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Summary
Background The early clinical course of COVID-19 can be difficult to distinguish from other illnesses driving 
presentation to hospital. However, viral-specific PCR testing has limited sensitivity and results can take up to 72 h for 
operational reasons. We aimed to develop and validate two early-detection models for COVID-19, screening for the 
disease among patients attending the emergency department and the subset being admitted to hospital, using 
routinely collected health-care data (laboratory tests, blood gas measurements, and vital signs). These data are typically 
available within the first hour of presentation to hospitals in high-income and middle-income countries, within the 
existing laboratory infrastructure.

Methods We trained linear and non-linear machine learning classifiers to distinguish patients with COVID-19 from 
pre-pandemic controls, using electronic health record data for patients presenting to the emergency department and 
admitted across a group of four teaching hospitals in Oxfordshire, UK (Oxford University Hospitals). Data extracted 
included presentation blood tests, blood gas testing, vital signs, and results of PCR testing for respiratory viruses. 
Adult patients (>18 years) presenting to hospital before Dec 1, 2019 (before the first COVID-19 outbreak), were 
included in the COVID-19-negative cohort; those presenting to hospital between Dec 1, 2019, and April 19, 2020, with 
PCR-confirmed severe acute respiratory syndrome coronavirus 2 infection were included in the COVID-19-positive 
cohort. Patients who were subsequently admitted to hospital were included in their respective COVID-19-negative or 
COVID-19-positive admissions cohorts. Models were calibrated to sensitivities of 70%, 80%, and 90% during training, 
and performance was initially assessed on a held-out test set generated by an 80:20 split stratified by patients with 
COVID-19 and balanced equally with pre-pandemic controls. To simulate real-world performance at different stages 
of an epidemic, we generated test sets with varying prevalences of COVID-19 and assessed predictive values for our 
models. We prospectively validated our 80% sensitivity models for all patients presenting or admitted to the Oxford 
University Hospitals between April 20 and May 6, 2020, comparing model predictions with PCR test results.

Findings We assessed 155 689 adult patients presenting to hospital between Dec 1, 2017, and April 19, 2020. 
114 957 patients were included in the COVID-negative cohort and 437 in the COVID-positive cohort, for a full study 
population of 115 394 patients, with 72 310 admitted to hospital. With a sensitive configuration of 80%, our emergency 
department (ED) model achieved 77·4% sensitivity and 95·7% specificity (area under the receiver operating 
characteristic curve [AUROC] 0·939) for COVID-19 among all patients attending hospital, and the admissions model 
achieved 77·4% sensitivity and 94·8% specificity (AUROC 0·940) for the subset of patients admitted to hospital. Both 
models achieved high negative predictive values (NPV; >98·5%) across a range of prevalences (≤5%). We prospectively 
validated our models for all patients presenting and admitted to Oxford University Hospitals in a 2-week test period. 
The ED model (3326 patients) achieved 92·3% accuracy (NPV 97·6%, AUROC 0·881), and the admissions model 
(1715 patients) achieved 92·5% accuracy (97·7%, 0·871) in comparison with PCR results. Sensitivity analyses to 
account for uncertainty in negative PCR results improved apparent accuracy (ED model 95·1%, admissions model 
94·1%) and NPV (ED model 99·0%, admissions model 98·5%). 

Interpretation Our models performed effectively as a screening test for COVID-19, excluding the illness with high-
confidence by use of clinical data routinely available within 1 h of presentation to hospital. Our approach is rapidly 
scalable, fitting within the existing laboratory testing infrastructure and standard of care of hospitals in high-income 
and middle-income countries.

Funding Wellcome Trust, University of Oxford, Engineering and Physical Sciences Research Council, National 
Institute for Health Research Oxford Biomedical Research Centre. 

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
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Introduction 
An outbreak of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) led to the COVID-19 
pandemic of 2020.1 The early clinical course of COVID-19, 
which often includes common symptoms such as fever 
and cough, can be challenging for clinicians to 
distinguish from other respiratory illnesses.2–4

Testing for SARS-CoV-2, most commonly by real-time 
RT-PCR assay of nasopharyngeal swabs, has been widely 
adopted, but has limitations.3,5,6 These include limited 
sensitivity,5,7 a long turnaround time of up to 72 h, and 
requirements for specialist laboratory infrastructure and 
expertise.8 Studies have shown a significant proportion of 
asymptomatic carriage and limited specificity for 
common symptoms (fever and cough), hampering 
symptom-guided hospital triage.9 Therefore, an urgent 
clinical need exists for rapid, point-of-care identification 
of COVID-19 to support expedient delivery of care and to 
assist front-door triage and patient streaming for 
infection control purposes.10

The increasing use of electronic health-care record 
(EHR) systems has improved the richness of clinical 
datasets available to study COVID-19. High-throughput 
electronic data extraction and processing can enable 
curation of rich datasets, incorporating all clinical data 

available on presentation, and might combine with 
advanced machine learning techniques to produce a 
rapid screening tool for COVID-19 that fits within 
existing clinical pathways.11,12 

Approaches to produce a rapid screening tool, with utility 
during the early phase of hospital presentations, should 
use only clinical data available before the point of 
prediction.13 Basic laboratory blood tests and physiological 
clinical measurements (vital signs) are among the 
routinely collected health-care data typically available 
within the first hour of presentation to hospitals in high-
income and middle-income countries, and patterns of 
changes have been described in retrospective obser vational 
studies of patients with COVID-19 (variables including 
lymphocyte count, and alanine amino transferase, 
C-reactive protein [CRP], D-dimer, and bilirubin concen-
trations).3,4,14,15 Moreover, previous health-care data available 
in the EHR might be useful in identifying risk factors for 
COVID-19 or underlying conditions that might cause 
alternative, but similar, presentations.

In this study, we applied artificial intelligence methods 
to a rich clinical dataset to develop and validate a rapidly 
deployable screening model for COVID-19. Such a tool 
would facilitate rapid exclusion of COVID-19 in patients 
presenting to hospital, optimising patient flow and serving 

Research in context

Evidence before this study
A detailed systematic review identified 91 diagnostic models 
for COVID-19 as of July 1, 2020; however, all were appraised to 
be at “high risk of bias”. Existing early detection models 
overwhelmingly consider radiological imaging (60 of 
91 models), such as CT, which is less readily available than blood 
tests and involves exposure of patients to ionising radiation. 
Few studies assessed routine laboratory tests, with the scarce 
literature considering small numbers of patients with 
confirmed COVID-19 (<180), labelling patients as negative by 
use of the imperfectly sensitive PCR test and thereby failing to 
ensure disease freedom, inadequately accounting for breadth of 
alternative disease, and not being prospectively validated. No 
published studies considered whether laboratory artificial 
intelligence models can be applied to a clinical population as a 
screening test for COVID-19. 

Added value of this study
To our knowledge, this was the largest laboratory artificial 
intelligence study on COVID-19 to date, training with clinical 
data from more than 115 000 patients presenting to hospital, 
and the first to integrate laboratory blood tests with point-of-
care measurements of blood gases and vital signs. The breadth 
of our pre-pandemic control cohort exposed our classifiers to a 
wide variety of alternative illnesses and offered confidence that 
control patients did not have COVID-19. 

Here, we developed context-specific models for patient 
populations attending the emergency department and being 

admitted to hospital, and we showed clinically minded 
calibration by selecting for high negative predictive values at 
high classification performance. In doing so, we developed an 
effective screening test for COVID-19 using clinical data that are 
routinely acquired for patients presenting to hospital in the UK 
and typically available within 1 h. By simulating performance of 
our screening test at different stages of a pandemic, we showed 
high negative predictive values (>98·5%) when disease 
prevalence is low (≤5%), safely and rapidly excluding COVID-19. 
We prospectively validated our models by applying them to all 
patients presenting and admitted to the Oxford University 
Hospitals in a 2-week test period, achieving high accuracy 
(>92%) compared with PCR results. 

Implications of all the available evidence
Rapid and accurate detection of COVID-19 in hospital 
admissions is essential for patient safety. Well described 
limitations of the current gold-standard test include 
turnaround times up to 72 h (as of July, 2020), limited 
sensitivity of about 70%, and shortages of skilled operators and 
reagents. The benefits of our artificial intelligence screening 
test are that it is immediately deployable at low cost, fits 
within existing clinical pathways and laboratory testing 
infrastructure, gives a result within 1 h that can safely exclude 
COVID-19, and ensures that patients can receive upcoming 
treatments rapidly. 
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as a pretest where access to confirmatory molecular 
testing is limited.

Methods 
Data collection 
Linked deidentified demographic and clinical data for all 
patients presenting to emergency and acute medical 
services at Oxford University Hospitals (Oxford, UK) 
between Dec 1, 2017, and April 19, 2020, were extracted 
from EHR systems. Oxford University Hospitals consist 
of four teaching hospitals, serving a population of 600 000 
and providing tertiary referral services to the surrounding 
region. 

For each presentation, data extracted included 
presentation blood tests, blood gas testing, vital signs, 
results of RT-PCR assays for SARS-CoV-2 (Abbott 
Architect [Abbott, Maidenhead, UK], and Public Health 
England-designed RNA-dependent RNA polymerase) 
from nasopharyngeal swabs, and PCR for influenza and 
other respiratory viruses. Where available, the following 
baseline health data were included: the Charlson 
comorbidity index, calculated from comorbidities 
recorded during a previous hospital encounter since 
Dec 1, 2017 (if any existed); and changes in blood test 
values relative to pre-presentation results. Patients who 
had opted out of EHR research, did not receive laboratory 
blood tests, or were younger than 18 years were excluded 
from analysis. Analyses were confined to clinical, 
laboratory, and historical data routinely available within 
the first hour of presentation to hospital.

Adult patients presenting to hospital before Dec 1, 2019, 
and thus before the global outbreak, were included in the 
COVID-19-negative cohort. A subset of this cohort was 
admitted to hospital and included in the COVID-19-
negative admissions cohort. Patients presenting to hospital 
between Dec 1, 2019, and April 19, 2020, with PCR-
confirmed SARS-CoV-2 infection were included in the 
COVID-19-positive cohort, with the subset admitted to 
hospital included in the COVID-19-positive admissions 
cohort. Because of incomplete penetrance of testing 
during early stages of the pandemic and limited sensitivity 
of the PCR swab test, there is uncertainty in the viral status 
of patients presenting during the pandemic who were 
untested or tested negative. Therefore, these patients were 
excluded from the analysis.

The study protocol, design and data requirements were 
approved by the National Health Service (NHS) Health 
Research Authority (IRAS ID 281832) and sponsored by 
the University of Oxford.

Feature sets
The five sets of clinical variables investigated are shown 
in table 1. We considered presentation blood tests and 
blood gas results from the first blood draw on arrival to 
hospital. Routine blood tests were determined to include 
the full blood count, urea and electrolytes, liver function 
tests, and CRP. We selected these tests because they are 

widely done within existing care pathways in emergency 
departments, and results are typically available within 
1 h.16 We computed changes in blood tests from previous 
laboratory samples taken at least 30 days before presen-
tation to hospital (available from Dec 1, 2017, onwards). 

We used three imputation strategies—population 
mean, population median, and age-based imputation—
to impute missing data. We report mean and SD across 
imputation strategies. A full description of the data 
processing pipeline is available in the appendix (pp 3–5). 

Model training, calibration, and testing
Linear (logistic regression) and non-linear ensemble 
(random forest and XGBoost) classifiers17,18 were trained 
to distinguish patients presenting or admitted to hospital 
with confirmed COVID-19 from pre-pandemic controls. 
We developed separate models to predict COVID-19 in all 
patients attending the emergency department (ED model) 
and then in the subset of those who were subsequently 
admitted to hospital (admissions model). 

Models were trained and tested with use of data from 
Dec 1, 2017, to April 19, 2020, (table 2). We did an 80:20 
stratified split to generate a training set and held-out test 
set. Using the training set, we first trained models with 
each independent feature set (table 1) to distinguish 
presentations of COVID-19 from pre-pandemic controls. 
Next, we started model training using the presentation 
blood results set and sequentially added additional sets. 
The area under the receiver operating characteristic 
curve (AUROC) achieved during training with stratified 
10-fold cross-validation is reported alongside SDs. 
During training, controls were matched for age, gender, 
and ethnicity. Model thresholds were calibrated to 
achieve sensitivities of 70%, 80%, and 90% for identifying 

Clinical parameters

Feature sets of data routinely acquired on presentation to hospital

Presentation blood tests Haemoglobin, haematocrit, mean cell volume, white cell count, neutrophil 
count, lymphocyte count, monocyte count, eosinophil count, basophil count, 
platelets, prothrombin time, INR, APTT, sodium, potassium, creatinine, urea, 
eGFR, CRP, albumin, alkaline phosphatase, ALT, bilirubin

Presentation point-of-care 
blood gas results

Actual base excess, standard base excess, bicarbonate, calcium, chloride, 
estimated osmolality, fraction of carboxyhaemoglobin, glucose, haemoglobin, 
haematocrit, potassium, methaemoglobin, sodium, oxygen saturation, 
calculated lactate, calculated oxygen content, calculated p5O, partial pressure 
of carbon dioxide at point of care, pH, partial pressure of oxygen

Presentation vital signs Heart rate, respiratory rate, oxygen saturation, systolic blood pressure, diastolic 
blood pressure, temperature, oxygen flow rate

Feature sets of previous health data

Change (Δ) in blood test 
results from baseline

Δ albumin, Δ alkaline phosphatase, Δ ALT, Δ basophil count, Δ bilirubin, 
Δ creatinine, Δ eosinophil count, Δ haematocrit, Δ haemoglobin, 
Δ lymphocyte count, Δ mean cell volume, Δ monocyte count, Δ neutrophil 
count, Δ platelets, Δ potassium, Δ sodium, Δ urea, Δ white cell count, Δ eGFR

Baseline comorbidity data Charlson comorbidity index

ALT=alanine aminotransferase. APTT=activated partial thromboplastin time. CRP=C-reactive protein. eGFR=estimated 
glomerular filtration rate. INR=international normalised ratio. p50=pressure at which haemoglobin is 50% bound to 
oxygen. 

Table 1: Clinical parameters included in each feature set

See Online for appendix
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patients with COVID-19 in the training set before 
evaluation. The selection of 70%, 80%, and 90% 
sensitivity thresholds was a pragmatic decision to allow 
clear presentation of the data.

We assessed performance of each configuration using 
the held-out test set. First, we configured the test set with 
equal numbers of COVID-19 cases and pre-pandemic 
controls, ensuring that performance was assessed in 
conditions free of class imbalance, and reported AUROC 
alongside sensitivity and specificity at each threshold. 
Second, to simulate model performance at varying stages 
of the pandemic, we generated a series of test sets with 
various prevalences of COVID-19 (1–50%) by use of the 
held-out set. We report positive and negative predictive 
values for each model at the 70% and 80% sensitivity 
thresholds. AUROC, sensitivity, specificity, and precision 
are reported for candidate models at the described 
thresholds. Positive predictive values (PPVs) and negative 
predictive values (NPVs) are reported for the simulated test 
sets. To understand the contribution of individual features 
to model predictions, we queried importance scores and 
did SHAP (Shapley additive explanations) analysis.

Validation
Models were validated independently by use of data for all 
adult patients presenting or admitted to Oxford University 

Hospitals between April 20 and May 6, 2020, by direct 
comparison of model prediction against SARS-CoV-2 PCR 
results. Because of incomplete penetrance of testing and 
limited sensitivity of the PCR swab test, we did a sensitivity 
analysis to ensure disease freedom in patients labelled as 
COVID-19 negative during validation, replacing patients 
who tested negative by PCR assay or who were not tested 
with truly negative pre-pandemic patients matched for age, 
gender, and ethnicity. Accuracy, AUROC, NPV, and PPV 
were reported during validation. We assessed rates of 
misclassification by characteristics of age, gender, and 
ethnicity; comparison between groups was done with 
Fishers’ exact test. We used the SciPy library for Python, 
version 1.2.3. 

Model development and reporting followed TRIPOD 
(transparent reporting of a multivariable prediction 
model for individual prediction or diagnosis) 
guidelines.13 

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the manuscript. All authors had full access to 
all the data in the study. AASS and SK guarantee the data 
and analysis. The corresponding author had final 
responsibility for the decision to submit for publication. 

Study population Prospective validation cohorts

 Presenting to hospital Admitted to hospital Presenting to hospital 
(n=3326)

Admitted to hospital 
(n=1715)

COVID-19 negative 
(n=114 957)

COVID-19 positive 
(n=437)

COVID-19 negative 
(n=71 927)

COVID-19 positive 
(n=383)

Patients positive for COVID-19 0 437 0 383 107 91

Age, years 60 (38) 69 (26) 65 (33) 71 (26) 56 (37) 64 (34)

Sex

Men 53 570 (46·6%) 246 (56·3%) 34 381 (47·8%) 211 (55·1%) 1513 (45·5%) 832 (48·5%)

Women 61 387 (53·4%) 191 (43·7%) 37 546 (52·2%) 172 (44·9%) 1813 (54·5%) 883 (51·5%)

Previous EHR encounter 85 183 (74·1%) 367 (84·0%) 53 370 (74·2%) 33 091 (86·4%) 2671 (80·3%) 1367 (79·7%)

Ethnicity     

White British 76·0% 65·4% 78·5% 68·4% 66·3% 68·2%

Not stated 11·8% 17·4% 11·0% 16·2% 19·5% 20·5%

Any other White background 5·0% 3·7% 4·0% 3·4% 6·5% 4·7%

Pakistani 1·3% 1·1% 1·1% 1·0% 1·2% 1·0%

Any other Asian background 0·9% 2·5% 0·8% 1·8% 1·4% 1·2%

Indian or British Indian 0·8% 1·1% 0·7% 0·8% 0·9% 0·8%

White Irish 0·7% 0·7% 0·7% 0·8% 0·7% 0·8%

African 0·6% 3·0% 0·6% 2·9% 0·6% 0·8%

Any other Black background 0·3% 0·9% 0·3% 0·5% 0·5% 0·3%

Bangladeshi 0·2% 0·7% 0·2% 0·8% 0·3% 0·3%

Chinese 0·2% 0·2% 0·2% 0·3% 0·4% 0·3%

Any other ethnic group 2·0% 3·2% 1·8% 3·2% 1·6% 1·3%

Patients positive for influenza 484 (<0·1%) 0 466 (<0·1%) 0 0 0

Data are n (%) or median (IQR). EHR=electronic health-care record.

Table 2: Population characteristics for the study cohorts and the prospective validation set 
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Results 
We assessed 155 689 adult patients presenting to 
hospital between Dec 1, 2017, and April 19, 2020 
(appendix p 2). We included 114 957 patients who 
presented to hospital before Dec 1, 2019, of whom 
71 927 were admitted to hospital, in the COVID-19-
negative cohorts. 437 patients had a diagnosis of 
COVID-19 confirmed by RT-PCR between Dec 1, 2019, 
and April 19, 2020, of whom 383 were admitted to 
hospital, and were included in the COVID-19-positive 
cohorts. 40 295 patients who presented to hospital 
during the pandemic and either were not tested for 
SARS-CoV-2 by PCR or were tested and had negative 
results were excluded from analysis due to uncertainty 
in viral status. Therefore, the full study population 
comprised 115 394 patients.

Patients presenting to hospital with COVID-19 had a 
higher median age than pre-pandemic controls (69 years, 
IQR 26, for the COVID-19-positive cohort vs 60 years, 
38, for the COVID-19-negative cohort; Kruskal-Wallis 
test p<0·0001; table 2). Similarly, patients admitted to 
hospital with COVID-19 were older than those in the 
COVID-19-negative admissions cohort (median 71 years, 
SD 26, for COVID-19-positive admissions vs 65 years, 
33, for COVID-19-negative admissions; p<0·0001). 
Summary statistics of vital signs for the COVID-19-
positive cohort showed median oxygen saturation at 
presentation of 95·3% (IQR 94–98), median systolic 
blood pressure of 132 mm Hg (115–147), and median 
diastolic blood pressure of 74 mm Hg (65–84; appendix 
p 5). 85 183 (74·1%) of 114 957 presenting to hospital 
before the COVID-19 pandemic had had a previous 
clinical encounter at the Oxford University Hospitals.  

We assessed the relative performance of models trained 
with each independent feature set at identifying presen-
tations due to COVID-19, reported as AUROC (SD) 
achieved during training with stratified 10-fold cross-
validation (table 3). Both ensemble methods outper-
formed logistic regression, possibly due to their intrinsic 
ability to detect non-linear effects of the feature sets. 
XGBoost classifiers trained on laboratory blood tests and 
vital signs done at presentation showed the highest 
predictive performance for COVID-19 (table 3). The 
narrow SDs showed model stability.

The stepwise addition of routinely collected clinical 
data improved model performance to a peak AUROC of 
0·929 (SD 0·003), achieved with 10-fold cross-validation 
during training using the XGBoost classifier (table 3). 
Incorporating previous blood results further improved 
model performance to an AUROC of 0·942 (0·002); 
however, having added previous blood results, the 
addition of the Charlson comorbidity index did not 
further improve performance.

Our preliminary results suggest that a non-linear 
approach with clinical data routinely available on 
presentation achieves high classification performance 
(table 3). Although incorporating previous health data 
supports a small increment in performance, missingness 
could limit generalisability. Therefore, we developed and 
optimised context-specific models with use of the 
XGBoost classifier, using only clinical datasets routinely 
available on presentation, training separate models to 
predict COVID-19 in patients attending the emergency 
department (ED model) and in the subset admitted to 
hospital (admissions model). This approach has the 

 Independent feature sets Sets routinely performed on presentation Sets integrating previous health data

Presentation 
blood tests

Blood gas 
results

Vital signs Δ blood tests Presentation 
blood tests

Presentation 
blood tests plus 
blood gas results

Presentation blood 
tests plus blood gas 
results plus vital signs

Sets performed on 
presentation plus 
Δ blood tests

Sets performed on 
presentation plus Δ 
blood tests plus CCI

Logistic 
regression

0·897 (0·003) 0·730 (0·001) 0·810 (0·003) 0·805 (0·008) 0·897 (0·003) 0·898 (0·003) 0·919 (0·002) 0·920 (0·004) 0·920 (0·004)

Random forest 0·901 (0·004) 0·780 (0·000) 0·815 (0·005) 0·835 (0·006) 0·901 (0·004) 0·907 (0·003) 0·922 (0·002) 0·941 (0·004) 0·937 (0·002)

XGBoost 0·904 (0·000) 0·770 (0·000) 0·823 (0·005) 0·808 (0·050) 0·904 (0·000) 0·916 (0·003) 0·929 (0·003) 0·942 (0·002) 0·942 (0·002)

Data are AUROC (SD). Δ=change in results from baseline. AUROC=area under the receiver operating characteristic curve. CCI=Charlson comorbidity index. 

Table 3: AUROCs achieved for each independent feature set and for increasing feature sets using stratified 10-fold cross-validation during training

Calibrated threshold during training

Sensitivity 0·70 Sensitivity 0·80 Sensitivity 0·90

ED model performance on test set

Sensitivity 0·697 (0·009) 0·774 (0·019) 0·847 (0·014)

Specificity 0·986 (0·005) 0·957 (0·009) 0·917 (0·018)

Precision (PPV) 0·979 (0·007) 0·944 (0·012) 0·905 (0·018)

NPV 0·777 (0·005) 0·820 (0·013) 0·866 (0·011)

AUROC 0·939 (0·003) 0·939 (0·003) 0·939 (0·003)

Admissions model performance on test set

Sensitivity 0·663 (0·029) 0·774 (0·013) 0·854 (0·007)

Specificity 0·973 (0·000) 0·948 (0·005) 0·891 (0·009)

Precision (PPV) 0·950 (0·002) 0·922 (0·006) 0·861 (0·010)

NPV 0·785 (0·014) 0·841 (0·007) 0·886 (0·005)

AUROC 0·940 (0·001) 0·940 (0·001) 0·940 (0·001)

Data are performance (SD). The test set was generated from an 80:20 stratified train-test split of the dataset and 
balanced equally with controls (50% assumed prevalence). AUROC=area under the receiver operating characteristic 
curve. ED=emergency department. NPV=negative predictive values. PPV=positive predictive values. 

Table 4: Assessment of performance of the ED and admissions models, calibrated to 70%, 80%, and 90% 
sensitivities during training, in identifying COVID-19 in patients presenting to or admitted to hospital 
in the held-out test set
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advantage of being applicable to all patients, and is 
specific to the clinical contexts in which model use is 
intended. Detailed performance metrics for all feature-
set combinations, at each threshold, are available in the 
appendix (pp 6–7).

Performance of our ED and admissions models was 
assessed on a held-out test set, generated using a 
stratified 80:20 train-test split of cases and configured 
initially with equal numbers of patients with COVID-19 
and pre-pandemic controls (ie, 50% prevalence; table 4). 
Our ED and admissions models, calibrated during 
training to sensitivity of 80%, achieved an AUROC of 
0·939 (ED model) and 0·940 (admissions model), 
sensitivity of 77·4% (for both models), and specificity of 
95·7% (ED) and 94·8% (admissions).

Relative feature importance analysis showed that all 
feature sets contributed to the most-informative variables 
for model predictions (figure). In the ED model, three 
laboratory blood markers (eosinophils, basophils, and 
CRP) were among the highest-ranking variables. Blood 
gas measurements (calcium and methaemoglobin) and 
vital signs (oxygen requirement and respiratory rate) 
were additionally among the variables most informative 
to model predictions. Similar top-ranking features are 
seen in the admissions model, but with greater relative 
weights for CRP and white cell counts and lesser weights 
for blood gas measurements. Results of SHAP analysis 
confirmed that CRP, eosinophil counts, and basophil 
counts had the greatest effect on predictions of both 
models (appendix p 7).

Figure: Receiver operating characteristic curves (A) and relative importance of features (B) for the ED and admissions models
ALT=alanine aminotransferase. APTT=activated partial thromboplastin time. CRP=C-reactive protein. ctO2c=calculated oxygen content. ED=emergency department. FCOHb=fraction of 
carboxyhaemoglobin. p50c=calculated pressure at which haemoglobin is 50% bound to oxygen. 
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To reflect performance at varying stages of an epidemic, 
we assessed positive and negative predictive values on 
test sets configured to various prevalences of COVID-19, 
with results calibrated to two sensitivity thresholds (70% 
and 80%; table 5). For both ED and admissions models, 
the higher sensitivity configuration (80%) achieved high 
NPV (>98·5%) where COVID-19 is uncommon (≤5% 
prevalence), supporting safe exclusion of the disease. At 
high disease prevalences (≥20%), the 70% sensitivity 
configuration optimises for high PPV (>83%) at good 
NPV (>92%; table 5). The 70% sensitivity configurations 
achieved high PPV (76·3% in the ED model and 83·0% 
in the admissions model) and NPV (95·3% in the ED 
model and 92·6% in the admissions model) at the 
prevalence of COVID-19 observed in patients presenting 
and admitted to hospital at the study hospitals during 
April 1–8, 2020 (table 5). 

We prospectively validated our ED and admissions 
models, calibrated during training to 80% sensitivity, for 
all patients presenting or admitted to Oxford University 
Hospitals between April 20 and May 6, 2020. 3326 patients 
presented to hospital and 1715 were admitted during the 
validation period. Prevalences of COVID-19 were 3·2% 
(107 of 3326) in patients presenting to hospital and 5·3% 
(91 of 1715) in those admitted to hospital. Our ED model 
performed with 92·3% accuracy (AUROC 0·881) and the 
admission model performed with 92·5% accuracy 
(0·871) on the validation set, assessed against results of 
laboratory PCR testing. PPVs were 46·7% (ED model) 
and 40·0% (admissions model) and NPVs were 97·6% 
(ED) and 97·7% (admissions).

We did a sensitivity analysis to account for uncertainty 
in the viral status of patients testing negative by PCR or 
who were not tested. Our ED model showed an apparent 
improvement in accuracy to 95·1% (AUROC 0·960) and 
our admission model improved to 94·1% accuracy 
(0·937) on the adjusted validation set. NPVs achieved 
were also improved to 99·0% (ED model) and 98·5% 
(admissions model).

To assess model performance on clinically important 
subgroups, we assessed performance of our admissions 
model on patients presenting during prospective 
validation who went on to require admission to the 
intensive care unit (ICU) or who died. The model 
performed highest on the subpopulation admitted to 
ICU (AUROC 0·930, accuracy 93·5%, NPV 98·3%, PPV 
37·8%) and also achieved high performance for patients 
who died during admission (0·916, accuracy 93·0%, 
NPV 98·3%, PPV 37·6%). Additionally, we investigated 
model performance for the subset of patients presenting 
with respiratory symptoms, showing high performance 
for this key group (0·895, accuracy 92·8%, NPV 98·0%, 
PPV 35·6%).

To evaluate for biases in model performance, we 
assessed rates of patient misclassification during 
validation of our ED and admissions models. We 
observed that rates of misclassification were similar 

between White British (ED model 9%, admissions 
model 10%) and Black, Asian, and minority ethnic 
group patients (ED 11%, admissions 13%; Fishers’ exact 
test p=0·37 for ED and p=0·36 for admissions), and 
between men (11% for both models) and women (8% for 
both models; p=0·15 for ED and p=0·091 for 
admissions). We also found no difference between 
misclassification of patients older than 60 years (10% 
for both models) and patients aged 18–60 years (9% ED 
model and 8% admissions model; p=0·19 for ED and 
admissions).

Discussion
The limitations of the gold-standard PCR test for 
COVID-19 have challenged health-care systems across 
the world. Because COVID-19 can be difficult to 
distinguish clinically from other illnesses, there remains 
an urgent need for rapid and accurate screening of 
patients on arrival to hospitals, with the available 
diagnostic test limited by long turnaround times,19 
shortages of specialist equipment and operators, and 
relatively low sensitivity.8 NHS guidelines require testing 
of all emergency admissions,20 irrespective of clinical 
suspicion, highlighting the demand for rapid and 
accurate exclusion of COVID-19 in the acute care setting.6

In this study, we developed and assessed two context-
specific artificial intelligence-driven screening tools for 
COVID-19. Our ED and admissions models effectively 
identified patients with COVID-19 among all patients 
presenting and admitted to hospital, using data typically 
available within the first hour of presentation. Simulation 
on test sets with varying prevalences of COVID-19 

Prevalence of COVID-19 in test set

 1% 2% 5% 10%* 20%† 25% 33% 50%

ED model

Sensitivity 0·70

PPV 0·203 0·383 0·613 0·763 0·834 0·902 0·888 0·979

NPV 0·996 0·990 0·985 0·953 0·932 0·871 0·886 0·778

Sensitivity 0·80

PPV 0·133 0·282 0·493 0·638 0·767 0·831 0·823 0·944

NPV 0·997 0·993 0·991 0·962 0·946 0·909 0·908 0·820

Admissions model

Sensitivity 0·70

PPV 0·175 0·304 0·513 0·595 0·830 0·859 0·876 0·950

NPV 0·996 0·992 0·982 0·969 0·926 0·905 0·881 0·785

Sensitivity 0·80

PPV 0·098 0·211 0·390 0·509 0·755 0·797 0·812 0·922

NPV 0·998 0·994 0·986 0·977 0·942 0·920 0·907 0·841

ED=emergency department. NPV=negative predictive values. PPV=positive predictive values. *The 10% scenario 
approximates the observed prevalence of COVID-19 in patients presenting to the study hospitals during 
April 1–8, 2020. †The 20% scenario approximates the observed prevalence of COVID-19 in patients admitted to the 
study hospitals during April 1–8, 2020.

Table 5: PPV and NPV of the ED and admissions models, calibrated during training to 70% and 80% 
sensitivities, for identifying COVID-19 in test sets with various prevalences 
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showed that our models achieved clinically useful NPVs 
(>98·5%) at low prevalences (≤5%). On validation, using 
prospective cohorts of all patients presenting or admitted 
to the Oxford University Hospitals, our models achieved 
high accuracies and NPVs compared with PCR test 
results. A sensitivity analysis to account for uncertainty 
in negative PCR results improved apparent accuracy and 
NPVs.  

The high negative predictive performance of our 
models supports their use as a screening test to rapidly 
exclude a diagnosis of COVID-19 in emergency depart-
ments, assisting immediate care decisions, guiding safe 
patient streaming, and serving as a pretest for diagnostic 
molecular testing where availability is limited. In 
subgroup analyses during model validation, high 
accuracy and NPV were maintained for the subset of 
patients presenting with respiratory symptoms, showing 
superiority over a simple symptom-based triage strategy, 
and were also maintained for critically ill patients who 
required ICU admission or died. Key beneficiary 
populations include a majority of viral-free patients 
correctly predicted to be COVID-19 negative. In our 
clinically minded, safety-first approach, COVID-19 is 
ruled-in for an enriched subpopulation at higher risk of 
testing positive, for whom waiting for definitive testing is 
advisable. This screening paradigm is widely established 
in clinical practice after popularisation of the D-dimer 
test for suspected deep-vein thrombosis and pulmonary 
embolism.21

The strengths of our artificial intelligence approach 
include an ability to scale rapidly, taking advantage of 
cloud computing platforms and working with laboratory 
tests widely available and routinely done within the 
current standard of care. Moreover, we showed that our 
models can be calibrated to meet changing clinical 
requirements at different stages of the pandemic, such as 
a high PPV model.

To date, early-detection models have overwhelmingly 
focused on assessment of radiological imaging, such as 
CT,5,19,22,23 which is less readily available and involves patient 
exposure to ionising radiation. Few studies have assessed 
routine laboratory tests, with studies to date including 
small numbers of patients with confirmed COVID-19, 
using PCR results for data labelling and thereby not 
ensuring disease freedom in so-called negative patients 
and not being validated in the clinical population that is 
the target for their intended use.11,24,25 A substantial 
limitation of existing works is the use of narrow control 
cohorts during training, inadequately exposing models to 
the breadth and variety of alternative infectious and non-
infectious pathologies, including seasonal patho logies. 
Moreover, although the use of artificial intelligence 
techniques for early detection holds great promise, many 
published models to date have been assessed to be at high 
risk of bias.22

Our study includes the largest dataset of any 
laboratory artificial intelligence study on COVID-19 to 

date, considering over 115 000 hospital attendances and 
5 million measurements, and it is pros pectively 
validated with use of appropriate patient cohorts for the 
models’ intended clinical contexts. The breadth of our 
pre-pandemic control cohort gives exposure to a wide 
range of undifferentiated presen tations, including 
other seasonal infectious pathologies (eg, influenza), 
and offers confidence in SARS-CoV-2 freedom. 
Additionally, to our knowledge, our study is the first to 
integrate laboratory blood results with blood gas and 
vital signs measurements taken at presentation to 
hospital, maximising the richness of the dataset 
available.

Although our results showed that integrating previous 
health data incrementally improved model performance, 
we did not include previous health data in our final 
models. As this data was missing for 29 844 (25·9%) of 
115 394 patients (table 2), the cost of generalisability 
would outweigh the benefit of a marginal performance 
improvement.

We selected established linear and non-linear 
modelling approaches, achieving highest performance 
with XGBoost, an extreme gradient boosted tree method. 
Information variables from all sets were important in 
model predictions, including three measured bio-
chemical quantities (eosinophils, basophils, and CRP), 
blood gas measurements (methaemoglobin and 
calcium), and vital signs (respiratory rate and oxygen 
delivery).

Existing literature has reported an association between 
lymphopenia and COVID-19.3,15 We observed that 
lymphopenia was frequently absent on first-available 
laboratory tests done on admission (appendix pp 3–4) 
and was not a highly ranked feature in our models 
(figure). Univariate analysis identified that eosinopenia 
on presentation was more strongly correlated with 
COVID-19 diagnosis than lymphocyte count (appendix 
p 6; χ² score 41·61 for eosinopenia and 31·56 for 
lymphocyte count). 

Recognising concerns of biases within artificial 
intelligence models, we assessed cases misclassified 
during validation for evidence of ethnicity, age, and 
gender biases. Our results showed misclassification was 
not significantly different between White British and 
Black, Asian, and minority ethnic patients; men and 
women; and older (>60 years) and younger (18–59 years) 
patients.

Our study seeks to address limitations common to 
EHR research. We used multiple imputations for 
missing data, taking a mean of three strategies (age-
based imputation, population mean, and population 
median). We queried whether our results were sensitive 
to the imputation strategy and found similar model 
performance across the three strategies. 

A potential limitation of this study is the relatively 
limited ethnic diversity of patients included. 87 653 
(76·0%) of 115 394 study patients reported their ethnicity 
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to be White British (table 2). Although our models do not 
appear to be more likely to misclassify patients of an 
ethnic minority, integrating data from international 
centres where patients might attend hospital with 
different spectrums of complaints would increase 
confidence in model generalisability abroad. We excluded 
patients younger than 18 years from the analysis, noting 
that COVID-19 is a rare cause of hospital presentation in 
the paediatric population; however, this limits model 
applicability to adults.26 Additionally, as the first wave of 
COVID-19 cases in the UK largely followed the 
conclusion of the 2019–20 influenza season, data for 
patients who were co-infected were not available for this 
study.27,28 Future work might examine a role for rapid 
screening in the paediatric population to reduce 
nosocomial transmission and assess model applicability 
in co-infection.

Our work shows that an artificial intelligence-driven 
screening test can effectively triage patients presenting to 
hospital for COVID-19 while confirmatory laboratory 
testing is pending. Our approach is rapidly scalable, 
fitting within the existing laboratory testing infra structure 
and standard of care, and serves as proof of concept for a 
rapidly deployable software tool in future pandemics. 
Prospective clinical trials would further assess model 
generalisability and real-world performance. 
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