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Abstract—In this article, we propose a novel neuromus-
cular password-based user authentication method. The
method consists of two parts: surface electromyogram
(sEMG) based finger muscle isometric contraction pass-
word (FMICP) and neuromuscular biometrics. FMICP can
be entered through isometric contraction of different fin-
ger muscles in a prescribed order without actual finger
movement, which makes it difficult for observers to obtain
the password. In our study, the isometric contraction pat-
terns of different finger muscles were recognized through
high-density sEMG signals acquired from the right dorsal
hand. Moreover, both time–frequency–space domain fea-
tures at macroscopic level (interference-pattern EMG) and
motor neuron firing rate features at microscopic level (via
decomposition) were extracted to represent neuromuscu-
lar biometrics, serving as a second defense. The FMICP
and macro–micro neuromuscular biometrics together form
a neuromuscular password. The proposed neuromuscular
password achieved an equal error rate (EER) of 0.0128 when
impostors entered a wrong FMICP. Even when impostors
entered the correct FMICP, the neuromuscular biometrics,
as the second defense, inhibited impostors with an EER of
0.1496. To the best of our knowledge, this is the first study
to use individually unique neuromuscular information dur-
ing unobservable muscle isometric contractions for user
authentication, with training and testing data acquired on
different days.
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I. INTRODUCTION

THE DEMAND for secure user authentication systems is
soaring in a wide variety of application scenarios, such as

automatic teller machines (ATMs), access to mobile phones, se-
cure payment, and even the permission to use military weapons.
Approaches for user authentication can be divided into three
categories, namely “what the user knows” (such as passwords),
“what the user has” (such as ID cards), and “what the user is”
(such as biometrics). However, these three approaches each have
their own limitations. Passwords are easily stolen by surveillance
cameras or “shoulder surfing.” ID cards can also be accidentally
lost or deliberately stolen. Besides, it is inconvenient to carry
around an ID card all the time. Biometrics such as deoxyribo-
nucleic acid (DNA), human face [1], fingerprint [2], iris [3],
and physiological signals [4], [5] can, to a certain extent, make
up for the disadvantages of the above approaches. However,
all of the existing biometrics modalities have drawbacks. DNA
is easily stolen through saliva and lost hair. The face and iris
can be captured through depth photography. Fingerprints can be
acquired through any touched surface and forged with plastic
molds. Worse still, all the existing biometrics-based passwords
are noncancelable. In other words, if the information from
DNA, face, iris, or fingerprints is stolen, the user cannot vo-
litionally replace them. Additionally, users may use the same
biometrics in different applications. If the biometric template in
one application is stolen, the ones in all other applications are
compromised due to the noncancelability. On the other hand,
novel biometric modalities based on physiological signals such
as the electroencephalogram (EEG) [4] and electrocardiogram
(ECG) [5] show great promise since they are difficult to steal or
forge. However, their user authentication accuracy is currently
far too low to support their practical application.

In contrast, surface electromyogram (sEMG) has shown dif-
ferent characteristics across subjects in multiuser myoelectric
interface techniques [6]. This property indicates that sEMG
might be employed as a new biometrics modality. Compared
with EEG modality, the sEMG signal is convenient to collect.
Furthermore, the sEMG signal characteristics vary with different
muscle contraction patterns, allowing a second encryption—
beyond a first encryption found through designing a unique
pattern to exert force. So far, very few studies have explored the
feasibility of sEMG as an authentication modality. Two previous
studies have employed sEMG under specific hand gestures as
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biometrics [7], [8]. Other applications of sEMG signals have
only been investigated as a complement to other biometric
modalities (ECG [9] and keystroke dynamics [10], for example).
However, the signal variability on different days was not taken
into consideration in all the aforementioned studies. The training
and testing data were not strictly recorded on different days.
Besides, both the gestures in [7] and [8] and the keyboard typing
in [10] were observable to impostors so that impostors can mimic
users’ gestures and motions to generate similar sEMG signals.

In this article, we propose a new user authentication paradigm
based on neuromuscular password. The neuromuscular pass-
word can realize double security through finger muscle iso-
metric contraction password (FMICP) and high-density sEMG
(HD-sEMG) based neuromuscular biometrics. First, FMICP is a
new password entry mode allowing users to enter the password
through isometric contraction of different finger muscles in a
prescribed order, without actual finger movements. Isometric
contraction, in contrast to dynamic movement, is one kind of
muscle contraction pattern during which the muscle tension
increases but length remains the same. Since the finger orienta-
tions remain static during the password entry process, stealing
the password becomes more difficult through peeping. Second,
we acquired 64-channel HD-sEMG signals from the dorsum
of the user’s right hand when the subject performed isometric
contraction of different finger muscles to enter the FMICP. The
isometric contraction patterns of different finger muscles can
be recognized between individuals through HD-sEMG signals.
The HD-sEMG allows information mining in the spatial domain,
as a complement to the time–frequency domain. Features in
the time–frequency–space domain represent the macroscopic
characteristics of neuromuscular biometrics. Moreover, the dis-
charge timings of several individual motor units (MUs) at the
microscopic level can be obtained through decomposition of the
global HD-sEMG [11] using independent component analysis
(ICA) [12]. The average firing rate (FR) of all obtained MUs
summarizes the microscopic characteristics of neuromuscular
biometrics. The FMICP and macro–micro neuromuscular bio-
metrics together can be referred to as neuromuscular password.
The HD-sEMG signal data for the model training and testing of
the proposed authentication system were acquired on two dif-
ferent days (nine-day apart on average) for each subject. To the
best of our knowledge, this is the first study to evaluate the effec-
tiveness of neuromuscular information for user authentication,
with training and testing data for validation acquired on different
days. This study is also the first to employ a second encryption
for HD-sEMG-based neuromuscular biometrics through the im-
plicit FMICP. The proposed neuromuscular password can be
used as the supplement to the existing methods, and overcome
the aforementioned drawbacks of other authentication systems
in some scenarios.

The rest of this article is organized as follows. In Section
II, we introduce the dataset and data preprocessing method. In
Section III, the sEMG feature extraction, user authentication
algorithms, and validation methodologies are introduced. In
Sections IV and V, the results and discussion are presented,
respectively. Finally, Section VI concludes this article.

II. MATERIALS

A. Data Acquisition

Experimental data from 22 healthy subjects (ten males, 12
females; aged 21–31 years) were acquired. Each subject was

Fig. 1. Experiment setup.

Fig. 2. Schematic sequence diagram of the experiment.

informed about the experiment procedure and the research pur-
pose, and then provided written informed consent.

The 64-channel monopolar HD-sEMG signals were acquired
using the SAGA 64+ system of Twente Medical Systems In-
ternational BV at a sampling rate of 4000 Hz. The reference
electrode was placed on the head of the ulna. Before data ac-
quisition, the dorsum of a subject’s right hand was cleaned with
abrasive gel and then wiped with an alcohol cotton ball to reduce
the impedance between skin and electrodes. The 8 × 8 flexible
high-density electrode array with 8-mm interelectrode distance
was placed in the center of the dorsal aspect of a subject’s
right hand, as shown in Fig. 1. During isometric contraction
of different finger muscles, sEMG signals can be recorded on
the forearm, palm, and dorsal hand. We chose to instrument the
hand because, first, the measurement of sEMG of the forearm
is not convenient in practical use. Second, sEMG signals of the
palm can be easily disturbed by motion artifacts due to the direct
contact between the palm and a desk. Therefore, sEMG signals
from the dorsum of the hand were selected.

During data acquisition, subjects sat on a comfortable chair,
watching a computer screen and following the experiment in-
structions on the screen. Subjects were asked to place their
right hand comfortably on the experimental desk to perform the
isometric contractions with the force at a self-selected level and
exert the force at a similar level in different sessions. Subjects
were asked to perform muscle isometric contractions in their
most comfortable manner without any learning process. The
schematic sequence diagram of the experiment is shown in
Fig. 2. Each trial was compromised of a 10-s pretrial resting
period, followed by eight task-rest pairs. For each pair, subjects
performed a 3-s isometric contraction task controlling a specific
finger (or finger combination) and then had a 3-s rest. The order
of the performed task sequence was the FMICP. For each session,
ten repeated trials were performed. The subjects were asked
to inform the laboratory assistant if they performed a wrong
task or missed a task due to inattention. The whole trial was
removed from the acquired data if one of the 8 tasks in that
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Fig. 3. Framework of user authentication based on neuromuscular
password.

trial was wrong or missed. On average, 9.41 out of 10 trials
for each session were preserved for further analysis. Three data
collection sessions were acquired. For sessions 1 and 2, the same
FMICP, “HFAGCEDB,” following the symbol code in Fig. 2,
was employed. For session 3, a different FMICP, “DEAHCBGF”
with two symbols the same with that of sessions 1 and 2, was
selected. Session 1 was used as the training dataset. Sessions
2 and 3 were acquired on the same day but several days (3–23
days, 9±6.67 days on average) later after session 1, which were
used as the testing set. The electrode array was reapplied on
the second day using the same approach as day 1, with no skin
markings preserved between sessions.

B. Data Preprocessing

According to [13], the acquired HD-sEMG signals can be
disturbed by a variety of noises such as noise inherent in
electronic equipment (ranging from 0 to several thousand Hz),
noise caused by the quasi-random nature of EMG (ranging from
0 to 20 Hz) and motion artifacts (ranging from 0 to 10 Hz).
Because the noise spectrum overlaps that of HD-sEMG signals,
to tradeoff retention of HD-sEMG signals versus noise removal,
the acquired signals were bandpass filtered from 10 to 900 Hz
using an eight-order Butterworth filter. This same filter band was
also selected by previous work [14]. A 50-Hz notch filter was
then used to attenuate power line interference. We evaluated the
noise power of the preprocessed HD-sEMG signals using signals
recorded during rest. A signal-to-noise ratio (SNR) of 8.58 dB
was obtained. The filtered signals in each trial were segmented
into the eight different tasks (each of 3-s duration) for further
analysis.

III. METHODS OF ANALYSIS

As shown in Fig. 3, the framework of the neuromuscular
password can be divided into three parts: data acquisition, feature
extraction, and decision-making. The last two parts each can be
divided into two levels: the macrolevel and microlevel. Details
of the proposed method are introduced in the following.

A. Macroscopic Feature Extraction

State-of-the-art feature sets in the time–frequency domain,
consisting of sample entropy, spectral entropy, frequency me-
dian (FMD), waveform length (WL), and root mean square
(RMS)—as employed in previous studies [15], were extracted
from each channel in our work (one estimate of each from each
full 3-s task). Sample entropy can measure the complexity of
time-series. Spectral entropy can measure the complexity of time
series in the frequency domain. The FMD feature is extracted
based on the criterion that FMD splits the signal power spectral
density into two equal parts. WL is a parameter reflecting the
EMG standard deviation. RMS is an effective representation in
the time domain to discriminate different sEMG patterns.

For each of the aforementioned five features, we extracted
a 64-dimensional (64-D) feature vector with each dimension
representing one specific channel. Then we concatenated all
five features to obtain a 320-D (64×5) feature vector. The con-
catenated feature vector contains the information of the original
signal in the time–frequency–space domain at the macroscopic
level.

B. Macroscopic Matching Score Calculation

For the proposed neuromuscular password, the calculation of
matching score used for user authentication takes two factors
into consideration: 1) HD-sEMG patterns of different tasks in
FMICP to verify the matching degree of FMICP and 2) HD-
sEMG characteristics of different subjects to verify the match-
ing degree of neuromuscular biometrics. At the macroscopic
level, we integrated the two parts into one process. For each
subject (the user), a random forest classifier was trained due
to the high feature dimensionality, to discriminate patterns of
different tasks using data of that specific subject from the training
session (session 1). For new data of the user or impostors (the
remaining 21 subjects serve as the imposters), an 8-D score
vector [sA, sB , . . ., sH ] was calculated by the classifier for the
active segment of each task, where sX , X ∈ {A,B, . . .,H}
refers to the probability that the true symbol of the input data
is X . Then, the matching score of that signal segment was
calculated according to the following formula:

S(i) =
1
2
strue +

1
2M

M∑

j=1

srelevant(j) (1)

where i ∈ {1, 2, . . ., 8} is the task index, strue is the score of
the true symbol (i.e., what symbol the input data should be),
and srelevant is the score set of all relevant symbols. M is the
size of srelevant. For example, if the true symbol is “B” (iso-
metric contraction of index finger muscles), then strue = sB
and srelevant = [sF , sG] because the index finger is involved in
tasks corresponding to both “F” and “G.” Another example is
that if the true symbol is “H,” then strue = sH and srelevant =
[sC , sD, sE ]because the task corresponding to symbol “H” is the
combination of the fingers corresponding to symbols “C,” “D,”
and “E.” Due to the similar patterns between the true and relevant
symbols, the score of the true symbol is partly distributed to
the relevant fingers to some extent. Therefore, the srelevant term
in (1) is introduced to increase the robustness of the matching
score. The obtained score of the ith task can be viewed as a
soft score, which measures the similarity between the input
and signals corresponding to the true symbol in the training
set, instead of rigidly classifying the input task into a specific
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symbol. For impostors, the score of each input task is expected to
be lower than that of the user due to the different characteristics
of HD-sEMG signals, thereby preventing the impostor’s access
to the neuromuscular password. The final matching score Smacro
at the macroscopic level is the average of scores of all input
tasks: Smacro = 1

8

∑8
i=1 S(i).

C. Microscopic Feature Extraction

A significant breakthrough of HD-sEMG electrode arrays is
to shift the perspective of signal analysis from the macroscopic
to the microscopic level. In this work, we also employed neural
information at the microscopic level as part of the neuromuscular
biometrics. Since the global sEMG is the summation of hundreds
of independent motor unit action potentials (MUAPs), the MU
spike trains can be obtained through HD-sEMG decomposition
using ICA. Performance comparison of several ICA algorithms
on sEMG decomposition has been investigated in previous
work [12]. In this article, fast ICA was selected due to its high
computational efficiency [12]. The application of ICA in sEMG
decomposition can be found in [11]. Here, we give the main
steps of sEMG decomposition, shown as follows.

1) Stack the original sEMG signal and eight delayed signal
copies with one more delayed sample in each copy [11].
The number of sEMG channels is extended from 64 to
576.

2) Whiten the extended 576-channel sEMG signal through
eigenvalue decomposition.

3) Apply fastICA to the whitened sEMG signal to obtain the
independent sources corresponding to different MUs.

4) Perform peak detection and k-means clustering to identify
discharge timings (spike train) of each individual MU.

5) Remove the duplicate MUs. ICA-based sEMG decom-
position algorithm may converge repetitively to both the
same MU and its delayed replicas due to limitations of the
algorithm itself or the extension operation in step 1). If
two decomposed MUs share more than 50% synchronized
discharge events within a ±1 ms match window after
delay compensation, then remove the one with a lower
Silhouette distance value (SIL) [12]. It has been reported
that the SIL value, representing the index value of the
k-means clustering step, shows a positive correlation with
decomposition accuracy [12].

Following the steps above, the global HD-sEMG is decom-
posed into different MU spike trains. Then, we pooled all these
MUs together into one aggregative spike train. The FR of the
aggregative spike train during each 3-s period of the eight tasks
and the average FR across all of the eight tasks were extracted
to construct a 9-D feature vector.

D. Microscopic Matching Score Calculation

Due to the relatively low feature dimensionality, the 9-D mi-
croscopic features extracted from the whole period of neuromus-
cular password entry was considered as an entirety. Therefore,
the microscopic feature was not used for task pattern classifi-
cation, since the labels of eight tasks were combined. Instead,
we aimed to give a description of the feature distribution of
the specific subject (the user) in the 9-D feature space. Given
a new feature vector, either from the user or impostors, we

gave a matching score through comparison with the feature
distribution. To this end, the support vector domain descrip-
tion (SVDD) [16], also known as “one-class support vector
machine,” was used to characterize the feature distribution.
SVDD was proposed to estimate the underlying distribution of a
particular dataset. A spherically shaped boundary of the training
dataset can be constructed by finding several support vectors.
The principle of SVDD is introduced in brief.

For a dataset {Xi}Ni=1, where N is the dataset size, a sphere
with the minimum volume that contains all data is required as
the description to characterize the data distribution. However,
this procedure is normally sensitive to outliers. One outlying
sample can lead to a sphere with a large volume, which cannot
characterize the data distribution perfectly. SVDD can address
this issue by introducing slack variables ξi, allowing a couple of
remote samples outside the obtained sphere boundary. To obtain
the sphere boundary with center C and radius R, the objective
function takes the following form:

min
ξi,R,C

R2 + λ

N∑

i=1

ξi

s.t. (Xi − C)T (Xi − C) ≤ R2 + ξi

s.t.∀i, ξi ≥ 0.

(2)

The two terms in the objective function (2) quantify the volume
of the obtained sphere and the number of rejected outliers,
respectively. λ acts as a tradeoff parameter between the two
terms. According to the first constraint, a larger R can result in
a smaller ξ, which means fewer samples are outside the sphere
boundary. The detailed optimization procedure can be found
in [16]. Note that the data may not be spherically distributed.
Therefore, to obtain a compact boundary that can characterize
the data distribution accurately using a sphere, the above pro-
cedure in the original input space can be generalized to other
kernel spaces. In this work, a Gaussian kernel space was selected.
Previous study [16] has reported that the performance of SVDD
is not sensitive to different choices of parameter λ. In our work,
λ = 0.25, the same choice as [16], was selected.

For a testing sample, the distance from the sample to the center
of the hypersphere obtained by SVDD was calculated, denoted
by d. The matching score at the microscopic level was assigned
by Smicro = 1/d. The final integrated matching score was given
as: Sintegrated = (Smicro)

Smacro . Because Smacro was smoothed by
taking the average of strue and srelevant as the matching score, as
shown in formula (1), the fluctuations of Smacro are relatively
low, compared with Smicro given directly by SVDD. Therefore,
we selected the exponential form, (Smicro)

Smacro , to integrate
the matching scores from the macrolevel and microlevel, thus
balancing the contribution of the two scores. This exponential
form is equivalent to the following logarithmic form:Sintegrated =
Smacro ln(Smicro), where the contribution of Smicro is weakened
by the natural logarithm.

E. Validation Methodologies

1) Feature Quantification: We quantified both the macro-
scopic and microscopic features, to intuitively show the distribu-
tion of HD-sEMG features within and across individuals during
each isometric contraction task. At the macroscopic level, due
to the high dimensionality of the feature space, we selected the
centroid location of the 2-D RMS map as the representation
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Fig. 4. 2-D RMS map of ring finger.
Note: The red and black points are the center and centroid of the
RMS map, respectively. The RMS map was up-sampled from 8 × 8 to
80 × 80 through bicubic interpolation to obtain a sufficient resolution for
visualization.

of HD-sEMG spatial activation pattern. The 2-D RMS map
was constructed by RMS features in all channels of the 8 × 8
HD-sEMG electrode array. An example 2-D RMS map is shown
in Fig. 4. The centroid location represented by the distance of the
centroid from the center in the X-axis and Y-axis (ΔX andΔY, as
shown in Fig. 4) depicts the activation pattern of all HD-sEMG
channels. At the microscopic channel, we also quantified the FR
features. Data from sessions 1 and 2 acquired on different days
were used to obtain the distribution of features within and across
individuals.

To quantify the difference of features across different fin-
ger muscle contraction tasks, one-way analysis of variance
(ANOVA) was performed on features during individual fin-
ger muscle contractions (symbols A–E without F–H). Before
ANOVA, we performed Lilliefors test to validate that the data of
each contraction task followed a Gaussian distribution. Bartlett’s
test was also performed to ensure that all these Gaussian dis-
tributions have the same variance. Posthoc pairwise tests were
applied if statistical significance was observed.

2) Validation Protocols: In this work, we designed five vali-
dation protocols to evaluate the proposed neuromuscular pass-
word.

Protocol 1: The goal of this protocol is to evaluate the potential
of the proposed system when the impostors do not know the
FMICP. For each subject (user), we selected data in session
1 as the training set. User’s data in session 2 (same FMICP)
and impostors’ (the remaining 21 subjects) data in session 3
(different FMICP) were used as the testing set. This protocol can
simulate the scenario when the users enter the correct FMICP
and impostors enter the wrong one.

Protocol 2: This protocol is an extension of protocol 1, to
evaluate the potential of the proposed system in a more real-
istic scenario. In real-life situations, impostors can choose an
arbitrary sequence (besides the predefined ones) as FMICP to
intrude a system. Accordingly, in this protocol, we randomly
resequenced the order of all eight tasks within each trial in
session 3. For each subject (user), we selected data in session
1 as the training set. User’s data in session 2 (same FMICP)
and impostors’ (the remaining 21 subjects) data in session 3
(different FMICP after randomly resequencing the task order in
each trial) were used as the testing set. This protocol can simulate

a more realistic scenario where users enter the correct FMICP
and impostors enter an arbitrary one.

Protocol 3: The goal of this protocol is to evaluate the potential
of the proposed system when the impostors enter the correct
FMICP. For each subject (user), we selected data in session 1
as the training set. Data of both the user and impostors (the
remaining 21 subjects) in session 2 (same FMICP) were used as
the testing set.

Protocol 4: The goal of this protocol is to evaluate the
cancelability of the proposed system when the neuromuscular
password including both FMICP and neuromuscular biometrics
is stolen. As aforementioned, the user can replace the previ-
ous neuromuscular password by simply changing into a new
FMICP. For each subject (user), we selected data in session
1 as the training set. Data from the same user in session 2
(same FMICP) and session 3 (different FMICP) were used as
the testing set and assigned to the label “user” and “impostor,”
respectively.

Protocol 5: This protocol is an extension of protocol 4, to eval-
uate the cancelability of the proposed system in a more realistic
scenario, where the FMICP of the compromised neuromuscular
password can be any arbitrary sequence instead of exactly the
predefined one. In this protocol, we randomly resequenced the
order of all eight tasks within each trial in session 3, but keep
the randomly resequenced task order different from that of
sessions 1 and 2. We did so, because in realistic scenarios the
compromised and replaced FMICPs would be different. For each
subject (user), we selected data in session 1 as the training set.
Data from the same user in session 2 (same FMICP) and session
3 (different FMICP via randomly resequencing the task order)
were used as the testing set and assigned to the label “user” and
“impostor,” respectively.

Since data of session 1 were acquired nine days (on average)
before sessions 2 and 3, each of the five protocols takes signal
variation across different days into consideration.

3) Performance Evaluation Metrics: User authentication
systems usually make two types of mistakes, namely false ac-
ceptance, which means the system accepts an impostor, and false
rejection, which means the system rejects the user. Accordingly,
we used false acceptance rate (FAR) and false rejection rate
(FRR) as evaluation metrics. The equal error rate (EER), i.e.,
the FAR when FAR=FRR, was also employed as an evaluation
metric.

4) Chaotic Property Evaluation Metrics: Chaotic property
is an essential factor to evaluate the security of a biometric
modality. A chaotic biometric modality is difficult to reproduce
and robust to brutal attack. The chaotic property of biometrics
can be evaluated via entropy analysis, with a higher entropy
contributing to a more chaotic biometric modality. Because the
brutal attack can be launched in the domain of either the original
HD-sEMG signals or the extracted features, we analyzed the
chaotic property of both signal and feature domains using Shan-
non entropy. We first quantized the amplitude range of a sample
sequence (HD-sEMG signals or features). A larger number of
quantized bits contribute to a higher entropy. To avoid overeval-
uation of the chaotic property, we quantized the HD-sEMG
signals and the extracted features using only 8 bits (256 discrete
values). The Shannon entropy is given by−∑

ε pεlog2pε, where
pε is the frequency of the εth discrete value of the quantized
sample sequence, ε ∈ {1, 2, . . ., 256}. Then, the success chance
of each attempt in brutal attack was calculated by 1/2E×L, where
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Fig. 5. RMS maps of different fingers (and combinations). (a) Thumb
finger. (b) Index finger. (c) Middle finger. (d) Ring finger. (e) Little finger.
(f) Combination of thumb and index finger. (g) Combination of index and
middle finger. (h) Combination of middle, ring, and little finger.

E and L are the Shannon entropy and sample number of the
sequence (the HD-sEMG signal or feature vector).

IV. RESULTS

A. Quantification of Macroscopic
and Microscopic Features

At the macroscopic level, the representative RMS maps
of all contraction tasks are shown in Fig. 5. The centroid
distribution for a representative subject (subject 2) in the X-axis
(ΔX) and Y-axis (ΔY) is shown in Figs. 6(a) and 7(a), respec-
tively. Also, the overlap of centroid distribution for all subjects in
the X-axis (ΔX) and Y-axis (ΔY) is shown in Figs. 6(b) and 7(b),
respectively. The mean and standard deviation values of data
shown in Figs. 6 and 7 are presented in Table I. We find that the
centroid locations of RMS map in the X-axis (the medial-lateral
direction) are visibly separable for different tasks, as shown in

Fig. 6. Centroid distribution in the X-axis for all eight tasks. (a) Centroid
distribution for a representative subject (ΔX). (b) Centroid distribution
overlap for all subjects (ΔX).

Fig. 7. Centroid distribution in the Y-axis for all eight tasks. (a) Centroid
distribution for a representative subject (ΔY). (b) Centroid distribution
overlap for all subjects (ΔY).

Fig. 6. To further validate this claim, we calculated the average
centroid location of data corresponding to each finger of each
subject. ANOVA on all calculated average centroid locations
of individual finger muscle contractions yielded [F (4, 105) =
156.9, p < 0.01]. The posthoc pairwise tests achieved p < 0.05
for centroid location comparison between each finger pair in
the X-axis except that between ring and little finger. ANOVA to
compare the centroid location in the Y-axis showed no signif-
icant difference ([F (4, 105) = 1.7, p = 0.1559 > 0.05]). The
separability of different tasks (especially in the medial-lateral
direction) allows pattern recognition between different FMICPs.
Besides, as shown in Figs. 6(b) and 7(b), the centroid location
in both X-axis and Y-axis varies greatly if the distributions of
all subjects were overlapped, compared with those within a
specific subject, shown in Figs. 6(a) and 7(a). The different
characteristics of EMG signals across subjects have also been
reported in previous studies [6]. The individual difference of
sEMG at the macroscopic level makes it possible to identify a
particular user.

At the microscopic level, we quantified FR during each of the
eight tasks, as shown in Fig. 8. ANOVA on FR for symbols A–E
achieved [F (4, 105) = 4.72, p < 0.01]. The posthoc pairwise
tests achieved p < 0.05 only for FR comparison between finger
pairs thumb-index, thumb-middle, and index-little. Through a
comparison between Fig. 8(a) and (b), the intersubject variation
is much larger than that of intrasubject. Since all decomposed
MUs were pooled as a composite discharge train, the FR value
was largely determined by the number of decomposed MUs.
Previous studies on HD-sEMG decomposition have shown a
high deviation on the number of identified MUs across sub-
jects [17]. Algorithms that attempt to reduce the intersubject
variability in the number of identified MUs have been an
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TABLE I
QUANTIFICATION RESULTS OF THE MACROSCOPIC FEATURES

Fig. 8. Firing rate distribution for all eight tasks. (a) Firing rate distribu-
tion for a representative subject. (b) Firing rate distribution overlap for all
subjects.

important topic in the literature for decades [18]. The high
intersubject variability of identified MUs is due to the fact that
the muscle structure of individuals is diverse for individuals,
and only large and superficial MUs can be identified using
HD-sEMG decomposition [19]. This property can be used as
an advantage in user authentication field, as a complement to
the macroscopic neuromuscular representations.

B. Performance Evaluation of Protocol 1

Through tuning the matching score threshold, we can obtain
the average receiver operating characteristic (ROC) curve, as
shown in Fig. 9(a). The EER values are 0.0102 and 0 using
macrofeatures and macro–micro features, respectively. Most
biometrics-based authentication systems are faced with one
challenge: the similar characteristics between users and im-
postors. For the proposed method, besides the neuromuscular
biometrics, users can add their unique characteristics through
designing a unique FMICP. The zero EER using both macrofea-
ture and microfeature with an average nine-day interval between
training and testing sessions proves its high potential for user
authentication.

C. Performance Evaluation of Protocol 2

Fig. 9(b) shows the ROC curve of protocol 2. When impostors
enter a neuromuscular password with arbitrary FMICPs, the
EER values using macrofeatures and macro–micro features are
0.0153 and 0.0128, respectively. Although the macro–micro
features have not contributed to a zero EER, the EER of 0.0128
also shows the promising perspectives of the proposed neuro-
muscular password in a more realistic scenario.

D. Performance Evaluation of Protocol 3

Since the FMICP is entered through isometric contraction of
finger muscles without actual movement, it is almost impossible

for an impostor to steal the password. Even if the FMICP
is stolen, the neuromuscular biometrics can still work as the
second defense. Fig. 9(c) shows the performance of the proposed
user authentication system when the impostors enter the correct
FMICP. The EER values using macrofeatures and macro–micro
features are 0.1543 and 0.1496, respectively. In the most chal-
lenging protocol 3, we further evaluated the necessity of using
all six features by progressively increasing the feature number.
As shown in Fig. 10, a continuing EER reduction was achieved
when progressively adding sample entropy, spectral entropy,
FMD, WL, RMS, and FR to the process of matching score calcu-
lation, demonstrating the necessity of all extracted macro–micro
features. We also evaluated the authentication performance with
different SNR values in the most challenging protocol 3. As
aforementioned, the SNR of the acquired HD-sEMG signals is
8.58 dB. We added additional bandlimited white Gaussian noise
(10–900 Hz, similar to the frequency band of sEMG signals) for
the acquired signals to obtain signals with a desired SNR. As
shown in Fig. 11, even with the 3-dB SNR, an EER of 0.1857 can
be achieved using macro–micro features. These results further
validate that the proposed method is robust to noise.

E. Performance Evaluation of Protocol 4

The ROC of protocol 4 is shown in Fig. 9(d). If the neu-
romuscular password is stolen, the user can simply change
to a new FMICP to block the original one. The EER values
of protocol 4 using macrofeatures and macro–micro level are
0.0065 and 0, respectively, demonstrating the high cancelability
of the proposed neuromuscular password.

F. Performance Evaluation of Protocol 5

In realistic scenarios, the FMICP of the stolen neuromuscular
password can be an arbitrary sequence instead of exactly the
predefined one. When the stolen FMICP was randomly rese-
quenced, we still achieved low EER values of 0.0093 and 0.0065,
using macrofeatures and macro–micro features, respectively.

G. Chaotic Property of the Neuromuscular Password

The Shannon entropy of the proposed neuromuscular pass-
word (in both the signal domain and the feature domain) and
the success chance of each attempt in brutal attack are shown in
Table II. In the signal domain, the success chance of each attack
attempt is only 1/2(1.06×6.144×106), an extremely low chance
value. Even in the feature domain, the success chance of each
attack attempt is only 1/2(1.36×104). Note that the calculated
success chance of attack is an estimated value. In practical
situations, the number of quantization bits is usually larger
than 8 bits, increasing the Shannon entropy of the quantized
signals and features. With a larger number of quantization bits,
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Fig. 9. ROC curve of (a) protocol 1, (b) protocol 2, (c) protocol 3, (d) protocol 4, and (e) protocol 5.
Note: All of the five ROC curves are the average performance of all subjects. In (a)–(c), for each subject (the user), the remaining 21 subjects
(session 3, session 3 (after resequencing), and session 2, respectively) were regarded as imposters. The ROC curves (a)–(c) take 22 users and
21 × 21 = 441 imposters into consideration. In (d) and (e), for each subject, data from sessions 2 (the same FMICP) and 3 (the different FMICP) of
the same subject were assigned to the label user and imposter, respectively. Data from 21 users and 21 imposters were taken into consideration.
The FAR of imposters and FRR of users were shown in X-axis and Y-axis, respectively. Also, note that we used different axis scales for ROC curves
in different protocols.

TABLE II
SHANNON ENTROPY AND SUCCESS CHANCE OF EACH ATTEMPT IN BRUTAL ATTACK

Fig. 10. Continuing EER reduction with progressively increasing fea-
ture numbers (progressively add sample entropy, spectral entropy, FMD,
WL, RMS, and FR features).

the success chance to reproduce a neuromuscular password can
be further reduced significantly. However, a larger number of
quantization bits may also overestimate the chaotic property
because impostors do not have to reproduce exactly the same (or
high-resolution) signals or features. Accordingly, a low resolu-
tion with the quantization number of 8 was selected. Altogether,
the chaotic property analysis indicates that brutal attack is almost

Fig. 11. EER variation with decreasing SNR.

impossible to precisely intrude the neuromuscular password-
based authentication system.

H. Evaluation of Computational Efficiency

Here, we report the computation time of the processing
pipeline for an individual trial. The computation time reported
was the mean value of 100 repetitions (tested on: Intel(R)

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on January 15,2021 at 11:46:26 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: NEUROMUSCULAR PASSWORD-BASED USER AUTHENTICATION 2649

Fig. 12. EER variation with different number of subjects.

Xeon(R) CPU E5-2650 v2 @ 2.60 GHz). Specifically, the
longest computation time of all dependent processing pipelines
was reported. If several processing pipelines are independent
(e.g., extraction of each macrofeature), they can be computed in
parallel and the longest computation time is taken into consider-
ation, thus reducing the time delay. The longest dependent pro-
cessing pipeline of the proposed method is: ICA-based microfea-
ture extraction for data of each 3-s task (1.9661 s) + microscopic
matching score calculation (0.0033 s), with a total computational
time of 1.9694 s. Considering the microfeatures of data acquired
during each 3-s task were extracted separately in our work, a
1.9661-s (less than the 3-s task duration) computational time
can satisfy the real-time microfeature extraction requirement
of the successively acquired signals of each individual task. If
using macrofeatures only, we achieved a total computation time
of 0.9417 s.

I. EER Variation With Different Subject Numbers

To guarantee the reported performance is reliable using data
from 22 subjects, we evaluated system performance using differ-
ent numbers of subjects between 10 and 22. For subject numbers
less than 22, the subjects were randomly selected and the average
performance of 100 repetitions was reported. The plot of EER
in each protocol versus subject number is shown in Fig. 12.
As the subject number increases, the EER value remains stable.
For user authentication, in contrast with person identification,
the problem we are faced with is a binary classification task. No
matter how many subjects are involved, the mathematical expec-
tation of the result does not vary with the subject number. As the
data volume increases, the results converge to the mathematical
expectation of the true EER.

V. DISCUSSION

A. Privacy Preservation of Neuromuscular Password

For a biometrics-based authentication system, preserving pri-
vacy is essential because the stolen biometric template can
be used to track the user in other applications. One solution
to address this issue is to apply a one-way function (such as
hash functions) to transform the original biometric template to a
protected one while reserving the discriminative information of
users at the same time. Once the transformed template is stolen,
a new function can be applied to encrypt the original biometric
template. Since different applications employ different trans-
form functions, the stolen transformed template in a specific
application does not threaten the others. Besides, considering
that reconstructing the original biometric template through the
transformed one is impossible (or computationally difficult),
the stolen template does not threaten users’ privacy. For the

proposed authentication method, we perform user authentication
using extracted features. The one-way function (such as hash
functions) can be applied to the extracted features to further
encrypt the neuromuscular password. Moreover, due to the high
cancelability of the proposed neuromuscular password, even if
the original biometric template is stolen, users can replace the
original one by simply changing to a new FMICP to avoid being
tracked in other applications. In other words, the neuromuscular
biometrics can be changed on users’ choices, thus reducing the
privacy risks of biometrics theft.

B. Comparison With Other Biometric Modalities

According to the above results, the proposed theft-resistant
user authentication system shows high potentials in practical
application scenarios. Although other biometrics based on other
electrophysiological signals (e.g., EEG and ECG) are also theft-
resistant, the proposed EMG-based biometrics show great ad-
vantages over the existing ones. First, ECG is noncancelable
since the ECG variation cannot be volitionally controlled by
users. Second, we compare the proposed approach with another
biometrics modality—EEG. EEG-based biometrics have been
extensively studied in the past twenty years [4], [20]. EEG sig-
nals can exhibit different characteristics under different mental
states [21] so it is promisingly cancelable. There are two types
of experimental setups in the literature, namely biased setup and
rigorous setup. In a biased setup, the training and testing data
are randomly selected from all obtained data regardless of the
acquisition day. In this case, the validation procedure does not
take data variation across days into account, leading to a greatly
overestimated performance. In the worst case, the training and
testing data may be acquired in the same session. The variation
in experiment configuration, such as electrode position and
background noise was not considered either. In the rigorous
setup, the training and testing data were acquired on different
days, so as to prove the robustness and feasibility of the systems.
Since the rigorous setup was selected in our work, EEG-based
user authentication systems using the same rigorous setup was
taken as a comparison. Marcel and Millan [4] proposed a user
authentication system based on EEG and maximum a posteriori
model adaptation. Their EEG-based system employed data from
multiple days in the training set and data from another day as the
testing set, reducing the performance degradation due to signal
variation across days. Their results showed an FRR of 24.9% and
an FAR of 13.7%, evaluated by data acquired from nine subjects
over three days. Comparatively, our system only collected data
from one day for training. Even so, our results (protocol 3) show
that the FRR is 16.8% at the same FAR. Furthermore, when
only using training data from one day, their system achieved a
poorer performance [4] with an FRR of 50.3% and an FAR of
19.6%. In addition, EEG acquisition is a cumbersome process
for both experimenters and subjects. Therefore, data acquisition
in several days is a heavy workload, which does not satisfy
the “collectability” requirement for a user authentication sys-
tem. Another EEG-based biometrics study [20] using rigorous
setup employed a wearable in-ear EEG sensor with a relatively
convenient configuration process, to fulfill the collectability
requirement. The FRR was 32.2% at a FAR of 2.3% using
60-s EEG segments acquired from 15 subjects. Our proposed
neuromuscular biometrics can achieve a 30.4% FRR at the same
FAR. Therefore, the performance of our approach achieved a
comparable and slightly better results in protocol 3 compared
with EEG biometrics. Moreover, EER values of 0 and 0.0128 in
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TABLE III
COMPARISON OF NEUROMUSCULAR PASSWORD AND OTHER BIOMETRIC MODALITIES

protocols 1 and 2 demonstrate a significantly better performance
compared with EEG.

The comparison of the proposed neuromuscular password
and other widely studied biometric modalities regarding several
important properties is shown in Table III. A more detailed
discussion on the properties of the neuromuscular password is
given as follows.

1) Theft-resistant: As aforementioned, the FMCIP is difficult
to be stolen through peeping. Besides, the electrode array must
be attached to the skin during HD-sEMG signal acquisition.
Therefore, it is almost impossible for impostors to steal a user’s
neuromuscular biometrics without their knowledge. In contrast,
biometrics like DNA, face, fingerprint, and iris can be easily
stolen through a noncontact way. With the development of
noncontact ECG measurement [22], ECG can also be easily
stolen without direct contact with users.

2) Cancelable: The low EER values of protocols 4 and 5
demonstrate the excellent cancelability of the proposed authen-
tication method. EEG has also shown its potential as a cancelable
biometric modality because EEG signals show different charac-
teristics under different intention-driven mental states (such as
imaginary motion of the left and right hand) [21]. However, the
classification of different mental states is quite challenging due
to the low SNR of scalp EEG signals, limiting the cancelability
of EEG biometrics in practical use.

3) Highly distinguishable: By using neuromuscular biomet-
rics together with FMICP, users can add their unique properties
of their neuromuscular password.

4) Robust over time: The neuromuscular password achieved a
low EER when testing the performance several days (nine days
on average) later after model training.

5) Capable to protect users: EMG can be detected only when
the user is alive.

6) Convenient to use: HD-sEMG signal acquisition is rela-
tively convenient to set up compared with EEG. Besides, DNA
measurement takes relatively longer time to achieve the result
and requires high-cost and specialized equipment so it is also
not convenient to be applied in daily life situations.

7) Capable to ensure users’ voluntariness: For the major-
ity of biometrics-based authentication systems, users can be
forced to unlock the password. For example, the impostors can
control the user’s hand to obtain the fingerprint regardless of
the user’s voluntariness. In other words, there is no difference
between a spontaneous fingerprint and a compulsive one. The
issue also exists in biometrics such as face, iris, and DNA.
However, sEMG can overcome this drawback. As shown in
Fig. 13, we present the sEMG signals under spontaneous and
compulsive force. Obviously, compulsive force cannot generate
any sEMG signals. This is mainly due to the fact that sEMG is the
summation of MUAPs generated from the muscle contraction.
Accordingly, the proposed neuromuscular password is capable
to ensure users’ voluntariness. To a certain extent, EEG has also
shown this superiority because users cannot be forced to perform

Fig. 13. Comparison of HD-sEMG signals of (a) spontaneous force
and (b) compulsive force.

any thinking activity to generate EEG signals under a specific
mental state. However, the characteristics of baseline EEG and
thinking activity EEG share a high similarity because our brain
is engaged in countless background activities all the time. The
difficulty to discriminate between baseline EEG and thinking
activity EEG weakens the capacity of EEG biometrics to protect
users’ voluntariness.

8) Convenient to be integrated with other modalities: Consid-
ering that the neuromuscular password is based on HD-sEMG
acquired only on the dorsum of the right hand, it is very
convenient to achieve modality fusion with a fingerprint [2],
finger vein [23], palm print [24], and neuromuscular password
without data acquired from other body parts. For example, the
acquisition of fingerprint, finger vein, palm print and HD-sEMG
can be achieved by a wearable glove-like acquisition device.
Considering an increasing number of wearable and wireless
HD-sEMG acquisition devices have been developed by recent
studies [25], the integration of these modalities is promising.

C. Future Work

The presented work has demonstrated promising prospects
of our neuromuscular password. However, several important
factors need to be investigated in the future.
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Fig. 14. Complex encoding of the neuromuscular password via (left)
muscles other than finger flexors and (right) different force levels.

1) Validate the proposed method on a larger number of
subjects: Although our subject size of 22 achieved reliable
performance in this initial study (as shown in Fig. 12), validation
on a larger number of subjects is still necessary before practical
application. Moreover, validation on a more general population
(e.g., both young and elderly subjects) is required in future
studies.

2) Investigate the performance of HD-sEMG of other body
parts and isometric contraction patterns: In our work, we chose
to use HD-sEMG signals of the right dorsal hand as biometrics
due to its convenience in practical use. The forearm is a good
alternative choice. Actually, the extensor and flexor digitorum
muscles controlling different fingers are located in the fore-
arm [26]. Also, the activation pattern of muscle contractions
corresponding to different fingers is quite distinguishable in
the forearm [26]. As an initial study, we have investigated
muscle isometric contractions of individual finger and several
finger combinations. In practical situations, users can design a
more complex pattern of finger forces. For example, users can
perform isometric contraction of muscles controlling the palm,
in addition to fingers, as shown in the left panel of Fig. 14.
Moreover, the FMICP can be further encrypted through exerting
different force levels for different fingers, as shown in the right
panel of Fig. 14. Since the final decision of user authentication
is given by the matching score based on the similarity of the
entered neuromuscular password and the enrolled one, instead of
rigidly classifying the entered patterns, a more complex FMICP
pattern should not increase the pattern recognition difficulty, but
enhance the robustness of the system.

3) Investigate the authentication performance when reducing
the time of each task and resting period between tasks: This
may contribute to a more convenient neuromuscular password
in practical use.

4) Investigate the fusion method of the proposed neuromuscu-
lar password and other modalities: The development of effective
frameworks for modality fusion is quite important and challeng-
ing for user authentication tasks, which may further enhance the
robustness of the sEMG-based biometrics.

5) Investigate the robustness of neuromuscular password
against interference factors (e.g., emotion, temperature, body
condition, and more types of noise): Although HD-sEMG sig-
nals cannot be directly interfered by users’ emotion and stress,
such factors may influence authentication performance in an
indirect way. External temperature and body conditions may
also influence the performance. Herein, we only investigated the
authentication performance of the proposed method in Gaussian
noise with different SNR values. The interference of more
types of noise remains a future work. Investigating all these
factors is necessary before practical application of the proposed
neuromuscular password.

VI. CONCLUSION

In this article, we proposed a novel user authentication
paradigm based on neuromuscular password. The neuromuscu-
lar password consisted of two parts, namely the FMICP and neu-
romuscular biometrics, serving as double-layer defenses. Com-
pared with traditional keyboard-based password, the FMICP
was more secure since users could enter the password with-
out any actual movement. Accordingly, impostors were almost
impossible to steal the FMICP by inferring through the user’s
movement or shoulder surfing. Moreover, even if an impostor
entered the correct FMICP, the neuromuscular biometrics, as
the second defense, could still prohibit the impostor with its
low EER. The neuromuscular password also possessed other
superiorities, such as cancelability. Through validation on data
acquired from 22 subjects across different days, the neuromus-
cular password-based user authentication system achieved an
EER of 0.0128 using features at both the macroscopic and the
microscopic level, indicating the high practical potential of the
proposed authentication paradigm.
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