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Machine Learning for Clinical Outcome
Prediction

Farah Shamout , Tingting Zhu , and David A. Clifton

(Clinical Application Review)

Abstract—Clinical decision-making in healthcare is al-
ready being influenced by predictions or recommendations
made by data-driven machines. Numerous machine learn-
ing applications have appeared in the latest clinical liter-
ature, especially for outcome prediction models, with out-
comes ranging from mortality and cardiac arrest to acute
kidney injury and arrhythmia. In this review article, we sum-
marize the state-of-the-art in related works covering data
processing, inference, and model evaluation, in the con-
text of outcome prediction models developed using data
extracted from electronic health records. We also discuss
limitations of prominent modeling assumptions and high-
light opportunities for future research.

Index Terms—Learning (artificial intelligence), machine
learning, decision support systems, electronic medical
records, big data applications.

I. INTRODUCTION

R ECENT artificial intelligence (AI) developments seek to
positively impact medicine and clinical practice [1]. Ma-

chine learning (ML), an application of AI, recognizes patterns
within large quantities of medical data to make future predic-
tions, with many successful applications in natural language
processing, computer vision applications, and automatic speech
recognition [2]–[5]. Applications of ML have been successful
across several medical domains, such as disease prediction [6]
using various data modalities, including speech signals and med-
ical imaging [7]–[10], as well as clinical outcome prediction to
detect deterioration, such as cardiac arrest, mortality, or intensive
care unit (ICU) admission [11]–[14]. The intention of this paper
is to provide a technology survey of recent works on clinical
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outcome prediction models that illustrate the respective areas of
the fields in which they are described.

In general, designing an ML system involves a multidisci-
plinary effort that extends from data engineering to training and
evaluating a predictive model. We consider the general model
as a mapping of an input to an output:

f : X → y (1)

where f(.) is a function consisting of parameters Θ, X is the
input and y is the output. For example, X can consist of vital
signs measurements of the patient, such as heart rate, blood
pressure, and respiratory rate, and y can represent a binary label
indicating the occurrence of ICU transfer or cardiac arrest during
the patient’s hospital stay [14].

Fig. 1 depicts the typical pipeline of a ML application, starting
from the input X, and ending with the corresponding output
represented by y. The first task learns to extract intermediary
features (Section IV) while the second task learns from patterns
in the data to produce the predicted label (Section V). Such
models are usually assessed based on clinical utility and inter-
pretability (Section VI).

As we discuss related works throughout this review, we also
provide an intuitive explanation of the ML techniques used for
feature extraction or predictive inference. In general, ‘learning’
how to map the input to the output involves approximating the
parameters of the model f(.), a loss function L(y, ŷ|Θ), and an
optimization algorithm. The loss functionL(y, ŷ|Θ), also known
as the cost function, measures the dissimilarity between the true
labels y and the values ŷ predicted by the approximated model
(e.g., mean square error, binary cross-entropy, etc.). An opti-
mization algorithm, such as gradient descent [15], minimizes
L(y, ŷ|Θ) in an iterative manner based on the examples present
in the dataset.

II. CLINICAL CONTEXT AND FRAMEWORKS OF OUTCOME

PREDICTION MODELS

Care pathways within hospitals vary largely due to the
diversity of admitted patients. Thus, an understanding of the
clinical context is key for developing machine learning models
that can be incorporated within existing medical processes. As
shown in Fig. 2, a patient may be hospitalized as an emergency
or elective admission, where the latter constitutes a routine
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Fig. 1. General ML pipeline that maps an input to a label. The two main steps of the pipeline are (i) extraction of an intermediary feature space
and (ii) label prediction using a classification or clustering algorithm.

Fig. 2. Visualization of the patient flow in a hospital: Patient is either admitted as an elective or emergency admission, monitored in ward stay(s)
during consultant episode(s). Patient may transfer from one ward to another, or may change the consultant during the in-hospital stay. * Accident &
Emergency patients may be admitted as inpatients or just discharged.

procedure. During hospitalization, different types of data are
routinely collected from the patient for monitoring purposes.

Patient monitoring tools, such as early warning systems [16],
are widespread across different hospital wards to continuously
assess for patient deterioration. The definition of what exactly
constitutes clinical deterioration has evolved over time based on
the data collection and processing techniques. Early attempts
to define clinical deterioration focused on medical neglect and
its end result of clinical complications [17]. Subsequent studies
focused on more discrete clinical events, such as severe sepsis,
unexpected cardiac arrest, ICU admission or mortality [18],
[19], and tend to select one or more end-point measures of
clinical deterioration. Such events incur high costs of prolonged
hospital stays, litigation, staff time, impact on patients and staff,
and broader economic consequences [20]. The latter definition
is the most popular one, as it enables researchers to group
patients into discrete classes, such as deteriorating (i.e., those
who experience an outcome) and non-deteriorating (i.e., those
who are discharged without experiencing any outcomes), and as
such infer the y labels.

The framework of outcome prediction models also varies
across the literature. Some studies predict the risk of an outcome

only once using the patient’s first N hours of data after admis-
sion, such as 24 or 48 hours [21]. Others choose to predict the risk
of an outcome, such as ICU readmission, using the patient’s last
N hours of data prior to discharge. Another common method-
ology is to develop a real-time alerting score, which computes
the risk of deterioration every time a set of clinical observations
is collected [22], as in clinical early warning systems [23].

III. ELECTRONIC HEALTH RECORDS

Various types of data can be used to develop outcome predic-
tion models, such as imaging, speech, or claims data [24]. Here,
we focus on data extracted from electronic health records (EHR),
which are being increasingly deployed in hospitals worldwide.
EHRs are used in hospitals to store longitudinal information of
patients collected in a care delivery setting. Such information
includes patient demographics, vital signs, medications, labo-
ratory data, and description of any outcomes that may have
occurred to the patient during hospitalization, or shortly after
discharge.

Data extracted from an EHR database can be used to develop
and evaluate ML models. The dataset is typically split into a
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Fig. 3. Dataset sizes reported in the literature in ascending order from left (2008) to right (2019). The vertical axis represents the dataset size, in
terms of the number of patient admissions, and the horizontal axis represents the reference number. There is an increase of six orders of magnitude
between 2008 and 2019 in terms of dataset size, highlighting the increased availability of EHR data for ML research.

training set and a test set,1 either by a random or a nonrandom
split based on location or time. According to the Transparent
Reporting of a multi-variable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) statement, the nonrandom
split by time is the strongest evaluation technique as it avoids
random variations between the training and testing sets [25].
During model learning, the training set is used to optimize the
parameters Θ of the model. The trained model is then evaluated
on the held-out test set using various performance metrics.

Fig. 3 shows the overall dataset sizes, in terms of number
of patient admissions, reported in studies published in the last
decade (arranged in chronological order from left to right),
extracted from EHRs. There is an increase of six orders of mag-
nitude between 2008 and 2019, which highlights the increased
accessibility to EHR data for research purposes. Most datasets
are reported to be private, and there have only been a few notable
efforts to release open access datasets, such as the MIMIC-III
database [26]. Data and resource sharing is important for the
advancements of the field.

It is also commonly agreed that data in EHRs may reflect
the recording process present in the hospital rather than being
a direct reflection of patient physiology [27]. First, EHRs are
complex as they may include structured and unstructured data;
an example of the latter is textual information which could
require natural language processing techniques to process [28].
Additionally, categorical data, such as diagnostic coding, may
adopt different coding systems across different institutions.

Another important dimension is data completeness, which
may be defined as the proportion of observations that are actually
recorded in the system [29]. Incompleteness of EHRs can be a
result of health service fragmentation due to inefficient com-
munication following patient transfer among institutions; the
recording of data taking place only during healthcare episodes

1In clinical studies, the test set is usually termed the validation set, not to be
confused with the portion of the training set used for ML-oriented tasks, such
as hyperparameter selection.

that correspond to illness, or the increased personalisation of
attributes per patient [27], [30]. Completeness may also vary
across institutions based on adopted protocols.

The third challenge is the accuracy of the data, or “the propor-
tion of recorded observations in the system that are correct” [29].
Errors can occur while clinical staff observe a patient or record
data, and their occurrence may be influenced by random and
systematic errors such as billing requirements or avoidance of
liability [27]. The accuracy of EHRs can be assessed by checking
agreement between different elements within the EHR (such as
assigned diagnosis and supplied medications), or by verifying
whether values are within expected ranges [31].

Finally, it is important to verify whether the data was recorded
within a reasonable period of time [31]. For example, the
recorded collection time of vital signs may precede the time of
admission. Although this aspect of data quality is highly depen-
dent on the efficiency of the clinical staff, it also depends on the
work flow protocols adopted at different institutions. Timeliness
of data must be assessed to evaluate the chronology of data
elements in relation to admission or discharge decisions, for
example laboratory results prior to admission may be considered
as part of subsequent admission, or death within 24 hours of
discharge can be considered as in-hospital mortality.

This imposes challenges on the usability of the data, which
usually incurs preliminary data pre-processing as shown in
Fig. 4. The first step is to define an inclusion and exclusion
criteria to extract the patient cohort of interest. The second
step involves setting assumptions to aid the analysis of the
heterogeneous data, such as defining a minimum length of stay.
Finally, meaningful features as input variables to the ML model
can be extracted using a variety of techniques.

IV. FEATURE EXTRACTION

The performance of clinical predictive models relies on the
feature representation of the data, as in other domains [32]. As
reported in related works, feature extraction generally involves
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Fig. 4. Clinical outcome prediction models first extract a cohort of
interest based on a specific patient inclusion and exclusion criteria, and
then prepare the data for further downstream tasks by assessing the
characteristics of the raw dataset.

at least one of domain-expertise for hand-crafted features (Sec-
tion IV-A), data standardization (Section IV-B), or representa-
tion learning (Section IV-C).

A. Hand-Crafted Features

Domain expertise is commonly used to provide guidance on
the design of the data pre-processing pipeline. This involves (i)
preliminary feature selection from the input space, (ii) designing
hand-crafted features, and (iii) incorporating prior knowledge of
the structure of the data in the model design.

Examples of hand-crafted features in related works are pulse
pressure [33], [34], shock index [33], [35], [36], mean arterial
pressure [33], [37], oxygen delivery index [36], absolute suc-
cessive difference of heart rate, estimated cardiac output, slope
of fitted regression lines, or slope projections [35]. Statistical
measures can be obtained from the distributions of the raw data,
such as minimum and maximum extremes, moments (mean,
standard deviation, and skewness), percentiles or the difference
between two percentiles [35], [38].

Previous research also computed time series features from
waveform data [12], [34], [39], [40]. Those features can be cate-
gorized into four types: data adaptive, non-data adaptive, model-
based and data-dictated approaches [41]. Fourier and wavelet
transforms, for instance, decompose raw signals into frequency
and wavelets respectively. Time domain, Poincaré nonlinear,
cross-correlation analysis and geometric measures have also
been used to investigate variability of vital signs [12], [34].

Deriving hand-crafted features is a powerful tool in the design
of ML models and has been used extensively over the years.
However, it is a time-consuming and labor-intensive process,
requires expert knowledge, and may not scale well to new
problems.

B. Data Standardization

ML algorithms require further data preparation steps to en-
sure stability of learning. Here, related works reduce the noise,
sparsity and irregularity of the clinical data, as well as align the
scales of the various predictor variables.

1) Time-Series Modeling: Time-series modeling is widely
used in studies pertaining to early warning models [42], [43].
It is often used either (i) to infer a pattern of the physiological
trajectory or (ii) as an interpolation technique to overcome the
sparsity and irregularity of physiological data.

Linear dynamic systems have been previously used to model
physiological variables for ICU monitoring [44] and detection
of sepsis [45]. Hidden Markov Models (HMMs) were also used
to model health trajectories of patients [46], [47]. However, such
models cannot easily adapt to irregularly sampled vital-sign data.
Additionally, each hidden state in an HMM only depends on the
previous state [48]. Another approach for modeling similar data
is the kernel-based support vector regression [42].

One of the most popular techniques for time series model-
ing within the clinical domain is Gaussian Process Regression
(GPR). GPR is based on a non-parametric stochastic process
that offers a probabilistic approach for time-series modeling
by providing confidence intervals for estimated values at un-
observed time instances. A comprehensive introduction to GPR
can be found in [49]. Previous studies illustrate the robustness
of the single-task GPR [42], [50], [51] in modeling a single
physiological time-series variable. Others focus on multi-task
GPR [43], [52], [53], which learns similarities across several
time-series data data and models them simultaneously. The use
of GPR relies heavily on the choice of the kernel that encodes
prior knowledge of any nonlinear time-series dynamics that
might be hypothesized to exist in the data.

Most recently, neural processes, a class of neural latent vari-
able models, were also introduced as a probabilistic regression
approach [54], which generalizes GPR through the use of gen-
erative models from deep learning.

Modeling the physiological trajectory of patients has become
increasingly popular for further use in classification [43] or
clustering applications [46], [50].

2) Feature Scaling: Empirical studies show that the perfor-
mance of predictive models relies on the statistical normalisation
of the input space [55]. Z-score normalisation with zero mean
and unit standard deviation is a widely used tool in feature
scaling of numeric clinical variables [13], [56]–[59]. Min-max
normalisation performs a scaling of the feature values to lie
within a range, such as [0,1] in [11]. A rigorous comparison of
the different normalisation techniques in the context of clinical
deterioration does not exist. The current practice is to choose the
normalisation technique based on its effect on the performance
of the respective classifier. This presents an opportunity for
future research.

C. Representation Learning

Learning a suitable lower-dimensional embedding or repre-
sentation of a high-dimensional input space is a fundamental
component of ML research [32]. The embedding can repre-
sent a medical concept [60] or summarize a patient’s hospital
visit [61]. It often performs better than the raw input for learning
subsequent tasks [62]–[64]. We now provide an overview of
the techniques for obtaining embeddings in related medical
applications: (i) standard dimensionality reduction techniques,
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TABLE I
OVERVIEW OF FEATURE REPRESENTATION TECHNIQUES ADOPTED IN RELATED WORKS USING A VARIETY OF PREDICTOR VARIABLES: VITAL SIGNS (VS),

LABORATORY TESTS (LT), DEMOGRAPHIC INFORMATION (DI), DIAGNOSTIC CODES (DC), INTERVENTIONS (INT) SUCH AS
PROCEDURES AND MEDICATIONS, AND FREE TEXT (TEX)

(ii) distributed representations used in language modelling, (iii)
using embedding layers as part of a larger model, or (iv) through
the latent space of autoencoders and their variants. Such compact
representations are then further used as inputs for classification
or clustering purposes (covered in Section V).

1) Standard Dimensionality Reduction Techniques: One
of the most popular statistical dimensionality reduction tech-
niques is principal component analysis (PCA) [127] . PCA trans-
forms a set of possibly correlated variables to a set of linearly
uncorrelated components. It has been used to extract features
for various clinical applications [40], [65], [66], such as for
the detection of hypotensive episodes [34], mortality prediction
across stroke patients [67], or prediction of hospital readmis-
sion [68]. The main limitation of PCA is that it extracts linear
features that may not well represent non-linear relationships
present in complex clinical data [32]. Another popular technique
is independent component analysis (ICA) [69], [70], which
transforms the variables to a set of independent components.

2) Distributed Concept Representations: Patient records
may contain discrete categorical codes, such as diagnosis, med-
ication, or treatment codes. Several studies [71]–[73] propose
learning from such variables using embedding techniques de-
rived from the distributional hypothesis in semantic modeling.
The distributional hypothesis states that words that appear in
similar contexts in large samples of language data are seman-
tically similar [74]. The skip-gram algorithm learns the co-
occurrence of information inside a context window of a fixed
size [128]. It has been used to convert medical codes to dense
representations in [60], [71], [75]. Similar to skip-gram, the
Global Vectors (GloVe) algorithm was also used to learn the
global co-occurrence matrix of medical codes [76].

3) Embedding Layers: Embedding layers can also be inte-
grated as part of a larger model to transform high-dimensional
features into a lower-dimensional space. The embedding can
consist of a simple linear transformation [77], [78] or as a fully-
connected (deep) network [11], [73], [77]. One study projected
the input into a higher-dimensional space using a convolutional
layer [72].

4) Autoencoders and Their Variants: An autoencoder is a
neural network architecture that is often used for dimensionality
reduction or feature extraction [79]. It first transforms the input
space to a (typically noise-free) lower-dimensional representa-
tion using an encoder, and then reconstructs the input from this
compact representation. The sparse autoencoder (SAE) enforces
a sparsity constraint on the learned representation, and it has
been used to learn latent representations of clinical data [61],
[80]. The denoising autoencoder (DAE) reconstructs the input
from a partially corrupted version of the input. The stacked
DAE, which consists of several autoencoders that are initially
pre-trained independently then connected in one network, has
also been used for clinical applications [56], [70], [81], [82]. An-
other popular variant of autoencoders is the variational autoen-
coder [83], which is a generative model that learns a probabilistic
latent space, unlike the previously mentioned discriminative
autoencoders.

In Table I, we summarize the feature extraction techniques
in related outcome prediction studies. In terms of variable
selection, we observe that free clinical text is the least-used data
type. That may be due to the limited availability of datasets
and the complexity of processing free text, such as due to
the prevalence of abbreviations. However, recent works have
have looked into pre-training well known natural language
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TABLE II
EXAMPLES OF TECHNIQUES USED FOR OUTCOME PREDICTION IN RELATED WORKS

processing architectures with clinical text for related tasks, such
as BERT [84]. Therefore, we expect textual data to become
increasingly popular in future clinical applications as research
in natural language processing develops. We also note that rep-
resentation learning has gained popularity from approximately
2013 on wards, and we expect it to continue to be an active area of
research in the near future, since it can also support the develop-
ment of end-to-end models. The consistent use of hand-crafted
features over the years indicates its effectiveness in improving
the learning of ML models. Unlike hand-crafted features that
are easy to compute, time-series modeling is not as widely used
since it requires extensive hyperparameter tuning (e.g., choice
of kernel). Both hand-crafted features and time-series modeling
limit end-to-end training of the pipeline, since they are usually
incorporated as stand-alone intermediate data processing steps.
Another interesting trend is that more types of predictor variables
are being included in prediction models over time, due to the
increased availability of EHR data and computational resources.

V. PREDICTIVE INFERENCE

The extracted features can then used to train an outcome
prediction model. The task can be posed either as a classification
(Section V-A) or clustering (Section V-B) problem.

A. Outcome Classification Framework

Table II summarizes the different classification models that
have been used to predict various clinical outcomes, as pre-
sented in recent papers. Most papers compare the performance
of their models to those of simple ML techniques, such as

regression [58], [78], which have been useful statistical tech-
niques long since before the rise of ML. We also observe a
trend in ML model selection over time, where sophisticated
deep learning models, such as convolutional neural networks
or long short term memory networks, were used most recently.
We also note that predictions are often defined within a particular
future time-frame, ranging from short-term 48 hours prediction
windows [11] to 6 months, in order to frame the problem as a
classification task. The varying definitions in the literature of
what exactly constitutes an outcome makes it challenging to
compare methods directly. Additionally, some studies tend to
focus on specific patient subgroups, such as pediatrics [33].

1) Regression Models: Logistic regression is one of the
simplest linear classifiers [86] and is often considered as a stan-
dard benchmark for sophisticated clinical models [87]. Previous
studies used logistic regression to predict hemodynamic insta-
bility [35], imminent mortality [88], or the composite outcome
of cardiac arrest, unplanned ICU admission, and mortality [19].
However, logistic regression cannot learn non-linear relation-
ships and assumes independence across the input variables.

Decision tree learning involves the stratification of the feature
space based on a criterion defined by information theory, such
as entropy. One study developed an early warning score based
on decision trees, using seven routinely-collected laboratory
tests [89], while another constructed an ensemble model with
gradient tree boosting and adaptive boosting to predict the
likelihood of transfer to pediatric ICU [33]. Despite the high
interpretability of the aforementioned studies, they heavily rely
on task-specific hand-engineered features and do not learn com-
plex patterns in the data.
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2) Kernel Methods: Kernel methods rely on a user-defined
kernel function that estimates the ‘similarity’ between pairs of
data [90]. The support vector machine is a popular example
of kernel methods. It projects data into a higher-dimensional
space and finds the optimal discriminatory hyper-planes between
classes [91]. The use of support vector machines heavily relies
on the choice of the kernel and regularization, and they have
shown strong performance in recent clinical applications [36],
[39], [92], [93]. Computing the kernel matrix for all pairs of data
may be computationally expensive for large clinical datasets
especially when a non-linear kernel is used. Further work must
investigate approximation techniques for applications involving
large-scale medical data.

3) Deep Learning: Deep learning models are also becoming
increasingly popular for outcome prediction tasks [12],
[14], [37], [43], [96]. The simplest form of neural networks
is the multi-layer perceptron (MLP), which consists of
fully-connected perceptrons. The main limitation of the MLP
is its inability to account for temporal dependencies. Recurrent
neural networks and their variants seek to model temporal
behaviour through feedback connections. Both Long Short
Term Memory (LSTM) networks [43], [97], [98] and Gated
Recurrent Units (GRU) [71], [77] were constructed to predict
(and alert in advance of) clinical outcomes. There is also a
growing interest in developing ‘end-to-end’ architectures that
can jointly extract features and perform classification [78],
[85], [99]. Although deep learning techniques are typically
characterized by strong performance, their decision-making
process lacks interpretability.

B. Clustering for Abnormality Detection

Clustering algorithms are unsupervised learning techniques
that group data based on similarity measures. With the increased
availability of EHR databases, such techniques have been useful
for patient phenotyping and disease subtyping [80], [100]. As
for detecting deterioration prior to adverse events, most existing
works adopt the novelty detection framework using vital signs,
also known as ‘one-class classification.’ A full review of novelty
detection methods has been created in [101].

Such approaches involve creating a ‘dictionary’ or cluster
of healthy patients and computing a similarity metric for new
patients. Kernel density estimators are non-parametric methods
that can estimate the underlying probability distribution from
multi-variate data. Early works demonstrated the use of uncondi-
tional probability density function, one-class support vector ma-
chine, and Gaussian mixture models to assess the patient’s status
using routine measurements of vital signs with respect to a ‘nor-
mal’ distribution [102], [103]. Another study used a weighted
sum of Gaussian kernels to estimate the distribution of the vital
signs of ‘normal’ patients, and the departure from normality was
quantified using a novelty score based on likelihood [104]. Later
works focused on assessing the patient based on a time-series
representation of the vital-sign data. Some considered clustering
of GPR-derived latent representations to model vital-sign data
trajectories, and compute the similarity of a new test trajectory
based on its local likelihood with respect to the training set [50]

or the Kullback-Leibler (KL) divergence [105], [106]. There are
other statistical similarity metrics that can be used to compare
distributions, such as the Bhattacharyya distance [107]. Most
of the aforementioned related clustering works are based on
vital-sign data only and involve small-scale datasets.

VI. PERFORMANCE EVALUATION

The performance of supervised outcome prediction models
on the testing set is evaluated using various statistical meth-
ods. Those statistical methods mainly assess the performance
of the model in terms of accuracy metrics. In recent years,
model interpretability has also become an area of interest as
it directly reflects how we translate technologies into clinical
practice [108].

A. Performance Metrics

Model discrimination refers to the model’s ability in sepa-
rating classes of interest. In the context of outcome prediction
models, we will here refer to patients who experience an adverse
outcome as the positive class, and those who do not as the
negative class. Many ML models are trained to compute the
probability of the positive class, which is then converted to a
binary value by fixing a decision threshold. The predictions are
then compared to the true labels and can classified into one of
four categories: (1) True Positives (TP): model correctly predicts
the positive class, (2) True Negatives (TN): model correctly
predicts the negative class, (3) False Positives (FP): model
incorrectly predicts the positive class, and (4) False Negatives
(FN): model incorrectly predicts the negative class.

Accuracy, which summarizes the proportion of correctly clas-
sified samples across all samples, is highly biased when using
highly imbalanced datasets. Therefore, other metrics are usually
considered. Sensitivity, or the True Positive Rate (TPR), assesses
the model’s ability to correctly predict the positive class.

TPR =
TP

TP + FN
(2)

Specificity, also known as the True Negative Rate (TNR),
assesses the model’s ability to correctly predict the negative
class.

TNR =
TN

TN + FP
(3)

The receiving operator characteristic (ROC) curve plots the
TPR on the vertical axis and (1-TNR), also known as the False
Positive Rate (FPR), on the horizontal axis. The integral under
the curve is the Area Under the Receiving Operator Character-
istic Curve (AUROC) [109].2 The AUROC assesses the model’s
overall diagnostic ability as the decision threshold is varied. An
AUROC of 0.5 means that the model is making predictions at
random in a two-class setting. One related study mentions that
an AUROC higher than 0.8 implies that the model has good
diagnostic ability and an AUROC higher than 0.9 means that
the model has excellent diagnostic ability [110].

2Some studies refer to the AUROC as the ‘concordance-statistic’ (C-statistic).
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Precision, also known as the Positive Predictive Value (PPV),
assesses the proportion of correctly predicted positive class
across all of the true positive class.

PPV =
TP

TP + FP
(4)

The Precision-Recall curve, where recall is essentially sen-
sitivity, plots the TPR on the horizontal axis and the Precision
on the vertical axis and integrates the area under the curve. The
integral under the curve is the Area under Precision-Recall Curve
(AUPRC). Unlike the AUROC, the AUPRC and PPV are highly
sensitive to class imbalance. Outcome prediction models are
generally characterized with low AUPRC and PPV values [111].
Due to low PPV values, such systems should be considered as
risk stratifiers rather than predictors [34].

There are other commonly assessed metrics, such as the
F1-score [96], [112] and the likelihood ratio [113]. Some studies
also report the false positives to true positives ratio [11] and the
inverse of the PPV known as the work-up-to-detection ratio [58],
[114]. The efficiency curve [89], [115] is a qualitative summary
that plots the number of positives generated at different decision
thresholds against the sensitivity of the model. This tool is
essential to evaluate the trade-off between the total number of
positives and the number of false positives.

B. Interpretability

Despite the good performance of recently introduced ML
models, interpretability remains to be a challenge for their clini-
cal utility [108]. There are various definitions of interpretability
in existing literature and they refer to several distinct ideas [116],
[117]. Most of these ideas pertaining to the clinical domain
revolve around trustworthiness of the results and transparency of
the model. In the context of this review, we summarize the efforts
of outcome prediction models that considered interpretability as
a key component of model assessment.

Mimic learning assumes that shallow models, such as linear
models, are interpretable. It aims to identify the features that are
potentially relevant to the prediction. It involves first training a
deep learning model for a specific clinical task. It then trains
a shallow model, such as gradient boosting trees, to mimic
the behaviour of the deep learning model [82], [118]. The
local interpretable model-agnostic explanation (LIME) [119]
generates a local explanation of the model behaviour using a
shallow model. It has been even used to explain ML models
for the prediction of in-hospital mortality [120]. However, it
has also been argued that linear models, rule-based models,
and decision trees are not intrinsically interpretable [116]. Other
post-hoc interpretability techniques such as saliency maps rely
on qualitative visual interpretations commonly used in computer
vision applications.

It is often argued that deep learning models compromise inter-
pretability for high accuracy [121]. Thus, there have been recent
breakthroughs in developing inherently interpretable deep learn-
ing models instead of performing post-hoc interpretation [122].
For instance, attention mechanisms are incorporated within deep
learning models and assign normalised weights to a set of
features. The weights indicate the feature importance for the

prediction of a future diagnosis [72], [76], [99] or high risk
vascular diseases [112]. Other works impose non-negativity [61]
or sparsity [80] constraints on the learned embedding space of
medical data.

VII. MOVING FORWARD

The prediction of clinical outcomes is essential to detect
deterioration in a timely manner and to ease burden off clinical
staff. The development of the ML pipelines and their subsequent
performance can also be improved by accounting for a few
considerations.

A. Noisy Outcome Labels

To train outcome prediction models, outcome labels are cur-
rently being defined based on the occurrence of discrete clinical
events. However, such labels may be noisy or inaccurate since
EHRs only reflect parts of the hospital experience. For example,
while a patient may experience cardiac arrest, the patient may be
on terminal care pathways with ‘do not resuscitate orders,’ and
such information may not be present in the available dataset.

Additionally, outcome labels are defined based on a specific
time-window, where the features are associated with a positive
outcome label only if they are within N hours to an outcome.
This creates a strict cut-off where data collected prior to this
N -hours window is not associated with a future outcome. Re-
alistically speaking, deterioration is likely to develop gradually
over time, yet this is the state-of-the-art approach in developing
outcome prediction models within clinical practice. Future work
should consider both classification and time-to-event analysis,
where the latter focuses on predicting the time until the oc-
currence of an outcome, rather than just predicting a binary
label [123].

B. Personalized Predictive Models

Most of the outcome prediction models are developed
and evaluated population-wide and recent improvements show
marginal improvements. As more data is collected per patient,
we hypothesize that the predictive power of such models could
improve by developing patient-specific models, that account for
individual-, disease-, and organizational-based factors [129]. On
an individual-level, factors may include demographics, lifestyle,
coexisting medical conditions, or genetic information. Disease-
related factors may include degree of severity, medications and
therapy, rate of progression, interventions, surgeries, and proce-
dures. Organizational-factors may include type of hospital, time
of the day, staff ratio, or staff training. This also motivates the
advancement of internet of things in healthcare to enhance the
collection of integrated data, and would certainly allow us to
move forward towards ‘precision medicine.’

Additionally, in the development of machine learning and
deep learning models, it is assumed that the data samples
are independent and identically distributed (i.i.d.) random sets.
However, this may not be the case in practice, since some data
samples may belong to the same patient and spatio-temporal
patterns may be indicative of deterioration prior to an outcome.
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C. General Learning Models

Deep neural networks are powerful processing techniques.
However, most of the state-of-the-art models seek to learn how
to predict a specific outcome or a particular task, which can
generally be referred to as ‘narrow AI.’ While some of the
motivation behind using representation learning has been to
learn general patient representations as inputs for downstream
predictive tasks, more work needs to be done into developing
generalized models that can automatically learn from heteroge-
neous EHR data to perform diverse tasks simultaneously, such
as disease diagnosis and patient prognosis.

Additionally, end-to-end models have shown recent success
in applications such as speech recognition and natural language
processing [124]–[126], since they can bypass intermediate data
processing steps that are typically present in traditional ML
pipelines. In the context of clinical outcome prediction models,
this requires major improvements in the collection and curation
of EHR data across several dimensions, especially complete-
ness, complexity, and accuracy. To overcome the challenge of
manually designing ML pipelines, some works have suggested
frameworks to automatically optimize the configuration of the
pipeline, such asAutoPrognosis [123]. Future works should
further investigate the extension of end-to-end training for EHR
data to improve efficiency and minimize biases.

While recently developed ML models perform well within
retrospective studies, validating their success in practice requires
prospective analysis. The progress of the field relies on increased
multidisciplinary collaborations between ML research scientists
and clinicians. While it will take time for both parties to speak
the same language, we hope that this review would demystify
the overall ML pipeline and summarize the assumptions and
techniques of the state-of-the-art.
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