefore of higher entropy). We therefore assume that our
data belong to a single p.d.f, with mean µ and covariance S.
Due to the input features being of mixed data types, we encode
our input features through a trained denoising autoencoder to
gain a representation of the data in an embedded space before
calculating the Mahalanobis distance. In using the Mahalanobis
distance, our curriculum organises our training data such that
we train according to the most similar samples first (the smaller
number of samples of different classes in this batch increases the
likeliness of finding a more global minimum, therefore making
it “easier” to optimise over) before progressing on to the easier
to differentiate between samples. This mirrors the approach that
is used in the SVM in defining the separation boundary where
data of differing classes are closest together.

B. Regularisation Using a Mahalanobis Curriculum

We now postulate how the Mahalanobis curriculum may
naturally regularise itself. Let Z be a training data set consisting
of datapoints zn where zn ∈ Z and zn consists of input features
and a label such that zn = {xn, yn}.

We also define the Mahalanobis distance as:

dmn
=
(
(xn − µ)T S−1 (xn − µ)

) 1
2

(3)

where xn are the (continuous) input features of the datapoint,
µ is the vector of the mean value of each feature, and S is the
covariance matrix.

Using this equation we can now create a vector, Dm, of
distance of each datapoint from the mean of the assumed p.d.f
of the dataset, where X → Dm, ∀ xn ∈ X , X ⊂ Z, Z ⊂ R.

We now seek to createN batches of training data of increasing
entropy of size k datapoints where k = card(Dm)

N .
We then extract the indices of the lowest entropy features

using the following formulation:

jN = index

(
i=Mk⋃
i=1

min ((. . . (dm\dm1
) \dm2

) . . .\dmi
)

)
(4)
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for M = {1, 2, . . ., N}, and dmb
is the bth smallest element of

the set Dm. We are then able to construct the N curriculum
batches BN = Z{jN} and their corresponding outputs, ON =
Y{jN}. The training proceeds by presenting the batches in B
for the smallest N first and then gradually increasing N .

Consider a typical cost function used for backpropa-
gation: 1

N

∑N
n=1(ŷn − yn)

2, which can be re-written as
1
N

∑N
n=1(Wxn − yn)

2 where W is an operator equivalent to
multiplication by the weights of the final hidden layer of a deep
neural network. We are able to do this in this case as we activate
the nodes of our network with ‘relu’ activations which is simply
a piecewise linear operator.

Using the definition of the Mahalanobis distance as shown
in Equation 3, if we consider xn to be a random variable, we
see for normally distributed dataxn ∼ N (µ,S) andxn → µ+√
Sdm. For ease of notation, we assume that all input features

are orthonormal, i.e, S is a diagonal matrix. Therefore we see
that xn = (d2m.(SI))

1
2 + μ, where I is the identity matrix and

which we substitute back into our expression for MSE, which
expands to the following expression:

MSE =
1

N

N∑
n=1

(W 2
(
d2mn

(SI)
)
+ 2W 2

(
d2mn

(SI)
) 1

2 μ

− 2W
(
d2mn

(SI)
) 1

2 yn +W 2μ2 − 2Wμyn + y2n)

When we are training with a curriculum, we train
initially with low entropy data so that dmn

→ 0: MSE →
1
N

∑N
n=1(W

2μ2 − 2Wμyn + y2n) =
1
N

∑N
n=1(Wμ− yn)

2.
For very low entropy values we are simply calculating the mean
squared error with respect to the mean of our assumed p.d.f.

Now we investigate as dm becomes large: We assume that the
first 3 terms in the expanded MSE equation will dominate the
response due to the large value of dm:

MSE → 2

N

N∑
n=1

[
W
(
d2mn

. (SI)
) 1

2

×
(
W

2

(
d2mn

. (SI)
) 1

2 + [Wμ− yn]

)]

Here there are two important things to notice: firstly the cost
function now contains an additive loss term proportional to
||W ||. This means that in the case of overfitting where the mag-
nitude of the weights increases dramatically, the error function
will be penalised for this. This is artificially introduced using
L1/L2 regularisation whereas here it naturally arises with data
that is perceived to be of higher entropy. The next point to notice
is that the difference between prediction and label is no longer
squared meaning we have much more gradual learning with
higher entropy data (which is positive as we don’t want to learn
the noise that is associated with these data).

By using a curriculum we initialise our function approxi-
mation using the mean of the data. This is advantageous as
it greatly reduces the likelihood of our function approxima-
tion being skewed by outliers and possibly even erroneous
data.

C. Multi-Armed Bandits

The curriculum is trained in a cyclical fashion which, as
described previously, is beneficial for finding a local minimum
near the global minimum. However after initial training there
is no reason why this cyclical training should provide the best
possible performance of the model. Given that we now have
discrete batches of data created by the curriculum, we introduce
a multi-armed bandit in order to choose the best batch to train
the network on.

A multi-armed bandit is a method in which choices need to
be made based on allocation of a finite resource, where the
aim is to maximise the expected reward of allocation of the
resource [27]. The probabilities of reward based on choice are
only partially known at the time of allocation and the optimal
choice to maximise reward becomes more clear as resource is
spent. The multi-armed bandit is an example of an exploration
vs. exploitation problem as is often framed within reinforcement
learning problems. A hyperparameter that is manually chosen,
ε, defines the rate with which exploration of the choices occurs
(by choosing a batch at random) as opposed to exploiting the
batch with the highest reward. Due to the non-convex nature
of training an ANN, we can view the training of the ANN as
a multi-armed bandit problem. For multi-class classification,
certain classes are learned more rapidly depending on the data
that has been presented to the network to train it. By using the
concept of batches of data split according to their “easiness” as
introduced by curriculum learning, we can treat this as a problem
of choosing the right data to train the network on in order to
maximise our reward which in this case is the general accuracy
of the model in a multi-class classification.

Algorithm 1 shows how the multi-armed bandit problem was
applied for training. We begin by defining the exploration rate,
ε, how many batches of data we have, Nchoices, and how many
attempts we have at training the network with the batches, Na.
We also initialise vectors of zeros of the same length as the
number of training data batches, K and P .

For a value of ε = 0.1, the bandit would explore (choose
a different training data batch at random) 10% of the time.
Otherwise the bandit will choose the training data batch that
has the greatest probability of returning maximal reward.

Once the training data batch has been chosen we train using
these data. The reward is then calculated. For multi-class clas-
sification, we require a reward function that will improve the
accuracy of prediction over all classes and not just the classes that
are more prevalent in the data. We therefore define our reward
function with respect to the learning rate of all the classes as
well as the performance on the validation set to ensure that the
model does not overfit.

R =

C∑
i=1

δni − δn−1
i

δn−1
i

×An
v (5)

where An
v is the validation set accuracy of the current training

episode, δ is the accuracy of class i over the training set and n is
the current training episode. By incorporating An

v , as soon as the
model begins to overfit on the training data, reward due to the
first term in Equation 5 will increase; however, any detriment
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Algorithm 1: The Multi-Armed Bandit for Training of the
Network After Initially Trained With a Curriculum.

1: Procedure INITIALISATION

2: rate of exploration = ε
3: resource available = Na

4: Prob. curriculum batch gives max reward = P
5: Num. training data batches = Nchoices

6: Count of number of times batch is chosen = K
7: Batches by Mahalanobis distance = cbatches
8: loop:
9: for i in Na do:

10: if ε > u ∼ U(0, 1) then
11: batch = cbatches[int(u ∼ U(0, Nchoices))]
12: else
13: batch = cbatches[argmax(P )]
14: Train on batch and find accuracy on training set
15: i0 → A0

T =
∑C

j (δj)

16: i1:Na
→ Ai

T =
∑C

j ((δ
i
j − δi−1

j )/δi−1
j )

17: Test on validation set
18: Ai

v = overall accuracy on validation set
19: reward = Ai

T ×Ai
v

20: K[batch] = K[batch] + 1
21: α = 1/K[batch]
22: P [batch] = P [batch] + α× (reward−P [batch])

to the general performance will be reflected by An
v which will

prevent the reward increasing (i.e, a decrease in the accuracy
over the validation set would lead to the sum of the learning
gradients being multiplied by a small number thereby reducing
the reward).

D. Prediction Interpretation

After training the model it is useful to understand from the
clinical perspective why the model has made its predictions and
why errors arise. We investigate this by modifying the architec-
ture of our model slightly. We add a layer of weights to the input
space that are multiplied element wise by the inputs changing
the function approximator from f(y | x; θ) to f(y | win 
 x; θ).
Having multiplied the inputs, x, by the weightswin we then pass
the weights through the softmax function to find the relative
importance of each feature to the prediction and then add the
entropy of this output to the cost function. We therefore change
our cost-function so that it now becomes:

L (θ) = −
⎛
⎝g (win) log (g (win)) +

∑
j

(yj log (ŷj))

⎞
⎠ (6)

where g implies the softmax,win are the pre-multiplying weights
of the inputs, yj is the real one-hot label of the prediction, ŷj
is the models predicted distribution over the classes and j is
the data point. Using this loss we then use backpropagation as
usual and update both θ, the network weights, and win. The
effect of this function is to encourage sparsity in the inputs while
maintaining the objective of classifying the patients. This will
allow us to see the most important features for this prediction
problem. We train until we achieve the same accuracy as was

TABLE I
TABLE CONTAINING THE PATIENT SPECIFIC FEATURES AVAILABLE AT INITIAL

MEDICAL ASSESSMENT THAT WERE USED IN ALL OF THE MODELS

achieved previously with the knowledge that we have achieved
the maximum performance possible with as sparse a feature
space as possible.

V. DATASET

In this study we considered the patient data collected in the
electronic health records (EHR) of Oxford University Hospitals
(OUH), between January 2013 and April 2017. De-identified
patient data were obtained from the Infections in Oxfordshire
Research Database (IORD) which has generic Research Ethics
Committee, Health Research Authority and Confidentiality Ad-
visory Group approvals (14/SC/1069, ECC5-017(A)/2009). The
EHR stores all digitally recorded data on an incoming patient.
This includes administrative (e.g. date and time of arrival),
demographic (e.g. age, gender and so on), as well as physiolog-
ical and medical information (e.g. vital sign measurements and
medical tests ordered during the patient’s visit). Any historical
data stored about the patient will also be available in the EHR
upon their next arrival to the ED. To avoid learning from events
where patients are admitted to wards not appropriate for their pri-
mary diagnosis and treatment, i.e. wards from another medical
specialty, we exclude these admissions from the dataset. We filter
patients according to whether or not their primary diagnosis code
for the visit clearly corresponds to an appropriate label for their
treatment (i.e., which ward they are admitted to). Those admitted
to a ward obviously not appropriate for their treatment were
disregarded. The features used for prediction can be found in
Tables I and II. Only patients who were admitted in an emergency
and who had a full set of the features listed in the appendix were
considered providing a dataset of 9324 patients. The full dataset
contains data from 51,277 unique patients admitted to the OUH
via the ED. Upon filtering to only include adults and inclusion
of a full feature set, our dataset reduces to 9,324. As a result,
we seek to initially keep all features to prove that the problem is



294 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 1, JANUARY 2021

TABLE II
TABLE CONTAINING THE ENVIRONMENTAL/HOSPITAL FEATURES

THAT WERE USED IN ALL OF THE MODELS

TABLE III
TABLE CONTAINING THE FEATURES USED FOR MORTALITY
PREDICTION ON THE MIMIC-III DATASET. FEATURES ARE

DEFINED IN MIMIC-III DOCUMENTATION

predictable before looking in future work as to how to reduce the
number of features we are dependent upon to maximise utility
to the hospital. A training set of 60% of the dataset was used
and was balanced (on the basis of admitted ward group) leaving
5327 patients for training on. The validation set was 20% of the
dataset and testing was also 20% and the classes were kept in
the same distribution as the original dataset.

To validate the efficacy of the methodology we implement the
algorithm on another classification problem from the MIMIC-III
dataset in the next section [28]. The patients for this dataset are
also emergency patients only and have all features available. This
provides us with a dataset of 8806 patients. These were split into
the same train-validation-test proportions as before with only
the training set being balanced as before. As MIMIC-III is an
ICU focused dataset, replicating the experiment we have carried
out with the OUH dataset is not possible. As a result we create
a new problem of classifying the mortality of patients (binary
classification) based on 11 features that are available early in the
patient’s admission. All features used are shown in Tables I, II
and III.

VI. RESULTS AND DISCUSSION

The OUH hospital in consideration has a total of 108 unique
wards. To create a more meaningful and useful predictor, these
were grouped by experienced clinicians working in the hospital
into seven ‘ward types’ based on the type of patient that is
admitted and the function of the ward. These are medical,
cardiac, neurosurgical/neurology (neuro), trauma, ICU, surgical
and general / obstetrics & gynaecology (general/O&G) ward
types.

The aim of the algorithm is to classify the patient as being
admitted to one of these seven ward types. Initially, a multiple

TABLE IV
MAXIMUM PERFORMANCE OF VARIOUS MODELS ON WARD TYPE

PREDICTION FOR THE INDIVIDUAL WARD TYPES. WE TEST AN SVM,
FEEDFORWARD DEEP NEURAL NETWORK TRAINED BY STOCHASTIC

MINI-BATCH TRAINING (FF-NN), CURRICULUM LEARNING WITH A DEEP
NEURAL NETWORK (CL) AND OUR PROPOSED METHOD CURRICULUM
LEARNING AND MULTI-ARMED BANDIT TRAINING (CL-MAB). CHANCE

CORRESPONDS TO AN ACCURACY OF 14% AND AN AUC OF 0.5

logistic regression and an SVM were used for the task (trained
using stochastic gradient descent). These however provided poor
performance, with the prediction accuracy being 14% for both
methods, close to that of chance given a seven class classifica-
tion. We then implemented our curriculum training methodology
on both simple classification models as is undertaken in [29],
to determine whether or not the proposed curriculum learning
could improve their performance. We found that a simple linear
regression model had its classification accuracy unchanged with
or without curriculum learning, whereas the SVM improved
from 14% accuracy to an average of 17% accuracy when us-
ing the curriculum only, and to an average of 21% when the
curriculum is combined with the proposed multi-armed bandit.

In Fig. 1 we implement a feedforward neural network for the
hospital admission location problem. Use of the feedforward
network provides good performance for the multiclass classifica-
tion for some classes but not for all as indicated in Table IV. The
maximum accuracy achieved on the valdiation and held-out test
sets was 39% over all classes. However it can also be seen from
Fig. 1 that the loss and accuracy plots are very noisy. The five
different seeds all provide very different performances at the end
of training with a difference of approximately 10% performance
on the validation set as seen in the accuracy plot in Fig. 1. The
range of losses shown in the loss plot indicates to us that after
training the five seeds have found different local minima within
the weight space. This indicates that this is not a very stable
place from which to launch a non-stationary bandit search of
the weight space as for different seeds we will be starting our
optimisation from different locations and our final performance
will be dependent on the inital seed.

In Fig. 2 we repeat the experiment however this time incor-
porating a curriculum into the training regime. Using a Maha-
lanobis based curriculum not only achieves a higher maximum
accuracy overall (46% over all classes) than stochastic mini-
batch training, but also smoothes out the accuracy and loss of
the five seeds. As can be seen in Fig. 2, The range between the
best performing and worst performing seeds is much smaller.
We also see in the loss plot that all seeds eventually converge
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Fig. 1. Batchwise training for five separate seeds. Shaded regions
indicate maximum and minimum performance.

Fig. 2. Mahalanobis curriculum for five separate seeds. Shaded re-
gions indicate maximum and minimum performance. The red line shows
the maximum accuracy achieved on the validation set and held-out test
set.

Fig. 3. Curriculum followed by a multi-armed bandit batch selector
for five seeds with shaded regions indicating maximum and minimum
performance. The validation set is plotted alone for clarity. The red
line shows the maximum accuracy achieved on the validation set and
held-out test set.

to the same loss, indicating that due to the curriculum all of the
seeds have converged to a very similar local minimum. This not
only improves the performance for the whole classification but
also improves the performance of the individual classes that did
not perform well initially which can again be seen in Table IV.

The losses and the accuracies being much smoother provides
us with a stable basis to begin an exploration vs. exploitation
approach to training the network.

The multi-armed bandit is then incorporated into Fig. 3, show-
ing how the bandit explores until it finds the best batches to train
the network on given what has previously proven successful.
We are able to exploit the batches of data in the curriculum
to provide us with a better or equal performance to a network
trained only using a curriculum. We see in Fig. 3 that the
average accuracy initially decreases due to the exploration that
is required and eventually jumps to a value of 52% accuracy
overall, the strongest average from any of our training regimes.
The performance eventually falls from 52% over all classes due
to the algorithm being constrained to continue selecting batches
to train on, moving the weights out of the region of the weight
space that achieved 52% accuracy.

For all experiments, the performance is recorded and the best
performing model saved as the optimal model. Each method is
trained until the onset of overfitting is exhibited. Figs. 1 and 2
show performance on the training and validation sets, whereas
Fig. 3 shows the performance on the validation set. The valida-
tion accuracies reported were also found on the held-out test set.
The optimal network architecture found after cross-validation
was a 5 layer deep network with 100 nodes on the hidden
layers, all activated by the ‘relu’ function. The optimal batch
size was 90 for stochastic mini-batch training, the temperature
of the output ‘softmax’ was 2 and momentum for the stochastic
gradient descent was 0.9.

We also experimented using the curricula from [5], [29], [30]
and [22] to organise input data. We found that these achieved
average accuracies of 40%, 40%, 43% and 42% respectively for
curriculum learning, whereas our method achieved 46%. When
incorporating the multi-armed bandit, these curricula achieved
accuracies of 45%, 46%, 49% and 46%, whereas ours achieved
52%.

To further examine the efficacy of this method, we carry out an
experiment using the publicly available MIMIC-III dataset [28],
[31]. We see from Fig. 4 the stochastic mini-batch training once
again providing highly variable performance with a maximum
performance of 61%. Fig. 5 shows the curriculum regime, once
again converging the losses and achieving a better maximum
accuracy for all seeds achieving 66%. Finally, Fig. 6 shows
that our algorithm once again produces the best maximum
performance of 69.5% by combining the curriculum regime with
the MAB after a brief period of exploration. The curriculum
once again smoothes out the losses into a similar minimum
in order to provide a stable point from which to launch an
exploration of the weight space. The multi-armed bandit then
exploits the positioning in the weight space to find a better
local minimum. As before the best performing model is saved
out before continuing experimentation with the batches. Figs. 4
and 5 once again report results on training and validations sets
and Fig. 6 is displayed only on the validation set. We again
find that the reported validation accuracies were also found
on the held-out test set. We have therefore shown that this
training scheme produces a better performance for two separate
classification problems from two separate datasets.
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Fig. 4. Batchwise training for five separate seeds on the MIMIC-III
dataset. Shaded regions indicate maximum and minimum performance.
The red line shows the maximum accuracy achieved on the validation
set and held-out test set.

Fig. 5. Mahalanobis curriculum on the MIMIC-III dataset for five sep-
arate seeds. Shaded regions indicate maximum and minimum perfor-
mance. The red line shows the maximum accuracy achieved on the
validation set and held-out test set.

Fig. 6. Curriculum (orange) followed by a multi-armed bandit batch
selector (blue) on the MIMIC-III dataset. The mean performance of the
differently seeded models on the validation set is plotted alone for clarity.
The red line shows the maximum accuracy achieved on the validation
set and held-out test set.

To analyse the performance of our approach across the seven
ward-types in the OUH dataset we look at the AUCs of the
unique classes after training with the different regimes.

We see that the best performance is achieved by the com-
bination of the curriculum learner and multi-armed bandit, the

Fig. 7. Visualisation of clustering of the latent representations of the
final layer using the t-SNE algorithm.

TABLE V
PROPORTION OF PATIENTS FROM EACH CLASS WHO HAD THE FOLLOWING

TESTS CARRIED OUT. ALL PATIENTS IN THIS TABLE WERE CORRECTLY
PREDICTED BY THE MODEL. VALUES ≥ 15% ARE HIGHLIGHTED IN BOLD.

CLASSES ARE: 0 - MEDICAL REST, 1 - CARDIAC, 2 - NEUROLOGY,
3 - TRAUMA, 4 - ICU, 5 - SURGICAL REST, 6 - GENERAL REST

incorporation of the latter improving the prediction performance
on groups 2 and 6 without detriment to the other classes. We
further investigate by extracting the latent representation of our
test data from the embedded space of the final layer in the
network after training. We then apply the t-SNE algorithm [32]
to view the clusters that are formed within that space.

The result in Fig. 7 shows that there are some well defined
clusters, coloured by orange, pink, turquoise, red and lilac.
However there are two clusters (which correspond to classes
2 and 5) which are not clearly defined by colour and this can be
explained as they have low AUC values (see Table IV).

To gain a clearer understanding of why the AUCs for the
separate classes are different we use the modified architecture
that was described in Section IV-D to interpret feature im-
portance. We retrain the modified architecture to achieve the
same accuracy as the previous network while minimising the
temperature of the softmax from the input layer to achieve as
‘peaky’ a distribution as possible over the input features. We
then extract the trained weights of the inputs, win. The only
features that have weights in the sparse vector (and are therefore
considered important for the prediction) are listed in Table V
and Fig. 8. Tables V and VII in Appendix A show the binary
features which were found to be important for prediction. Figs. 8
and 10 in Appendix A show how frequently previous diagnoses
appear for patients admitted to a certain ward type. These were
compared with the previous diagnoses of the patients admitted
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Fig. 8. Historical diagnosis code by admission location for incorrectly
predicted patients. Plots are of frequency of appearance by encoded
diagnosis code.

to each ward type for the whole dataset and where there was
overlap in the diagnoses, these were boxed and labelled as seen
in Fig. 8(b).

We see from Tables V and VII that the model has learned
a distribution based on these ‘important’ features. These tables
explain why the model does not predict accurately for all pa-
tients.

� The blood culture test is predominantly carried out for
patients who go on to be admitted to classes 0 and 4 which
correspond to the ‘medical’ wards and the ICUs. This
test is used to check for bloodstream infection which can
have serious complications and as a result, the model has
learned to associate a request for this test with admission
under medicine, representing most patients admitted with
an infection, and with the need for intensive care.

� Cardiac enzyme tests are those that are used to indicate
a heart attack has occurred or is occurring or if there
is blockage in the heart’s arteries [33]. It is therefore

unsurprising that the model associates this test with class
1, which corresponds to the ‘cardiac’ ward types.

� Blood cross-matching (the procedure of searching for
appropriate blood to use if a transfusion is required) is
a common test asked for from patients who are usually
admitted to classes 2, 3 and 4 corresponding to ‘neuro’,
‘trauma’ and ‘ICU’ ward types respectively. This rep-
resents the a subset of patients likely to require surgery
during their admission.

� The frequent flier flag is mostly associated with patients
admitted to surgical wards (class 5). It is not immediately
clear why this is. However, it is hypothesised that this ward
function may act as a spare space where beds are available
for emptying the ED.

� Pregnancy tests are correlated with the general rest wards
(class 6). This likely reflects that admissions under obstet-
rics and gynaecology fall into this group of patients.

Using the tables and figures we can now see how the predic-
tions are determined.

1) Class 0 (‘Medical’ ward type) are mainly predicted by a
blood culture test request and no other tests.

2) Class 1 (‘Cardiac’ ward type) are dominated by having
only a cardiac enzyme test requested and no others. Pres-
ence of a previous diagnosis of a rheumatic, hypertensive
or ischemic disease further increases the likelihood of
admission.

3) Class 2 (‘Neuro’ ward type) are predicted by a blood
cross-matching request and previous diagnoses, the most
prevalent of which correspond to ‘aortic valve stenosis
with insufficiency’. These are documented in the liter-
ature to highly correlate with stroke [34], possibly ex-
plaining the reason for these patients’ predicted admission
to Neuro. Upon investigation of the dataset, 86% of the
patients who had been previously diagnosed with aortic
stenosis would go on to have a subsequent diagnosis
associated with cerebral infarction or stroke.

4) Class 3 (‘Trauma’ ward type) is characterised again by a
blood cross-match but with different previous diagnoses.
In this instance the diagnosis (indicated by the red spikes
in Figs. 8(d) and 9(d)) corresponds to nonspecific lym-
phadenitis or swelling of the lymph nodes. This is not
descriptive enough to gain a physical insight as to why
this classification is made. These patients are generally
older than the average age of the population of the dataset
(65 years old vs. 60 years old generally) and are at a
greater risk of previous accidental harm. It is therefore
expected that our CL-MAB algorithm has associated a
common previous diagnosis code with the greater age
of this population and therefore a greater risk of injury.
Further investigation would be required to verify that this
indeed is the association learned by the algorithm for this
patient subset.

5) Class 4 (‘ICU’ ward type) is characterised by a request
for blood culture, cardiac enzymes and blood cross-
matching. This wide spectrum of tests requested is ini-
dicative of the critical condition the patient is likely to be
in upon presentation.
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Fig. 9. Performance of the model by month for the 4 years of data
included in the dataset. The black solid line is the overall accuracy over
the four years. The red shaded area shows the winter flu seasons and
the solid red lines show the average performance of the model during
those flu seasons.

TABLE VI
THE TOTAL POPULATION OF THE DATASET IS TABULATED HERE

USING THEIR REAL WARD TYPES AS THE LABEL. VALUES ≥ 15%
ARE HIGHLIGHTED IN BOLD

6) Class 5 (‘Surgical’ ward type) is also characterised by
a Cardiac Enzyme test requested. It is also not clear if
having a ‘Frequent Flier’ flag causes the prediction.

7) The cause of a prediction of class 6 (‘General / O&G’
ward type) is mainly due to a pregnancy test and this is
most likely due to the inclusion of O&G admissions in
this ward type.

The overlap in important features for the ‘neuro’ and ‘trauma’
classes may also explain the difference in AUCs reported in
Table IV. It is very possible that many ‘neuro’ admissions are
predicted to be ‘trauma’ due to the similarity in their input impor-
tance. This may also be the case for ‘surgical’ and ‘cardiac’ ad-
missions. To improve our model it will be important to determine
if there are further specific features that can be obtained at ED
triage time for all classes that may help distinguish these classes.

For comparison we check the distribution of these features for
the whole population using the real labels of what ward type each
patient was admitted to. The distribution is shown in Table VI.

From Table VI we see that the model has learned the under-
lying distribution quite accurately. The exceptions are in classes
5 (‘Surgical’) and 6 (‘General/O&G’). For Class 6, we see the
pregnancy test is not very important for prediction but the blood
cross-match is. This motivates the introduction of a gender-
specific model. For Class 5 the model has not learned that a blood
culture test request as well as a cardiac enzymes test request are
most indicative for this class and not the frequent flier flag. This
may explain the reason for the poor performance in AUC for

class 5. Class 2 (‘Neuro’) also has a relatively poor performance
and based on the distributions in Tables V, VI and VII, it could be
due to blood cross-matching tests being important features for
classes 3 (‘Trauma’) and 4 (‘ICU’) as well. To further improve
the performance of the model we will investigate further features
that are more specific to the individual ward types, as well
as developing separate models for male and female patients.
Another limitation of our work is that some patient admissions
require specific equipment which can only be found in certain
wards [35]. A future model should incorporate this requirement
to maximise usefulness of the model to clinicians.

To further examine the usefulness of the model to clinical
staff we investigate its performance plotted over time. Fig. 9
shows how the model performance varies with time. The red
shaded regions indicate the winter flu seasons where the ED gets
busiest with admissions. We see that the model does not suffer
significant degradation in performance due to winter pressures.
In addition in three out of four of the flu seasons the model
performs better than the yearly average. We believe this could
be due to the grouping of wards into ward functions as opposed
to individual wards, which bypasses the problem of patients
being admitted to a ward atypical for their condition but still
capable of treating the patient. However this may also be due to
our preprocessing step of removing patients obviously admitted
to an inappropriate ward for their diagnosis. While this filters
the obvious cases, it does not remove all such cases from the
dataset. We therefore believe that this model could still be useful
in helping clinicians during busy periods to request bed space
well in advance of the need for it to allow timely admission of
patients from the ED and into the hospital ward.

VII. CONCLUSION

In this article we have presented a novel method of training
and regularising deep learning model with the aim of predicting
where a patient presented to the ED will be admitted in an OUH
Trust hospital. This prediction will aid in the provision of timely
care and treatment for the patient and those still in the ED.
Our model achieves AUC values between 0.60 and 0.78 for the
individual ward types. Furthermore, our model also provides an
explanation as to the cause of the predictions, allowing the user
to incorporate more important features for individual ward types
in the future. The authors believe this may be useful for ensuring
timely admission to hospital and reducing the time to care. This
will in turn improve the quality of care for patients still in the ED
due to less crowding. This work may also be useful for resource
prediction and optimisation in hospitals more generally.

VIII. FUTURE WORK

The model presented in this work is first trained using a
curriculum and then using the curriculum batches a multi-armed
bandit is employed to improve the performance. While the
algorithm described in Algorithm 1 is non-stationary, it is weakly
non-stationary relying on the number of pulls of a certain batch to
reduce the probability of choosing said batch. As a result, we will
improve this by turning this problem into a full reinforcement
learning problem. Treating the weights of the network as the
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TABLE VII
ALL PATIENTS IN THIS TABLE WERE INCORRECTLY PREDICTED BY

THE MODEL TO BELONG TO THESE CLASSES. VALUES ≥ 15%
ARE HIGHLIGHTED IN BOLD

Fig. 10. Historical diagnosis code by admission location for correctly
predicted patients. Plots are of frequency of appearance by encoded
diagnosis code.

state space, we will train a policy to select the best action to
take (batch to train on) given the state space. We believe this
will be a much more effective method of training due to the
information provided to the trainer about the state of the weights
of the network.

We would also like to further investigate features that can be
obtained from the ED which correlate highly with the individual

ward types. In doing so we will be able to reduce the input feature
space and advise clinicians in the ED what needs to be measured
for this prediction problem. It is hoped that by doing this, we
will be able to mitigate the problem of missing features which
can commonly happen in models with large input spaces. We
will continue investigating methods of identifying when patients
were admitted to wards that were not ideal for their treatment.
We believe that finding these cases will help to improve the
performance of our models due to their reliance on historical
data. We will also seek to integrate data on the equipment used
during a patient stay to better inform the model of which wards
are appropriate for admission.

Disclosure: David Eyre has received lecture fees and confer-
ence expenses from Gilead.

APPENDIX

INCORRECT PREDICTIONS DISTRIBUTION

For comparison, we show the distribution of the features of
patients who were predicted to be one of these classes but the
classification was incorrect. These results are shown in Table VII
and Fig. 10.
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diabetes using neural networks on small mobile devices,” Expert Syst.
Appl., vol. 39, no. 1, pp. 54–60, 2012.

[2] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2017, pp. 1903–1911.

[3] Z. Liang, G. Zhang, J. X. Huang, and Q. V. Hu, “Deep learning for health-
care decision making with emrs,” in Proc. IEEE Int. Conf. Bioinformatics
Biomed., 2014, pp. 556–559.

[4] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

[5] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proc. 26th Annu. Int. Conf. Mach. Learn, 2009, pp. 41–48.

[6] V. A. Convertino et al., “Use of advanced machine-learning techniques for
noninvasive monitoring of hemorrhage,” J. Trauma Acute Care Surgery,
vol. 71, no. 1, pp. S25–S32, 2011.

[7] P. Gueth et al., “Machine learning-based patient specific prompt-gamma
dose monitoring in proton therapy,” Phys. Med. Biol., vol. 58, no. 13, p.
4563, 2013.

[8] J. Labarère, P. Schuetz, B. Renaud, Y.-E. Claessens, W. Albrich, and B.
Mueller, “Validation of a clinical prediction model for early admission to
the intensive care unit of patients with pneumonia,” Academic Emergency
Med., vol. 19, no. 9, pp. 993–1003, 2012.

[9] O. Hasan et al., “Hospital readmission in general medicine patients: A
prediction model,” J. General Internal Med., vol. 25, no. 3, pp. 211–219,
2010.



300 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 1, JANUARY 2021

[10] A. K. Diehl, M. D. Morris, and S. A. Mannis, “Use of calendar and
weather data to predict walk-in attendance.” Southern Med. J., vol. 74,
no. 6, pp. 709–712, 1981.

[11] J. F. Fernandez, O. Sibila, and M. I. Restrepo, “Predicting ICU admission in
community-acquired pneumonia: Clinical scores and biomarkers,” Expert
Rev. Clin. Pharmacology, vol. 5, no. 4, pp. 445–458, 2012.

[12] H. Zhai et al., “Developing and evaluating a machine learning based
algorithm to predict the need of pediatric intensive care unit transfer for
newly hospitalized children,” Resuscitation, vol. 85, no. 8, pp. 1065–1071,
2014.

[13] H. Xu, W. Wu, S. Nemati, and H. Zha, “Patient flow prediction via
discriminative learning of mutually-correcting processes,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 1, pp. 157–171, Apr. 2017.

[14] P. R. E. Jarvis, “Improving emergency department patient flow,” Clin. Exp.
Emergency Med., vol. 3, no. 2, p. 63, 2016.

[15] K. Pascasie and N. G. Mtshali, “A descriptive analysis of emergency
department overcrowding in a selected hospital in kigali, rwanda,” African
J. Emergency Med., vol. 4, no. 4, pp. 178–183, 2014.

[16] M. Saeed et al., “Multiparameter intelligent monitoring in intensive care II
(MIMIC-II): A public-access intensive care unit database,” Critical Care
Med., vol. 39, no. 5, p. 952, 2011.

[17] A. Staib, C. Sullivan, J. B. Prins, A. Burton-Jones, G. Fitzgerald, and I.
Scott, “Uniting emergency and inpatient clinicians across the ed–inpatient
interface: The last frontier?” Emergency Med. Australasia, vol. 29, no. 6,
pp. 740–745, 2017.

[18] R. Francis, Report of the Mid Staffordshire NHS Foundation Trust public
Inquiry: Executive Summary. vol. 947. The Stationery Office, 2013.

[19] E. Somoza and J. R. Somoza, “A neural-network approach to predict-
ing admission decisions in a psychiatric emergency room,” Med. Decis.
Making, vol. 13, no. 4, pp. 273–280, 1993.

[20] E. L. Allgower and K. Georg, Numerical Continuation Methods: An
Introduction. vol. 13. Berlin, Germany: Springer 2012.

[21] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher-student
curriculum learning,” 2017, arXiv:1707.00183.

[22] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” in Proc. 34th Int.
Conf. Mach. Learn., 2017, vol. 70, pp. 1311–1320.

[23] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochas-
tic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1, pp. 48–77,
2002.

[24] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intelli-
gence: Understanding, visualizing and interpreting deep learning models,”
2017, arXiv:1708.08296.

[25] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: Review, opportunities and challenges,” Briefings Bioinfor-
matics, vol. 19, no. 6, pp. 1236–1246, 2017.

[26] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The maha-
lanobis distance,” Chemometrics Intell. Lab. Syst., vol. 50, no. 1, pp. 1–18,
2000.

[27] J. Gittins, K. Glazebrook, and R. Weber, Multi-Armed Bandit Allocation
Indices. Hoboken, NJ, USA: Wiley, 2011.

[28] A. E. Johnson et al., “MIMIC-III, a freely accessible critical care database,”
Scientific Data, vol. 3, 2016, Art. no. 160035.

[29] A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning of
multiple tasks,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2015, pp. 5492–5500.

[30] S. Appalaraju and V. Chaoji, “Image similarity using deep CNN and
curriculum learning,” 2017, arXiv:1709.08761.

[31] A. L. Goldberger et al., “Physiobank, physiotoolkit, and physionet: Com-
ponents of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[32] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data
using T-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[33] B. D. McCarthy, J. B. Wong, and H. P. Selker, “Detecting acute cardiac
ischemia in the emergency department,” J. General Internal Med., vol. 5,
no. 4, pp. 365–373, 1990.

[34] J. Oliveira-Filho, A. R. Massaro, F. Yamamoto, L. Bustamante, and M.
Scaff, “Stroke as the first manifestation of calcific aortic stenosis,” Cere-
brovascular Diseases, vol. 10, no. 5, pp. 413–416, 2000.

[35] C. Sullivan, A. Staib, R. Eley, A. Scanlon, J. Flores, and I. Scott, “National
emergency access targets metrics of the emergency department–inpatient
interface: Measures of patient flow and mortality for emergency admis-
sions to hospital,” Australian Health Rev., vol. 39, no. 5, pp. 533–538,
2015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


